1
|
Lee AM, Xu Y, Hu J, Xiao R, Hooper SR, Hartung EA, Coresh J, Rhee EP, Vasan RS, Kimmel PL, Warady BA, Furth SL, Denburg MR. Longitudinal Plasma Metabolome Patterns and Relation to Kidney Function and Proteinuria in Pediatric CKD. Clin J Am Soc Nephrol 2024; 19:837-850. [PMID: 38709558 PMCID: PMC11254025 DOI: 10.2215/cjn.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Key Points Longitudinal untargeted metabolomics. Children with CKD have a circulating metabolome that changes over time. Background Understanding plasma metabolome patterns in relation to changing kidney function in pediatric CKD is important for continued research for identifying novel biomarkers, characterizing biochemical pathophysiology, and developing targeted interventions. There are a limited number of studies of longitudinal metabolomics and virtually none in pediatric CKD. Methods The CKD in Children study is a multi-institutional, prospective cohort that enrolled children aged 6 months to 16 years with eGFR 30–90 ml/min per 1.73 m2. Untargeted metabolomics profiling was performed on plasma samples from the baseline, 2-, and 4-year study visits. There were technologic updates in the metabolomic profiling platform used between the baseline and follow-up assays. Statistical approaches were adopted to avoid direct comparison of baseline and follow-up measurements. To identify metabolite associations with eGFR or urine protein-creatinine ratio (UPCR) among all three time points, we applied linear mixed-effects (LME) models. To identify metabolites associated with time, we applied LME models to the 2- and 4-year follow-up data. We applied linear regression analysis to examine associations between change in metabolite level over time (∆level) and change in eGFR (∆eGFR) and UPCR (∆UPCR). We reported significance on the basis of both the false discovery rate (FDR) <0.05 and P < 0.05. Results There were 1156 person-visits (N : baseline=626, 2-year=254, 4-year=276) included. There were 622 metabolites with standardized measurements at all three time points. In LME modeling, 406 and 343 metabolites associated with eGFR and UPCR at FDR <0.05, respectively. Among 530 follow-up person-visits, 158 metabolites showed differences over time at FDR <0.05. For participants with complete data at both follow-up visits (n =123), we report 35 metabolites with ∆level–∆eGFR associations significant at FDR <0.05. There were no metabolites with significant ∆level–∆UPCR associations at FDR <0.05. We report 16 metabolites with ∆level–∆UPCR associations at P < 0.05 and associations with UPCR in LME modeling at FDR <0.05. Conclusions We characterized longitudinal plasma metabolomic patterns associated with eGFR and UPCR in a large pediatric CKD population. Many of these metabolite signals have been associated with CKD progression, etiology, and proteinuria in previous CKD Biomarkers Consortium studies. There were also novel metabolite associations with eGFR and proteinuria detected.
Collapse
Affiliation(s)
- Arthur M. Lee
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yunwen Xu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Rui Xiao
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen R. Hooper
- Department of Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Erum A. Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- NYU Grossman School of Medicine, New York, New York
| | - Eugene P. Rhee
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ramachandran S. Vasan
- Boston University School of Medicine, Boston, Massachusetts
- Boston University School of Public Health, Boston, Massachusetts
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Bradley A. Warady
- Division of Nephrology, Children’s Mercy Kansas City, Kansas City, Missouri
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Susan L. Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle R. Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Yakupova EI, Abramicheva PA, Bocharnikov AD, Andrianova NV, Plotnikov EY. Biomarkers of the End-Stage Renal Disease Progression: Beyond the GFR. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1622-1644. [PMID: 38105029 DOI: 10.1134/s0006297923100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 12/19/2023]
Abstract
Chronic kidney disease can progress to the end-stage renal disease (ESRD) characterized by a high risk of morbidity and mortality. ESRD requires immediate therapy or even dialysis or kidney transplantation, therefore, its timely diagnostics is critical for many patients. ESRD is associated with pathological changes, such as inflammation, fibrosis, endocrine disorders, and epigenetic changes in various cells, which could serve as ESRD markers. The review summarizes information on conventional and new ESRD biomarkers that can be assessed in kidney tissue, blood, and urine. Some biomarkers are specific to a particular pathology, while others are more universal. Here, we suggest several universal inflammatory, fibrotic, hormonal, and epigenetic markers indicative of severe deterioration of renal function and ESRD progression for improvement of ESRD diagnostics.
