1
|
Dhanavath N, Bisht P, Jamadade MS, Murti K, Wal P, Kumar N. Olaparib: A Chemosensitizer for the Treatment of Glioblastoma. Mini Rev Med Chem 2025; 25:374-385. [PMID: 39444180 DOI: 10.2174/0113895575318854241014101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024]
Abstract
Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor. The current treatment for GBM includes adjuvant chemotherapy with temozolomide (TMZ), radiation therapy, and surgical tumor excision. There is still an issue because 50% of patients with GBM who get TMZ have low survival rates due to TMZ resistance. The activation of several DNA repair mechanisms, such as Base Excision Repair (BER), DNA Mismatch Repair (MMR), and O-6- Methylguanine-DNA Methyltransferase (MGMT), is the main mechanism via which TMZ resistance develops. The zinc-finger DNA-binding enzyme poly (ADP-ribose) polymerase-1 (PARP1), which is activated by binding to DNA breaks, affects the activation of the MGMT, BER, and MMR pathway deficiency, which results in TMZ resistance in GBM. PARP inhibitors have been studied recently as sensitizing medications to increase TMZ potency. The first member of the PARP inhibitor family to be identified was Olaparib. It inhibits PARP1 and PARP2, which causes apoptosis in cancer cells and DNA strand break. Olaparib is currently investigated as a radio- and/or chemo-sensitizer in addition to being used as a single agent because it may increase the cytotoxic effects of other treatments. This review addresses Olaparib and its significance in treating TMZ resistance in GBM.
Collapse
Affiliation(s)
- Naresh Dhanavath
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar, 844102, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar, 844102, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar, 844102, India
| | - Pranay Wal
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar, 844102, India
| |
Collapse
|
2
|
Pavlova S, Fab L, Dzarieva F, Ryabova A, Revishchin A, Panteleev D, Antipova O, Usachev D, Kopylov A, Pavlova G. Unite and Conquer: Association of Two G-Quadruplex Aptamers Provides Antiproliferative and Antimigration Activity for Cells from High-Grade Glioma Patients. Pharmaceuticals (Basel) 2024; 17:1435. [PMID: 39598347 PMCID: PMC11597096 DOI: 10.3390/ph17111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background: High-grade gliomas remain a virtually incurable form of brain cancer. Current therapies are unable to completely eradicate the tumor, and the tumor cells that survive chemotherapy or radiation therapy often become more aggressive and resistant to further treatment, leading to inevitable relapses. While the antiproliferative effects of new therapeutic molecules are typically the primary focus of research, less attention is given to their influence on tumor cell migratory activity, which can play a significant role in recurrence. A potential solution may lie in the synergistic effects of multiple drugs on the tumor. Objectives: In this study, we investigated the effect of combined exposure to bi-(AID-1-T), an anti-proliferative aptamer, and its analog bi-(AID-1-C), on the migratory activity of human GBM cells. Results: We examined the effects of various sequences of adding bi-(AID-1-T) and bi-(AID-1-C) on five human GBM cell cultures. Our findings indicate that certain sequences significantly reduced the ability of tumor cells to migrate and proliferate. Additionally, the expression of Nestin, PARP1, L1CAM, Caveolin-1, and c-Myc was downregulated in human GBM cells that survived exposure, suggesting that the treatment had a persistent antitumor effect on these cells.
Collapse
Affiliation(s)
- Svetlana Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Lika Fab
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Fatima Dzarieva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Anastasia Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Dmitriy Panteleev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Olga Antipova
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry Usachev
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Alexey Kopylov
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Galina Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| |
Collapse
|
3
|
Németh E, Szüts D. The mutagenic consequences of defective DNA repair. DNA Repair (Amst) 2024; 139:103694. [PMID: 38788323 DOI: 10.1016/j.dnarep.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Multiple separate repair mechanisms safeguard the genome against various types of DNA damage, and their failure can increase the rate of spontaneous mutagenesis. The malfunction of distinct repair mechanisms leads to genomic instability through different mutagenic processes. For example, defective mismatch repair causes high base substitution rates and microsatellite instability, whereas homologous recombination deficiency is characteristically associated with deletions and chromosome instability. This review presents a comprehensive collection of all mutagenic phenotypes associated with the loss of each DNA repair mechanism, drawing on data from a variety of model organisms and mutagenesis assays, and placing greatest emphasis on systematic analyses of human cancer datasets. We describe the latest theories on the mechanism of each mutagenic process, often explained by reliance on an alternative repair pathway or the error-prone replication of unrepaired, damaged DNA. Aided by the concept of mutational signatures, the genomic phenotypes can be used in cancer diagnosis to identify defective DNA repair pathways.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
4
|
Shao Z, Lee BJ, Zhang H, Lin X, Li C, Jiang W, Chirathivat N, Gershik S, Shen MM, Baer R, Zha S. Inactive PARP1 causes embryonic lethality and genome instability in a dominant-negative manner. Proc Natl Acad Sci U S A 2023; 120:e2301972120. [PMID: 37487079 PMCID: PMC10401025 DOI: 10.1073/pnas.2301972120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
PARP1 (poly-ADP ribose polymerase 1) is recruited and activated by DNA strand breaks, catalyzing the generation of poly-ADP-ribose (PAR) chains from NAD+. PAR relaxes chromatin and recruits other DNA repair factors, including XRCC1 and DNA Ligase 3, to maintain genomic stability. Here we show that, in contrast to the normal development of Parp1-null mice, heterozygous expression of catalytically inactive Parp1 (E988A, Parp1+/A) acts in a dominant-negative manner to disrupt murine embryogenesis. As such, all the surviving F1 Parp1+/A mice are chimeras with mixed Parp1+/AN (neoR retention) cells that act similarly to Parp1+/-. Pure F2 Parp1+/A embryos were found at Mendelian ratios at the E3.5 blastocyst stage but died before E9.5. Compared to Parp1-/- cells, genotype and expression-validated pure Parp1+/A cells retain significant ADP-ribosylation and PARylation activities but accumulate markedly higher levels of sister chromatid exchange and mitotic bridges. Despite proficiency for homologous recombination and nonhomologous end-joining measured by reporter assays and supported by normal lymphocyte and germ cell development, Parp1+/A cells are hypersensitive to base damages, radiation, and Topoisomerase I and II inhibition. The sensitivity of Parp1+/A cells to base damages and Topo inhibitors exceed Parp1-/- controls. The findings show that the enzymatically inactive PARP1 dominant negatively blocks DNA repair in selective pathways beyond wild-type PARP1 and establishes a crucial physiological difference between PARP1 inactivation vs. deletion. As a result, the expression of enzymatically inactive PARP1 from one allele is sufficient to abrogate murine embryonic development, providing a mechanism for the on-target side effect of PARP inhibitors used for cancer therapy.
