1
|
Kliegman R, Kengmana E, Schulman R, Zhang Y. Dissecting Rate-Limiting Processes in Biomolecular Condensate Exchange Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.16.654578. [PMID: 40475453 PMCID: PMC12139985 DOI: 10.1101/2025.05.16.654578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
An increasing number of biomolecules have been shown to phase-separate into biomolecular condensates - membraneless subcellular compartments capable of regulating distinct biochemical processes within living cells. The speed with which they exchange components with the cellular environment can influence how fast biochemical reactions occur inside condensates and how fast condensates respond to environmental changes, thereby directly impacting condensate function. While Fluorescence Recovery After Photobleaching (FRAP) experiments are routinely performed to measure this exchange timescale, it remains a challenge to distinguish the various physical processes limiting fluorescence recovery and identify each associated timescale. Here, we present a reaction-diffusion model for condensate exchange dynamics and show that such exchange can differ significantly from that of conventional liquid droplets due to the presence of a percolated molecular network, which gives rise to different mobility species in the dense phase. In this model, exchange can be limited by diffusion of either the high- or low-mobility species in the dense phase, diffusion in the dilute phase, or the attachment/detachment of molecules to/from the network at the surface or throughout the bulk of the condensate. Through a combination of analytic derivations and numerical simulations in each of these limits, we quantify the contributions of these distinct physical processes to the overall exchange timescale. Demonstrated on a biosynthetic DNA nanostar system, our model offers insight into the predominant physical mechanisms driving condensate material exchange and provides an experimentally testable scaling relationship between the exchange timescale and condensate size. Interestingly, we observe a newly predicted regime in which the exchange timescale scales nonquadratically with condensate size.
Collapse
Affiliation(s)
- Ross Kliegman
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Eli Kengmana
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rebecca Schulman
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yaojun Zhang
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
2
|
Li S, Tamura R, Banzai K, Kamiyama D, Kner P. Two-Dimensional Nonlinear Structured Illumination Microscopy with rsEGFP2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.11.653285. [PMID: 40462940 PMCID: PMC12132326 DOI: 10.1101/2025.05.11.653285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Superresolution microscopy enables imaging of subcellular structures and dynamics with nanoscale detail. Among the various superresolution techniques, structured illumination microscopy (SIM) stands out for its compatibility with live-cell imaging. Linear SIM is restricted to a resolution improvement of a factor of two, improving the resolution to about 100 nm. Nonlinear SIM (NSIM) utilizes reversibly switchable fluorescent proteins to generate a nonlinear response, allowing for the collection of higher spatial frequency information and theoretically extending the resolution without limit. By employing rsEGFP2 and patterned depletion illumination (PD) to generate the desired nonlinearity in the fluorescent response, we have successfully achieved 2D PD-NSIM imaging of actin in live U2OS cells with sub-80 nm resolution.
Collapse
Affiliation(s)
- Shaoheng Li
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA, USA
| | - Ryo Tamura
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Kota Banzai
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Peter Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Kirkland C, Wang X, Canedo-Ribeiro C, Álvarez-González L, Weisz D, Mena A, St Leger J, Dudchenko O, Aiden EL, Ruiz-Herrera A, Heller R, King T, Farré M. Chromosome-level genomics and historical museum collections reveal new insights into the population structure and chromosome evolution of waterbuck. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644014. [PMID: 40166267 PMCID: PMC11956998 DOI: 10.1101/2025.03.19.644014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Advances in the sequencing and assembly of chromosome-level genome assemblies has enabled the study of non-model animals, providing further insights into the evolution of genomes and chromosomes. Here, we present the waterbuck ( Kobus ellipsiprymnus ) as an emerging model antelope for studying population dynamics and chromosome evolution. Antelope evolutionary history has been shaped by Robertsonian (Rb) fusions, with waterbuck also showing variation in karyotype due to two polymorphic Rb fusions. These polymorphisms are variable between and within the two recognised subspecies, the common and defassa waterbuck. To provide new insights into waterbuck evolution, we firstly assembled a chromosome-level genome assembly for the defassa subspecies using PacBio HiFi and Hi-C sequencing. We then utilised museum collections to carry out whole genome sequencing (WGS) of 24 historical waterbuck skins from both subspecies. Combined with a previous WGS dataset (n = 119), this represents the largest study of waterbuck populations to date. We found novel population structure and gene flow between waterbuck populations and regions across the genome with high genomic differentiation between the two subspecies. Several of these regions were found around the centromeres of fixed and polymorphic Rb fusions, exhibiting signatures of low recombination and local population structure. Interestingly, these regions contain genes involved in development, fertility, and recombination. Our results highlight the importance of assembling genomes to the chromosome-level, the utility and value of historical collections in sampling a wide-ranging species to uncover fine-scale population structure, and the potential impacts of Rb fusions on genomic differentiation and the recombination landscape.
Collapse
|
4
|
Elliehausen CJ, Olszewski SS, Shult CG, Ailiani AR, Trautman ME, Babygirija R, Lamming DW, Hornberger TA, Minton DM, Konopka AR. Rapamycin does not compromise physical performance or muscle hypertrophy after PoWeR while intermittent rapamycin alleviates glucose disruptions by frequent rapamycin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642477. [PMID: 40161678 PMCID: PMC11952434 DOI: 10.1101/2025.03.10.642477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
An increasing number of physically active adults are taking the mTOR inhibitor rapamycin off label with the goal of extending healthspan. However, frequent rapamycin dosing disrupts metabolic health during sedentary conditions and abates the anabolic response to exercise. Intermittent once weekly rapamycin dosing minimizes many negative metabolic side effects of frequent rapamycin in sedentary mice. However, it remains unknown how different rapamycin dosing schedules impact metabolic, physical, and skeletal muscle adaptations to voluntary exercise training. Therefore, we tested the hypothesis that intermittent rapamycin (2mg/kg; 1x/week) would avoid detrimental effects on adaptations to 8 weeks of progressive weighted wheel running (PoWeR) in adult female mice (5-month-old) by evading the sustained inhibitory effects on mTOR signaling by more frequent dosing schedules (2mg/kg; 3x/week). Frequent but not intermittent rapamycin suppressed skeletal muscle mTORC1 signaling in PoWeR trained mice. PoWeR improved maximal exercise capacity, absolute grip strength, and myofiber hypertrophy with no differences between vehicle or rapamycin treated mice. Conversely, frequent and intermittent rapamycin treated mice had impaired glucose tolerance and insulin sensitivity compared to vehicle treated mice after PoWeR; however, intermittent rapamycin reduced the impact on glucose intolerance versus frequent rapamycin. Collectively, these data in adult female mice suggest that 1) rapamycin is largely compatible with the physical and skeletal muscle benefits of PoWeR and 2) the detrimental effects of rapamycin on body composition and glucose metabolism in the context of voluntary exercise may be reduced by intermittent dosing.
Collapse
Affiliation(s)
- Christian J Elliehausen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital
| | - Szczepan S Olszewski
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital
| | - Carolyn G Shult
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital
| | - Aditya R Ailiani
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital
| | - Michaela E Trautman
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital
| | - Reji Babygirija
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison
- William S. Middleton Memorial Veterans Hospital
| | - Dudley W Lamming
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison
- William S. Middleton Memorial Veterans Hospital
- University of Wisconsin-Madison Comprehensive Diabetes Center
| | - Troy A Hornberger
- University of Wisconsin-Madison Comprehensive Diabetes Center
- Department of Comparative Biosciences, University of Wisconsin-Madison
- School of Veterinary Medicine, University of Wisconsin-Madison
| | - Dennis M Minton
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital
- University of Wisconsin-Madison Comprehensive Diabetes Center
| |
Collapse
|
5
|
Tao Y, Schnur TT, Ding JH, Martin R, Rapp B. Longitudinal changes in functional connectivity networks in the first year following stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642404. [PMID: 40161671 PMCID: PMC11952386 DOI: 10.1101/2025.03.10.642404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The functional organization of the brain consists of multiple subsystems, or modules, with dense functional communication within modules (i.e., visual, attention) and relatively sparse but vital communications between them. The two hemispheres also have strong functional communications, which presumably supports hemispheric lateralization and specialization. Subsequent to stroke, the functional organization undergoes neuroplastic changes over time. However, empirical longitudinal studies of human subjects are lacking. Here we analyzed three large-scale, whole-brain resting-state functional MRI connectivity measures: modularity, hemispheric symmetry (based on system segregation), and homotopic connectivity in a group of 17 participants at 1-month, 3- months, and 12-months after a single left-hemisphere stroke. These measures were also compared to a group of 13 age-matched healthy controls. The three measures exhibited different trajectories of change: (1) modularity steadily decreased across the 12-month period and became statistically inferior to control values at 12 months, indicating a less modular organization; (2) hemispheric symmetry values were abnormally low at 1-month and then increased significantly in the first 6 months, leveling off at levels not significantly below control levels by 12 months, suggesting that the two hemispheres diverged initially after the unilateral damage, but improved over time; and (3) homotopic connectivity exhibited a U-shaped function with a significant decrease from 1-6 months and then an increase from 6-12 months, to levels that were not significantly different from controls. The results revealed a complex picture of the dynamic changes the brain undergoes as it responds to abrupt onset damage.
Collapse
Affiliation(s)
- Y Tao
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - T T Schnur
- Physical Medicine and Rehabilitation, University of Texas Health Houston, Houston, Texas, USA
| | - J H Ding
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - R Martin
- Psychological Sciences, Rice University, Houston, Texas, USA
| | - B Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neurology. Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Decina CS, Beaumont RN, Juodakis J, Warrington NM, Patel KA, Njølstad PR, Johansson S, Hattersley AT, Jacobsson B, Lowe WL, Evans DM, Freathy RM. The influence of fetal sex on maternal blood pressure in pregnancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.28.25321287. [PMID: 39973999 PMCID: PMC11839000 DOI: 10.1101/2025.01.28.25321287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background Pregnancy with a male fetus carries a higher risk of term pre-eclampsia than pregnancy with a female fetus. Based on evidence that maternal blood pressure (BP) may be raised in pregnancies with Beckwith-Wiedemann syndrome (fetal overgrowth), a possible contributing factor to the association between male sex and term pre-eclampsia is that males grow faster, reaching ~130 g higher birth weight, on average, than females. The association between fetal sex and maternal BP in healthy pregnancies is not known. We hypothesized that male sex would be associated with higher maternal BP in healthy pregnancies, and that this association would be explained by birth weight differences between males and females. Methods and findings We tested the association between fetal sex and maternal systolic (SBP) and diastolic blood pressure (DBP), measured at ~28 weeks of gestation, in a meta-analysis of five different cohorts of mother-child pairs (n up to 109,842). Maternal BP was analyzed as both a continuous and dichotomized (high BP: yes or no) outcome. Linear regression models were constructed with and without adjustment for birth weight to assess whether any difference in maternal BP was explained by the difference in birth weight between male and female babies. Lastly, we constructed a fetal genetic score for birth weight using 186 own-birth-weight-associated single-nucleotide polymorphisms (SNPs) to test whether birth-weight-raising-alleles in the fetus were associated with maternal BP in pregnancy (n up to 32,232). Both maternal SBP and DBP were higher in pregnancy when carrying a male fetus compared to a female fetus (mean difference 0.35 mmHg [95%CI: 0.15-0.55] and 0.35 mmHg [95%CI: 0.21-0.49], for SBP and DBP, respectively). An independent effect of fetal sex remained when including birth weight but attenuated slightly (0.22 mmHg [95%CI: 0.02-0.42] and 0.31 mmHg [95%CI: 0.17-0.45], for SBP and DBP respectively). A positive effect estimate was found for odds of experiencing high maternal BP given pregnancy with a male fetus, but confidence intervals were wide (OR 1.05 [95%CI: 0.98-1.12]). No evidence for an association was found between a fetal birth weight genetic score and SBP or DBP when conditioned on maternal genotype. Conclusions We found strong evidence to support a small effect of male fetal sex on higher maternal BP in pregnancy and that larger fetal size at birth does not contribute to a substantial part of this association. Our findings do not indicate a difference in maternal BP that would warrant changes to routine monitoring in clinical practice but do suggest that male sex may be a contributing risk factor for BP-related complications.
