1
|
Wang Y, Cao Y, Wang Y, Sun J, Wang L, Song X, Zhao X. Construction and analysis of protein-protein interaction network for esophageal squamous cell carcinoma. Comput Biol Med 2024; 182:109156. [PMID: 39276610 DOI: 10.1016/j.compbiomed.2024.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignant tumor of the digestive tract. Clinical findings reveal that the five-year survival rate for mid-to late-stage ESCC patients is merely around 20 %, whereas those diagnosed at an early stage can achieve up to a 95 % survival rate. Consequently, early detection is paramount to improving ESCC patient survival. Protein markers are essential for diagnosing diseases, and the identification of new candidate proteins associated with ESCC through the protein-protein interaction (PPI) network is aimed for in this paper. The PPI network related to ESCC was constructed using protein data, comprising 2094 nodes and 19,660 edges. To assess the nodes' importance in the network, three metrics-degree centrality, betweenness centrality, and closeness centrality-were employed, leading to the identification of 81 key proteins. Subsequently, the biological significance of these proteins in the network was explored, combining biomedical knowledge from three perspectives: network, node, and cluster. The results demonstrated that 52 out of 81 key proteins were confirmed to be linked to ESCC. Among the remaining 29 unreported proteins, 18 displayed significant biological significance, indicating their potential as protein markers related to ESCC.
Collapse
Affiliation(s)
- Yanfeng Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yuhan Cao
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yingcong Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Junwei Sun
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
2
|
Márquez-González RM, Saucedo-Sariñana AM, de Jesús Tovar-Jacome C, Barros-Núñez P, Gallegos-Arreola MP, Orozco-Gutiérrez MH, Mariscal-Ramírez I, Pineda-Razo TD, Alcaraz-Wong AA, Marín-Contreras ME, Rosales-Reynoso MA. NME1 and DCC variants are associated with susceptibility and tumor characteristics in Mexican patients with colorectal cancer. J Egypt Natl Canc Inst 2024; 36:10. [PMID: 38556604 DOI: 10.1186/s43046-024-00213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/06/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks third in cancer incidence globally and is the second leading cause of cancer-related mortality. The nucleoside diphosphate kinase 1 (NME1) and netrin 1 receptor (DCC) genes have been associated with resistance against tumorigenesis and tumor metastasis. This study investigates the potential association between NME1 (rs34214448 G > T and rs2302254 C > T) and DCC (rs2229080 G > C and rs714 A > G) variants and susceptibility to colorectal cancer development. METHODS Samples from 232 colorectal cancer patients and 232 healthy blood donors underwent analysis. Variants were identified using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methodology. Associations were assessed using odds ratios (OR), and the p values were adjusted with Bonferroni test. RESULTS Individuals carrying the G/T and T/T genotypes for the NME1 rs34214448 variant exhibited a higher susceptibility for develop colorectal cancer (OR = 2.68, 95% CI: 1.76-4.09, P = 0.001 and OR = 2.47, 95% CI: 1.37-4.47, P = 0.001, respectively). These genotypes showed significant associations in patients over 50 years (OR = 2.87, 95% CI: 1.81-4.54, P = 0.001 and OR = 2.99, 95% CI: 1.54-5.79, P = 0.001 respectively) and with early Tumor-Nodule-Metastasis (TNM) stage (P = 0.001), and tumor location in the rectum (P = 0.001). Furthermore, the DCC rs2229080 variant revealed that carriers of the G/C genotype had an increased risk for develop colorectal cancer (OR = 2.00, 95% CI: 1.28-3.11, P = 0.002) and were associated with age over 50 years, sex, and advanced TNM stages (P = 0.001). CONCLUSIONS These findings suggest that the NME1 rs34214448 and DCC rs2229080 variants play a significant role in colorectal cancer development.
