1
|
Geens R, De Vocht L, Aguirre-Botero MC, Vincke C, Romão E, Magez S, Muyldermans S, Amino R, Sterckx YGJ. Evidence for a model of conformational change by the Plasmodium falciparum circumsporozoite protein during sporozoite development in the mosquito host through the use of camelid single-domain antibodies. Infect Immun 2025:e0008125. [PMID: 40293231 DOI: 10.1128/iai.00081-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Plasmodium sporozoites (SPZs) are formed in the Anopheles mosquito midgut from where they travel to the salivary glands and subsequently to the mammalian liver after deposition into the skin. The SPZ's main surface antigen, the circumsporozoite protein (CSP), plays a pivotal role in SPZ biology and constitutes the immunodominant target for host antibodies. In this study, we raised single-domain antibodies (sdAbs) against CSP from P. falciparum (PfCSP) by immunizing two alpacas with recombinant versions of the antigen. We found that all identified sdAbs specifically target PfCSP's globular [Formula: see text]TSR domain without cross-reacting with P. berghei CSP. Further characterization revealed that most sdAbs recognize native PfCSP on the SPZ surface, although they do not have any inhibitory effect on hepatocyte binding and invasion. Structural studies showed that all binders target the previously identified [Formula: see text]-epitope, confirming the non-protective nature of this epitope. Comparison of sdAb binding to midgut and salivary gland SPZs revealed a shift in the exposure and accessibility of the [Formula: see text]-epitope. Hence, our findings provide further evidence that CSP undergoes structural changes during SPZ development in the mosquito host.
Collapse
Affiliation(s)
- Rob Geens
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Line De Vocht
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Manuela C Aguirre-Botero
- Institut Pasteur, Université Paris Cité, Malaria Infection & Immunity, Paris, Île-de-France, France
| | - Cécile Vincke
- Lab of Cellular and Molecular Immunology (CMIM), Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Ema Romão
- Lab of Cellular and Molecular Immunology (CMIM), Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Lab of Cellular and Molecular Immunology (CMIM), Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Serge Muyldermans
- Lab of Cellular and Molecular Immunology (CMIM), Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection & Immunity, Paris, Île-de-France, France
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Boonyakida J, Nakayama K, Kusakisako K, Ikadai H, Park EY. Modular Display of Plasmodium yoelii Circumsporozoite Surface Protein and Merozoite Surface Protein-1 on Norovirus-like Particles. Bioconjug Chem 2024; 35:1933-1943. [PMID: 39564748 DOI: 10.1021/acs.bioconjchem.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Recently, virus-like particles have been regarded as a promising platform for displaying foreign peptides or proteins on their surface. In this study, a dual-protein-displaying platform based on the norovirus-like particle (NoV-LP) was developed using SpyTag (SpT)/SpyCatcher (SpC) protein bioconjugation. A short 14-amino-acid SpT peptide was added to the C-terminus of VP1, with a rigid "EAAAK" spacer in between. Antigenic proteins from a rodent malaria parasite, Plasmodium yoelii, specifically the circumsporozoite protein (PyCSP) and the 19 kDa C-terminal region of merozoite surface protein 1 (PyMSP119), were displayed on the surface of NoV-LPs in both monovalent and bivalent formats. The immunogenicity of these VLP-based vaccines was assessed, and they were found to induce antigen-specific IgG responses against both PyCSP and PyMSP119 in BALB/c mice in the absence of an adjuvant, at levels comparable to those induced by subunit antigenic proteins with an alum adjuvant added. Interestingly, the bivalent vaccine raised IgG responses at a similar titer to the monovalent vaccine. This finding hints that the NoV-LP possesses an inherent adjuvanted property in the presence of a foreign antigen. The measured anti-PyCSP and anti-PyMSP119 antibodies through ELISA indicate that surface display of PyCSP and PyMSP119 on SpTagged-NoV-LP has the potential for further development as a bivalent vaccine against two different life-cycle stages of malaria.