Collapse
Affiliation(s)
- Elmira I Yakupova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Polina A Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey D Bocharnikov
- International School of Medicine of the Future, Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| | - Nadezda V Andrianova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
3
|
El Latif AA, Zahra AEA, Badr A, Elbialy ZI, Alghamdi AAA, Althobaiti NA, Assar DH, Abouzed TK. The potential role of upregulated PARP-1/RIPK1 expressions in amikacin-induced oxidative damage and nephrotoxicity in Wistar rats. Toxicol Res (Camb) 2023; 12:979-989. [PMID: 37915468 PMCID: PMC10615830 DOI: 10.1093/toxres/tfad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 11/03/2023] Open
Abstract
This study aimed to investigate the gene expression levels associated with nephrotoxic action of amikacin, as well as the post-treatment effect of diuretics on its nephrotoxic effects. Sixty male rats were divided equally into six groups, including the control group receiving saline intra-peritoneally (ip), and the five treated groups including therapeutic and double therapeutic dose groups, injected ip (15 and 30 mg/kg b.wt./day) respectively for seven days, and another two rat groups treated as therapeutic and double therapeutic dose groups then administered the diuretic orally for seven days and the last group received amikacin ip at a rate of 15 mg/kg/day for seven days, then given free access to water without diuretics for another seven days and was kept as a self-recovery group. Amikacin caused kidney injury, which was exacerbated by the double therapeutic dose, as evidenced by abnormal serum renal injury biomarkers, elevated renal MDA levels, inhibition of renal catalase and SOD enzyme activities, with renal degenerative and necrotic changes. Moreover, comet assays also revealed renal DNA damage. Interestingly, amikacin administration markedly elevated expression levels of the PARP-1, RIP1, TNF-α, IL-1β, and iNOS genes as compared to the control group. However, compared to the self-recovery group, post-amikacin diuretic treatment modulates amikacin-induced altered findings and alleviates amikacin nephrotoxic effects more efficiently. Our findings suggested the potential role of PARP-1 and RIPK1 expressions that influence the expression of proinflammatory cytokines such as IL-1β and TNF-α by exaggerating oxidative stress which may contribute to the pathogenesis of amikacin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Amera Abd El Latif
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abo Elnasr A Zahra
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - AlShimaa Badr
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Albaha University, Kafrelsheikh University, El-Gish Street, Albaha 1988, Kingdom of Saudi Arabia
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Kafrelsheikh University, El-Gish Street, El-Gish Street, Al Quwaiiyah 19257, Kingdom of Saudi Arabia
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Tarek kamal Abouzed
- Biochemistry Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh, 33516, Egypt
| |
Collapse
|
4
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|
5
|
Smereczański NM, Brzóska MM. Current Levels of Environmental Exposure to Cadmium in Industrialized Countries as a Risk Factor for Kidney Damage in the General Population: A Comprehensive Review of Available Data. Int J Mol Sci 2023; 24:ijms24098413. [PMID: 37176121 PMCID: PMC10179615 DOI: 10.3390/ijms24098413] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The growing number of reports indicating unfavorable outcomes for human health upon environmental exposure to cadmium (Cd) have focused attention on the threat to the general population posed by this heavy metal. The kidney is a target organ during chronic Cd intoxication. The aim of this article was to critically review the available literature on the impact of the current levels of environmental exposure to this xenobiotic in industrialized countries on the kidney, and to evaluate the associated risk of organ damage, including chronic kidney disease (CKD). Based on a comprehensive review of the available data, we recognized that the observed adverse effect levels (NOAELs) of Cd concentration in the blood and urine for clinically relevant kidney damage (glomerular dysfunction) are 0.18 μg/L and 0.27 μg/g creatinine, respectively, whereas the lowest observed adverse effect levels (LOAELs) are >0.18 μg/L and >0.27 μg/g creatinine, respectively, which are within the lower range of concentrations noted in inhabitants of industrialized countries. In conclusion, the current levels of environmental exposure to Cd may increase the risk of clinically relevant kidney damage, resulting in, or at least contributing to, the development of CKD.