Collapse
Affiliation(s)
- Caitlin S. Decina
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Robin N. Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Julius Juodakis
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Obstetrics and Gynaecology, Gothenburg, Sweden
| | - Nicole M. Warrington
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Kashyap A. Patel
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Pål R. Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Andrew T. Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Bo Jacobsson
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Obstetrics and Gynaecology, Gothenburg, Sweden
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - William L. Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - David M. Evans
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
Meijers M, Ruchnewitz D, Eberhardt J, Karmakar M, Łuksza M, Lässig M. Concepts and methods for predicting viral evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585703. [PMID: 38746108 PMCID: PMC11092427 DOI: 10.1101/2024.03.19.585703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The seasonal human influenza virus undergoes rapid evolution, leading to significant changes in circulating viral strains from year to year. These changes are typically driven by adaptive mutations, particularly in the antigenic epitopes, the regions of the viral surface protein haemagglutinin targeted by human antibodies. Here we describe a consistent set of methods for data-driven predictive analysis of viral evolution. Our pipeline integrates four types of data: (1) sequence data of viral isolates collected on a worldwide scale, (2) epidemiological data on incidences, (3) antigenic characterization of circulating viruses, and (4) intrinsic viral phenotypes. From the combined analysis of these data, we obtain estimates of relative fitness for circulating strains and predictions of clade frequencies for periods of up to one year. Furthermore, we obtain comparative estimates of protection against future viral populations for candidate vaccine strains, providing a basis for pre-emptive vaccine strain selection. Continuously updated predictions obtained from the prediction pipeline for influenza and SARS-CoV-2 are available on the website previr.app.
Collapse
Affiliation(s)
- Matthijs Meijers
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Jan Eberhardt
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Malancha Karmakar
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Marta Łuksza
- Tisch Cancer Institute, Departments of Oncological Sciences and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| |
Collapse
|
8
|
Matsubayashi HT, Razavi S, Rock TW, Nakajima D, Nakamura H, Kramer DA, Matsuura T, Chen B, Murata S, Nomura SM, Inoue T. Light-guided actin polymerization drives directed motility in protocells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617543. [PMID: 39464024 PMCID: PMC11507749 DOI: 10.1101/2024.10.14.617543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Motility is a hallmark of life's dynamic processes, enabling cells to actively chase prey, repair wounds, and shape organs. Recreating these intricate behaviors using well-defined molecules remains a major challenge at the intersection of biology, physics, and molecular engineering. Although the polymerization force of the actin cytoskeleton is characterized as a primary driver of cell motility, recapitulating this process in protocellular systems has proven elusive. The difficulty lies in the daunting task of distilling key components from motile cells and integrating them into model membranes in a physiologically relevant manner. To address this, we developed a method to optically control actin polymerization with high spatiotemporal precision within cell-mimetic lipid vesicles known as giant unilamellar vesicles (GUVs). Within these active protocells, the reorganization of actin networks triggered outward membrane extensions as well as the unidirectional movement of GUVs at speeds of up to 0.43 μm/min, comparable to typical adherent mammalian cells. Notably, our findings reveal a synergistic interplay between branched and linear actin forms in promoting membrane protrusions, highlighting the cooperative nature of these cytoskeletal elements. This approach offers a powerful platform for unraveling the intricacies of cell migration, designing synthetic cells with active morphodynamics, and advancing bioengineering applications, such as self-propelled delivery systems and autonomous tissue-like materials.
Collapse
Affiliation(s)
- Hideaki T. Matsubayashi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| | - Shiva Razavi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University
- Department of Biological Engineering, School of Engineering, Massachusetts Institute of Technology
| | - T. Willow Rock
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Daichi Nakajima
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | - Hideki Nakamura
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Hakubi Center for Advanced Research, Kyoto University
- Department of Synthetic Chemistry and Biological Chemistry, School of Engineering, Kyoto University
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | | | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | - Satoshi Murata
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | | | - Takanari Inoue
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| |
Collapse
|
9
|
Lyn Fortier A, Pritchard JK. The Primate Major Histocompatibility Complex: An Illustrative Example of Gene Family Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613318. [PMID: 39345418 PMCID: PMC11429698 DOI: 10.1101/2024.09.16.613318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Gene families are groups of evolutionarily-related genes. One large gene family that has experienced rapid evolution is the Major Histocompatibility Complex (MHC), whose proteins serve critical roles in innate and adaptive immunity. Across the ~60 million year history of the primates, some MHC genes have turned over completely, some have changed function, some have converged in function, and others have remained essentially unchanged. Past work has typically focused on identifying MHC alleles within particular species or comparing gene content, but more work is needed to understand the overall evolution of the gene family across species. Thus, despite the immunologic importance of the MHC and its peculiar evolutionary history, we lack a complete picture of MHC evolution in the primates. We readdress this question using sequences from dozens of MHC genes and pseudogenes spanning the entire primate order, building a comprehensive set of gene and allele trees with modern methods. Overall, we find that the Class I gene subfamily is evolving much more quickly than the Class II gene subfamily, with the exception of the Class II MHC-DRB genes. We also pay special attention to the often-ignored pseudogenes, which we use to reconstruct different events in the evolution of the Class I region. We find that despite the shared function of the MHC across species, different species employ different genes, haplotypes, and patterns of variation to achieve a successful immune response. Our trees and extensive literature review represent the most comprehensive look into MHC evolution to date.
Collapse
Affiliation(s)
- Alyssa Lyn Fortier
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| | - Jonathan K. Pritchard
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| |
Collapse
|
10
|
Ramteke P, Watson B, Toci M, Tran VA, Johnston S, Tsingas M, Barve RA, Mitra R, Loeser RF, Collins JA, Risbud MV. SIRT6 loss causes intervertebral disc degeneration in mice by promoting senescence and SASP status. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612072. [PMID: 39314282 PMCID: PMC11419082 DOI: 10.1101/2024.09.09.612072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Intervertebral disc degeneration is a major risk factor contributing to chronic low back and neck pain. While the etiological factors for disc degeneration vary, age is still one of the most important risk factors. Recent studies have shown the promising role of SIRT6 in mammalian aging and skeletal tissue health, however its role in the intervertebral disc health remains unexplored. We investigated the contribution of SIRT6 to disc health by studying the age-dependent spinal phenotype of mice with conditional deletion of Sirt6 in the disc (Acan CreERT2 ; Sirt6 fl/fl ). Histological studies showed a degenerative phenotype in knockout mice compared to Sirt6 fl/fl control mice at 12 months which became pronounced at 24 months. RNA-Seq analysis of NP and AF tissues, quantitative histone analysis, and in vitro multiomics employing RNA-seq with ATAC-seq revealed that SIRT6-loss resulted in changes in acetylation and methylation status of specific Histone 3 lysine residues, thereby affecting DNA accessibility and transcriptomic landscape. A decrease in autophagy and an increase in DNA damage were also noted in Sirt6-deficient cells. Further mechanistic insights revealed that loss of SIRT6 increased senescence and SASP burden in the disc characterized by increased p21, γH2AX, IL-6, and TGF-β abundance. Taken together our study highlights the contribution of SIRT6 in modulating DNA damage, autophagy and cell senescence, and its importance in maintaining disc health during aging thereby underscoring it as a potential therapeutic target to treat intervertebral disc degeneration.
Collapse
Affiliation(s)
- Pranay Ramteke
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Bahiyah Watson
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mallory Toci
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Victoria A Tran
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shira Johnston
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Maria Tsingas
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ruteja A. Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, 63110, USA
| | - Ramkrishna Mitra
- Department of Pharmacology and Biostatistics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Richard F. Loeser
- Thurston Arthritis Research Center and the Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - John A. Collins
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Makarand V. Risbud
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
11
|
Sendi MSE, Cole ER, Piallat B, Ellis CA, Eggers TE, Laxpati NG, Mahmoudi B, Gutekunst CA, Devergnas A, Mayberg H, Gross RE, Calhoun VD. Refining Brain Stimulation Therapies: An Active Learning Approach to Personalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610880. [PMID: 39282412 PMCID: PMC11398352 DOI: 10.1101/2024.09.02.610880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Brain stimulation holds promise for treating brain disorders, but personalizing therapy remains challenging. Effective treatment requires establishing a functional link between stimulation parameters and brain response, yet traditional methods like random sampling (RS) are inefficient and costly. To overcome this, we developed an active learning (AL) framework that identifies optimal relationships between stimulation parameters and brain response with fewer experiments. We validated this framework through three experiments: (1) in silico modeling with synthetic data from a Parkinson's disease model, (2) in silico modeling with real data from a non-human primate, and (3) in vivo modeling with a real-time rat optogenetic stimulation experiment. In each experiment, we compared AL models to RS models, using various query strategies and stimulation parameters (amplitude, frequency, pulse width). AL models consistently outperformed RS models, achieving lower error on unseen test data in silico (p<0.0056, N=1,000) and in vivo (p=0.0036, N=20). This approach represents a significant advancement in brain stimulation, potentially improving both research and clinical applications by making them more efficient and effective. Our findings suggest that AL can substantially reduce the cost and time required for developing personalized brain stimulation therapies, paving the way for more effective and accessible treatments for brain disorders.
Collapse
Affiliation(s)
- Mohammad S. E. Sendi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Electrical and Computer Engineering at Georgia Institute of Technology, Atlanta, GA, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Current affiliation: Harvard Medical School and McLean Hospital, Boston, MA, United States
| | - Eric R. Cole
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Brigitte Piallat
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| | - Charles A. Ellis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
| | - Thomas E. Eggers
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Nealen G. Laxpati
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Babak Mahmoudi
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, United States
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Annaelle Devergnas
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, United States
- Emory National Primate Research Center, Atlanta, GA, 30322, United States
| | - Helen Mayberg
- Departments of Neurology, Neurosurgery, Psychiatry and Neuroscience, Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert E. Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, United States
- Current affiliation: Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Vince D. Calhoun
- Department of Electrical and Computer Engineering at Georgia Institute of Technology, Atlanta, GA, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Departments of Psychology and Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
12
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 PMCID: PMC11771367 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
13
|
Tosi G, Nigro S, Urso D, Spinosa V, Gnoni V, Filardi M, Giaquinto F, Rizzi E, Iaia M, Macchitella L, Chiarello Y, Ferrari F, Angelelli P, Romano D, Logroscino G. The Network Structure of Cognitive Impairment: From Subjective Cognitive Decline to Alzheimer's Disease. J Neurosci 2024; 44:e1344232023. [PMID: 38830757 PMCID: PMC11223460 DOI: 10.1523/jneurosci.1344-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Accepted: 11/12/2023] [Indexed: 06/05/2024] Open
Abstract
It was proposed that a reorganization of the relationships between cognitive functions occurs in dementia, a vision that surpasses the idea of a mere decline of specific domains. The complexity of cognitive structure, as assessed by neuropsychological tests, can be captured by exploratory graph analysis (EGA). EGA was applied to the neuropsychological assessment of people (humans) with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer's disease (AD; total N = 638). Both sexes were included. In AD, memory scores detach from the other cognitive functions, and memory subdomains reduce their reciprocal relation. SCD showed a pattern of segregated neuropsychological domains, and MCI showed a noisy and less stable pattern. Results suggest that AD drives a reorganization of cognitive functions toward a less-fractionated architecture compared with preclinical conditions. Cognitive functions show a reorganization that goes beyond the performance decline. Results also have clinical implications in test interpretations and usage.