Collapse
Affiliation(s)
- Rosa María Márquez-González
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Colonia Independencia Guadalajara, Sierra Mojada # 800, Jalisco, CP, 44340, México
| | - Anilú Margarita Saucedo-Sariñana
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Colonia Independencia Guadalajara, Sierra Mojada # 800, Jalisco, CP, 44340, México
| | - César de Jesús Tovar-Jacome
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Colonia Independencia Guadalajara, Sierra Mojada # 800, Jalisco, CP, 44340, México
| | - Patricio Barros-Núñez
- Doctorado en Genética Humana, Centro Universitario de Ciencias de La Salud. Universidad de Guadalajara, Jalisco, México
| | - Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Mario Humberto Orozco-Gutiérrez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Colonia Independencia Guadalajara, Sierra Mojada # 800, Jalisco, CP, 44340, México
| | - Ignacio Mariscal-Ramírez
- Servicio de Oncología Médica, Hospital de Especialidades, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Tomas Daniel Pineda-Razo
- Servicio de Oncología Médica, Hospital de Especialidades, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Aldo Antonio Alcaraz-Wong
- Servicio de Anatomía Patológica, Hospital de Especialidades, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - María Eugenia Marín-Contreras
- Servicio de Gastroenterología, Hospital de Especialidades, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Mónica Alejandra Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Colonia Independencia Guadalajara, Sierra Mojada # 800, Jalisco, CP, 44340, México.
| |
Collapse
|
3
|
Gao G, Yu Z, Zhao X, Fu X, Liu S, Liang S, Deng A. Immune classification and identification of prognostic genes for uveal melanoma based on six immune cell signatures. Sci Rep 2021; 11:22244. [PMID: 34782661 PMCID: PMC8593069 DOI: 10.1038/s41598-021-01627-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma could be treated by immunotherapy, which only has limited efficacy on uveal melanoma (UM). UM immunotyping for predicting immunotherapeutic responses and guiding immunotherapy should be better understood. This study identified molecular subtypes and key genetic markers associated with immunotherapy through immunosignature analysis. We screened a 6-immune cell signature simultaneously correlated with UM prognosis. Three immune subtypes (IS) were determined based on the 6-immune cell signature. Overall survival (OS) of IS3 was the longest. Significant differences of linear discriminant analysis (LDA) score were detected among the three IS types. IS3 with the highest LDA score showed a low immunosuppression. IS1 with the lowest LDA score was more immunosuppressive. LDA score was significantly negatively correlated with most immune checkpoint-related genes, and could reflect UM patients’ response to anti-PD1 immunotherapy. Weighted correlation network analysis (WGCNA) identified that salmon, purple, yellow modules were related to IS and screened 6 prognostic genes. Patients with high-expressed NME1 and TMEM255A developed poor prognosis, while those with high-expressed BEX5 and ROPN1 had better prognosis. There was no notable difference in OS between patients with high-expressed LRRN1 and ST13 and those with low-expressed LRRN1 and ST13. NME1, TMEM255A, Bex5 and ROPN1 showed potential prognostic significance in UM.
Collapse
Affiliation(s)
- Guohong Gao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, 261000, Shandong, China.
| | - Zhilong Yu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Xiaoyan Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Xinyi Fu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Shengsheng Liu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Shan Liang
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Aijun Deng
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, 261000, Shandong, China
| |
Collapse
|
4
|
Wang J, Miao Y, Ran J, Yang Y, Guan Q, Mi D. Construction prognosis model based on autophagy-related gene signatures in hepatocellular carcinoma. Biomark Med 2020; 14:1229-1242. [PMID: 33021390 DOI: 10.2217/bmm-2020-0170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Aim: To develop robust and accurate prognostic biomarkers to help clinicians optimize therapeutic strategies. Materials & methods: Differentially prognosis-related autophagy genes were identified by bioinformatics analysis method. Results: Seven prognosis-related autophagy genes were more significantly related to the prognosis of hepatocellular carcinoma (HCC). Functional enrichment analysis demonstrated that these genes were mainly enriched in the autophagy pathway. BIRC5, HSPB8 and TMEM74 exhibited significant prognostic value for HCC. Besides, the risk score and BIRC5 have significant significance with clinicopathological significance of HCC. Conclusion: The research has identified a number of prognosis-related autophagy genes that associated with the survival and clinical stage of HCC. In addition, the prognostic model can be used to calculate the patient's risk score and these prognosis-related autophagy genes might serve as therapeutic targets.