Collapse
Affiliation(s)
- Jirayu Boonyakida
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Kazuhiko Nakayama
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23-bancho, Towada City, Aomori 034-8628, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23-bancho, Towada City, Aomori 034-8628, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23-bancho, Towada City, Aomori 034-8628, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
3
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
4
|
Wang LT, Idris AH, Kisalu NK, Crompton PD, Seder RA. Monoclonal antibodies to the circumsporozoite proteins as an emerging tool for malaria prevention. Nat Immunol 2024; 25:1530-1545. [PMID: 39198635 DOI: 10.1038/s41590-024-01938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Despite various public health strategies, malaria caused by Plasmodium falciparum parasites remains a major global health challenge that requires development of new interventions. Extended half-life human monoclonal antibodies targeting the P. falciparum circumsporozoite protein on sporozoites, the infective form of malaria parasites, prevent malaria in rodents and humans and have been advanced into clinical development. The protective epitopes on the circumsporozoite protein targeted by monoclonal antibodies have been defined. Cryogenic electron and multiphoton microscopy have enabled mechanistic structural and functional investigations of how antibodies bind to the circumsporozoite protein and neutralize sporozoites. Moreover, innovations in bioinformatics and antibody engineering have facilitated enhancement of antibody potency and durability. Here, we summarize the latest scientific advances in understanding how monoclonal antibodies to the circumsporozoite protein prevent malaria and highlight existing clinical data and future plans for how this emerging intervention can be used alone or alongside existing antimalarial interventions to control malaria across at-risk populations.
Collapse
Affiliation(s)
- Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Neville K Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- PATH's Center for Vaccine Innovation and Access, Washington, DC, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Geens R, Stanisich J, Beyens O, D'Hondt S, Thiberge J, Ryckebosch A, De Groot A, Magez S, Vertommen D, Amino R, De Winter H, Volkov AN, Tompa P, Sterckx YG. Biophysical characterization of the Plasmodium falciparum circumsporozoite protein's N-terminal domain. Protein Sci 2024; 33:e4852. [PMID: 38059674 PMCID: PMC10749493 DOI: 10.1002/pro.4852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
The circumsporozoite protein (CSP) is the main surface antigen of the Plasmodium sporozoite (SPZ) and forms the basis of the currently only licensed anti-malarial vaccine (RTS,S/AS01). CSP uniformly coats the SPZ and plays a pivotal role in its immunobiology, in both the insect and the vertebrate hosts. Although CSP's N-terminal domain (CSPN ) has been reported to play an important role in multiple CSP functions, a thorough biophysical and structural characterization of CSPN is currently lacking. Here, we present an alternative method for the recombinant production and purification of CSPN from Plasmodium falciparum (PfCSPN ), which provides pure, high-quality protein preparations with high yields. Through an interdisciplinary approach combining in-solution experimental methods and in silico analyses, we provide strong evidence that PfCSPN is an intrinsically disordered region displaying some degree of compaction.