Collapse
Affiliation(s)
- Giorgia Tosi
- Human and Social Sciences Department, University of Salento, Lecce 73100, Italy
- Psychology Department, University of Milano-Bicocca, Milano 20126, Italy
| | - Salvatore Nigro
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at "Pia Fondazione Cardinale G. Panico", Lecce 73039, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at "Pia Fondazione Cardinale G. Panico", Lecce 73039, Italy
- Department of Neurosciences, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, United Kingdom
| | - Vittoria Spinosa
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at "Pia Fondazione Cardinale G. Panico", Lecce 73039, Italy
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari 70121, Italy
| | - Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at "Pia Fondazione Cardinale G. Panico", Lecce 73039, Italy
- Department of Neurosciences, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, United Kingdom
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at "Pia Fondazione Cardinale G. Panico", Lecce 73039, Italy
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari 70121, Italy
| | - Francesco Giaquinto
- Human and Social Sciences Department, University of Salento, Lecce 73100, Italy
| | - Ezia Rizzi
- Human and Social Sciences Department, University of Salento, Lecce 73100, Italy
| | - Marika Iaia
- Human and Social Sciences Department, University of Salento, Lecce 73100, Italy
| | - Luigi Macchitella
- Scientific Institute I.R.C.C.S. "E. Medea"- Unit for Severe Disabilities in Developmental Age and Young Adults (Developmental Neurology and Neurorehabilitation), Brindisi 72100, Italy
| | - Ylenia Chiarello
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at "Pia Fondazione Cardinale G. Panico", Lecce 73039, Italy
| | - Federico Ferrari
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at "Pia Fondazione Cardinale G. Panico", Lecce 73039, Italy
| | - Paola Angelelli
- Human and Social Sciences Department, University of Salento, Lecce 73100, Italy
| | - Daniele Romano
- Human and Social Sciences Department, University of Salento, Lecce 73100, Italy
- Psychology Department, University of Milano-Bicocca, Milano 20126, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at "Pia Fondazione Cardinale G. Panico", Lecce 73039, Italy
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari 70121, Italy
| |
Collapse
|
14
|
Korol AS, Gritsenko V. Differential Impact of Biomechanical Constraints on Control Signal Dimensionality for Gravity Support Versus Propulsion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579990. [PMID: 38405751 PMCID: PMC10888848 DOI: 10.1101/2024.02.12.579990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Neural control of movement has to overcome the problem of redundancy in the multidimensional musculoskeletal system. The problem can be solved by reducing the dimensionality of the control space of motor commands, i.e., through muscle synergies or motor primitives. Evidence for this solution exists, multiple studies have obtained muscle synergies using decomposition methods. These synergies vary across different workspaces and are present in both dominant and non-dominant limbs. Here we explore the dimensionality of control space by examining muscle activity patterns across reaching movements in different directions starting from different postures performed bilaterally by healthy individuals. We further explore the effect of biomechanical constraints on the dimensionality of control space. We are building on top of prior work showing that muscle activity profiles can be explained by applied moments about the limb joints that reflect the biomechanical constraints. These muscle torques derived from motion capture represent the combined actions of muscle contractions that are under the control of the nervous system. Here we test the generalizability of the relationship between muscle torques and muscle activity profiles across different starting positions and between limbs. We also test a hypothesis that the dimensionality of control space is shaped by biomechanical constraints. We used principal component analysis to evaluate the contribution of individual muscles to producing muscle torques across different workspaces and in both dominant and non-dominant limbs. Results generalize and support the hypothesis. We show that the muscle torques that support the limb against gravity are produced by more consistent combinations of muscle co-contraction than those that produce propulsion. This effect was the strongest in the non-dominant arm moving in the lateral workspace on one side of the body.
Collapse
Affiliation(s)
- Anna S Korol
- Department of Neuroscience, School of Medicine, West Virginia University, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, USA
| | - Valeriya Gritsenko
- Department of Human Performance, Division of Physical Therapy, School of Medicine, West Virginia University, Department of Neuroscience, School of Medicine, West Virginia University, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, USA
| |
Collapse
|
15
|
Stanton AE, Bubnys A, Agbas E, James B, Park DS, Jiang A, Pinals RL, Liu L, Truong N, Loon A, Staab C, Cerit O, Wen HL, Kellis M, Blanchard JW, Langer R, Tsai LH. Engineered 3D Immuno-Glial-Neurovascular Human miBrain Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553453. [PMID: 37645757 PMCID: PMC10461996 DOI: 10.1101/2023.08.15.553453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Patient-specific, human-based cellular models integrating a biomimetic blood-brain barrier (BBB), immune, and myelinated neuron components are critically needed to enable accelerated, translationally relevant discovery of neurological disease mechanisms and interventions. By engineering a novel brain-mimicking 3D hydrogel and co-culturing all six major brain cell types derived from patient iPSCs, we have constructed, characterized, and utilized a multicellular integrated brain (miBrain) immuno-glial-neurovascular model with in vivo- like hallmarks inclusive of neuronal activity, functional connectivity, barrier function, myelin-producing oligodendrocyte engagement with neurons, multicellular interactions, and transcriptomic profiles. We implemented the model to study Alzheimer's Disease pathologies associated with APOE4 genetic risk. APOE4 miBrains differentially exhibit amyloid aggregation, tau phosphorylation, and astrocytic GFAP. Unlike the co-emergent fate specification of glia and neurons in organoids, miBrains integrate independently differentiated cell types, a feature we harnessed to identify that APOE4 in astrocytes promotes neuronal tau pathogenesis and dysregulation through crosstalk with microglia.
Collapse
|
16
|
Zhan X, Asmara H, Pfaffinger P, Turner RW. Calcium-Dependent Regulation of Neuronal Excitability Is Rescued in Fragile X Syndrome by a Tat-Conjugated N-Terminal Fragment of FMRP. J Neurosci 2024; 44:e0136242024. [PMID: 38664011 PMCID: PMC11112635 DOI: 10.1523/jneurosci.0136-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Fragile X syndrome (FXS) arises from the loss of fragile X messenger ribonucleoprotein (FMRP) needed for normal neuronal excitability and circuit functions. Recent work revealed that FMRP contributes to mossy fiber long-term potentiation by adjusting the Kv4 A-type current availability through interactions with a Cav3-Kv4 ion channel complex, yet the mechanism has not yet been defined. In this study using wild-type and Fmr1 knock-out (KO) tsA-201 cells and cerebellar sections from male Fmr1 KO mice, we show that FMRP associates with all subunits of the Cav3.1-Kv4.3-KChIP3 complex and is critical to enabling calcium-dependent shifts in Kv4.3 inactivation to modulate the A-type current. Specifically, upon depolarization Cav3 calcium influx activates dual-specific phosphatase 1/6 (DUSP1/6) to deactivate ERK1/2 (ERK) and lower phosphorylation of Kv4.3, a signaling pathway that does not function in Fmr1 KO cells. In Fmr1 KO mouse tissue slices, cerebellar granule cells exhibit a hyperexcitable response to membrane depolarizations. Either incubating Fmr1 KO cells or in vivo administration of a tat-conjugated FMRP N-terminus fragment (FMRP-N-tat) rescued Cav3-Kv4 function and granule cell excitability, with a decrease in the level of DUSP6. Together these data reveal a Cav3-activated DUSP signaling pathway critical to the function of a FMRP-Cav3-Kv4 complex that is misregulated in Fmr1 KO conditions. Moreover, FMRP-N-tat restores function of this complex to rescue calcium-dependent control of neuronal excitability as a potential therapeutic approach to alleviating the symptoms of FXS.
Collapse
Affiliation(s)
- Xiaoqin Zhan
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Hadhimulya Asmara
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Paul Pfaffinger
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Ray W Turner
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
- Department Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
17
|
Saran A, Kim HM, Manning I, Hancock MA, Schmitz C, Madej M, Potempa J, Sola M, Trempe JF, Zhu Y, Davey ME, Zeytuni N. Unveiling the Molecular Mechanisms of the Type-IX Secretion System's Response Regulator: Structural and Functional Insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594396. [PMID: 38798656 PMCID: PMC11118453 DOI: 10.1101/2024.05.15.594396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The Type-IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo . First, our structural studies revealed PorX harbours a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the non-pathogenic Flavobacterium johnsoniae , but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.
Collapse
|
18
|
Lazarev D, Chau G, Bloemendal A, Churchhouse C, Neale BM. GUIDE deconstructs genetic architectures using association studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592285. [PMID: 38766146 PMCID: PMC11100597 DOI: 10.1101/2024.05.03.592285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Genome-wide association studies have revealed that the genetic architecture of most complex traits is characterized by a large number of distinct effects scattered across the genome. Functional enrichment analyses of these results suggest that the associations for any given complex trait are not purely random. Thus, we set out to leverage the genetic association results from many traits with a view to identifying the set of modules, or latent factors, that mediate these associations. The identification of such modules may aid in disease classification as well as the elucidation of complex disease mechanisms. We propose a method, Genetic Unmixing by Independent Decomposition (GUIDE), to estimate a set of statistically independent latent factors that best express the patterns of association across many traits. The resulting latent factors not only have desirable mathematical properties, such as sparsity and a higher variance explained (for both traits and variants), but are also able to single out and prioritize key biological features or pathophysiological mechanisms underlying a given trait or disease. Moreover, we show that these latent factors can index biological pathways as well as epidemiological and environmental influences that compose the genetic architecture of complex traits.
Collapse
|
19
|
Thulasiram MR, Yamamoto R, Olszewski RT, Gu S, Morell RJ, Hoa M, Dabdoub A. Molecular differences between neonatal and adult stria vascularis from organotypic explants and transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590986. [PMID: 38712156 PMCID: PMC11071502 DOI: 10.1101/2024.04.24.590986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Summary The stria vascularis (SV), part of the blood-labyrinth barrier, is an essential component of the inner ear that regulates the ionic environment required for hearing. SV degeneration disrupts cochlear homeostasis, leading to irreversible hearing loss, yet a comprehensive understanding of the SV, and consequently therapeutic availability for SV degeneration, is lacking. We developed a whole-tissue explant model from neonatal and adult mice to create a robust platform for SV research. We validated our model by demonstrating that the proliferative behaviour of the SV in vitro mimics SV in vivo, providing a representative model and advancing high-throughput SV research. We also provided evidence for pharmacological intervention in our system by investigating the role of Wnt/β-catenin signaling in SV proliferation. Finally, we performed single-cell RNA sequencing from in vivo neonatal and adult mouse SV and revealed key genes and pathways that may play a role in SV proliferation and maintenance. Together, our results contribute new insights into investigating biological solutions for SV-associated hearing loss. Significance Hearing loss impairs our ability to communicate with people and interact with our environment. This can lead to social isolation, depression, cognitive deficits, and dementia. Inner ear degeneration is a primary cause of hearing loss, and our study provides an in depth look at one of the major sites of inner ear degeneration: the stria vascularis. The stria vascularis and associated blood-labyrinth barrier maintain the functional integrity of the auditory system, yet it is relatively understudied. By developing a new in vitro model for the young and adult stria vascularis and using single cell RNA sequencing, our study provides a novel approach to studying this tissue, contributing new insights and widespread implications for auditory neuroscience and regenerative medicine. Highlights - We established an organotypic explant system of the neonatal and adult stria vascularis with an intact blood-labyrinth barrier. - Proliferation of the stria vascularis decreases with age in vitro , modelling its proliferative behaviour in vivo . - Pharmacological studies using our in vitro SV model open possibilities for testing injury paradigms and therapeutic interventions. - Inhibition of Wnt signalling decreases proliferation in neonatal stria vascularis.- We identified key genes and transcription factors unique to developing and mature SV cell types using single cell RNA sequencing.