Collapse
Affiliation(s)
- Nazar M Smereczański
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| |
Collapse
|
6
|
Violetta L, Kartasasmita AS, Supriyadi R, Rita C. Circulating Biomarkers to Predict Diabetic Retinopathy in Patients with Diabetic Kidney Disease. Vision (Basel) 2023; 7:vision7020034. [PMID: 37092467 PMCID: PMC10123608 DOI: 10.3390/vision7020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
The purpose of this review is to outline the currently available circulating biomarkers to predict diabetic retinopathy (DR) in patients with diabetic kidney disease (DKD). Studies have extensively reported the association between DR and DKD, suggesting the presence of common pathways of microangiopathy. The presence of other ocular complications including diabetic cataracts may hinder the detection of retinopathy, which may affect the visual outcome after surgery. Unlike DKD screening, the detection of DR requires complex, costly machines and trained technicians. Recognizing potential biological markers related to glycation and oxidative stress, inflammation and endothelial dysfunction, basement membrane thickening, angiogenesis, and thrombosis as well as novel molecular markers involved in the microangiopathy process may be useful as predictors of retinopathy and identify those at risk of DR progression, especially in cases where retinal visualization becomes a clinical challenge. Further investigations could assist in deciding which biomarkers possess the highest predictive power to predict retinopathy in clinical settings.
Collapse
Affiliation(s)
- Laurencia Violetta
- Nephrology Division, Department of Internal Medicine, Gatot Soebroto Indonesia Army Central Hospital, Jakarta 10410, Indonesia
| | | | - Rudi Supriyadi
- Faculty of Medicine, Universitas Padjajaran, Bandung 40132, Indonesia
| | - Coriejati Rita
- Faculty of Medicine, Universitas Padjajaran, Bandung 40132, Indonesia
| |
Collapse
|
7
|
Park YS, Han JH, Park JH, Choi JS, Kim SH, Kim HS. Pyruvate Kinase M2: A New Biomarker for the Early Detection of Diabetes-Induced Nephropathy. Int J Mol Sci 2023; 24:ijms24032683. [PMID: 36769016 PMCID: PMC9916947 DOI: 10.3390/ijms24032683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes. DN progresses to end-stage renal disease, which has a high mortality rate. Current research is focused on identifying non-invasive potential biomarkers in the early stage of DN. We previously indicated that pyruvate kinase M2 (PKM2) is excreted in the urine of rats after cisplatin-induced acute kidney injury (AKI). However, it has not been reported whether PKM2 can be used as a biomarker to diagnose DN. Therefore, we try to compare whether the protein PKM2 can be detected in the urine samples from diabetic patients as shown in the results of DN models. In this study, high-fat diet (HFD)-induced Zucker diabetic fatty (ZDF) rats were used for DN phenotyping. After 19 weeks of receiving a HFD, the DN model's blood glucose, blood urea nitrogen, and serum creatinine levels were significantly increased; severe tubular and glomerular damages were also noted. The following protein-based biomarkers were increased in the urine of these models: kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and PKM2. PKM2 had the earliest detection rate. In the urine samples of patients, PKM2 protein was highly detected in the urine of diabetic patients but was not excreted in the urine of normal subjects. Therefore, PKM2 was selected as the new biomarker for the early diagnosis of DN. Our results reflect current knowledge on the role of PKM2 in DN.