Collapse
Affiliation(s)
- Rob Geens
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Jessica Stanisich
- Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Olivier Beyens
- Laboratory of Medicinal Chemistry (UAMC)University of AntwerpAntwerpBelgium
| | - Stijn D'Hondt
- Laboratory of Medicinal Chemistry (UAMC)University of AntwerpAntwerpBelgium
| | | | - Amber Ryckebosch
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
| | - Anke De Groot
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
| | - Stefan Magez
- Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
- Ghent University Global CampusIncheonSouth Korea
| | - Didier Vertommen
- de Duve Institute and MASSPROT Platform, UCLouvainBrusselsBelgium
| | - Rogerio Amino
- Unit of Malaria Infection & ImmunityInstitut PasteurParisFrance
| | - Hans De Winter
- Laboratory of Medicinal Chemistry (UAMC)University of AntwerpAntwerpBelgium
| | - Alexander N. Volkov
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor Biotechnologie (VIB)BrusselsBelgium
- Jean Jeener NMR CentreVrije Universiteit BrusselBrusselsBelgium
| | - Peter Tompa
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor Biotechnologie (VIB)BrusselsBelgium
- Institute of Enzymology, Biological Research CenterHungarian Academy of SciencesBudapestHungary
| | - Yann G.‐J. Sterckx
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
| |
Collapse
|
6
|
Kalkal M, Kalkal A, Dhanda SK, Das E, Pande V, Das J. A comprehensive study of epitopes and immune reactivity among Plasmodium species. BMC Microbiol 2022; 22:74. [PMID: 35277125 PMCID: PMC8913861 DOI: 10.1186/s12866-022-02480-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background Malaria is a life-threatening disease caused by protozoan parasite of genus Plasmodium. Various antigenic proteins of Plasmodium are considered as the major targets for the development of an effective vaccine. The aim of the current study was a comprehensive analysis of the experimentally validated epitopes of Plasmodium obtained from various immunoassays. Methods Plasmodium species epitopes were prefetched from Immune Epitope Database (IEDB). Species specific classification of available epitopes was done for both human and murine malaria parasites. Further, these T cell and B cell epitopes along with MHC I/II binders of different Plasmodium species were examined to find out their capability to induce IFN-γ and IL-10 using IFNepitope and IL-10 Pred, respectively. Results The species-specific classification of 6874 unique epitopes resulted in the selection of predominant human and murine Plasmodium species. Further, the attempt was made to analyse the immune reactivity of these epitopes for their ability to induce cytokines namely IFN-γ and IL-10. Total, 2775 epitopes were predicted to possess IFN-γ inducing ability, whereas 1275 epitopes were found to be involved in the induction of IL-10. Conclusions This study facilitates the assessment of Plasmodium epitopes and associated proteins as a potential approach to design and develop an epitope-based vaccine. Moreover, the results highlight the epitope-based immunization in malaria to induce a protective immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02480-7.
Collapse
|
7
|
Longoni SS, Tiberti N, Bisoffi Z, Piubelli C. Monoclonal Antibodies for Protozoan Infections: A Future Reality or a Utopic Idea? Front Med (Lausanne) 2021; 8:745665. [PMID: 34712683 PMCID: PMC8545981 DOI: 10.3389/fmed.2021.745665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Following the SARS-CoV-2 pandemic, several clinical trials have been approved for the investigation of the possible use of mAbs, supporting the potential of this technology as a therapeutic approach for infectious diseases. The first monoclonal antibody (mAb), Muromonab CD3, was introduced for the prevention of kidney transplant rejection more than 30 years ago; since then more than 100 mAbs have been approved for therapeutic purposes. Nonetheless, only four mAbs are currently employed for infectious diseases: Palivizumab, for the prevention of respiratory syncytial virus (RSV) infections, Raxibacumab and Obiltoxaximab, for the prophylaxis and treatment against anthrax toxin and Bezlotoxumab, for the prevention of Clostridium difficile recurrence. Protozoan infections are often neglected diseases for which effective and safe chemotherapies are generally missing. In this context, drug resistance and drug toxicity are two crucial problems. The recent advances in bioinformatics, parasite genomics, and biochemistry methodologies are contributing to better understand parasite biology, which is essential to guide the development of new therapies. In this review, we present the efforts that are being made in the evaluation of mAbs for the prevention or treatment of leishmaniasis, Chagas disease, malaria, and toxoplasmosis. Particular emphasis will be placed on the potential strengths and weaknesses of biological treatments in the control of these protozoan diseases that are still affecting hundreds of thousands of people worldwide.