Collapse
Affiliation(s)
- Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Brian J. Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Hanwen Zhang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Chen Li
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Napon Chirathivat
- Department of Medicine, Columbia University Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Medical Center, New York, NY10032
- Department of Urology, Columbia University Medical Center, New York, NY10032
- Department of Systems Biology, Columbia University Medical Center, New York, NY10032
| | - Steven Gershik
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Michael M. Shen
- Department of Medicine, Columbia University Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Medical Center, New York, NY10032
- Department of Urology, Columbia University Medical Center, New York, NY10032
- Department of Systems Biology, Columbia University Medical Center, New York, NY10032
| | - Richard Baer
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| |
Collapse
|
5
|
Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51. Nat Commun 2022; 13:6722. [PMID: 36344511 PMCID: PMC9640580 DOI: 10.1038/s41467-022-34519-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Sister chromatid exchanges (SCEs) are products of joint DNA molecule resolution, and are considered to form through homologous recombination (HR). Indeed, SCE induction upon irradiation requires the canonical HR factors BRCA1, BRCA2 and RAD51. In contrast, replication-blocking agents, including PARP inhibitors, induce SCEs independently of BRCA1, BRCA2 and RAD51. PARP inhibitor-induced SCEs are enriched at difficult-to-replicate genomic regions, including common fragile sites (CFSs). PARP inhibitor-induced replication lesions are transmitted into mitosis, suggesting that SCEs can originate from mitotic processing of under-replicated DNA. Proteomics analysis reveals mitotic recruitment of DNA polymerase theta (POLQ) to synthetic DNA ends. POLQ inactivation results in reduced SCE numbers and severe chromosome fragmentation upon PARP inhibition in HR-deficient cells. Accordingly, analysis of CFSs in cancer genomes reveals frequent allelic deletions, flanked by signatures of POLQ-mediated repair. Combined, we show PARP inhibition generates under-replicated DNA, which is processed into SCEs during mitosis, independently of canonical HR factors.
Collapse
|
6
|
Gralewska P, Gajek A, Rybaczek D, Marczak A, Rogalska A. The Influence of PARP, ATR, CHK1 Inhibitors on Premature Mitotic Entry and Genomic Instability in High-Grade Serous BRCAMUT and BRCAWT Ovarian Cancer Cells. Cells 2022; 11:cells11121889. [PMID: 35741017 PMCID: PMC9221516 DOI: 10.3390/cells11121889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Olaparib is a poly (ADP-ribose) polymerase inhibitor (PARPi) that inhibits PARP1/2, leading to replication-induced DNA damage that requires homologous recombination repair. Olaparib is often insufficient to treat BRCA-mutated (BRCAMUT) and BRCA wild-type (BRCAWT) high-grade serous ovarian carcinomas (HGSOCs). We examined the short-term (up to 48 h) efficacy of PARPi treatment on a DNA damage response pathway mediated by ATR and CHK1 kinases in BRCAMUT (PEO-1) and BRCAWT (SKOV-3 and OV-90) cells. The combination of ATRi/CHK1i with PARPi was not more cytotoxic than ATR and CHK1 monotherapy. The combination of olaparib with inhibitors of the ATR/CHK1 pathway generated chromosomal abnormalities, independent on BRCAMUT status of cells and formed of micronuclei (MN). However, the beneficial effect of the PARPi:ATRi combination on MN was seen only in the PEO1 BRCAMUT line. Monotherapy with ATR/CHK1 inhibitors reduced BrdU incorporation due to a slower rate of DNA synthesis, which resulted from elevated levels of replication stress, while simultaneous blockade of PARP and ATR caused beneficial effects only in OV-90 cells. Inhibition of ATR/CHK1 increased the formation of double-strand breaks as measured by increased γH2AX expression at collapsed replication forks, resulting in increased levels of apoptosis. Our findings indicate that ATR and CHK1 inhibitors provoke premature mitotic entry, leading to genomic instability and ultimately cell death.
Collapse
Affiliation(s)
- Patrycja Gralewska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Dorota Rybaczek
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
- Correspondence: ; Tel.: +48-42-635-44-77
| |
Collapse
|
7
|
Cytocidal Antitumor Effects against Human Ovarian Cancer Cells Induced by B-Lactam Steroid Alkylators with Targeted Activity against Poly (ADP-Ribose) Polymerase (PARP) Enzymes in a Cell-Free Assay. Biomedicines 2021; 9:biomedicines9081028. [PMID: 34440232 PMCID: PMC8394033 DOI: 10.3390/biomedicines9081028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022] Open
Abstract
We evaluated three newly synthesized B-lactam hybrid homo-aza-steroidal alkylators (ASA-A, ASA-B and ASA-C) for their PARP1/2 inhibition activity and their DNA damaging effect against human ovarian carcinoma cells. These agents are conjugated with an alkylating component (POPA), which also served as a reference molecule (positive control), and were tested against four human ovarian cell lines in vitro (UWB1.289 + BRCA1, UWB1.289, SKOV-3 and OVCAR-3). The studied compounds were thereafter compared to 3-AB, a known PARP inhibitor, as well as to Olaparib, a standard third-generation PARP inhibitor, on a PARP assay investigating their inhibitory potential. Finally, a PARP1 and PARP2 mRNA expression analysis by qRT-PCR was produced in order to measure the absolute and the relative gene expression (in mRNA transcripts) between treated and untreated cells. All the investigated hybrid steroid alkylators and POPA decreased in vitro cell growth differentially, according to the sensitivity and different gene characteristics of each cell line, while ASA-A and ASA-B presented the most significant anticancer activity. Both these compounds induced PARP1/2 enzyme inhibition, DNA damage (alkylation) and upregulation of PARP mRNA expression, for all tested cell lines. However, ASA-C underperformed on average in the above tasks, while the compound ASA-B induced synthetic lethality effects on the ovarian cancer cells. Nevertheless, the overall outcome, leading to a drug-like potential, provides strong evidence toward further evaluation.
Collapse
|
8
|
Hurley RM, McGehee CD, Nesic K, Correia C, Weiskittel TM, Kelly RL, Venkatachalam A, Hou X, Pathoulas NM, Meng XW, Kondrashova O, Radke MR, Schneider PA, Flatten KS, Peterson KL, Becker MA, Wong EM, Southey MS, Dobrovic A, Lin KK, Harding TC, McNeish I, Ross CA, Wagner JM, Wakefield MJ, Scott CL, Haluska P, Wahner Hendrickson AE, Karnitz LM, Swisher EM, Li H, Weroha SJ, Kaufmann SH. Characterization of a RAD51C-silenced high-grade serous ovarian cancer model during development of PARP inhibitor resistance. NAR Cancer 2021; 3:zcab028. [PMID: 34316715 PMCID: PMC8271218 DOI: 10.1093/narcan/zcab028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Acquired PARP inhibitor (PARPi) resistance in BRCA1- or BRCA2-mutant ovarian cancer often results from secondary mutations that restore expression of functional protein. RAD51C is a less commonly studied ovarian cancer susceptibility gene whose promoter is sometimes methylated, leading to homologous recombination (HR) deficiency and PARPi sensitivity. For this study, the PARPi-sensitive patient-derived ovarian cancer xenograft PH039, which lacks HR gene mutations but harbors RAD51C promoter methylation, was selected for PARPi resistance by cyclical niraparib treatment in vivo. PH039 acquired PARPi resistance by the third treatment cycle and grew through subsequent treatment with either niraparib or rucaparib. Transcriptional profiling throughout the course of resistance development showed widespread pathway level changes along with a marked increase in RAD51C mRNA, which reflected loss of RAD51C promoter methylation. Analysis of ovarian cancer samples from the ARIEL2 Part 1 clinical trial of rucaparib monotherapy likewise indicated an association between loss of RAD51C methylation prior to on-study biopsy and limited response. Interestingly, the PARPi resistant PH039 model remained platinum sensitive. Collectively, these results not only indicate that PARPi treatment pressure can reverse RAD51C methylation and restore RAD51C expression, but also provide a model for studying the clinical observation that PARPi and platinum sensitivity are sometimes dissociated.