Collapse
Affiliation(s)
- Yeon Su Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joo Hee Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Soo Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung Hyeon Kim
- St. Mark’s School, 25 Marlboro Rd, Southborough, MA 01772, USA
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: ; Tel.:+82-31-290-7789
| |
Collapse
|
8
|
|
9
|
Ratajczyk K, Konieczny A, Czekaj A, Piotrów P, Fiutowski M, Krakowska K, Kowal P, Witkiewicz W, Marek-Bukowiec K. The Clinical Significance of Urinary Retinol-Binding Protein 4: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9878. [PMID: 36011513 PMCID: PMC9408023 DOI: 10.3390/ijerph19169878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Effective biomarkers for early diagnosis, prognostication, and monitoring in renal diseases (in general) comprise an unmet need. Urinary retinol-binding protein 4, which is the most sensitive indicator of renal tubular damage, holds great promise as a universal biomarker for renal pathologies, in which tubular injury is the driving force. Here, we summarize the most important existing data on the associations between urinary retinol-binding protein 4 and renal diseases and highlight the untapped potential of retinol-binding protein 4 in clinical use.
Collapse
Affiliation(s)
- Krzysztof Ratajczyk
- Department of Urology, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Andrzej Konieczny
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Adrian Czekaj
- Department of Urology, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Paweł Piotrów
- Department of Urology, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Marek Fiutowski
- Department of Urology, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Kornelia Krakowska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Paweł Kowal
- Department of Urology, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Karolina Marek-Bukowiec
- Research and Development Center, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| |
Collapse
|
10
|
Pelle MC, Provenzano M, Busutti M, Porcu CV, Zaffina I, Stanga L, Arturi F. Up-Date on Diabetic Nephropathy. Life (Basel) 2022; 12:1202. [PMID: 36013381 PMCID: PMC9409996 DOI: 10.3390/life12081202] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes is one of the leading causes of kidney disease. Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease (ESKD) worldwide, and it is linked to an increase in cardiovascular (CV) risk. Diabetic nephropathy (DN) increases morbidity and mortality among people living with diabetes. Risk factors for DN are chronic hyperglycemia and high blood pressure; the renin-angiotensin-aldosterone system blockade improves glomerular function and CV risk in these patients. Recently, new antidiabetic drugs, including sodium-glucose transport protein 2 inhibitors and glucagon-like peptide-1 agonists, have demonstrated additional contribution in delaying the progression of kidney disease and enhancing CV outcomes. The therapeutic goal is regression of albuminuria, but an atypical form of non-proteinuric diabetic nephropathy (NP-DN) is also described. In this review, we provide a state-of-the-art evaluation of current treatment strategies and promising emerging treatments.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Clara Valentina Porcu
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Isabella Zaffina
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Lucia Stanga
- Oncology Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
11
|
Berger MM, Shenkin A, Schweinlin A, Amrein K, Augsburger M, Biesalski HK, Bischoff SC, Casaer MP, Gundogan K, Lepp HL, de Man AME, Muscogiuri G, Pietka M, Pironi L, Rezzi S, Cuerda C. ESPEN micronutrient guideline. Clin Nutr 2022; 41:1357-1424. [PMID: 35365361 DOI: 10.1016/j.clnu.2022.02.015] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Trace elements and vitamins, named together micronutrients (MNs), are essential for human metabolism. Recent research has shown the importance of MNs in common pathologies, with significant deficiencies impacting the outcome. OBJECTIVE This guideline aims to provide information for daily clinical nutrition practice regarding assessment of MN status, monitoring, and prescription. It proposes a consensus terminology, since many words are used imprecisely, resulting in confusion. This is particularly true for the words "deficiency", "repletion", "complement", and "supplement". METHODS The expert group attempted to apply the 2015 standard operating procedures (SOP) for ESPEN which focuses on disease. However, this approach could not be applied due to the multiple diseases requiring clinical nutrition resulting in one text for each MN, rather than for diseases. An extensive search of the literature was conducted in the databases Medline, PubMed, Cochrane, Google Scholar, and CINAHL. The search focused on physiological data, historical evidence (published before PubMed release in 1996), and observational and/or randomized trials. For each MN, the main functions, optimal analytical methods, impact of inflammation, potential toxicity, and provision during enteral or parenteral nutrition were addressed. The SOP wording was applied for strength of recommendations. RESULTS There was a limited number of interventional trials, preventing meta-analysis and leading to a low level of evidence. The recommendations underwent a consensus process, which resulted in a percentage of agreement (%): strong consensus required of >90% of votes. Altogether the guideline proposes sets of recommendations for 26 MNs, resulting in 170 single recommendations. Critical MNs were identified with deficiencies being present in numerous acute and chronic diseases. Monitoring and management strategies are proposed. CONCLUSION This guideline should enable addressing suboptimal and deficient status of a bundle of MNs in at-risk diseases. In particular, it offers practical advice on MN provision and monitoring during nutritional support.