Collapse
Affiliation(s)
- Jiangtao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Yandong Miao
- The First Clinical Medical College of Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Juntao Ran
- Department of Radiation Oncology, First Hospital of Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Yuan Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Quanlin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
- Department of Oncology Surgery, First Hospital of Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Denghai Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| |
Collapse
|
5
|
Zheng S, Liu T, Liu Q, Yang L, Zhang Q, Han X, Shen T, Zhang X, Lu X. Widely targeted metabolomic analyses unveil the metabolic variations after stable knock-down of NME4 in esophageal squamous cell carcinoma cells. Mol Cell Biochem 2020; 471:81-89. [PMID: 32504364 DOI: 10.1007/s11010-020-03768-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/26/2020] [Indexed: 01/23/2023]
Abstract
NME4, also designated nm23-H4 or NDPK-D, has been known for years for its well-established roles in the synthesis of nucleoside triphosphates, though; little has been known regarding the differential metabolites involved as well as the biological roles NME4 plays in proliferation and invasion of esophageal squamous cell carcinoma (ESCC) cells. To understand the biological roles of NME4 in ESCC cells, lentiviral-based short hairpin RNA interference (shRNA) vectors were constructed and used to stably knock down NME4. Then, the proliferative and invasive variations were assessed using MTT, Colony formation and Transwell assays. To understand the metabolites involved after silencing of NME4 in ESCC cells, widely targeted metabolomic screening was taken. It was discovered that silencing of NME4 can profoundly suppress the proliferation and invasion in ESCC cells in vitro. Metabolically, a total of 11 differential metabolites were screened. KEGG analyses revealed that Tryptophan, Riboflavin, Purine, Nicotinate, lysine degradation, and Linoleic acid metabolism were also involved in addition to the well-established nucleotides metabolism. Some of these differential metabolites, say, 2-Picolinic Acid, Nicotinic Acid and Pipecolinic Acid were suggested to be associated with tumor immunomodulation. The data we described here support the idea that metabolisms occurred in mitochondrial was closely related to tumor immunity.
Collapse
Affiliation(s)
- Shutao Zheng
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Tao Liu
- Health Management Center, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Qing Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Lifei Yang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Qiqi Zhang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Xiujuan Han
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Tongxue Shen
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Xiao Zhang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Xiaomei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China.
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China.
| |
Collapse
|
6
|
Abstract
Cancer is a complex disease with high incidence and mortality rates. The important role played by the tumor microenvironment in regulating oncogenesis, tumor growth, and metastasis is by now well accepted in the scientific community. SPARC is known to participate in tumor-stromal interactions and impact cancer growth in ambiguous ways, which either enhance or suppress cancer aggressiveness, in a context-dependent manner. p53 transcription factor, a well-established tumor suppressor, has been reported to promote tumor growth in certain situations, such as hypoxia, thus displaying a duality in its action. Although both proteins are being tested in clinical trials, the synergistic relation between them is yet to be explored in clinical practice. In this review, we address the controversial roles of SPARC and p53 as double agents in cancer, briefly summarizing the interaction found between these two molecules and its importance in cancer.
Collapse
|
7
|
Lapitz A, Arbelaiz A, O’Rourke CJ, Lavin JL, La Casta A, Ibarra C, Jimeno JP, Santos-Laso A, Izquierdo-Sanchez L, Krawczyk M, Perugorria MJ, Jimenez-Aguero R, Sanchez-Campos A, Riaño I, Gónzalez E, Lammert F, Marzioni M, Macias RI, Marin JJ, Karlsen TH, Bujanda L, Falcón-Pérez JM, Andersen JB, Aransay AM, Rodrigues PM, Banales JM. Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells 2020; 9:721. [PMID: 32183400 PMCID: PMC7140677 DOI: 10.3390/cells9030721] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
: Cholangiocarcinoma (CCA) comprises a group of heterogeneous biliary cancers with dismal prognosis. The etiologies of most CCAs are unknown, but primary sclerosing cholangitis (PSC) is a risk factor. Non-invasive diagnosis of CCA is challenging and accurate biomarkers are lacking. We aimed to characterize the transcriptomic profile of serum and urine extracellular vesicles (EVs) from patients with CCA, PSC, ulcerative colitis (UC), and healthy individuals. Serum and urine EVs were isolated by serial ultracentrifugations and characterized by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. EVs transcriptome was determined by Illumina gene expression array [messenger RNAs (mRNA) and non-coding RNAs (ncRNAs)]. Differential RNA profiles were found in serum and urine EVs from patients with CCA compared to control groups (disease and healthy), showing high diagnostic capacity. The comparison of the mRNA profiles of serum or urine EVs from patients with CCA with the transcriptome of tumor tissues from two cohorts of patients, CCA cells in vitro, and CCA cells-derived EVs, identified 105 and 39 commonly-altered transcripts, respectively. Gene ontology analysis indicated that most commonly-altered mRNAs participate in carcinogenic steps. Overall, patients with CCA present specific RNA profiles in EVs mirroring the tumor, and constituting novel promising liquid biopsy biomarkers.