Collapse
Affiliation(s)
- Rachel M Hurley
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Cordelia D McGehee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Taylor M Weiskittel
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Rebecca L Kelly
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Annapoorna Venkatachalam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Xiaonan Hou
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | | | - X Wei Meng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Olga Kondrashova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Marc R Radke
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | | | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Marc A Becker
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Victoria 3800, Australia
| | - Melissa S Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Victoria 3800, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Hospital, Heidelberg, Victoria 3084, Australia
| | - Kevin K Lin
- Clovis Oncology, San Francisco, CA 94158, USA
| | | | - Iain McNeish
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0NN United Kingdom
| | - Christian A Ross
- Division of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill M Wagner
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Paul Haluska
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Elizabeth M Swisher
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - S John Weroha
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
9
|
PARP inhibitors promote stromal fibroblast activation by enhancing CCL5 autocrine signaling in ovarian cancer. NPJ Precis Oncol 2021; 5:49. [PMID: 34108603 PMCID: PMC8190269 DOI: 10.1038/s41698-021-00189-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play significant roles in drug resistance through different ways. Antitumor therapies, including molecular targeted interventions, not only effect tumor cells but also modulate the phenotype and characteristics of CAFs, which can in turn blunt the therapeutic response. Little is known about how stromal fibroblasts respond to poly (ADP-ribose) polymerase inhibitors (PARPis) in ovarian cancer (OC) and subsequent effects on tumor cells. This is a study to evaluate how CAFs react to PARPis and their potential influence on PARPi resistance in OC. We discovered that OC stromal fibroblasts exhibited intrinsic resistance to PARPis and were further activated after the administration of PARPis. PARPi-challenged fibroblasts displayed a specific secretory profile characterized by increased secretion of CCL5, MIP-3α, MCP3, CCL11, and ENA-78. Mechanistically, increased secretion of CCL5 through activation of the NF-κB signaling pathway was required for PARPi-induced stromal fibroblast activation in an autocrine manner. Moreover, neutralizing CCL5 partly reversed PARPi-induced fibroblast activation and boosted the tumor inhibitory effect of PARPis in both BRCA1/2-mutant and BRCA1/2-wild type xenograft models. Our study revealed that PARPis could maintain and improve stromal fibroblast activation involving CCL5 autocrine upregulation. Targeting CCL5 might offer a new treatment modality in overcoming the reality of PARPi resistance in OC.
Collapse
|
10
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
11
|
Lobo J, Constâncio V, Guimarães-Teixeira C, Leite-Silva P, Miranda-Gonçalves V, Sequeira JP, Pistoni L, Guimarães R, Cantante M, Braga I, Maurício J, Looijenga LHJ, Henrique R, Jerónimo C. Promoter methylation of DNA homologous recombination genes is predictive of the responsiveness to PARP inhibitor treatment in testicular germ cell tumors. Mol Oncol 2021; 15:846-865. [PMID: 33513287 PMCID: PMC8024740 DOI: 10.1002/1878-0261.12909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common cancers in men aged 15-39 years and are divided into two major groups, seminomas and nonseminomas. Novel treatment options are required for these patients, to limit side effects of chemotherapy. We hypothesized that promoter methylation of relevant homologous recombination (HR) genes might be predictive of response to poly-ADP ribose polymerase inhibitors (PARPis) in TGCTs. We report a study pipeline combining in silico, in vitro, and clinical steps. By using several databases and in silico tools, we identified BRCA1, RAD51C, PALB2, RAD54B, and SYCP3 as the most relevant genes for further investigation and pinpointed specific CpG sites with pronounced negative correlation to gene expression. Nonseminomas displayed significantly higher methylation levels for all target genes, where increased methylation was observed in patients with more differentiated subtypes and higher disease burden. We independently performed second-line targeted validation in tissue series from TGCT patients. A moderate and/or strong anti-correlation between gene expression (assessed by RNA-sequencing) and promoter methylation (assessed by 450k array) was found, for all of the targets. As a proof of concept, we demonstrated the sensitivity of TGCT cell lines to Olaparib, which associated with differential methylation levels of a subset of targets, namely BRCA1 and RAD51C. Our findings support the use of HR genes promoter methylation as a predictor of the therapeutic response to PARPis in patients with TGCT.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Portugal.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal
| | - Catarina Guimarães-Teixeira
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal
| | - Pedro Leite-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal
| | - Laura Pistoni
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Biology, University of Pisa, Italy
| | - Rita Guimarães
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Portugal
| | - Mariana Cantante
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Portugal
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), Portugal
| | | | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Portugal
| |
Collapse
|
12
|
Testicular Germ Cell Tumors Acquire Cisplatin Resistance by Rebalancing the Usage of DNA Repair Pathways. Cancers (Basel) 2021; 13:cancers13040787. [PMID: 33668653 PMCID: PMC7917736 DOI: 10.3390/cancers13040787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Germ cell tumors are a model of curable solid tumors due to their unique sensitivity to cisplatin-based chemotherapy. Patients are typically young adults, and despite high cure rate, about 20% of them do not achieve remission or relapse, and 50% of them succumb to the disease. The mechanisms behind their resistance to therapy are largely unknown. By using Testicular Germ Cell Tumor (TGCT) cell lines as a model, we investigated the mechanism of acquired resistance to cisplatin. We demonstrated that resistance occurred by a fine modulation of the DNA repair pathway choice. Namely, in resistant cells, repair of double-strand breaks by non-homologous end joining was dampened by the reduced expression of TP53-binding protein 1 (53BP1) and DNA-dependent protein kinase (DNA-PKcs). However, cisplatin-induced damage was repaired efficiently by homologous recombination. Additionally, we demonstrate that pharmacological inhibition of poly (ADP-ribose) polymerase (PARP) combined with cisplatin had an additive/synergistic effect on cisplatin-resistant cells, which represents the proof of concept for introducing PARP inhibitors in salvage therapy. Abstract Despite germ cell tumors (GCTs) responding to cisplatin-based chemotherapy at a high rate, a subset of patients does not respond to treatment and have significantly worse prognosis. The biological mechanisms underlying the resistance remain unknown. In this study, by using two TGCT cell lines that have acquired cisplatin resistance after chronic exposure to the drug, we identified some key proteins and mechanisms of acquired resistance. We show that cisplatin-resistant cell lines had a non-homologous end-joining (NHEJ)-less phenotype. This correlated with a reduced basal expression of TP53-binding protein 1 (53BP1) and DNA-dependent protein kinase (DNA-PKcs) proteins and reduced formation of 53BP1 foci after cisplatin treatment. Consistent with these observations, modulation of 53BP1 protein expression altered the cell line’s resistance to cisplatin, and inhibition of DNA-PKcs activity antagonized cisplatin cytotoxicity. Dampening of NHEJ was accompanied by a functional increase in the repair of DNA double-strand breaks (DSBs) by the homologous recombination repair pathway. As a result, cisplatin-resistant cells were more resistant to PARP inhibitor (PARPi) monotherapy. Moreover, when PARPi was given in combination with cisplatin, it exerted an additive/synergistic effect, and reduced the cisplatin dose for cytotoxicity. These results suggest that treatment of cisplatin-refractory patients may benefit from low-dose cisplatin therapy combined with PARPi.
Collapse
|
13
|
Khalfin B, Lichtenstein A, Albeck A, Nathan I. Targeting Necrosis: Elastase-like Protease Inhibitors Curtail Necrotic Cell Death Both In Vitro and in Three In Vivo Disease Models. J Med Chem 2021; 64:1510-1523. [PMID: 33522230 DOI: 10.1021/acs.jmedchem.0c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Necrosis is the main mode of cell death, which leads to multiple clinical conditions affecting hundreds of millions of people worldwide. Its molecular mechanisms are poorly understood, hampering therapeutics development. Here, we identify key proteolytic activities essential for necrosis using various biochemical approaches, enzymatic assays, medicinal chemistry, and siRNA library screening. These findings provide strategies to treat and prevent necrosis, including known medicines used for other indications, siRNAs, and establish a platform for the design of new inhibitory molecules. Indeed, inhibitors of these pathways demonstrated protective activity in vitro and in vivo in animal models of traumatic brain injury, acute myocardial infarction, and drug-induced liver toxicity. Consequently, this study may pave the way for the development of novel therapies for the treatment, inhibition, or prevention of a large number of hitherto untreatable diseases.