Collapse
Affiliation(s)
- Mette M Berger
- Department of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Alan Shenkin
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK.
| | - Anna Schweinlin
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Karin Amrein
- Medical University of Graz, Department of Internal Medicine, Division of Endocrinology and Diabetology, Austria.
| | - Marc Augsburger
- University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland.
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Michael P Casaer
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, Leuven, Belgium.
| | - Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Kayseri, Turkey.
| | | | - Angélique M E de Man
- Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Cardiovascular Science (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam Medical Data Science (AMDS), Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy; United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II, University, Naples, Italy.
| | - Magdalena Pietka
- Pharmacy Department, Stanley Dudrick's Memorial Hospital, Skawina, Poland.
| | - Loris Pironi
- Alma Mater Studiorum - University of Bologna, Department of Medical and Surgical Sciences, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Centre for Chronic Intestinal Failure - Clinical Nutrition and Metabolism Unit, Italy.
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation (SNHf), Epalinges, Switzerland.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
12
|
Jeon HJ, Shin DH, Oh J, Kee YK, Park JY, Ko K, Lee S. Urinary Retinol-Binding Protein 4 is Associated With Renal Function and Rapid Renal Function Decline in Kidney Transplant Recipients. Transplant Proc 2022; 54:362-366. [DOI: 10.1016/j.transproceed.2021.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
|
13
|
Urbanellis P, McEvoy CM, Škrtić M, Kaths JM, Kollmann D, Linares I, Ganesh S, Oquendo F, Sharma M, Mazilescu L, Goto T, Noguchi Y, John R, Mucsi I, Ghanekar A, Bagli D, Konvalinka A, Selzner M, Robinson LA. Transcriptome Analysis of Kidney Grafts Subjected to Normothermic Ex Vivo Perfusion Demonstrates an Enrichment of Mitochondrial Metabolism Genes. Transplant Direct 2021; 7:e719. [PMID: 34258386 PMCID: PMC8270593 DOI: 10.1097/txd.0000000000001157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022] Open
Abstract
Normothermic ex vivo kidney perfusion (NEVKP) has demonstrated superior outcomes for donation-after-cardiovascular death grafts compared with static cold storage (SCS). To determine the mechanisms responsible for this, we performed an unbiased genome-wide microarray analysis. METHODS Kidneys from 30-kg Yorkshire pigs were subjected to 30 min of warm ischemia followed by 8 h of NEVKP or SCS, or no storage, before autotransplantation. mRNA expression was analyzed on renal biopsies on postoperative day 3. Gene set enrichment analysis was performed using hallmark gene sets, Gene Ontology, and pathway analysis. RESULTS The gene expression profile of NEVKP-stored grafts closely resembled no storage kidneys. Gene set enrichment analysis demonstrated enrichment of fatty acid metabolism and oxidative phosphorylation following NEVKP, whereas SCS-enriched gene sets were related to mitosis, cell cycle checkpoint, and reactive oxygen species (q < 0.05). Pathway analysis demonstrated enrichment of lipid oxidation/metabolism, the Krebs cycle, and pyruvate metabolism in NEVKP compared with SCS (q < 0.05). Comparison of our findings with external data sets of renal ischemia-reperfusion injury revealed that SCS-stored grafts demonstrated similar gene expression profiles to ischemia-reperfusion injury, whereas the profile of NEVKP-stored grafts resembled recovered kidneys. CONCLUSIONS Increased transcripts of key mitochondrial metabolic pathways following NEVKP storage may account for improved donation-after-cardiovascular death graft function, compared with SCS, which promoted expression of genes typically perturbed during IRI.