Collapse
Affiliation(s)
- Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Colm J. O’Rourke
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), 2200 Copenhagen, Denmark; (C.J.O.); (J.B.A.)
| | - Jose L. Lavin
- CIC bioGUNE, Genome Analysis Platform, 48160 Derio, Spain; (J.L.L.); (A.M.A.)
| | - Adelaida La Casta
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Cesar Ibarra
- Hospital of Cruces, 48903 Bilbao, Spain; (C.I.); (A.S.-C.)
| | - Juan P. Jimeno
- “Complejo Hospitalario de Navarra”, 31008 Pamplona, Spain;
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Centre, Saarland University, 66421 Homburg, Germany; (M.K.); (F.L.)
- Department of General, Transplant and Liver Surgery, Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, 02-091 Warsaw, Poland
| | - Maria J. Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Raul Jimenez-Aguero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | | | - Ioana Riaño
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Esperanza Gónzalez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, 48160 Derio, Spain;
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Centre, Saarland University, 66421 Homburg, Germany; (M.K.); (F.L.)
| | - Marco Marzioni
- Department of Gastroenterology, “Università Politecnica delle Marche”, 60121 Ancona, Italy;
| | - Rocio I.R. Macias
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain; (R.I.R.M.); (J.J.G.M.)
| | - Jose J.G. Marin
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain; (R.I.R.M.); (J.J.G.M.)
| | - Tom H. Karlsen
- Division of Cancer Medicine, Surgery and Transplantation, Norwegian PSC Research Center, Oslo University Hospital, 0372 Oslo, Spain;
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Juan M. Falcón-Pérez
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, 48160 Derio, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jesper B. Andersen
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), 2200 Copenhagen, Denmark; (C.J.O.); (J.B.A.)
| | - Ana M. Aransay
- CIC bioGUNE, Genome Analysis Platform, 48160 Derio, Spain; (J.L.L.); (A.M.A.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Pedro M. Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
8
|
Schreuder AN, Shamblin J. Proton therapy delivery: what is needed in the next ten years? Br J Radiol 2020; 93:20190359. [PMID: 31692372 PMCID: PMC7066946 DOI: 10.1259/bjr.20190359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/10/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022] Open
Abstract
Proton radiation therapy has been used clinically since 1952, and major advancements in the last 10 years have helped establish protons as a major clinical modality in the cancer-fighting arsenal. Technologies will always evolve, but enough major breakthroughs have been accomplished over the past 10 years to allow for a major revolution in proton therapy. This paper summarizes the major technology advancements with respect to beam delivery that are now ready for mass implementation in the proton therapy space and encourages vendors to bring these to market to benefit the cancer population worldwide. We state why these technologies are essential and ready for implementation, and we discuss how future systems should be designed to accommodate their required features.