Collapse
Affiliation(s)
- Silvia Stefania Longoni
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Natalia Tiberti
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Zeno Bisoffi
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy.,Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Chiara Piubelli
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| |
Collapse
|
8
|
Singh SK, Plieskatt J, Chourasia BK, Singh V, Bengtsson KL, Reimer JM, van Daalen RC, Teelen K, van de Vegte-Bolmer M, van Gemert GJ, Jore MM, Theisen M. Preclinical development of a Pfs230-Pfs48/45 chimeric malaria transmission-blocking vaccine. NPJ Vaccines 2021; 6:120. [PMID: 34642303 PMCID: PMC8511065 DOI: 10.1038/s41541-021-00383-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
The Plasmodium falciparum Pfs230 and Pfs48/45 proteins are leading candidates for a malaria transmission-blocking vaccine (TBV). Previously, we showed that a Pfs230-Pfs48/45 fusion protein elicits higher levels of functional antibodies than the individual antigens, but low yields hampered progression to clinical evaluation. Here we identified a modified construct (ProC6C) with a circumsporozoite protein (CSP) repeat-linker sequence that enhances expression. A scalable and reproducible process in the Lactococcus lactis expression system was developed and ProC6C was successfully transferred for manufacturing under current Good Manufacturing Practices (cGMP). In addition, a panel of analytical assays for release and stability were developed. Intact mass spectrometry analysis and multiangle light scattering showed that the protein contained correct disulfide bonds and was monomeric. Immunogenicity studies in mice showed that the ProC6C adsorbed to Alhydrogel®, with or without Matrix-MTM, elicited functional antibodies that reduced transmission to mosquitoes and sporozoite invasion of human hepatocytes. Altogether, our data support manufacture and clinical evaluation of ProC6C as a multistage malaria-vaccine candidate.
Collapse
Affiliation(s)
- Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Bishwanath K Chourasia
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Vandana Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Renate C van Daalen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Karina Teelen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Tan J, Cho H, Pholcharee T, Pereira LS, Doumbo S, Doumtabe D, Flynn BJ, Schön A, Kanatani S, Aylor SO, Oyen D, Vistein R, Wang L, Dillon M, Skinner J, Peterson M, Li S, Idris AH, Molina-Cruz A, Zhao M, Olano LR, Lee PJ, Roth A, Sinnis P, Barillas-Mury C, Kayentao K, Ongoiba A, Francica JR, Traore B, Wilson IA, Seder RA, Crompton PD. Functional human IgA targets a conserved site on malaria sporozoites. Sci Transl Med 2021; 13:eabg2344. [PMID: 34162751 PMCID: PMC7611206 DOI: 10.1126/scitranslmed.abg2344] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 12/27/2022]
Abstract
Immunoglobulin (Ig)A antibodies play a critical role in protection against mucosal pathogens. However, the role of serum IgA in immunity to nonmucosal pathogens, such as Plasmodium falciparum, is poorly characterized, despite being the second most abundant isotype in blood after IgG. Here, we investigated the circulating IgA response in humans to P. falciparum sporozoites that are injected into the skin by mosquitoes and migrate to the liver via the bloodstream to initiate malaria infection. We found that circulating IgA was induced in three independent sporozoite-exposed cohorts: individuals living in an endemic region in Mali, malaria-naïve individuals immunized intravenously with three large doses of irradiated sporozoites, and malaria-naïve individuals exposed to a single controlled mosquito bite infection. Mechanistically, we found evidence in an animal model that IgA responses were induced by sporozoites at dermal inoculation sites. From malaria-resistant individuals, we isolated several IgA monoclonal antibodies that reduced liver parasite burden in mice. One antibody, MAD2-6, bound to a conserved epitope in the amino terminus of the P. falciparum circumsporozoite protein, the dominant protein on the sporozoite surface. Crystal structures of this antibody revealed a unique mode of binding whereby two Fabs simultaneously bound either side of the target peptide. This study reveals a role for circulating IgA in malaria and identifies the amino terminus of the circumsporozoite protein as a target of functional antibodies.
Collapse
Affiliation(s)
- Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD 20852, USA.