Collapse
Affiliation(s)
- Boris Khalfin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Alexandra Lichtenstein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Soroka University Medical Center, Beer Sheva 8457108, Israel
| |
Collapse
|
14
|
Shao Z, Lee BJ, Rouleau-Turcotte É, Langelier MF, Lin X, Estes VM, Pascal JM, Zha S. Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo. Nucleic Acids Res 2020; 48:9694-9709. [PMID: 32890402 PMCID: PMC7515702 DOI: 10.1093/nar/gkaa718] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
DNA breaks recruit and activate PARP1/2, which deposit poly-ADP-ribose (PAR) to recruit XRCC1-Ligase3 and other repair factors to promote DNA repair. Clinical PARP inhibitors (PARPi) extend the lifetime of damage-induced PARP1/2 foci, referred to as ‘trapping’. To understand the molecular nature of ‘trapping’ in cells, we employed quantitative live-cell imaging and fluorescence recovery after photo-bleaching. Unexpectedly, we found that PARP1 exchanges rapidly at DNA damage sites even in the presence of clinical PARPi, suggesting the persistent foci are not caused by physical stalling. Loss of Xrcc1, a major downstream effector of PAR, also caused persistent PARP1 foci without affecting PARP1 exchange. Thus, we propose that the persistent PARP1 foci are formed by different PARP1 molecules that are continuously recruited to and exchanging at DNA lesions due to attenuated XRCC1-LIG3 recruitment and delayed DNA repair. Moreover, mutation analyses of the NAD+ interacting residues of PARP1 showed that PARP1 can be physically trapped at DNA damage sites, and identified H862 as a potential regulator for PARP1 exchange. PARP1-H862D, but not PARylation-deficient PARP1-E988K, formed stable PARP1 foci upon activation. Together, these findings uncovered the nature of persistent PARP1 foci and identified NAD+ interacting residues involved in the PARP1 exchange.
Collapse
Affiliation(s)
- Zhengping Shao
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Élise Rouleau-Turcotte
- Université de Montréal, Biochemistry and Molecular Medicine, Montréal, Québec H3T 1J4, Canada
| | - Marie-France Langelier
- Université de Montréal, Biochemistry and Molecular Medicine, Montréal, Québec H3T 1J4, Canada
| | - Xiaohui Lin
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Verna M Estes
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - John M Pascal
- Université de Montréal, Biochemistry and Molecular Medicine, Montréal, Québec H3T 1J4, Canada
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York City, NY 10032, USA
| |
Collapse
|
15
|
Abstract
Mitosis ensures accurate segregation of duplicated DNA through tight regulation of chromosome condensation, bipolar spindle assembly, chromosome alignment in the metaphase plate, chromosome segregation and cytokinesis. Poly(ADP-ribose) polymerases (PARPs), in particular PARP1, PARP2, PARP3, PARP5a (TNKS1), as well as poly(ADP-ribose) glycohydrolase (PARG), regulate different mitotic functions, including centrosome function, mitotic spindle assembly, mitotic checkpoints, telomere length and telomere cohesion. PARP depletion or inhibition give rise to various mitotic defects such as centrosome amplification, multipolar spindles, chromosome misalignment, premature loss of cohesion, metaphase arrest, anaphase DNA bridges, lagging chromosomes, and micronuclei. As the mechanisms of PARP1/2 inhibitor-mediated cell death are being progressively elucidated, it is becoming clear that mitotic defects caused by PARP1/2 inhibition arise due to replication stress and DNA damage in S phase. As it stands, entrapment of inactive PARP1/2 on DNA phenocopies replication stress through accumulation of unresolved replication intermediates, double-stranded DNA breaks (DSBs) and incorrectly repaired DSBs, which can be transmitted from S phase to mitosis and instigate various mitotic defects, giving rise to both numerical and structural chromosomal aberrations. Cancer cells have increased levels of replication stress, which makes them particularly susceptible to a combination of agents that compromise replication fork stability. Indeed, combining PARP1/2 inhibitors with genetic deficiencies in DNA repair pathways, DNA-damaging agents, ATR and other cell cycle checkpoint inhibitors has yielded synergistic effects in killing cancer cells. Here I provide a comprehensive overview of the mitotic functions of PARPs and PARG, mitotic phenotypes induced by their depletion or inhibition, as well as the therapeutic relevance of targeting mitotic cells by directly interfering with mitotic functions or indirectly through replication stress.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
16
|
Yanez M, Jhanji M, Murphy K, Gower RM, Sajish M, Jabbarzadeh E. Nicotinamide Augments the Anti-Inflammatory Properties of Resveratrol through PARP1 Activation. Sci Rep 2019; 9:10219. [PMID: 31308445 PMCID: PMC6629694 DOI: 10.1038/s41598-019-46678-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023] Open
Abstract
Resveratrol (RSV) and nicotinamide (NAM) have garnered considerable attention due to their anti-inflammatory and anti-aging properties. NAM is a transient inhibitor of class III histone deacetylase SIRTs (silent mating type information regulation 2 homologs) and SIRT1 is an inhibitor of poly-ADP-ribose polymerase-1 (PARP1). The debate on the relationship between RSV and SIRT1 has precluded the use of RSV as a therapeutic drug. Recent work demonstrated that RSV facilitates tyrosyl-tRNA synthetase (TyrRS)-dependent activation of PARP1. Moreover, treatment with NAM is sufficient to facilitate the nuclear localization of TyrRS that activates PARP1. RSV and NAM have emerged as potent agonists of PARP1 through inhibition of SIRT1. In this study, we evaluated the effects of RSV and NAM on pro-inflammatory macrophages. Our results demonstrate that treatment with either RSV or NAM attenuates the expression of pro-inflammatory markers. Strikingly, the combination of RSV with NAM, exerts additive effects on PARP1 activation. Consistently, treatment with PARP1 inhibitor antagonized the anti-inflammatory effect of both RSV and NAM. For the first time, we report the ability of NAM to augment PARP1 activation, induced by RSV, and its associated anti-inflammatory effects mediated through the induction of BCL6 with the concomitant down regulation of COX-2.