Collapse
Affiliation(s)
- Andries N. Schreuder
- Provision Center for Proton therapy – Knoxville, 6450 Provision Cares way, Knoxville, TN 37909, USA
| | - Jacob Shamblin
- ProNova Solutions, LLC, 330 Pellissippi Place, Maryville, TN 37804, USA
| |
Collapse
|
9
|
Zhou C, Zhong X, Song Y, Shi J, Wu Z, Guo Z, Sun J, Wang Z. Prognostic Biomarkers for Gastric Cancer: An Umbrella Review of the Evidence. Front Oncol 2019; 9:1321. [PMID: 31850212 PMCID: PMC6895018 DOI: 10.3389/fonc.2019.01321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction: Biomarkers are biological molecules entirely or partially participating in cancerous processes that function as measurable indicators of abnormal changes in the human body microenvironment. Aiming to provide an overview of associations between prognostic biomarkers and gastric cancer (GC), we performed this umbrella review analyzing currently available meta-analyses and grading the evidence depending on the credibility of their associations. Methods: A systematic literature search was conducted by two independent investigators of the PubMed, Embase, Web of Science, and Cochrane Databases to identify meta-analyses investigating associations between prognostic biomarkers and GC. The strength of evidence for prognostic biomarkers for GC were categorized into four grades: strong, highly suggestive, suggestive, and weak. Results: Among 120 associations between prognostic biomarkers and GC survival outcomes, only one association, namely the association between platelet count and GC OS, was supported by strong evidence. Associations between FITC, CEA, NLR, foxp3+ Treg lymphocytes (both 1- and 3-year OS), CA 19-9, or VEGF and GC OS were supported by highly suggestive evidence. Four associations were considered suggestive and the remaining 108 associations were supported by weak or not suggestive evidence. Discussion: The association between platelet count and GC OS was supported by strong evidence. Associations between FITC, CEA, NLR, foxp3+ Treg lymphocytes (both 1- and 3-year OS), CA 19-9, or VEGF and GC OS were supported by highly suggestive evidence, however, the results should be interpreted cautiously due to inadequate methodological quality as deemed by AMSTAR 2.0.
Collapse
Affiliation(s)
- Cen Zhou
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi Zhong
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinxin Shi
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhexu Guo
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jie Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Xiao Y, Zhang H, Ma Q, Huang R, Lu J, Liang X, Liu X, Zhang Z, Yu L, Pang J, Zhou L, Liu T, Wu H, Liang Z. YAP1-mediated pancreatic stellate cell activation inhibits pancreatic cancer cell proliferation. Cancer Lett 2019; 462:51-60. [PMID: 31352078 DOI: 10.1016/j.canlet.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/09/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022]
Abstract
Pancreatic stellate cells (PSCs) are activated in pancreatic ductal adenocarcinoma (PDAC) and are responsible for dense desmoplastic stroma. Yes-associated protein 1 (YAP1) can induce cancer-associated fibroblast activation in liver and breast tumors, but its effect on PSCs is unknown. In the present study, we determined that YAP1 was highly expressed in the nuclei of PDAC-derived activated PSCs. RNAi-mediated or pharmacological inhibition of YAP1 led to PSC deactivation. In addition, YAP1 stimulated the expression of secreted protein acidic and cysteine rich (SPARC) in PSCs, which was inhibited by RUNX1. SPARC secreted from PSCs inhibited pancreatic cancer cell (PCC) proliferation. High expression of nuclear YAP1 in tumor stroma was significantly correlated with SPARC expression and fibrosis degree in human PDAC tissues. Our study revealed a critical role for YAP1 in the regulation of PSC activation and paracrine signaling. Our findings provide insights into a novel rationale for targeting YAP1 to reprogram the PDAC microenvironment.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinic Medicine, Tsinghua University, Beijing, PR China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Qiang Ma
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Rui Huang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Junliang Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaolong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Xuguang Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Zhiwen Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Lianyuan Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Junyi Pang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Tonghua Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
11
|
Marioni G, Cappellesso R, Ottaviano G, Fasanaro E, Marchese-Ragona R, Favaretto N, Giacomelli L, Guzzardo V, Martini A, Fassina A, Blandamura S. Nuclear nonmetastatic protein 23-H1 expression and epithelial-mesenchymal transition in laryngeal carcinoma: A pilot investigation. Head Neck 2018; 40:2020-2028. [DOI: 10.1002/hed.25188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/05/2018] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | | | - Giancarlo Ottaviano
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | - Elena Fasanaro
- Department of Radiotherapy; Veneto Institute of Oncology IOV-IRCCS; Padova Italy
| | | | - Niccolò Favaretto
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | | | | | - Alessandro Martini
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | - Ambrogio Fassina
- Department of Medicine DIMED; University of Padova; Padova Italy
| | | |
Collapse
|
12
|
Mingina T, Zhao M. Role of PARK7 and NDKA in stroke management: a review of PARK7 and NDKA as stroke biomarkers. Biomark Med 2018; 12:419-425. [PMID: 29697269 DOI: 10.2217/bmm-2018-0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM Biomarkers are molecules measured in plasma, serum or other body fluids to characterize a disease. PARK7 and NDKA roles in the management of stroke are still on study. Therefore, their potentials need to be developed in totality. The aim of this review is to demonstrate that PARK7 and NDKA could present more clinical important information as biomarkers for management of stroke disease. Main contents: Four main aspects of PARK7 and NDKA are exploited in this review. First, their diagnostic value is discussed in order to demonstrate their possible role as stroke diagnosis markers. Second, this article will exploit the correlation of both markers with time, by showing their dynamic changes in serum and plasma. Third, it describes the observed relationship of their levels with NIH Stroke Scale. The last aspect visits the possibility of their implementation in stroke therapy. CONCLUSION This article explores recent findings and proposes the potential roles that PARK7 and NDKA play in the management of acute stroke disease.