| | - Hyeseon Cho
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lais S Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Samantha O Aylor
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - David Oyen
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Lisa Renee Olano
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Patricia J Lee
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
10
|
Singh S, Santos JM, Orchard LM, Yamada N, van Biljon R, Painter HJ, Mahony S, Llinás M. The PfAP2-G2 transcription factor is a critical regulator of gametocyte maturation. Mol Microbiol 2021; 115:1005-1024. [PMID: 33368818 PMCID: PMC8330521 DOI: 10.1111/mmi.14676] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Differentiation from asexual blood stages to mature sexual gametocytes is required for the transmission of malaria parasites. Here, we report that the ApiAP2 transcription factor, PfAP2-G2 (PF3D7_1408200) plays a critical role in the maturation of Plasmodium falciparum gametocytes. PfAP2-G2 binds to the promoters of a wide array of genes that are expressed at many stages of the parasite life cycle. Interestingly, we also find binding of PfAP2-G2 within the gene body of almost 3,000 genes, which strongly correlates with the location of H3K36me3 and several other histone modifications as well as Heterochromatin Protein 1 (HP1), suggesting that occupancy of PfAP2-G2 in gene bodies may serve as an alternative regulatory mechanism. Disruption of pfap2-g2 does not impact asexual development, but the majority of sexual parasites are unable to mature beyond stage III gametocytes. The absence of pfap2-g2 leads to overexpression of 28% of the genes bound by PfAP2-G2 and none of the PfAP2-G2 bound genes are downregulated, suggesting that it is a repressor. We also find that PfAP2-G2 interacts with chromatin remodeling proteins, a microrchidia (MORC) protein, and another ApiAP2 protein (PF3D7_1139300). Overall our data demonstrate that PfAP2-G2 establishes an essential gametocyte maturation program in association with other chromatin-related proteins.
Collapse
Affiliation(s)
- Suprita Singh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Joana M. Santos
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Lindsey M. Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Naomi Yamada
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA 16802
| | - Riëtte van Biljon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Heather J. Painter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA 16802
| |
Collapse
|
11
|
Singer M, Frischknecht F. Fluorescent tagging of Plasmodium circumsporozoite protein allows imaging of sporozoite formation but blocks egress from oocysts. Cell Microbiol 2021; 23:e13321. [PMID: 33600048 DOI: 10.1111/cmi.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
The circumsporozoite protein, CSP, is the major surface protein of Plasmodium sporozoites, the form of malaria parasites transmitted by mosquitoes. CSP is involved in sporozoite formation within and egress from oocysts, entry into mosquito salivary glands and mammalian liver as well as migration in the skin. Yet, how CSP facilitates sporozoite formation, oocyst egress and hepatocyte specific invasion is still not fully understood. Here, we aimed at generating a series of parasites expressing full-length versions of CSP with internally inserted green fluorescent protein between known domains at the endogenous csp locus. This enabled the investigation of sporozoite formation in living oocysts. GFP insertion after the signal peptide leads to cleavage of GFP before the fusion protein reached the plasma membrane while insertion of GFP before or after the TSR domain prevented sporozoite egress and liver invasion. These data suggest different strategies for obtaining mature salivary gland sporozoites that express GFP-CSP fusions.
Collapse
Affiliation(s)
- Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| |
Collapse
|
12
|
Thai E, Costa G, Weyrich A, Murugan R, Oyen D, Flores-Garcia Y, Prieto K, Bosch A, Valleriani A, Wu NC, Pholcharee T, Scally SW, Wilson IA, Wardemann H, Julien JP, Levashina EA. A high-affinity antibody against the CSP N-terminal domain lacks Plasmodium falciparum inhibitory activity. J Exp Med 2021; 217:152019. [PMID: 32790871 PMCID: PMC7596816 DOI: 10.1084/jem.20200061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 11/04/2022] Open
Abstract
Malaria is a global health concern, and research efforts are ongoing to develop a superior vaccine to RTS,S/AS01. To guide immunogen design, we seek a comprehensive understanding of the protective humoral response against Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP). In contrast to the well-studied responses to the repeat region and the C-terminus, the antibody response against the N-terminal domain of PfCSP (N-CSP) remains obscure. Here, we characterized the molecular recognition and functional efficacy of the N-CSP-specific monoclonal antibody 5D5. The crystal structure at 1.85-Å resolution revealed that 5D5 binds an α-helical epitope in N-CSP with high affinity through extensive shape and charge complementarity and the unusual utilization of an antibody N-linked glycan. Nevertheless, functional studies indicated low 5D5 binding to live Pf sporozoites and lack of sporozoite inhibition in vitro and in vivo. Overall, our data do not support the inclusion of the 5D5 N-CSP epitope into the next generation of CSP-based vaccines.