Collapse
|
20
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Al Arab R, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from forelimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590723. [PMID: 38712151 PMCID: PMC11071401 DOI: 10.1101/2024.04.23.590723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In quadrupeds, such as cats, cutaneous afferents from the forepaw dorsum signal external perturbations and send signals to spinal circuits to coordinate the activity in muscles of all four limbs. How these cutaneous reflex pathways from forelimb afferents are reorganized after an incomplete spinal cord injury is not clear. Using a staggered thoracic lateral hemisections paradigm, we investigated changes in intralimb and interlimb reflex pathways by electrically stimulating the left and right superficial radial nerves in seven adult cats and recording reflex responses in five forelimb and ten hindlimb muscles. After the first (right T5-T6) and second (left T10-T11) hemisections, forelimb-hindlimb coordination was altered and weakened. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-, mid- and long-latency homonymous and crossed reflex responses in forelimb muscles and their phase modulation remained largely unaffected after staggered hemisections. The occurrence of homolateral and diagonal mid- and long-latency responses in hindlimb muscles evoked with left and right superficial radial nerve stimulation was significantly reduced at the first time point after the first hemisection, but partially recovered at the second time point with left superficial radial nerve stimulation. These responses were lost or reduced after the second hemisection. When present, all reflex responses, including homolateral and diagonal, maintained their phase-dependent modulation. Therefore, our results show a considerable loss in cutaneous reflex transmission from cervical to lumbar levels after incomplete spinal cord injury, albeit with preservation of phase modulation, likely affecting functional responses to external perturbations.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
21
|
Mallick A, Tan HL, Epstein JM, Gaudry Q, Dacks AM. Serotonin acts through multiple cellular targets during an olfactory critical period. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.589413. [PMID: 38645269 PMCID: PMC11030346 DOI: 10.1101/2024.04.14.589413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Serotonin (5-HT) is known to modulate early development during critical periods when experience drives heightened levels of plasticity in neurons. Here, we take advantage of the genetically tractable olfactory system of Drosophila to investigate how 5-HT modulates critical period plasticity in the CO2 sensing circuit of fruit flies. Our study reveals that 5HT modulation of multiple neuronal targets is necessary for experience-dependent structural changes in an odor processing circuit. The olfactory CPP is known to involve local inhibitory networks and consistent with this we found that knocking down 5-HT7 receptors in a subset of GABAergic local interneurons was sufficient to block CPP, as was knocking down GABA receptors expressed by olfactory sensory neurons (OSNs). Additionally, direct modulation of OSNs via 5-HT2B expression in the cognate OSNs sensing CO2 is also essential for CPP. Furthermore, 5-HT1B expression by serotonergic neurons in the olfactory system is also required during the critical period. Our study reveals that 5-HT modulation of multiple neuronal targets is necessary for experience-dependent structural changes in an odor processing circuit.
Collapse
Affiliation(s)
- Ahana Mallick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Hua Leonhard Tan
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Senior Author: These authors contributed equally
| | - Andrew M Dacks
- Departments of Biology and Neuroscience, West Virginia University, Morgantown, WV 26505, USA
- Senior Author: These authors contributed equally
| |
Collapse
|
22
|
Dearing C, Sanford E, Olmstead N, Morano R, Wulsin L, Myers B. Sex-Specific Cardiac Remodeling in Aged Rats after Early-Life Chronic Stress: Associations with Endocrine and Metabolic Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587944. [PMID: 38617312 PMCID: PMC11014584 DOI: 10.1101/2024.04.03.587944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background Cardiovascular disease is a leading cause of death worldwide. Rates of cardiovascular disease vary both across the lifespan and between sexes. While multiple factors, including adverse life experiences, impact the development and progression of cardiovascular disease, the potential interactions of biological sex and stress history on the aged heart are unknown. To this end, we examined sex- and stress-specific impacts on left ventricular hypertrophy (VH) after aging. We hypothesized that early life chronic stress exposure impacts behavioral and physiologic responses that predict cardiac remodeling in a sex-specific manner. Methods Histological analysis was conducted on hearts of male and female rats previously exposed to chronic variable stress during the late adolescent period (postnatal days 43-62). These animals were challenged with a forced swim test and a glucose tolerance test before aging to 15 months and again being challenged. Predictive analyses were then used to isolate factors that relate to cardiac remodeling among these groups. Results Early-life chronic stress impacted cardiac remodeling in a sex-specific manner. Among rats with a history of chronic stress, females had increased inward VH. However, there were few associations within the female groups among individual behavioral and physiologic parameters and cardiac remodeling. While males as a group did not have VH after chronic stress, they exhibited multiple individual associations with cardiac susceptibility. Passive coping in young males and active coping in aged males related to VH in a stress history-dependent manner. Moreover, baseline corticosterone positively correlated with VH in unstressed males, while chronically-stressed males had positive correlations between VH and visceral adiposity. Conclusions These results indicate that females as a group are uniquely susceptible to the effects of early-life stress on cardiac remodeling later in life. Conversely, males have more individual differences in vulnerability, where susceptibility to cardiac remodeling relates to endocrine, metabolic, and behavioral measures depending on stress history. These results ultimately support a framework for accessing cardiovascular risk based on biological sex and prior adverse experiences.
Collapse
Affiliation(s)
- Carley Dearing
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ella Sanford
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Rachel Morano
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Lawson Wulsin
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
23
|
Murphy CS, DeMambro VE, Fadel S, Fairfield H, Garter CA, Rodriguez P, Qiang YW, Vary CPH, Reagan MR. Inhibition of Acyl-CoA Synthetase Long Chain Isozymes Decreases Multiple Myeloma Cell Proliferation and Causes Mitochondrial Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.583708. [PMID: 38559245 PMCID: PMC10979990 DOI: 10.1101/2024.03.13.583708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Acyl-CoA synthetase long-chain family members (ACSLs) convert free long-chain fatty acids into fatty acyl-CoA esters and play key roles in catabolic and anabolic fatty acid metabolism. The Cancer Dependency Map data suggested that ACSL3 and ACSL4 were among the top 25% Hallmark Fatty Acid Metabolism genes that support MM fitness. Here, we show that inhibition of ACSLs in human myeloma cell lines using the pharmacological inhibitor Triascin C (TriC) causes apoptosis and decreases proliferation in a dose- and time-dependent manner. RNA-seq of MM.1S cells treated with TriC for 24 h showed a significant enrichment in apoptosis, ferroptosis, and ER stress. Proteomics of MM.1S cells treated with TriC for 48 h revealed that mitochondrial dysfunction and oxidative phosphorylation were significantly enriched pathways of interest, consistent with our observations of decreased mitochondrial membrane potential and increased mitochondrial superoxide levels. Interestingly, MM.1S cells treated with TriC for 24 h also showed decreased mitochondrial ATP production rates and overall lower cellular respiration.
Collapse
Affiliation(s)
- Connor S Murphy
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
| | - Victoria E DeMambro
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
| | - Samaa Fadel
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of New England, Biddeford, ME, USA
| | - Heather Fairfield
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
- Tufts University School of Medicine, Boston MA, USA
| | - Carlos A Garter
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
| | | | - Ya-Wei Qiang
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Calvin P H Vary
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
- Tufts University School of Medicine, Boston MA, USA
| | - Michaela R Reagan
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
- Tufts University School of Medicine, Boston MA, USA
| |
Collapse
|
24
|
Acharya P, Shrestha S, Joshi P, Choi NY, Lekkala VKR, Kang SY, Ni G, Lee MY. Dynamic culture of cerebral organoids using a pillar/perfusion plate for the assessment of developmental neurotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584506. [PMID: 38559002 PMCID: PMC10979904 DOI: 10.1101/2024.03.11.584506] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventional in vitro cell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable. Recently, human brain organoids have emerged as a promising alternative to assess the detrimental effects of chemicals on the developing brain. However, conventional organoid culture systems have several technical limitations including low throughput, lack of reproducibility, insufficient maturity of organoids, and the formation of the necrotic core due to limited diffusion of nutrients and oxygen. To address these issues and establish predictive DNT models, cerebral organoids were differentiated in a dynamic condition in a unique pillar/perfusion plate, which were exposed to test compounds to evaluate DNT potential. The pillar/perfusion plate facilitated uniform, dynamic culture of cerebral organoids with improved proliferation and maturity by rapid, bidirectional flow generated on a digital rocker. Day 9 cerebral organoids in the pillar/perfusion plate were exposed to ascorbic acid (DNT negative) and methylmercury (DNT positive) in a dynamic condition for 1 and 3 weeks, and changes in organoid morphology and neural gene expression were measured to determine DNT potential. As expected, ascorbic acid didn't induce any changes in organoid morphology and neural gene expression. However, exposure of day 9 cerebral organoids to methylmercury resulted in significant changes in organoid morphology and neural gene expression. Interestingly, methylmercury did not induce adverse changes in cerebral organoids in a static condition, thus highlighting the importance of dynamic organoid culture in DNT assessment.
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Gabriel Ni
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
- Bioprinting Laboratories Inc., Dallas, Texas
| |
Collapse
|
25
|
Jusufovic N, Krusenstjerna AC, Savage CR, Saylor TC, Brissette CA, Zückert WR, Schlax PJ, Motaleb MA, Stevenson B. Borrelia burgdorferi PlzA is a cyclic-di-GMP dependent DNA and RNA binding protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.30.526351. [PMID: 36778503 PMCID: PMC9915621 DOI: 10.1101/2023.01.30.526351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The PilZ domain-containing protein, PlzA, is the only known cyclic di-GMP binding protein encoded by all Lyme disease spirochetes. PlzA has been implicated in the regulation of many borrelial processes, but the effector mechanism of PlzA was not previously known. Here we report that PlzA can bind DNA and RNA and that nucleic acid binding requires c-di-GMP, with the affinity of PlzA for nucleic acids increasing as concentrations of c-di-GMP were increased. A mutant PlzA that is incapable of binding c-di-GMP did not bind to any tested nucleic acids. We also determined that PlzA interacts predominantly with the major groove of DNA and that sequence length plays a role in DNA binding affinity. PlzA is a dual-domain protein with a PilZ-like N-terminal domain linked to a canonical C-terminal PilZ domain. Dissection of the domains demonstrated that the separated N-terminal domain bound nucleic acids independently of c-di-GMP. The C-terminal domain, which includes the c-di-GMP binding motifs, did not bind nucleic acids under any tested conditions. Our data are supported by computational docking, which predicts that c-di-GMP binding at the C-terminal domain stabilizes the overall protein structure and facilitates PlzA-DNA interactions via residues in the N-terminal domain. Based on our data, we propose that levels of c-di-GMP during the various stages of the enzootic life cycle direct PlzA binding to regulatory targets.
Collapse
Affiliation(s)
- Nerina Jusufovic
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Andrew C. Krusenstjerna
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Christina R. Savage
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Timothy C. Saylor
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203-9061, USA
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Paula J. Schlax
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, 04240-6030, USA
| | - Md A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834-435, USA
| | - Brian Stevenson
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40526-0001, USA
| |
Collapse
|
26
|
Petersen BM, Kirby MB, Chrispens KM, Irvin OM, Strawn IK, Haas CM, Walker AM, Baumer ZT, Ulmer SA, Ayala E, Rhodes ER, Guthmiller JJ, Steiner PJ, Whitehead TA. An integrated technology for quantitative wide mutational scanning of human antibody Fab libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575852. [PMID: 38293170 PMCID: PMC10827193 DOI: 10.1101/2024.01.16.575852] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of ten different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.