Collapse
Affiliation(s)
- Maria Yanez
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Kendall Murphy
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - R Michael Gower
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Ehsan Jabbarzadeh
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
17
|
Carbajosa S, Pansa MF, Paviolo NS, Castellaro AM, Andino DL, Nigra AD, García IA, Racca AC, Rodriguez-Berdini L, Angiolini V, Guantay L, Villafañez F, Federico MB, Rodríguez-Baili MC, Caputto BL, Drewes G, Madauss KP, Gloger I, Fernandez E, Gil GA, Bocco JL, Gottifredi V, Soria G. Polo-like Kinase 1 Inhibition as a Therapeutic Approach to Selectively Target BRCA1-Deficient Cancer Cells by Synthetic Lethality Induction. Clin Cancer Res 2019; 25:4049-4062. [PMID: 30890549 DOI: 10.1158/1078-0432.ccr-18-3516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE BRCA1 and BRCA2 deficiencies are widespread drivers of human cancers that await the development of targeted therapies. We aimed to identify novel synthetic lethal relationships with therapeutic potential using BRCA-deficient isogenic backgrounds. EXPERIMENTAL DESIGN We developed a phenotypic screening technology to simultaneously search for synthetic lethal (SL) interactions in BRCA1- and BRCA2-deficient contexts. For validation, we developed chimeric spheroids and a dual-tumor xenograft model that allowed the confirmation of SL induction with the concomitant evaluation of undesired cytotoxicity on BRCA-proficient cells. To extend our results using clinical data, we performed retrospective analysis on The Cancer Genome Atlas (TCGA) breast cancer database. RESULTS The screening of a kinase inhibitors library revealed that Polo-like kinase 1 (PLK1) inhibition triggers strong SL induction in BRCA1-deficient cells. Mechanistically, we found no connection between the SL induced by PLK1 inhibition and PARP inhibitors. Instead, we uncovered that BRCA1 downregulation and PLK1 inhibition lead to aberrant mitotic phenotypes with altered centrosomal duplication and cytokinesis, which severely reduced the clonogenic potential of these cells. The penetrance of PLK1/BRCA1 SL interaction was validated using several isogenic and nonisogenic cellular models, chimeric spheroids, and mice xenografts. Moreover, bioinformatic analysis revealed high-PLK1 expression in BRCA1-deficient tumors, a phenotype that was consistently recapitulated by inducing BRCA1 deficiency in multiple cell lines as well as in BRCA1-mutant cells. CONCLUSIONS We uncovered an unforeseen addiction of BRCA1-deficient cancer cells to PLK1 expression, which provides a new means to exploit the therapeutic potential of PLK1 inhibitors in clinical trials, by generating stratification schemes that consider this molecular trait in patient cohorts.
Collapse
Affiliation(s)
- Sofía Carbajosa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Florencia Pansa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Andrés M Castellaro
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego L Andino
- CIDIE-CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Ayelén D Nigra
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana C Racca
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucía Rodriguez-Berdini
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia Angiolini
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Guantay
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Villafañez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - María Celeste Rodríguez-Baili
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz L Caputto
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Kevin P Madauss
- GlaxoSmithKline-Trust in Science, Global Health R&D, Upper Providence, Pennsylvania
| | - Israel Gloger
- GlaxoSmithKline-Trust in Science, Global Health R&D, Stevenage, United Kingdom
| | - Elmer Fernandez
- CIDIE-CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Germán A Gil
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
18
|
Zhang S, Chao HH, Wang X, Zhang Z, Lee EYC, Lee MYWT. Loss of the p12 subunit of DNA polymerase delta leads to a defect in HR and sensitization to PARP inhibitors. DNA Repair (Amst) 2019; 73:64-70. [PMID: 30470508 PMCID: PMC6312503 DOI: 10.1016/j.dnarep.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Human DNA polymerase δ is normally present in unstressed, non-dividing cells as a heterotetramer (Pol δ4). Its smallest subunit, p12, is transiently degraded in response to UV damage, as well as during the entry into S-phase, resulting in the conversion of Pol δ4 to a trimer (Pol δ3). In order to further understand the specific cellular roles of these two forms of Pol δ, the gene (POLD4) encoding p12 was disrupted by CRISPR/Cas9 to produce p12 knockout (p12KO) cells. Thus, Pol δ4 is absent in p12KO cells, leaving Pol δ3 as the sole source of Pol δ activity. GFP reporter assays revealed that the p12KO cells exhibited a defect in homologous recombination (HR) repair, indicating that Pol δ4, but not Pol δ3, is required for HR. Expression of Flag-tagged p12 in p12KO cells to restore Pol δ4 alleviated the HR defect. These results establish a specific requirement for Pol δ4 in HR repair. This leads to the prediction that p12KO cells should be more sensitive to chemotherapeutic agents, and should exhibit synthetic lethal killing by PARP inhibitors. These predictions were confirmed by clonogenic cell survival assays of p12KO cells treated with cisplatin and mitomycin C, and with the PARP inhibitors Olaparib, Talazoparib, Rucaparib, and Niraparib. The sensitivity to PARP inhibitors in H1299-p12KO cells was alleviated by expression of Flag-p12. These findings have clinical significance, as the expression levels of p12 could be a predictive biomarker of tumor response to PARP inhibitors. In addition, small cell lung cancers (SCLC) are known to exhibit a defect in p12 expression. Analysis of several SCLC cell lines showed that they exhibit hypersensitivity to PARP inhibitors, providing evidence that loss of p12 expression could represent a novel molecular basis for HR deficiency.
Collapse
Affiliation(s)
- Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Hsiao Hsiang Chao
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
19
|
Long-term treatment with the PARP inhibitor niraparib does not increase the mutation load in cell line models and tumour xenografts. Br J Cancer 2018; 119:1392-1400. [PMID: 30425352 PMCID: PMC6265254 DOI: 10.1038/s41416-018-0312-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022] Open
Abstract
Background Poly-ADP ribose polymerase (PARP) inhibitor-based cancer therapy selectively targets cells with deficient homologous recombination repair. Considering their long-term use in maintenance treatment, any potential mutagenic effect of PARP inhibitor treatment could accelerate the development of resistance or harm non-malignant somatic cells. Methods We tested the mutagenicity of long-term treatment with the PARP inhibitor niraparib using whole-genome sequencing of cultured cell clones and whole-exome sequencing of patient-derived breast cancer xenografts. Results We observed no significant increase in the number and alteration in the spectrum of base substitutions, short insertions and deletions and genomic rearrangements upon niraparib treatment of human DLD-1 colon adenocarcinoma cells, wild-type and BRCA1 mutant chicken DT40 lymphoblastoma cells and BRCA1-defective SUM149PT breast carcinoma cells, except for a minor increase in specific deletion classes. We also did not detect any contribution of in vivo niraparib treatment to subclonal mutations arising in breast cancer-derived xenografts. Conclusions The results suggest that long-term inhibition of DNA repair with PARP inhibitors has no or only limited mutagenic effect. Mutagenesis due to prolonged use of PARP inhibitors in cancer treatment is therefore not expected to contribute to the genetic evolution of resistance, generate significant immunogenic neoepitopes or induce secondary malignancies.
Collapse
|
20
|
Krainz T, Lamade AM, Du L, Maskrey TS, Calderon MJ, Watkins SC, Epperly MW, Greenberger JS, Bayır H, Wipf P, Clark RSB. Synthesis and Evaluation of a Mitochondria-Targeting Poly(ADP-ribose) Polymerase-1 Inhibitor. ACS Chem Biol 2018; 13:2868-2879. [PMID: 30184433 DOI: 10.1021/acschembio.8b00423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The poly(ADP-ribose) polymerase (PARP) family of enzymes plays a crucial role in cellular and molecular processes including DNA damage detection and repair and transcription; indeed, PARP inhibitors are under clinical evaluation as chemotherapeutic adjuncts given their capacity to impede genomic DNA repair in tumor cells. Conversely, overactivation of PARP can lead to NAD+ depletion, mitochondrial energy failure, and cell death. Since PARP activation facilitates genomic but impedes mitochondrial DNA repair, nonselective PARP inhibitors are likely to have opposing effects in these cellular compartments. Herein, we describe the synthesis and evaluation of the mitochondria-targeting PARP inhibitor, XJB-veliparib. Attachment of the hemigramicidin S pentapeptide isostere for mitochondrial targeting using a flexible linker at the primary amide site of veliparib did not disrupt PARP affinity or inhibition. XJB-veliparib was effective at low nanomolar concentrations (10-100 nM) and more potent than veliparib in protection from oxygen-glucose deprivation (OGD) in primary cortical neurons. Both XJB-veliparib and veliparib (10 nM) preserved mitochondrial NAD+ after OGD; however, only XJB-veliparib prevented release of NAD+ into cytosol. XJB-veliparib (10 nM) appeared to inhibit poly(ADP-ribose) polymer formation in mitochondria and preserve mitochondrial cytoarchitecture after OGD in primary cortical neurons. After 10 nM exposure, XJB-veliparib was detected by LC-MS in mitochondria but not nuclear-enriched fractions in neurons and was observed in mitoplasts stripped of the outer mitochondrial membrane obtained from HT22 cells. XJB-veliparib was also effective at preventing glutamate-induced HT22 cell death at micromolar concentrations. Importantly, in HT22 cells exposed to H2O2 to produce DNA damage, XJB-veliparib (10 μM) had no effect on nuclear DNA repair, in contrast to veliparib (10 μM) where DNA repair was retarded. XJB-veliparib and analogous mitochondria-targeting PARP inhibitors warrant further evaluation in vitro and in vivo, particularly in conditions where PARP overactivation leads to mitochondrial energy failure and maintenance of genomic DNA integrity is desirable, e.g., ischemia, oxidative stress, and radiation exposure.