Collapse
Affiliation(s)
- Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anna Weyrich
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Institute, Heidelberg, Germany
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Alexandre Bosch
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Angelo Valleriani
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Stephen W Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Institute, Heidelberg, Germany
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
13
|
Jelínková L, Jhun H, Eaton A, Petrovsky N, Zavala F, Chackerian B. An epitope-based malaria vaccine targeting the junctional region of circumsporozoite protein. NPJ Vaccines 2021; 6:13. [PMID: 33479242 PMCID: PMC7820318 DOI: 10.1038/s41541-020-00274-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
A malaria vaccine that elicits long-lasting protection and is suitable for use in endemic areas remains urgently needed. Here, we assessed the immunogenicity and prophylactic efficacy of a vaccine targeting a recently described epitope on the major surface antigen on Plasmodium falciparum sporozoites, circumsporozoite protein (CSP). Using a virus-like particle (VLP)-based vaccine platform technology, we developed a vaccine that targets the junctional region between the N-terminal and central repeat regions of CSP. This region is recognized by monoclonal antibodies, including mAb CIS43, that have been shown to potently prevent liver invasion in animal models. We show that CIS43 VLPs elicit high-titer and long-lived anti-CSP antibody responses in mice and is immunogenic in non-human primates. In mice, vaccine immunogenicity was enhanced by using mixed adjuvant formulations. Immunization with CIS43 VLPs conferred partial protection from malaria infection in a mouse model, and passive transfer of serum from immunized macaques also inhibited parasite liver invasion in the mouse infection model. Our findings demonstrate that a Qβ VLP-based vaccine targeting the CIS43 epitope combined with various adjuvants is highly immunogenic in mice and macaques, elicits long-lasting anti-CSP antibodies, and inhibits parasite infection in a mouse model. Thus, the CIS43 VLP vaccine is a promising pre-erythrocytic malaria vaccine candidate.
Collapse
Affiliation(s)
- Lucie Jelínková
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Hugo Jhun
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Allison Eaton
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Adelaide, SA, 5046, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Fidel Zavala
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
| |
Collapse
|
14
|
Horta MF, Andrade LO, Martins-Duarte ÉS, Castro-Gomes T. Cell invasion by intracellular parasites - the many roads to infection. J Cell Sci 2020; 133:133/4/jcs232488. [PMID: 32079731 DOI: 10.1242/jcs.232488] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intracellular parasites from the genera Toxoplasma, Plasmodium, Trypanosoma, Leishmania and from the phylum Microsporidia are, respectively, the causative agents of toxoplasmosis, malaria, Chagas disease, leishmaniasis and microsporidiosis, illnesses that kill millions of people around the globe. Crossing the host cell plasma membrane (PM) is an obstacle these parasites must overcome to establish themselves intracellularly and so cause diseases. The mechanisms of cell invasion are quite diverse and include (1) formation of moving junctions that drive parasites into host cells, as for the protozoans Toxoplasma gondii and Plasmodium spp., (2) subversion of endocytic pathways used by the host cell to repair PM, as for Trypanosoma cruzi and Leishmania, (3) induction of phagocytosis as for Leishmania or (4) endocytosis of parasites induced by specialized structures, such as the polar tubes present in microsporidian species. Understanding the early steps of cell entry is essential for the development of vaccines and drugs for the prevention or treatment of these diseases, and thus enormous research efforts have been made to unveil their underlying biological mechanisms. This Review will focus on these mechanisms and the factors involved, with an emphasis on the recent insights into the cell biology of invasion by these pathogens.