Collapse
Affiliation(s)
- Tulantched Mingina
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 11004, PR China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 11004, PR China
| |
Collapse
|
13
|
Fiorino S, Bacchi-Reggiani ML, Birtolo C, Acquaviva G, Visani M, Fornelli A, Masetti M, Tura A, Sbrignadello S, Grizzi F, Patrinicola F, Zanello M, Mastrangelo L, Lombardi R, Benini C, Di Tommaso L, Bondi A, Monetti F, Siopis E, Orlandi PE, Imbriani M, Fabbri C, Giovanelli S, Domanico A, Accogli E, Di Saverio S, Grifoni D, Cennamo V, Leandri P, Jovine E, de Biase D. Matricellular proteins and survival in patients with pancreatic cancer: A systematic review. Pancreatology 2018; 18:122-132. [PMID: 29137857 DOI: 10.1016/j.pan.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 02/05/2023]
Abstract
Extracellular matrix (ECM) plays a fundamental role in tissue architecture and homeostasis and modulates cell functions through a complex interaction between cell surface receptors, hormones, several bioeffector molecules, and structural proteins like collagen. These components are secreted into ECM and all together contribute to regulate several cellular activities including differentiation, apoptosis, proliferation, and migration. The so-called "matricellular" proteins (MPs) have recently emerged as important regulators of ECM functions. The aim of our review is to consider all different types of MPs family assessing the potential relationship between MPs and survival in patients with pancreatic ductal adenocarcinoma (PDAC). A systematic computer-based search of published articles, according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) Statement issued in 2009 was conducted through Ovid interface, and literature review was performed in May 2017. The search text words were identified by means of controlled vocabulary, such as the National Library of Medicine's MESH (Medical Subject Headings) and Keywords. Collected data showed an important role of MPs in carcinogenesis and in PDAC prognosis even though the underlying mechanisms are still largely unknown and data are not univocal. Therefore, a better understanding of MPs role in regulation of ECM homeostasis and remodeling of specific organ niches may suggest potential novel extracellular targets for the development of efficacious therapeutic strategies.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine Unit C, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy.
| | - Maria Letizia Bacchi-Reggiani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Cardiology Unit, Policlinico S. Orsola-Malpighi, University of Bologna, via Massarenti 9, Bologna, Italy
| | - Chiara Birtolo
- Internal Medicine Unit A, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Giorgia Acquaviva
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, Largo Nigrisoli 3, Bologna, Italy
| | - Michela Visani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, Largo Nigrisoli 3, Bologna, Italy
| | - Adele Fornelli
- Anatomic Pathology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Michele Masetti
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, Via Giuseppe Moruzzi 1, Padova, Italy
| | | | - Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milano, Italy
| | - Federica Patrinicola
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milano, Italy
| | - Matteo Zanello
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Laura Mastrangelo
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Raffaele Lombardi
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Claudia Benini
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Luca Di Tommaso
- Department of Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milano, Italy
| | - Arrigo Bondi
- Anatomic Pathology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Francesco Monetti
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Elena Siopis
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Paolo Emilio Orlandi
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Michele Imbriani
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Carlo Fabbri
- Unit of Gastroenterology and Digestive Endoscopy, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Silvia Giovanelli
- Unit of Gastroenterology and Digestive Endoscopy, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Andrea Domanico
- Internal Medicine Unit A, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Esterita Accogli
- Internal Medicine Unit A, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Salomone Di Saverio
- Surgical Emergency Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 15, Bologna, Italy
| | - Vincenzo Cennamo
- Unit of Gastroenterology and Digestive Endoscopy, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Paolo Leandri
- Surgical Emergency Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Elio Jovine
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 15, Bologna, Italy.
| |
Collapse
|