Collapse
Affiliation(s)
- Peter Urbanellis
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Caitriona M. McEvoy
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Marko Škrtić
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - J. Moritz Kaths
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Dagmar Kollmann
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Ivan Linares
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sujani Ganesh
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Fabiola Oquendo
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Manraj Sharma
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Laura Mazilescu
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Toru Goto
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Yuki Noguchi
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Rohan John
- Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Istvan Mucsi
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Anand Ghanekar
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Darius Bagli
- Departments of Surgery (Urology) and Physiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ana Konvalinka
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Markus Selzner
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Lisa A. Robinson
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
14
|
Youssry I, Makar S, Abdelkhalek K, Hisham D, Sawires H. Comparing different markers of tubular dysfunction in transfusion-dependent thalassemia patients. Int Urol Nephrol 2021; 54:421-428. [PMID: 34165679 DOI: 10.1007/s11255-021-02914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Renal tubular dysfunction was reported in transfusion-dependent thalassemia (TDT) patients and ranges from mild to severe. The objectives of our study were identification of the best marker of early renal tubular dysfunction in TDT patients among the three most commonly used urinary biomarkers, named neutrophil gelatinase-associated lipocalin (NGAL), retinol-binding protein (RBP) and N-acetyl-D-glucosaminidase (NAG) and correlation of these biomarkers with different patient variables. METHODOLOGY Sixty-one TDT patients and another 62 healthy children were enrolled in a cross-sectional study. Morning urine samples were taken for measurement of calcium, phosphorus, creatinine, microalbumin and markers of tubular dysfunction (NGAL, NAG and RBP). Urine NGAL/creatinine (UrNGAL/Cr), urine NAG/creatinine (UrNAG/Cr) and urine RBP/creatinine (UrRBP/Cr) ratios were used for accuracy. Patients were classified into 2 groups: group A, with tubular dysfunction and group b, without tubular dysfunction. RESULTS Group A showed statistically significant higher UrNGAL/Cr (p < 0.001), UrRBP/Cr (p < 0.001) and UrNAG/Cr (p <0.001) than group B. In group A, microalbuminuria was detected only in 7 patients (28%) while it was detected in 12 patients (33.3%) in group B. By using ROC curve analysis, the diagnostic cutoff values for UrNGAL/Cr, UrRBP/Cr and UrNAG/Cr were 3713.38, 1614.85 and 56.56 ng/g, respectively. We found a statistically significant superiority of UrNGAL/Cr over UrRBP/Cr (p < 0.001) and UrRBP/Cr over UrNAG/Cr (p < 0.001). CONCLUSION Evaluation of UrNGAL/Cr, UrRBP/Cr and UrNAG/Cr could early discriminate tubular dysfunction TDT patients from those with normal tubular function. UrNGAL/Cr is more accurate in early detection of tubular dysfunction when compared with the other two biomarkers.
Collapse
Affiliation(s)
- Ilham Youssry
- Pediatric Department, Cairo University, Cairo, Egypt
| | - Samuel Makar
- Pediatric Department, Cairo University, Cairo, Egypt
| | | | - Dina Hisham
- Chemical Pathology Department, Cairo University, Cairo, Egypt
| | - Happy Sawires
- Pediatric Department, Cairo University, Cairo, Egypt.