Collapse
Affiliation(s)
- Brian M. Petersen
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Monica B. Kirby
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Karson M. Chrispens
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Olivia M. Irvin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Isabell K. Strawn
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Cyrus M. Haas
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Alexis M. Walker
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Zachary T. Baumer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Sophia A. Ulmer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Edgardo Ayala
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily R. Rhodes
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Jenna J. Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Paul J. Steiner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Timothy A. Whitehead
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| |
Collapse
|
27
|
de Fátima Fernandes MN, Ciol MA, Camargo Júnior EB, Guidorizzi Zanetti AC, Gherardi-Donato ECDS. Validation of the Brazilian Version of the Langer Mindfulness Scale. J Nurs Meas 2023; 31:569-579. [PMID: 37553159 DOI: 10.1891/jnm-2021-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Background and Purpose: The Langer Mindfulness Scale (LMS) is distinguished from other mindfulness scales by its dimensions, which are closely related to the awareness and experience of novelty, and by being a scale derived from a cognitive perspective of information processing. There are no mindfulness instruments of this type available in Brazil. Therefore, this study aimed to carry out a translation and cultural adaptation of the LMS into Brazilian Portuguese and to validate and assess the internal consistency and convergent construct validity of the translated instrument. Methods: The study had two distinct stages: (a) translation and cultural adaptation of the LMS into Brazilian Portuguese and (b) validation of the adapted instrument using a sample of 543 participants. Results: The Brazilian version of the LMS demonstrated acceptable internal consistency, with confirmatory factor analysis supporting the original four-factor model. Correlations between LMS, and the Five Facets of Mindfulness Questionnaire and the Mindfulness Attention Awareness Scale were statistically significant and in the expected directions. Conclusions: Our findings suggest that the Brazilian version of LMS, with its four dimensions, presents acceptable psychometric properties and seems to be a reliable and valid instrument for assessing the state of mindfulness in a Brazilian cultural context.
Collapse
Affiliation(s)
| | - Marcia A Ciol
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
28
|
Sun Y, Ramesh V, Wei F, Locasale JW. Methionine availability influences essential H3K36me3 dynamics during cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568331. [PMID: 38045360 PMCID: PMC10690240 DOI: 10.1101/2023.11.22.568331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Histone modifications are integral to epigenetics through their influence on gene expression and cellular status. While it's established that metabolism, including methionine metabolism, can impact histone methylation, the direct influence of methionine availability on crucial histone marks that determine the epigenomic process remains poorly understood. In this study, we demonstrate that methionine, through its metabolic product, S-adenosylmethionine (SAM), dynamically regulates H3K36me3, a cancer-associated histone modification known to influence cellular status, and myogenic differentiation of mouse myoblast cells. We further demonstrate that the methionine-dependent effects on differentiation are mediated in part through the histone methyltransferase SETD2. Methionine restriction leads to preferential decreases in H3K36me3 abundance and genome accessibility of genes involved in myogenic differentiation. Importantly, the effects of methionine restriction on differentiation and chromatin accessibility can be phenocopied by the deletion of Setd2. Collectively, this study demonstrates that methionine metabolism through its ability to be sensed by chromatin modifying enzymes can have a direct role in influencing cell fate determination.
Collapse
|
29
|
da Silva RJ, Cabo LF, George JL, Cahoon LA, Yang L, Coyne CB, Boyle JP. Human trophoblast stem cells can be used to model placental susceptibility to Toxoplasma gondii and highlight the critical importance of the trophoblast cell surface in pathogen resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566663. [PMID: 37986837 PMCID: PMC10659356 DOI: 10.1101/2023.11.10.566663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The placenta is a critical barrier against viral, bacterial, and eukaryotic pathogens. For most teratogenic pathogens, the precise molecular mechanisms of placental resistance are still being unraveled. Given the importance to understand these mechanisms and challenges in replicating trophoblast- pathogen interactions using in vitro models, we tested an existing stem-cell derived model of trophoblast development for its relevance to infection with Toxoplasma gondii . We grew human trophoblast stem cells (TS CT ) under conditions leading to either syncytiotrophoblast (TS SYN ) or cytotrophoblast (TS CYT ) and infected them with T. gondii . We evaluated T. gondii proliferation and invasion, cell ultrastructure, as well as for transcriptome changes after infection. TS SYNs cells showed similar ultrastructure compared to primary cells and villous explants when analyzed by TEM and SEM, a resistance to T. gondii adhesion could be visualized on the SEM level. Furthermore, TS SYNs were highly refractory to parasite adhesion and replication, while TS CYT were not. RNA-seq data on mock-treated and infected cells identified differences between cell types as well as how they responded to T. gondii infection. We also evaluated if TS SC -derived SYNs and CYTs had distinct resistance profiles to another vertically transmitted facultative intracellular pathogen, Listeria monocytogenes . We demonstrate that TS SYNs are highly resistant to L. monocytogenes , while TS CYTs are not. Like T. gondii , TS SYN resistance to L. monocytogenes was at the level of bacterial adhesion. Altogether, our data indicate that stem-cell derived trophoblasts recapitulate resistance profiles of primary cells to T. gondii and highlight the critical importance of the placental surface in cell-autonomous resistance to teratogens.
Collapse
|
30
|
Amo R, Uchida N, Watabe-Uchida M. Glutamate inputs send prediction error of reward but not negative value of aversive stimuli to dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566472. [PMID: 37986868 PMCID: PMC10659341 DOI: 10.1101/2023.11.09.566472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Midbrain dopamine neurons are thought to signal reward prediction errors (RPEs) but the mechanisms underlying RPE computation, particularly contributions of different neurotransmitters, remain poorly understood. Here we used a genetically-encoded glutamate sensor to examine the pattern of glutamate inputs to dopamine neurons. We found that glutamate inputs exhibit virtually all of the characteristics of RPE, rather than conveying a specific component of RPE computation such as reward or expectation. Notably, while glutamate inputs were transiently inhibited by reward omission, they were excited by aversive stimuli. Opioid analgesics altered dopamine negative responses to aversive stimuli toward more positive responses, while excitatory responses of glutamate inputs remained unchanged. Our findings uncover previously unknown synaptic mechanisms underlying RPE computations; dopamine responses are shaped by both synergistic and competitive interactions between glutamatergic and GABAergic inputs to dopamine neurons depending on valences, with competitive interactions playing a role in responses to aversive stimuli.
Collapse
Affiliation(s)
- Ryunosuke Amo
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
31
|
Costacurta F, Dodaro A, Bante D, Schöppe H, Sprenger B, Moghadasi SA, Fleischmann J, Pavan M, Bassani D, Menin S, Rauch S, Krismer L, Sauerwein A, Heberle A, Rabensteiner T, Ho J, Harris RS, Stefan E, Schneider R, Kaserer T, Moro S, von Laer D, Heilmann E. A comprehensive study of SARS-CoV-2 main protease (M pro) inhibitor-resistant mutants selected in a VSV-based system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.558628. [PMID: 37808638 PMCID: PMC10557589 DOI: 10.1101/2023.09.22.558628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Nirmatrelvir was the first protease inhibitor (PI) specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed, chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir. Using Wuhan-1 and Omicron Mpro variants, we selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available PIs (nirmatrelvir and ensitrelvir) with cell-based and biochemical assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings have implications on the development of future generation Mpro inhibitors, will help to understand SARS-CoV-2 protease-inhibitor-resistance mechanisms and show the relevance of specific mutations in the clinic, thereby informing treatment decisions.
Collapse
Affiliation(s)
- Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Andrea Dodaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Bernhard Sprenger
- Department of Biochemistry, University of Innsbruck, Innsbruck, 6020, Austria
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jakob Fleischmann
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, Innsbruck, 6020, Tyrol, Austria
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Silvia Menin
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anne Heberle
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Toni Rabensteiner
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Joses Ho
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, United States
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, United States
| | - Eduard Stefan
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, Innsbruck, 6020, Tyrol, Austria
| | - Rainer Schneider
- Department of Biochemistry, University of Innsbruck, Innsbruck, 6020, Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| |
Collapse
|
32
|
Ristori T, Thuret R, Hooker E, Quicke P, Lanthier K, Ntumba K, Aspalter IM, Uroz M, Herbert SP, Chen CS, Larrivée B, Bentley K. Bmp9 regulates Notch signaling and the temporal dynamics of angiogenesis via Lunatic Fringe. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.557123. [PMID: 37808725 PMCID: PMC10557600 DOI: 10.1101/2023.09.25.557123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In brief The mechanisms regulating the signaling pathways involved in angiogenesis are not fully known. Ristori et al. show that Lunatic Fringe (LFng) mediates the crosstalk between Bone Morphogenic Protein 9 (Bmp9) and Notch signaling, thereby regulating the endothelial cell behavior and temporal dynamics of their identity during sprouting angiogenesis. Highlights Bmp9 upregulates the expression of LFng in endothelial cells.LFng regulates the temporal dynamics of tip/stalk selection and rearrangement.LFng indicated to play a role in hereditary hemorrhagic telangiectasia.Bmp9 and LFng mediate the endothelial cell-pericyte crosstalk.Bone Morphogenic Protein 9 (Bmp9), whose signaling through Activin receptor-like kinase 1 (Alk1) is involved in several diseases, has been shown to independently activate Notch target genes in an additive fashion with canonical Notch signaling. Here, by integrating predictive computational modeling validated with experiments, we uncover that Bmp9 upregulates Lunatic Fringe (LFng) in endothelial cells (ECs), and thereby also regulates Notch activity in an inter-dependent, multiplicative fashion. Specifically, the Bmp9-upregulated LFng enhances Notch receptor activity creating a much stronger effect when Dll4 ligands are also present. During sprouting, this LFng regulation alters vessel branching by modulating the timing of EC phenotype selection and rearrangement. Our results further indicate that LFng can play a role in Bmp9-related diseases and in pericyte-driven vessel stabilization, since we find LFng contributes to Jag1 upregulation in Bmp9-stimulated ECs; thus, Bmp9-upregulated LFng results in not only enhanced EC Dll4-Notch1 activation, but also Jag1-Notch3 activation in pericytes.
Collapse
|
33
|
Prazsák I, Tombácz D, Fülöp Á, Torma G, Gulyás G, Dörmő Á, Kakuk B, Spires LM, Toth Z, Boldogkői Z. KSHV 3.0: A State-of-the-Art Annotation of the Kaposi's Sarcoma-Associated Herpesvirus Transcriptome Using Cross-Platform Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558842. [PMID: 37790386 PMCID: PMC10542539 DOI: 10.1101/2023.09.21.558842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing dataset of the lytic and latent KSHV transcriptome using native RNA and direct cDNA sequencing methods. This was supplemented with CAGE sequencing based on a short-read platform. We also utilized datasets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding, by integrating our data on the viral transcripts with translatomic information from other publications.
Collapse
Affiliation(s)
- István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Hoang DQ, Wilson LR, Scheftgen AJ, Suen G, Currie CR. Disturbance-Diversity Relationships of Microbial Communities Change Based on Growth Substrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554838. [PMID: 37662195 PMCID: PMC10473689 DOI: 10.1101/2023.08.25.554838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Disturbance events can impact ecological community dynamics. Understanding how communities respond to disturbances, and how those responses can vary, is a challenge in microbial ecology. In this study, we grew a previously enriched specialized microbial community on either cellulose or glucose as a sole carbon source, and subjected them to one of five different disturbance regimes of varying frequencies ranging from low to high. Using 16S rRNA gene amplicon sequencing, we show that community structure is largely driven by substrate, but disturbance frequency affects community composition and successional dynamics. When grown on cellulose, bacteria in the genera Cellvibrio, Lacunisphaera, and Asticaccacaulis are the most abundant microbes. However, Lacunisphaera is only abundant in the lower disturbance frequency treatments, while Asticaccaulis is more abundant in the highest disturbance frequency treatment. When grown on glucose, the most abundant microbes are two Pseudomonas sequence variants, and a Cohnella sequence variant that is only abundant in the highest disturbance frequency treatment. Communities grown on cellulose exhibited a greater range of diversity (0.67-1.99 Shannon diversity and 1.38-5.25 Inverse Simpson diversity) that peak at the intermediate disturbance frequency treatment, or 1 disturbance every 3 days. Communities grown on glucose, however, ranged from 0.49-1.43 Shannon diversity and 1.37- 3.52 Inverse Simpson with peak diversity at the greatest disturbance frequency treatment. These results demonstrate that the dynamics of a microbial community can vary depending on substrate and the disturbance frequency, and may potentially explain the variety of diversity-disturbance relationships observed in microbial ecosystems.