Collapse
Affiliation(s)
- Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Luciana Oliveira Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Érica Santos Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| |
Collapse
|
15
|
Singh SK, Plieskatt J, Chourasia BK, Singh V, Bolscher JM, Dechering KJ, Adu B, López-Méndez B, Kaviraj S, Locke E, King CR, Theisen M. The Plasmodium falciparum circumsporozoite protein produced in Lactococcus lactis is pure and stable. J Biol Chem 2019; 295:403-414. [PMID: 31792057 DOI: 10.1074/jbc.ra119.011268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
The Plasmodium falciparum circumsporozoite protein (PfCSP) is a sporozoite surface protein whose role in sporozoite motility and cell invasion has made it the leading candidate for a pre-erythrocytic malaria vaccine. However, production of high yields of soluble recombinant PfCSP, including its extensive NANP and NVDP repeats, has proven problematic. Here, we report on the development and characterization of a secreted, soluble, and stable full-length PfCSP (containing 4 NVDP and 38 NANP repeats) produced in the Lactococcus lactis expression system. The recombinant full-length PfCSP, denoted PfCSP4/38, was produced initially with a histidine tag and purified by a simple two-step procedure. Importantly, the recombinant PfCSP4/38 retained a conformational epitope for antibodies as confirmed by both in vivo and in vitro characterizations. We characterized this complex protein by HPLC, light scattering, MS analysis, differential scanning fluorimetry, CD, SDS-PAGE, and immunoblotting with conformation-dependent and -independent mAbs, which confirmed it to be both pure and soluble. Moreover, we found that the recombinant protein is stable at both frozen and elevated-temperature storage conditions. When we used L. lactis-derived PfCSP4/38 to immunize mice, it elicited high levels of functional antibodies that had the capacity to modify sporozoite motility in vitro We concluded that the reported yield, purity, results of biophysical analyses, and stability of PfCSP4/38 warrant further consideration of using the L. lactis system for the production of circumsporozoite proteins for preclinical and clinical applications in malaria vaccine development.
Collapse
Affiliation(s)
- Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | - Bishwanath Kumar Chourasia
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Vandana Singh
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Bright Adu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Blanca López-Méndez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Emily Locke
- PATH's Malaria Vaccine Initiative, Washington, D. C. 20001
| | - C Richter King
- PATH's Malaria Vaccine Initiative, Washington, D. C. 20001
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
16
|
Scally SW, Murugan R, Bosch A, Triller G, Costa G, Mordmüller B, Kremsner PG, Sim BKL, Hoffman SL, Levashina EA, Wardemann H, Julien JP. Rare PfCSP C-terminal antibodies induced by live sporozoite vaccination are ineffective against malaria infection. J Exp Med 2017; 215:63-75. [PMID: 29167197 PMCID: PMC5748854 DOI: 10.1084/jem.20170869] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/30/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022] Open
Abstract
Scally et al. show the molecular, structural, and functional characterization of human antibodies against the C-terminal domain of Plasmodium falciparum (Pf) circumsporozoite (CSP [C-PfCSP]) and reveal that its arrangement on the Pf sporozoite surface and epitope polymorphism contribute to poor C-PfCSP immunogenicity and ineffective humoral responses in volunteers protected against Pf malaria. Antibodies against the central repeat of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) inhibit parasite activity and correlate with protection from malaria. However, the humoral response to the PfCSP C terminus (C-PfCSP) is less well characterized. Here, we describe B cell responses to C-PfCSP from European donors who underwent immunization with live Pf sporozoites (PfSPZ Challenge) under chloroquine prophylaxis (PfSPZ-CVac), and were protected against controlled human malaria infection. Out of 215 PfCSP-reactive monoclonal antibodies, only two unique antibodies were specific for C-PfCSP, highlighting the rare occurrence of C-PfCSP–reactive B cells in PfSPZ-CVac–induced protective immunity. These two antibodies showed poor sporozoite binding and weak inhibition of parasite traversal and development, and did not protect mice from infection with PfCSP transgenic Plasmodium berghei sporozoites. Structural analyses demonstrated that one antibody interacts with a polymorphic region overlapping two T cell epitopes, suggesting that variability in C-PfCSP may benefit parasite escape from humoral and cellular immunity. Our data identify important features underlying C-PfCSP shortcomings as a vaccine target.
Collapse
Affiliation(s)
- Stephen W Scally
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Alexandre Bosch
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Gianna Triller
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany
| | | | | | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada .,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|