| |
Collapse
|
15
|
Salota R, Lapsley M, Nabi E, Packer S, Hyer S, Dockrell M. Time-resolved fluorescence immunoassay for urine retinol-binding protein is more sensitive than polyclonal and monoclonal assays. Ann Clin Biochem 2021; 58:505-519. [PMID: 34006121 DOI: 10.1177/00045632211020034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Retinol-binding protein4 (RBP) assays using polyclonal antibodies (pRBP) have major problems of non-linearity of dilution and a very small useable dynamic range. Our objective was to develop a specific assay with a wider dynamic range to detect tubular proteinuria. METHODS mRBP (monoclonal capture and second antibody with colorimetric detection) and fluoroimmunoassays for RBP (fRBP) (polyclonal capture and monoclonal second antibody with fluorescence detection) were developed and compared with pRBP. Four hundred and eighty-eight patient samples were collected; 290 samples were analysed by mRBP and 198 samples with fRBP and compared with pRBP. RESULTS mRBP assay has the advantages of better linearity on dilution and wider analytical range over pRBP. It is limited by poor signal in the patients with albuminuria and glomerular proteinuria and inferior discrimination between patient groups. fRBP had an intra-assay and inter-assay CV of <6% and <8%, respectively, and analytical range was 2.3-599 µg/L. fRBP was linear on dilution within the analytical range. Correlation (r) was 0.8722 (95% CI 0.7621 to 0.9333, P< 0.0001); Mann-Whitney test revealed no significant difference (U = 18,877, n = 198, P = 0.5244) asserting that the medians of the two samples were identical. Bland-Altman test between pRBP and fRBP showed a mean negative bias of 16.43 (CI -994 to 1027) µg/mmol. CONCLUSIONS The combination assay with fluorescence detection (fRBP) proved more discriminatory than a purely monoclonal system especially in patients with significant proteinuria and has advantages of better linearity on dilution and wider analytical range than the existing pRBP assay and compared extremely well with pRBP.
Collapse
Affiliation(s)
- Rashim Salota
- Department of Clinical Biochemistry, Epsom and St Helier University Hospitals NHS Trust Surrey, UK
| | - Marta Lapsley
- Department of Clinical Biochemistry, Epsom and St Helier University Hospitals NHS Trust Surrey, UK
| | - Ekramun Nabi
- South West Thames Institute for Renal Research, Epsom and St. Helier University Hospitals NHS Trust, Surrey, UK
| | | | - Steve Hyer
- Diabetes and Endocrinology, Epsom and St Helier University Hospitals NHS Trust, Surrey, UK
| | - Mark Dockrell
- South West Thames Institute for Renal Research, Epsom and St. Helier University Hospitals NHS Trust, Surrey, UK
| |
Collapse
|
16
|
Ventura C, Gomes BC, Oberemm A, Louro H, Huuskonen P, Mustieles V, Fernández MF, Ndaw S, Mengelers M, Luijten M, Gundacker C, Silva MJ. Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008-2020. ENVIRONMENTAL RESEARCH 2021; 197:110998. [PMID: 33713715 DOI: 10.1016/j.envres.2021.110998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr(VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its association with cancer were those indicating oxidative stress (e.g., 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione (GSH)) and DNA or chromosomal damage (comet and micronucleus assays). With respect to Cd and to some extent Cr, β-2-microglobulin (B2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are well-established, sensitive, and the most common effect biomarkers to relate Cd or Cr exposure to renal tubular dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule (KIM)-1 could serve as sensitive biomarkers of acute kidney injury in response to both metals, but need further investigation in HBM studies. Omics-based biomarkers, i.e., changes in the (epi-)genome, transcriptome, proteome, and metabolome associated with Cr and/or Cd exposure, are promising effect biomarkers, but more HBM data are needed to confirm their significance. The combination of established effect markers and omics biomarkers may represent the strongest approach, especially if based on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.
Collapse
Affiliation(s)
- Célia Ventura
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Bruno Costa Gomes
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Pasi Huuskonen
- Finnish Institute of Occupational Health, PO Box 40, FI-00032 Työterveyslaitos, Finland
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Sophie Ndaw
- French National Research and Safety Institute (INRS), France
| | - Marcel Mengelers
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Department of Food Safety, Bilthoven, the Netherlands
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090 Vienna, Austria.