Collapse
Affiliation(s)
- Tanja Krainz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrew M. Lamade
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Lina Du
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Taber S. Maskrey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J. Calderon
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Simon C. Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael W. Epperly
- Department of Radiation Oncology, Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
| | - Joel S. Greenberger
- Department of Radiation Oncology, Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15224, United States
- Children’s Neuroscience Institute, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Robert S. B. Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Children’s Neuroscience Institute, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, United States
| |
Collapse
|
21
|
Sister Chromatid Exchange and Genomic Instability in Soft Tissue Sarcomas: Potential Implications for Response to DNA-Damaging Treatments. Sarcoma 2018; 2018:3082526. [PMID: 29853780 PMCID: PMC5964616 DOI: 10.1155/2018/3082526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/07/2018] [Indexed: 12/30/2022] Open
Abstract
Sarcomas are rare heterogeneous malignancies of mesenchymal origin characterised by complex karyotypes but no specific abnormalities. Recurrence is common, and metastatic disease carries poor survival despite standard DNA-damaging radiotherapy or chemotherapy. DNA double-strand breaks (DSBs) are either repaired by mechanisms such as homologous recombination (HR) or result in cell death by apoptosis. Endogenous γH2AX formation and SCE formation are early and late events, respectively, and their levels are considered surrogate measures of genomic instability. Combined γH2AX and SCE analysis was used to evaluate endogenous DNA DSB levels (and their subsequent repair) in 9 primary sarcoma cell lines and compared with well-established commercial lines. All the sarcoma cell lines had elevated γH2AX and SCE levels, but there was no correlation between the DNA DSB frequency and subsequent SCE. Typically, radioresistant osteosarcoma cells had relatively low γH2AX frequency but high SCE counts suggestive of efficient DNA repair. Conversely, liposarcoma cells derived from a radiosensitive tumour had high H2AX but relatively lower SCE levels that may imply inefficient DNA DSB repair. To our knowledge, this is the first report that correlates H2AX and SCE levels in primary sarcoma cell lines and may provide insight into potential response to DNA-damaging treatments.
Collapse
|
22
|
Murnyák B, Kouhsari MC, Hershkovitch R, Kálmán B, Marko-Varga G, Klekner Á, Hortobágyi T. PARP1 expression and its correlation with survival is tumour molecular subtype dependent in glioblastoma. Oncotarget 2018; 8:46348-46362. [PMID: 28654422 PMCID: PMC5542272 DOI: 10.18632/oncotarget.18013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
Overexpression of PARP1 exists in various cancers, including glioblastoma (GBM). Although PARP1 inhibition is a promising therapeutic target, no comprehensive study has addressed PARP1's expression characteristics and prognostic role regarding molecular heterogeneity in astrocytomas including GBM. Our aim was to evaluate PARP1's associations with survival, WHO grade, lineage specific markers, and GBM transcriptomic subtypes. We collected genomic and clinical data from the latest glioma datasets of The Cancer Genome Atlas and performed PARP1, ATRX, IDH1, and p53 immunohistochemistry on GBM tissue samples. We demonstrated that PARP1 gain and increased mRNA expression are characteristics of high-grade astrocytomas, particularly of Proneural and Classical GBM subtypes. Additionally, higher PARP1 levels exhibited an inverse correlation with patient survival (p<0.005) in the Classical subgroup. ATRX (p=0.006), and TP53 (p=0.015) mutations were associated with increased PARP1 expression and PARP1 protein level correlated with ATRX loss and p53 overexpression. Furthermore, higher PARP1 expression together with wildtype TP53 indicated shorter survival (p=0.039). Therefore, due to subtype specificity, PARP1 expression level and TP53 mutation status are reliable marker candidates to distinguish Proneural and Classical subtypes, with prognostic and therapeutic implications in GBM.
Collapse
Affiliation(s)
- Balázs Murnyák
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mahan C Kouhsari
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rotem Hershkovitch
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bernadette Kálmán
- Institute of Diagnostics, Faculty of the Health Sciences, University of Pecs, Pecs, Hungary.,Molecular Pathology Unit, Markusovszky Teaching Hospital, Szombathely, Hungary
| | - György Marko-Varga
- Division of Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Álmos Klekner
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
23
|
Berger NA, Besson VC, Boulares AH, Bürkle A, Chiarugi A, Clark RS, Curtin NJ, Cuzzocrea S, Dawson TM, Dawson VL, Haskó G, Liaudet L, Moroni F, Pacher P, Radermacher P, Salzman AL, Snyder SH, Soriano FG, Strosznajder RP, Sümegi B, Swanson RA, Szabo C. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 2018; 175:192-222. [PMID: 28213892 PMCID: PMC5758399 DOI: 10.1111/bph.13748] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The recent clinical availability of the PARP inhibitor olaparib (Lynparza) opens the door for potential therapeutic repurposing for non-oncological indications. Considering (a) the preclinical efficacy data with PARP inhibitors in non-oncological diseases and (b) the risk-benefit ratio of treating patients with a compound that inhibits an enzyme that has physiological roles in the regulation of DNA repair, we have selected indications, where (a) the severity of the disease is high, (b) the available therapeutic options are limited, and (c) the duration of PARP inhibitor administration could be short, to provide first-line options for therapeutic repurposing. These indications are as follows: acute ischaemic stroke; traumatic brain injury; septic shock; acute pancreatitis; and severe asthma and severe acute lung injury. In addition, chronic, devastating diseases, where alternative therapeutic options cannot halt disease development (e.g. Parkinson's disease, progressive multiple sclerosis or severe fibrotic diseases), should also be considered. We present a preclinical and clinical action plan for the repurposing of PARP inhibitors. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Nathan A Berger
- Center for Science, Health and SocietyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Valerie C Besson
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de ParisUniversité Paris Descartes, Sorbonne Paris CitéParisFrance
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of BiologyUniversity of KonstanzConstanceGermany
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Headache Center – University HospitalUniversity of FlorenceFlorenceItaly
| | - Robert S Clark
- Department of Critical Care Medicine and Safar Center for Resuscitation ResearchUniversity of PittsburghPittsburghPAUSA
| | - Nicola J Curtin
- Newcastle University, Northern Institute for Cancer Research, Medical SchoolUniversity of Newcastle Upon TyneNewcastle Upon TyneUK
| | | | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Pharmacology and Molecular Sciences and Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Physiology and Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - György Haskó
- Department of Surgery and Center for Immunity and InflammationRutgers‐New Jersey Medical SchoolNewarkNJUSA
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn CenterUniversity Hospital Medical Center, Faculty of Biology and MedicineLausanneSwitzerland
| | - Flavio Moroni
- Department of NeuroscienceUniversità degli Studi di FirenzeFlorenceItaly
| | - Pál Pacher
- Laboratory of Physiologic Studies, Section on Oxidative Stress Tissue InjuryNIAAA, NIHBethesdaUSA
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process EngineeringUniversity HospitalUlmGermany
| | | | - Solomon H Snyder
- Department of Neurology and Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Francisco Garcia Soriano
- Departamento de Clínica MédicaFaculdade de Medicina da Universidade de São PauloSão PauloSPBrazil