Collapse
Affiliation(s)
- Don Q Hoang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lindsay R Wilson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew J Scheftgen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
35
|
Vora N, Shekar P, Esmail M, Patra A, Georgakoudi I. Deep Learning-Enabled, Detection of Rare Circulating Tumor Cell Clusters in Whole Blood Using Label-free, Flow Cytometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551485. [PMID: 37577660 PMCID: PMC10418242 DOI: 10.1101/2023.08.01.551485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL) -based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events/min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with minimal disruption and processing steps.
Collapse
Affiliation(s)
- Nilay Vora
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Prashant Shekar
- Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Michael Esmail
- Tufts Comparative Medicine Services, Tufts University, Medford, MA, 02155, USA
- # Current Affiliation: University of Massachusetts Amherst Animal Care Services, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Abani Patra
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
- Department of Mathematics, Tufts University, Medford, MA 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
36
|
Beeson ALS, Meitzen J. Estrous cycle impacts on dendritic spine plasticity in rat nucleus accumbens core and shell and caudate-putamen. J Comp Neurol 2023; 531:759-774. [PMID: 36756791 PMCID: PMC10994586 DOI: 10.1002/cne.25460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
An important factor that can modulate neuron properties is sex-specific hormone fluctuations, including the human menstrual cycle and rat estrous cycle in adult females. Considering the striatal brain regions, the nucleus accumbens (NAc) core, NAc shell, and caudate-putamen (CPu), the estrous cycle has previously been shown to impact relevant behaviors and disorders, neuromodulator action, and medium spiny neuron (MSN) electrophysiology. Whether the estrous cycle impacts MSN dendritic spine attributes has not yet been examined, even though MSN spines and glutamatergic synapse properties are sensitive to exogenously applied estradiol. Thus, we hypothesized that MSN dendritic spine attributes would differ by estrous cycle phase. To test this hypothesis, brains from adult male rats and female rats in diestrus, proestrus AM, proestrus PM, and estrus were processed for Rapid Golgi-Cox staining. MSN dendritic spine density, size, and type were analyzed in the NAc core, NAc shell, and CPu. Overall spine size differed across estrous cycle phases in female NAc core and NAc shell, and spine length differed across estrous cycle phase in NAc shell and CPu. Consistent with previous work, dendritic spine density was increased in the NAc core compared to the NAc shell and CPu, independent of sex and estrous cycle. Spine attributes in all striatal regions did not differ by sex when estrous cycle was disregarded. These results indicate, for the first time, that estrous cycle phase impacts dendritic spine plasticity in striatal regions, providing a neuroanatomical avenue by which sex-specific hormone fluctuations can impact striatal function and disorders.
Collapse
Affiliation(s)
- Anna LS Beeson
- Department of Biological Sciences, NC State University, Raleigh, USA
- Graduate Program in Biology, NC State University, Raleigh, USA
| | - John Meitzen
- Department of Biological Sciences, NC State University, Raleigh, USA
- Comparative Medicine Institute, NC State University, Raleigh, USA
- Center for Human Health and the Environment, NC State University, Raleigh, USA
| |
Collapse
|
37
|
Smith SL, Alexander S, Nair N, Viatte S, Eyre S, Hyrich KL, Morgan AW, Wilson AG, Isaacs JD, Plant D, Barton A. Pre-treatment calprotectin (MRP8/14) provides no added value to testing CRP alone in terms of predicting response to TNF inhibitors in rheumatoid arthritis in a post hoc analysis. Ann Rheum Dis 2023; 82:611-620. [PMID: 36810200 PMCID: PMC10176427 DOI: 10.1136/ard-2022-222519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVES The inflammatory protein calprotectin (MRP8/14) has been identified as a promising biomarker of treatment response in rheumatoid arthritis (RA). Our aim was to test MRP8/14 as a biomarker of response to tumour necrosis factor (TNF)-inhibitors in the largest RA cohort to date and to compare with C-reactive protein (CRP). METHODS Serum MRP8/14 was measured in 470 patients with RA about to commence treatment with adalimumab (n=196) or etanercept (n=274). Additionally, MRP8/14 was measured in the 3-month sera of 179 adalimumab-treated patients. Response was determined using European League against Rheumatism (EULAR) response criteria calculated using the traditional 4-component (4C) DAS28-CRP and alternate validated versions using 3-component (3C) and 2-component (2C), clinical disease activity index (CDAI) improvement criteria and change in individual outcome measures. Logistic/linear regression models were fitted for response outcome. RESULTS In the 3C and 2C models, patients with RA were 1.92 (CI: 1.04 to 3.54) and 2.03 (CI: 1.09 to 3.78) times more likely to be classified as EULAR responders if they had high (75th quartile) pre-treatment levels of MRP8/14 compared with low (25th quartile). No significant associations were observed for the 4C model. When only using CRP as a predictor, in the 3C and 2C analyses, patients above the 75th quartile were 3.79 (CI: 1.81 to 7.93) and 3.58 (CI: 1.74 to 7.35) times more likely to be EULAR responders and addition of MRP8/14 did not significantly improve model fit (p values=0.62 and 0.80, respectively). No significant associations were observed in the 4C analysis. Exclusion of CRP from the outcome measure (CDAI) did not result in any significant associations with MRP8/14 (OR 1.00 (CI: 0.99 to 1.01), suggesting that the associations were due to the correlation with CRP and that there is no additional utility of MRP8/14 beyond use of CRP in patients with RA starting TNFi therapy. CONCLUSION Beyond correlation with CRP, we found no evidence to suggest that MRP8/14 explains additional variability in response to TNFi in patients with RA over and above CRP alone.
Collapse
Affiliation(s)
- Samantha Louise Smith
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Sheree Alexander
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Nisha Nair
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Sebastien Viatte
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kimme L Hyrich
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Ann W Morgan
- School of Medicine, University of Leeds and NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Anthony G Wilson
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - John D Isaacs
- Musculoskeletal Research Group, Translational and Clinical Research Institute, Newcastle University and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Darren Plant
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
38
|
Haggerty KN, Eshelman SC, Sexton LA, Frimpong E, Rogers LM, Agosto MA, Robichaux MA. Mapping rhodopsin trafficking in rod photoreceptors with quantitative super-resolution microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537413. [PMID: 37131638 PMCID: PMC10153271 DOI: 10.1101/2023.04.20.537413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photoreceptor cells in the vertebrate retina have a highly compartmentalized morphology for efficient long-term phototransduction. Rhodopsin, the visual pigment in rod photoreceptors, is densely packaged into the rod outer segment sensory cilium and continuously renewed through essential synthesis and trafficking pathways housed in the rod inner segment. Despite the importance of this region for rod health and maintenance, the subcellular organization of rhodopsin and its trafficking regulators in the mammalian rod inner segment remain undefined. We used super-resolution fluorescence microscopy with optimized retinal immunolabeling techniques to perform a single molecule localization analysis of rhodopsin in the inner segments of mouse rods. We found that a significant fraction of rhodopsin molecules was localized at the plasma membrane in an even distribution along the entire length of the inner segment, where markers of transport vesicles also colocalized. Thus, our results collectively establish a model of rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway in mouse rod photoreceptors.
Collapse
Affiliation(s)
- Kristen N. Haggerty
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Shannon C. Eshelman
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Lauren A. Sexton
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Emmanuel Frimpong
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Leah M. Rogers
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Michael A. Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| |
Collapse
|
39
|
González-González MA, Alemansour H, Maroufi M, Coskun MB, Lloyd D, Reza Moheimani SO, Romero-Ortega MI. Biomechanics Characterization of Autonomic and Somatic Nerves by High Dynamic Closed-Loop MEMS force sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536752. [PMID: 37090537 PMCID: PMC10120675 DOI: 10.1101/2023.04.13.536752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The biomechanics of peripheral nerves are determined by the blood-nerve barrier (BNB), together with the epineural barrier, extracellular matrix, and axonal composition, which maintain structural and functional stability. These elements are often ignored in the fabrication of penetrating devices, and the implant process is traumatic due to the mechanical distress, compromising the function of neuroprosthesis for sensory-motor restoration in amputees. Miniaturization of penetrating interfaces offers the unique opportunity of decoding individual nerve fibers associated to specific functions, however, a main issue for their implant is the lack of high-precision standardization of insertion forces. Current automatized electromechanical force sensors are available; however, their sensitivity and range amplitude are limited (i.e. mN), and have been tested only in-vitro. We previously developed a high-precision bi-directional micro-electromechanical force sensor, with a closed-loop mechanism (MEMS-CLFS), that while measuring with high-precision (-211.7μN to 211.5μN with a resolution of 4.74nN), can be used in alive animal. Our technology has an on-chip electrothermal displacement sensor with a shuttle beam displacement amplification mechanism, for large range and high-frequency resolution (dynamic range of 92.9 dB), which eliminates the adverse effect of flexural nonlinearity measurements, observed with other systems, and reduces the mechanical impact on delicate biological tissue. In this work, we use the MEMS-CLFS for in-vivo bidirectional measurement of biomechanics in somatic and autonomic nerves. Furthermore we define the mechanical implications of irrigation and collagen VI in the BNB, which is different for both autonomic and somatic nerves (~ 8.5-8.6 fold density of collagen VI and vasculature CD31+ in the VN vs ScN). This study allowed us to create a mathematical approach to predict insertion forces. Our data highlights the necessity of nerve-customization forces to prevent injury when implanting interfaces, and describes a high precision MEMS technology and mathematical model for their measurements.
Collapse
Affiliation(s)
| | - Hammed Alemansour
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - Mohammad Maroufi
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - Mustafa Bulut Coskun
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - David Lloyd
- Biomedical Engineering and Biomedical Sciences. University of Houston, Houston TX. 77204-6064
| | - S. O. Reza Moheimani
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - Mario I. Romero-Ortega
- Biomedical Engineering and Biomedical Sciences. University of Houston, Houston TX. 77204-6064
| |
Collapse
|
40
|
Bailey LRJ, Bugg D, Reichardt IM, Ortaç CD, Gunaje J, Johnson R, MacCoss MJ, Sakamoto T, Kelly DP, Regnier M, Davis JM. MBNL1 regulates programmed postnatal switching between regenerative and differentiated cardiac states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532974. [PMID: 36993225 PMCID: PMC10055038 DOI: 10.1101/2023.03.16.532974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Discovering determinants of cardiomyocyte maturity and the maintenance of differentiated states is critical to both understanding development and potentially reawakening endogenous regenerative programs in adult mammalian hearts as a therapeutic strategy. Here, the RNA binding protein Muscleblind-like 1 (MBNL1) was identified as a critical regulator of cardiomyocyte differentiated states and their regenerative potential through transcriptome-wide control of RNA stability. Targeted MBNL1 overexpression early in development prematurely transitioned cardiomyocytes to hypertrophic growth, hypoplasia, and dysfunction, whereas loss of MBNL1 function increased cardiomyocyte cell cycle entry and proliferation through altered cell cycle inhibitor transcript stability. Moreover, MBNL1-dependent stabilization of the estrogen-related receptor signaling axis was essential for maintaining cardiomyocyte maturity. In accordance with these data, modulating MBNL1 dose tuned the temporal window of cardiac regeneration, where enhanced MBNL1 activity arrested myocyte proliferation, and MBNL1 deletion promoted regenerative states with prolonged myocyte proliferation. Collectively these data suggest MBNL1 acts as a transcriptome-wide switch between regenerative and mature myocyte states postnatally and throughout adulthood.