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research CentrePolish Academy of SciencesWarsawPoland
| | - Balázs Sümegi
- Department of Biochemistry and Medical ChemistryUniversity of PécsPécsHungary
| | - Raymond A Swanson
- Department of NeurologyUniversity of California San Francisco and San Francisco Veterans Affairs Medical CenterSan FranciscoCAUSA
| | - Csaba Szabo
- Department of AnesthesiologyUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
24
|
Metabolomics reveals novel blood plasma biomarkers associated to the BRCA1-mutated phenotype of human breast cancer. Sci Rep 2017; 7:17831. [PMID: 29259228 PMCID: PMC5736621 DOI: 10.1038/s41598-017-17897-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
Hereditary breast and ovarian cancer syndrome (HBOC) is partly due to the presence of mutations in the BRCA genes. Triple-negative (TN) breast cancer (BC) shares histological characteristics with germline BRCA1 mutation-associated tumours. We have investigated the metabolic profiles of human breast cancer (BC) cell lines carrying BRCA1 pathogenic mutations by non-targeted liquid chromatography coupled to mass spectrometry technology. Based on our in vitro results, we performed a targeted metabolomic analysis of plasma samples from TN HBOC patients taking into account their BRCA1 genotype. BRCA1 promoter hypermethylation and the BRCAness phenotype of BC cell lines were also studied. The purpose of this study was to determine the metabolic signature of HBOC syndrome and TNBC patients and to evaluate the potential contribution of the metabolites identified to the genetic diagnosis of breast cancer. The present results show the existence of a differential metabolic signature for BC cells based on the BRCA1 functionality. None of the studied BC cell lines presented hypermethylation of the BRCA1 promoter region. We provide evidence of the existence of free methylated nucleotides capable of distinguishing plasma samples from HBOC patients as BRCA1-mutated and BRCA1 non-mutated, suggesting that they might be considered as BRCA1-like biomarkers for TNBC and HBOC syndrome.
Collapse
|
25
|
D'Alesio C, Bellese G, Gagliani MC, Aiello C, Grasselli E, Marcocci G, Bisio A, Tavella S, Daniele T, Cortese K, Castagnola P. Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2 + breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:154. [PMID: 29100552 PMCID: PMC5670707 DOI: 10.1186/s13046-017-0615-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
Abstract
Background ERBB2 is overexpressed in up to 20–30% of human breast cancers (BCs), and it is associated with aggressive disease. Trastuzumab (Tz), a humanized monoclonal antibody, improves the prognosis associated with ERBB2-amplified BCs. However, the development of resistance remains a significant challenge. Carnosic acid (CA) is a diterpene found in rosemary and sage, endowed with anticancer properties. In this in vitro study, we have investigated whether Tz and CA have cooperative effects on cell survival of ERBB2 overexpressing (ERBB2+) cells and whether CA might restore Tz sensitivity in Tz-resistant cells. Methods We have studied BC cell migration and survival upon CA and Tz treatment. In particular, migration ability was assessed by transwell assay while cell survival was assessed by MTT assay. In addition, we have performed cell cycle and apoptosis analysis by high-resolution DNA flow cytometry and annexin-V, resazurin and sytox blue staining by flow cytometry, respectively. The expression of proteins involved in cell cycle progression, ERBB2 signaling pathway, and autophagy was evaluated by immunoblot and immunofluorescence analysis. Cellular structures relevant to the endosome/lysosome and autophagy pathways have been studied by immunofluorescence and transmission electron microscopy. Results We report that, in ERBB2+ BC cells, CA reversibly enhances Tz inhibition of cell survival, cooperatively inhibits cell migration and induces cell cycle arrest in G0/G1. These events are accompanied by ERBB2 down-regulation, deregulation of the PI3K/AKT/mTOR signaling pathway and up-regulation of both CDKN1A/p21WAF1 and CDKN1B/p27KIP1. Furthermore, we have demonstrated that CA impairs late autophagy and causes derangement of the lysosomal compartment as shown by up-regulation of SQSTM1/p62 and ultrastructural analysis. Accordingly, we have found that CA restores, at least in part, sensitivity to Tz in SKBR-3 Tz-resistant cell line. Conclusions Our data demonstrate the cooperation between CA and Tz in inhibiting cell migration and survival of ERBB2+ BC cells that warrant further studies to establish if CA or CA derivatives may be useful in vivo in the treatment of ERBB2+ cancers. Electronic supplementary material The online version of this article (10.1186/s13046-017-0615-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina D'Alesio
- DIMES, Department of Experimental Medicine, Human Anatomy, University of Genoa, Via Antonio de Toni 14, 16132, Genoa, Italy.,DiMI, Department of Internal Medicine and Medical Specialities, University of Genoa, Viale Benedetto XV 2, 16132, Genoa, Italy
| | - Grazia Bellese
- DIMES, Department of Experimental Medicine, Human Anatomy, University of Genoa, Via Antonio de Toni 14, 16132, Genoa, Italy
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Human Anatomy, University of Genoa, Via Antonio de Toni 14, 16132, Genoa, Italy
| | - Cinzia Aiello
- Department of Integrated Oncological Therapies, IRCCS AOU - San Martino - IST, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Elena Grasselli
- DISTAV, Department of Earth, Environment and Life science, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Gianluca Marcocci
- DIMES, Department of Experimental Medicine, Human Anatomy, University of Genoa, Via Antonio de Toni 14, 16132, Genoa, Italy
| | - Angela Bisio
- DIFAR, Department of Pharmacy, University of Genoa, Via Brigata Salerno 13, 16147, Genoa, Italy
| | - Sara Tavella
- DIMES, Department of Experimental Medicine, Human Anatomy, University of Genoa, Via Antonio de Toni 14, 16132, Genoa, Italy.,Department of Integrated Oncological Therapies, IRCCS AOU - San Martino - IST, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Tiziana Daniele
- San Raffaele Scientific Institute, Experimental Imaging Centre, Via Olgettina 60, 20132, Milan, Italy
| | - Katia Cortese
- DIMES, Department of Experimental Medicine, Human Anatomy, University of Genoa, Via Antonio de Toni 14, 16132, Genoa, Italy
| | - Patrizio Castagnola
- Department of Integrated Oncological Therapies, IRCCS AOU - San Martino - IST, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
26
|
Mazzucchelli S, Truffi M, Baccarini F, Beretta M, Sorrentino L, Bellini M, Rizzuto MA, Ottria R, Ravelli A, Ciuffreda P, Prosperi D, Corsi F. H-Ferritin-nanocaged olaparib: a promising choice for both BRCA-mutated and sporadic triple negative breast cancer. Sci Rep 2017; 7:7505. [PMID: 28790402 PMCID: PMC5548799 DOI: 10.1038/s41598-017-07617-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors represent a promising strategy toward the treatment of triple-negative breast cancer (TNBC), which is often associated to genomic instability and/or BRCA mutations. However, clinical outcome is controversial and no benefits have been demonstrated in wild type BRCA cancers, possibly due to poor drug bioavailability and low nuclear delivery. In the attempt to overcome these limitations, we have developed H-Ferritin nanoformulated olaparib (HOla) and assessed its anticancer efficacy on both BRCA-mutated and non-mutated TNBC cells. We exploited the natural tumor targeting of H-Ferritin, which is mediated by the transferrin receptor-1 (TfR1), and its physiological tropism toward cell nucleus. TNBC cell lines over-expressing TfR-1 were successfully recognized by H-Ferritin, displaying a fast internalization into the cells. HOla induced remarkable cytotoxic effect in cancer cells, exhibiting 1000-fold higher anticancer activity compared to free olaparib (Ola). Accordingly, HOla treatment enhanced PARP-1 cleavage, DNA double strand breaks and Ola delivery into the nuclear compartment. Our findings suggest that H-Ferritin nanoformulation strongly enhances cytotoxic efficacy of Ola as a stand-alone therapy in both BRCA-mutated and wild type TNBC cells, by promoting targeted nuclear delivery.