Collapse
|
41
|
Moorehead NR, Goodie JL, Krantz DS. Prospective Bidirectional Relations Between Depression and Metabolic Health: 30 Year Follow-up from the NHLBI CARDIA Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.08.23286983. [PMID: 36945452 PMCID: PMC10029061 DOI: 10.1101/2023.03.08.23286983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Objective This study investigated prospective bidirectional relationships between depression and metabolic syndrome (MetS), and the moderating effects of race, sex, and health behaviors in a diverse cohort followed for 30 years. Methods Data were analyzed from the NHLBI CARDIA study, a 30 year-prospective study of young adults (N = 5113; M age = 24.76 (SD = 3.63) at baseline; 45% male) who were tested every 5 years between 1985-2015. Measures included biological assessments of MetS components, and self-reported depressive symptoms based on the Center for Epidemiologic Studies Depression (CESD) scale. Data analyses included bi-directional general estimating equations analyses of time-lagged associations between depressive symptoms and MetS. Results There was a consistent, bi-directional relationship between depressive symptoms and MetS over time. Individuals with more CESD depressive symptoms were more likely to develop MetS over time compared to those reporting fewer symptoms (Wald Chi-Square = 7.09 (1), p < 0.008), and MetS was similarly predictive of CESD. MetS more consistently predicted depressive symptoms at each 5-year exam than depressive symptoms predicted MetS. Race and sex moderated relationships between depression and MetS, with White females, White individuals overall, and females overall demonstrating significant relationships. Health behaviors were not related to depression-MetS associations. Conclusion In a diverse young adult population prospectively followed into late middle age, MetS more consistently predicted depression over time than depression predicted MetS. The relation between MetS and depressive symptoms was moderated by race and sex, but not health behaviors.
Collapse
Affiliation(s)
- Nicholas R. Moorehead
- 59 Medical Operations Group, Wilford Hall Ambulatory Surgical Center, U.S. Air Force, Joint Base San Antonio – Lackland, TX 78236
- Department of Medical and Clinical Psychology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jeffrey L. Goodie
- Department of Family Medicine, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Department of Medical and Clinical Psychology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - David S. Krantz
- Department of Family Medicine, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
42
|
Caston RM, Smith EH, Davis TS, Singh H, Rahimpour S, Rolston JD. Characterization of spatiotemporal dynamics of binary and graded tonic pain in humans using intracranial recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531576. [PMID: 36945412 PMCID: PMC10028876 DOI: 10.1101/2023.03.08.531576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Pain is a complex experience involving sensory, emotional, and cognitive aspects, and multiple networks manage its processing in the brain. Examining how pain transforms into a behavioral response can shed light on the networks' relationships and facilitate interventions to treat chronic pain. However, studies using high spatial and temporal resolution methods to investigate the neural encoding of pain and its psychophysical correlates have been limited. We recorded from intracranial stereo-EEG (sEEG) electrodes implanted in sixteen different brain regions of twenty patients who underwent psychophysical pain testing consisting of a tonic thermal stimulus to the hand. Broadband high-frequency local field potential amplitude (HFA; 70-150 Hz) was isolated to investigate the relationship between the ongoing neural activity and the resulting psychophysical pain evaluations. Two different generalized linear mixed-effects models (GLME) were employed to assess the neural representations underlying binary and graded pain psychophysics. The first model examined the relationship between HFA and whether the patient responded "yes" or "no" to whether the trial was painful. The second model investigated the relationship between HFA and how painful the stimulus was rated on a visual analog scale. GLMEs revealed that HFA in the inferior temporal gyrus (ITG), superior frontal gyrus (SFG), and superior temporal gyrus (STG) predicted painful responses at stimulus onset. An increase in HFA in the orbitofrontal cortex (OFC), SFG, and striatum predicted pain responses at stimulus offset. Numerous regions including the anterior cingulate cortex, hippocampus, IFG, MTG, OFC, and striatum, predicted the pain rating at stimulus onset. However, only the amygdala and fusiform gyrus predicted increased pain ratings at stimulus offset. We characterized the spatiotemporal representations of binary and graded painful responses during tonic pain stimuli. Our study provides evidence from intracranial recordings that the neural encoding of psychophysical pain changes over time during a tonic thermal stimulus, with different brain regions being predictive of pain at the beginning and end of the stimulus.
Collapse
Affiliation(s)
- Rose M Caston
- Department of Biomedical Engineering, University of Utah, 84112
- Department of Neurosurgery, University of Utah, 84112
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, 84112
- Interdepartmental Program in Neuroscience, University of Utah, 84112
| | - Tyler S Davis
- Department of Neurosurgery, University of Utah, 84112
| | - Hargunbir Singh
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, 02115
| | - Shervin Rahimpour
- Department of Biomedical Engineering, University of Utah, 84112
- Department of Neurosurgery, University of Utah, 84112
| | - John D Rolston
- Department of Biomedical Engineering, University of Utah, 84112
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, 02115
| |
Collapse
|
43
|
Nakua H, Yu JC, Abdi H, Hawco C, Voineskos A, Hill S, Lai MC, Wheeler AL, McIntosh AR, Ameis SH. Comparing the stability and reproducibility of brain-behaviour relationships found using Canonical Correlation Analysis and Partial Least Squares within the ABCD Sample. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531763. [PMID: 36945610 PMCID: PMC10028915 DOI: 10.1101/2023.03.08.531763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Introduction Canonical Correlation Analysis (CCA) and Partial Least Squares Correlation (PLS) detect associations between two data matrices based on computing a linear combination between the two matrices (called latent variables; LVs). These LVs maximize correlation (CCA) and covariance (PLS). These different maximization criteria may render one approach more stable and reproducible than the other when working with brain and behavioural data at the population-level. This study compared the LVs which emerged from CCA and PLS analyses of brain-behaviour relationships from the Adolescent Brain Cognitive Development (ABCD) dataset and examined their stability and reproducibility. Methods Structural T1-weighted imaging and behavioural data were accessed from the baseline Adolescent Brain Cognitive Development dataset (N > 9000, ages = 9-11 years). The brain matrix consisted of cortical thickness estimates in different cortical regions. The behavioural matrix consisted of 11 subscale scores from the parent-reported Child Behavioral Checklist (CBCL) or 7 cognitive performance measures from the NIH Toolbox. CCA and PLS models were separately applied to the brain-CBCL analysis and brain-cognition analysis. A permutation test was used to assess whether identified LVs were statistically significant. A series of resampling statistical methods were used to assess stability and reproducibility of the LVs. Results When examining the relationship between cortical thickness and CBCL scores, the first LV was found to be significant across both CCA and PLS models (singular value: CCA = .13, PLS = .39, p < .001). LV1 from the CCA model found that covariation of CBCL scores was linked to covariation of cortical thickness. LV1 from the PLS model identified decreased cortical thickness linked to lower CBCL scores. There was limited evidence of stability or reproducibility of LV1 for both CCA and PLS. When examining the relationship between cortical thickness and cognitive performance, there were 6 significant LVs for both CCA and PLS (p < .01). The first LV showed similar relationships between CCA and PLS and was found to be stable and reproducible (singular value: CCA = .21, PLS = .43, p < .001). Conclusion CCA and PLS identify different brain-behaviour relationships with limited stability and reproducibility when examining the relationship between cortical thickness and parent-reported behavioural measures. However, both methods identified relatively similar brain-behaviour relationships that were stable and reproducible when examining the relationship between cortical thickness and cognitive performance. The results of the current study suggest that stability and reproducibility of brain-behaviour relationships identified by CCA and PLS are influenced by characteristics of the analyzed sample and the included behavioural measurements when applied to a large pediatric dataset.
Collapse
Affiliation(s)
- Hajer Nakua
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ju-Chi Yu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Hervé Abdi
- The University of Texas at Dallas, Richardson, Texas, United States
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne L. Wheeler
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Stephanie H. Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Morelli L, Torres-Montilla S, Glauser G, Shanmugabalaji V, Kessler F, Rodriguez-Concepcion M. Novel insights into the contribution of plastoglobules and reactive oxygen species to chromoplast differentiation. THE NEW PHYTOLOGIST 2023. [PMID: 36307969 DOI: 10.1101/2022.06.20.496796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant tissues can be enriched in phytonutrients not only by stimulating their biosynthesis but also by providing appropriate sink structures for their sequestering and storage. In the case of carotenoids, they accumulate at high levels in chromoplasts naturally found in flowers and fruit. Chromoplasts can also be artificially differentiated from leaf chloroplasts by boosting carotenoid production with the bacterial protein crtB. Here we used electron and confocal microscopy together with subplastidial fractionation and transcript, protein and metabolite analyses to analyze the structural and biochemical changes occurring in crtB-induced artificial chromoplasts and their impact on the accumulation of health-related isoprenoids. We show that leaf chromoplasts develop plastoglobules (PG) harboring high levels of carotenoids (mainly phytoene and pro-vitamin A β-carotene) but also other nutritionally relevant isoprenoids, such as tocopherols (vitamin E) and phylloquinone (vitamin K1). Further promoting PG proliferation by exposure to intense (high) light resulted in a higher accumulation of these health-related metabolites but also an acceleration of the chloroplast-to-chromoplast conversion. We further show that the production of reactive oxygen species (ROS) stimulates chromoplastogenesis. Our data suggest that carotenoid accumulation and ROS production are not just consequences but promoters of the chromoplast differentiation process.
Collapse
Affiliation(s)
- Luca Morelli
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Barcelona, Spain
| | - Salvador Torres-Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | | | - Felix Kessler
- Laboratory of Plant Physiology, Faculty of Sciences, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| |
Collapse
|
45
|
Ellis CA, Miller RL, Calhoun VD. Explainable Fuzzy Clustering Framework Reveals Divergent Default Mode Network Connectivity Dynamics in Schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528329. [PMID: 36824777 PMCID: PMC9949005 DOI: 10.1101/2023.02.13.528329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Dynamic functional network connectivity (dFNC) analysis of resting state functional magnetic resonance imaging data has yielded insights into many neurological and neuropsychiatric disorders. A common dFNC analysis approach uses hard clustering methods like k-means clustering to assign samples to states that summarize network dynamics. However, hard clustering methods obscure network dynamics by assuming (1) that all samples within a cluster are equally like their assigned centroids and (2) that samples closer to one another in the data space than to their centroids are well-represented by their centroids. In addition, it can be hard to compare subjects, as in some cases an individual may not manifest a state strongly enough to enter a hard cluster. Approaches that allow a dimensional approach to connectivity patterns (e.g., fuzzy clustering) can mitigate these issues. In this study, we present an explainable fuzzy clustering framework by combining fuzzy c-means clustering with several explainability metrics. We apply our framework for schizophrenia (SZ) default mode network analysis, identifying 5 states and characterizing those states with a new explainability approach. While also showing that features typically used in hard clustering can be extracted in our framework, we present a variety of unique features to quantify state dynamics and identify effects of SZ upon network dynamics. We further uncover relationships between symptom severity and interactions of the precuneus with the anterior and posterior cingulate cortex. Given the ease of implementing our framework and its enhanced insight into network dynamics, it has great potential for use in future dFNC studies.