Collapse
Affiliation(s)
- S Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Milano, Italy
| | - M Truffi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Milano, Italy
| | - F Baccarini
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Milano, Italy
| | - M Beretta
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Milano, Italy
| | - L Sorrentino
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Milano, Italy
| | - M Bellini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - M A Rizzuto
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - R Ottria
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Milano, Italy
| | - A Ravelli
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Sezione di Tossicologia Forense, Università degli Studi di Milano, Milano, Italy
| | - P Ciuffreda
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Milano, Italy
| | - D Prosperi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy.
| | - F Corsi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Milano, Italy.
- Unità di chirurgia generale ad indirizzo senologico, Istituti Clinici Scientifici ICS Maugeri Pavia Spa SB, Pavia, Italy.
| |
Collapse
|
27
|
Katsyuba E, Auwerx J. Modulating NAD + metabolism, from bench to bedside. EMBO J 2017; 36:2670-2683. [PMID: 28784597 DOI: 10.15252/embj.201797135] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Discovered in the beginning of the 20th century, nicotinamide adenine dinucleotide (NAD+) has evolved from a simple oxidoreductase cofactor to being an essential cosubstrate for a wide range of regulatory proteins that include the sirtuin family of NAD+-dependent protein deacylases, widely recognized regulators of metabolic function and longevity. Altered NAD+ metabolism is associated with aging and many pathological conditions, such as metabolic diseases and disorders of the muscular and neuronal systems. Conversely, increased NAD+ levels have shown to be beneficial in a broad spectrum of diseases. Here, we review the fundamental aspects of NAD+ biochemistry and metabolism and discuss how boosting NAD+ content can help ameliorate mitochondrial homeostasis and as such improve healthspan and lifespan.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
|
29
|
Ahmad A, Olah G, Herndon DN, Szabo C. The clinically used PARP inhibitor olaparib improves organ function, suppresses inflammatory responses and accelerates wound healing in a murine model of third-degree burn injury. Br J Pharmacol 2017; 175:232-245. [PMID: 28146604 DOI: 10.1111/bph.13735] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/05/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The PARP inhibitor olaparib has recently been approved for human use for the therapy of cancer. Considering the role of PARP in critical illness, we tested the effect of olaparib in a murine model of burn injury, in order to begin exploring the feasibility of repurposing olaparib for the therapy of burn patients. EXPERIMENTAL APPROACH Mice were subjected to scald burn injury and randomized into vehicle or olaparib (10 mg·kg-1 ·day-1 i.p.) groups. Outcome variables included indices of organ injury, clinical chemistry parameters, plasma levels of inflammatory mediators (at 24 h, 7 and 21 days) and burn wound size (at 21 days). KEY RESULTS Olaparib reduced myeloperoxidase levels in heart and lung homogenates and reduced malondialdehyde levels in all tissues 24 h post-burn. Olaparib also reduced circulating alkaline aminotransferase, amylase and blood urea nitrogen and creatinine levels, indicative of protection against hepatic, pancreatic and renal dysfunction. Pro-inflammatory mediator (TNF-α, IL-1β, IFN-γ, GCSF, GM-CSF, eotaxin, KC, MIP-1-α and IL-3, 6 and 12) levels as well as the levels of several mediators that are generally considered anti-inflammatory (IL-4, 10 and 13) were reduced by olaparib. Plasma troponin-I levels (an indicator of skeletal muscle damage) was also attenuated by olaparib. Finally, olaparib stimulated wound healing. CONCLUSIONS AND IMPLICATIONS The clinically approved PARP inhibitor olaparib improves organ function, suppresses inflammatory responses and accelerates wound healing in murine burn injury. The data raise the potential utility of olaparib for severe burn injury. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Olah
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - David N Herndon
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospital for Children, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospital for Children, Galveston, TX, USA
| |
Collapse
|
30
|
Ding X, Sharan SK. Synthetic lethality vs. synthetic viability due to PARP1 and BRCA2 loss. Transl Cancer Res 2017; 6:S441-S442. [PMID: 30637199 DOI: 10.21037/tcr.2017.03.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xia Ding
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
31
|
Heerma van Voss MR, Brilliant JD, Vesuna F, Bol GM, van der Wall E, van Diest PJ, Raman V. Combination treatment using DDX3 and PARP inhibitors induces synthetic lethality in BRCA1-proficient breast cancer. Med Oncol 2017; 34:33. [PMID: 28138868 DOI: 10.1007/s12032-017-0889-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Triple-negative breast cancers have unfavorable outcomes due to their inherent aggressive behavior and lack of targeted therapies. Breast cancers occurring in BRCA1 mutation carriers are mostly triple-negative and harbor homologous recombination deficiency, sensitizing them to inhibition of a second DNA damage repair pathway by, e.g., PARP inhibitors. Unfortunately, resistance against PARP inhibitors in BRCA1-deficient cancers is common and sensitivity is limited in BRCA1-proficient breast cancers. RK-33, an inhibitor of the RNA helicase DDX3, was previously demonstrated to impede non-homologous end-joining repair of DNA breaks. Consequently, we evaluated DDX3 as a therapeutic target in BRCA pro- and deficient breast cancers and assessed whether DDX3 inhibition could sensitize cells to PARP inhibition. High DDX3 expression was identified by immunohistochemistry in breast cancer samples of 24% of BRCA1 (p = 0.337) and 21% of BRCA2 mutation carriers (p = 0.624), as compared to 30% of sporadic breast cancer samples. The sensitivity to the DDX3 inhibitor RK-33 was similar in BRCA1 pro- and deficient breast cancer cell lines, with IC50 values in the low micromolar range (2.8-6.6 μM). A synergistic interaction was observed for combination treatment with RK-33 and the PARP inhibitor olaparib in BRCA1-proficient breast cancer, with the mean combination index ranging from 0.59 to 0.62. Overall, we conclude that BRCA pro- and deficient breast cancers have a similar dependency upon DDX3. DDX3 inhibition by RK-33 synergizes with PARP inhibitor treatment, especially in breast cancers with a BRCA1-proficient background.
Collapse
Affiliation(s)
- Marise R Heerma van Voss
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.,Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Justin D Brilliant
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Farhad Vesuna
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Guus M Bol
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.,Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Elsken van der Wall
- Cancer Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Department of Oncology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Department of Oncology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Venu Raman
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA. .,Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands. .,Department of Oncology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|