Collapse
Affiliation(s)
- Charles A. Ellis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Robyn L. Miller
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
- Department of Computer Science, Georgia State University, Atlanta, Georgia, United States
| | - Vince D. Calhoun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
- Department of Computer Science, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
46
|
Baffour Appiah A, Akweongo P, Sackey SO, Morna MT, Kenu E, Buunaaim ADBI, Debrah SAY, Ojo TK, Donkor P, Mock CN. Effect of different helmet types in head injuries: a case-control study in northern Ghana. Inj Prev 2023; 29:50-55. [PMID: 36198481 DOI: 10.1136/ip-2022-044683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/10/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Motorcycle helmet use is low in Ghana and many helmets are non-standard. There are limited data on the effectiveness of the different helmet types in use in the real-world circumstances of low-income and middle-income countries. This study assessed the effect of different helmet types on risk of head injury among motorcycle crash victims in northern Ghana. METHODS A prospective unmatched case-control study was conducted at the Tamale Teaching Hospital (TTH). All persons who had injuries from a motorcycle crash within 2 weeks of presentation to TTH were consecutively sampled. A total of 349 cases, persons who sustained minor to severe head injury, and 363 controls, persons without head injury, were enrolled. A semistructured questionnaire was used to interview patients and review their medical records. Multivariable logistic regression was used to estimate odds for head injury. RESULTS After adjusting for confounders, the odds of head injuries were 93% less in motorcyclists with full-face helmet (FFH) (adjusted OR, AOR 0.07, 95% CI 0.04 to 0.15) or open-face helmet (OFH) (AOR 0.07, 95% CI 0.04, 0.13), compared with unhelmeted motorcyclists. Half-coverage helmets (HCH) were less effective (AOR 0.41, 95% CI 0.18 to 0.92). With exception of HCH, the AORs of head injury for the different types of helmets were lower in riders (FFH=0.06, OFH=0.05 and HCH=0.47) than in pillion riders (FFH=0.11, OFH=0.12 and HCH=0.35). CONCLUSION Even in this environment where there is a high proportion of non-standard helmets, the available helmets provided significant protection against head injury, but with considerably less protection provided by HCHs.
Collapse
Affiliation(s)
- Anthony Baffour Appiah
- Ghana Field Epidemiology and Laboratory Training Programme, School of Public Health, University of Ghana, Legon, Ghana .,Injury Epidemiology and Prevention Unit, Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Patricia Akweongo
- Department of Health Policy, Planning, and Management, University of Ghana, Legon, Ghana
| | - Samuel Oko Sackey
- Ghana Field Epidemiology and Laboratory Training Programme, School of Public Health, University of Ghana, Legon, Ghana
| | - Martin Tangnaa Morna
- Department of Surgery, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ernest Kenu
- Ghana Field Epidemiology and Laboratory Training Programme, School of Public Health, University of Ghana, Legon, Ghana.,Department of Applied Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Ghana
| | | | | | - Thomas K Ojo
- Department of Geography and Regional Planning, University of Cape Coast College of Humanities and Legal Studies, Cape Coast, Ghana
| | - Peter Donkor
- Department of Surgery, School of Medical Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Charles N Mock
- Harborview Injury Prevention & Research Center, Seattle, Washington, USA
| |
Collapse
|
47
|
Guo J, Gelfand SB, Hennessy E, Aqeel MM, Eicher-Miller HA, Richards EA, Lin L, Bhadra A, Delp EJ. Cluster Analysis to Find Temporal Physical Activity Patterns Among US Adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.23.23284777. [PMID: 36747782 PMCID: PMC9901066 DOI: 10.1101/2023.01.23.23284777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Physical activity (PA) is known to be a risk factor for obesity and chronic diseases such as diabetes and metabolic syndrome. Few attempts have been made to pattern the time of physical activity while incorporating intensity and duration in order to determine the relationship of this multi-faceted behavior with health. In this paper, we explore a distance-based approach for clustering daily physical activity time series to estimate temporal physical activity patterns among U.S. adults (ages 20-65) from the National Health and Nutrition Examination Survey 2003-2006 (NHANES). A number of distance measures and distance-based clustering methods were investigated and compared using various metrics. These metrics include the Silhouette and the Dunn Index (internal criteria), and the associations of the clusters with health status indicators (external criteria). Our experiments indicate that using a distance-based cluster analysis approach to estimate temporal physical activity patterns through the day, has the potential to describe the complexity of behavior rather than characterizing physical activity patterns solely by sums or labels of maximum activity levels.
Collapse
Affiliation(s)
- Jiaqi Guo
- School of Electrical and Computer Engineering, Purdue University West Lafayette, IN, USA
| | - Saul B Gelfand
- School of Electrical and Computer Engineering, Purdue University West Lafayette, IN, USA
| | - Erin Hennessy
- Friedman School of Nutrition Science and Policy, Tufts University Boston MA, USA
| | - Marah M Aqeel
- Department of Nutrition Science Purdue University West Lafayette, IN, USA
| | | | | | - Luotao Lin
- Department of Nutrition Science Purdue University West Lafayette, IN, USA
| | - Anindya Bhadra
- Department of Statistics Purdue University West Lafayette, IN, USA
| | - Edward J Delp
- School of Electrical and Computer Engineering, Purdue University West Lafayette, IN, USA
| |
Collapse
|
48
|
Asikainen A, Korja M, Kaprio J, Rautalin I. Case Fatality in Patients With Aneurysmal Subarachnoid Hemorrhage in Finland: A Nationwide Register-Based Study. Neurology 2023; 100:e348-e356. [PMID: 36257709 DOI: 10.1212/wnl.0000000000201402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Although single-center studies have reported declining case fatality rates (CFRs) of aneurysmal subarachnoid hemorrhage (SAH), nationwide reports that also include sudden-death SAHs with long uninterrupted study periods have remained limited. Moreover, little is known about whether the time-dependent trends of SAH CFR differ by age and/or sex. Thus, we aimed to characterize the nationwide changes of SAH CFRs in Finland between 1998 and 2017. METHODS We used 2 externally validated nationwide registers to identify all hospitalized and nonhospitalized (sudden-death) aneurysmal SAH events in Finland during 1998-2017. In addition to overall 30-day CFRs, we determined annual proportions of sudden-death and 30-day CFRs among hospitalized patients with SAH. To estimate time-dependent trends, we calculated annual age-adjusted and sex-adjusted CFR changes (percent with 95% CIs). RESULTS Between 1998 and 2017, we identified 9,443 cases with SAH (57.6% women), of which 2,245 (23.8%) died before hospitalization and 3,715 (39.3%) died within 30 days after SAH. Among the 7,198 hospitalized patients with SAH, the 30-day CFR was 20.4%. During the study period, the overall age-adjusted and sex-adjusted CFR declined by an average of 1.8% (1.1%-2.6%) per year. The decreases were especially notable in the proportion of sudden deaths among middle-aged (aged 40-64 years) and older (aged 65 years or older) women (2.9% [1.1%-4.7%] and 2.3% [0.7%-4.0%] per year, respectively) and in the CFRs of hospitalized young (younger than 40 years) and middle-aged women (9.1% [2.3%-15.7%] and 4.3% [2.3%-6.5%] per year, respectively). On the contrary, the 30-day CFR of older (aged 65 years or older) hospitalized men increased by 3.5% (0.7%-6.3%) per year, while the proportions of older men who died before hospitalization remained unchanged. DISCUSSION The overall CFR of SAH seems to be decreasing, at least among women. The continued high CFR of hospitalized older men requires attention from clinicians and epidemiologists, especially if this trend is also common in other countries.
Collapse
Affiliation(s)
- Aleksanteri Asikainen
- From the Department of Neurosurgery (A.A., M.K., I.R.), University of Helsinki and Helsinki University Hospital; Department of Public Health (A.A.), University of Helsinki; and Institute for Molecular Medicine FIMM (J.K.), University of Helsinki, Finland.
| | - Miikka Korja
- From the Department of Neurosurgery (A.A., M.K., I.R.), University of Helsinki and Helsinki University Hospital; Department of Public Health (A.A.), University of Helsinki; and Institute for Molecular Medicine FIMM (J.K.), University of Helsinki, Finland
| | - Jaakko Kaprio
- From the Department of Neurosurgery (A.A., M.K., I.R.), University of Helsinki and Helsinki University Hospital; Department of Public Health (A.A.), University of Helsinki; and Institute for Molecular Medicine FIMM (J.K.), University of Helsinki, Finland
| | - Ilari Rautalin
- From the Department of Neurosurgery (A.A., M.K., I.R.), University of Helsinki and Helsinki University Hospital; Department of Public Health (A.A.), University of Helsinki; and Institute for Molecular Medicine FIMM (J.K.), University of Helsinki, Finland
| |
Collapse
|
49
|
Johnson CS, Mermelstein PG. The interaction of membrane estradiol receptors and metabotropic glutamate receptors in adaptive and maladaptive estradiol-mediated motivated behaviors in females. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:33-91. [PMID: 36868633 DOI: 10.1016/bs.irn.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Estrogen receptors were initially identified as intracellular, ligand-regulated transcription factors that result in genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor α and estrogen receptor β, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) can rapidly alter cellular excitability and gene expression, particularly through the phosphorylation of CREB. A principal mechanism of neuronal mER action has been shown to occur through glutamate-independent transactivation of metabotropic glutamate receptors (mGlu), which elicits multiple signaling outcomes. The interaction of mERs with mGlu has been shown to be important in many diverse functions in females, including driving motivated behaviors. Experimental evidence suggests that a large part of estradiol-induced neuroplasticity and motivated behaviors, both adaptive and maladaptive, occurs through estradiol-dependent mER activation of mGlu. Herein we will review signaling through estrogen receptors, both "classical" nuclear receptors and membrane-bound receptors, as well as estradiol signaling through mGlu. We will focus on how the interactions of these receptors and their downstream signaling cascades are involved in driving motivated behaviors in females, discussing a representative adaptive motivated behavior (reproduction) and maladaptive motivated behavior (addiction).
Collapse
Affiliation(s)
- Caroline S Johnson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
50
|
Fabian CB, Seney ML, Joffe ME. Sex differences and hormonal regulation of metabotropic glutamate receptor synaptic plasticity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 168:311-347. [PMID: 36868632 PMCID: PMC10392610 DOI: 10.1016/bs.irn.2022.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Striking sex differences exist in presentation and incidence of several psychiatric disorders. For example, major depressive disorder is more prevalent in women than men, and women who develop alcohol use disorder progress through drinking milestones more rapidly than men. With regards to psychiatric treatment responses, women respond more favorably to selective serotonin reuptake inhibitors than men, whereas men have better outcomes when prescribed tricyclic antidepressants. Despite such well-documented biases in incidence, presentation, and treatment response, sex as a biological variable has long been neglected in preclinical and clinical research. An emerging family of druggable targets for psychiatric diseases, metabotropic glutamate (mGlu) receptors are G-protein coupled receptors broadly distributed throughout the central nervous system. mGlu receptors confer diverse neuromodulatory actions of glutamate at the levels of synaptic plasticity, neuronal excitability, and gene transcription. In this chapter, we summarize the current preclinical and clinical evidence for sex differences in mGlu receptor function. We first highlight basal sex differences in mGlu receptor expression and function and proceed to describe how gonadal hormones, notably estradiol, regulate mGlu receptor signaling. We then describe sex-specific mechanisms by which mGlu receptors differentially modulate synaptic plasticity and behavior in basal states and models relevant for disease. Finally, we discuss human research findings and highlight areas in need of further research. Taken together, this review emphasizes how mGlu receptor function and expression can differ across sex. Gaining a more complete understanding of how sex differences in mGlu receptor function contribute to psychiatric diseases will be critical in the development of novel therapeutics that are effective in all individuals.
Collapse
Affiliation(s)
- Carly B Fabian
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L Seney
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Max E Joffe
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|