| | - Maria João Silva
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
17
|
Flores-Ramírez R, Ortega-Romero M, Christophe-Barbier O, Meléndez-Marmolejo JG, Rodriguez-Aguilar M, Lee-Rangel HA, Díaz de León-Martínez L. Exposure to polycyclic aromatic hydrocarbon mixtures and early kidney damage in Mexican indigenous population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23060-23072. [PMID: 33432415 DOI: 10.1007/s11356-021-12388-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The traditions and habits of indigenous communities in México include the use of wood and biomass burning to cook their food, which generates large amounts of smoke and therefore pollution inside the households. This smoke is composed of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) which at high levels of exposure cause carcinogenic, genotoxic effects and some chronic pulmonary and cardiovascular diseases; however, few studies relate kidney health with exposure to PAHs. Thus, the aim of this study was the evaluation of 10 hydroxylated metabolites of PAHs (OH-PAHs), and their correlation with biomarkers of early kidney damage renal (cystatin-C (Cys-C)), osteopontin (OPN), retinol-binding protein-4 (RPB-4), and neutrophil gelatinase-associated lipocalin (NGAL) in the indigenous population of the Huasteca Potosina in Mexico. The results demonstrate the presence of the OH-PAHs and kidney damage biomarkers in 100% of the study population. The OH-PAHs were shown in the following order of frequency, 1-OH-PYR > 4-OH-PHE > 2-OH-NAP > 1-OH-NAP > 9-OH-FLU > 3-OH-FLU > 2-OH-FLU > 3-OH-PHE and with the following percentages of detection 97.6, 87.8, 78, 73.2, 68.3, 31.7, 14.6, and 12.2%, respectively. NGAL and RBP-4 were present in above 85% of the population, with mean concentrations of 78.5 ± 143.9 and 139.4 ± 131.7 ng/g creatinine, respectively, OPN (64%) with a mean concentration of 642.6 ± 723.3 ng/g g creatinine, and Cys-C with a mean concentration of 33.72 ± 44.96 ng/g creatinine. Correlations were found between 1-OH-NAP, 2-OH-NAP, 9-OH-FLU, and 4-OH-PHE and the four biomarkers of early kidney damage. 3-OH-FLU with OPN and 1-OH-PYR correlated significantly with NGAL, OPN, and RPB-4.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Manolo Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Olivier Christophe-Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Jessica Guadalupe Meléndez-Marmolejo
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | | | - Héctor A Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Universidad Autonoma de San Luis Potosí, km. 14.5 Carr. San Luis Potosí-Matehuala, 78321, San Luis Potosí, SLP, Mexico
| | - Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
18
|
Isik B, Alexander MP, Manohar S, Vaughan L, Kottschade L, Markovic S, Lieske J, Kukla A, Leung N, Herrmann SM. Biomarkers, Clinical Features, and Rechallenge for Immune Checkpoint Inhibitor Renal Immune-Related Adverse Events. Kidney Int Rep 2021; 6:1022-1031. [PMID: 33912752 PMCID: PMC8071627 DOI: 10.1016/j.ekir.2021.01.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are effective in treating several cancers; however, acute kidney injury (AKI) can occur as part as an immune-related adverse event (iRAE). Biomarkers at the time of AKI diagnosis may help determine whether they are ICI- related and guide therapeutic strategies. METHODS In this retrospective study, we reviewed patients with cancer treated with ICI therapy between 2014 and 2020 who developed AKI (defined as a ≥1.5-fold increase in serum creatinine [SCr]) that was attributed to ICI (ICI-AKI) and compared them with an adjudicated non-ICI-AKI group. Clinical and laboratory features, including SCr, serum C-reactive protein (CRP), and urine retinol binding protein/urine creatinine (uRBP/Cr) levels at AKI event were evaluated. RESULTS There were 37 patients with ICI-AKI and 13 non-ICI-AKI referents in the cohort for analysis. At time of AKI, SCr, CRP, and uRBP/Cr were significantly higher in the ICI-AKI compared with the non-ICI-AKI patients (median [interquartile range (IQR)] SCr 2.0 [1.7, 2.9] vs. 1.5 [1.3, 1.6] mg/dl, serum CRP 54.0 [33.7, 90.0] vs. 3.5 [3.0, 7.9] mg/l, and uRBP/Cr 1927 [1174, 46,522] vs. 233 [127, 989] μg/g Cr, respectively, P < 0.05 for all). Compared with the referent group, time from ICI initiation to AKI was shorter in the ICI-AKI patients. Among the ICI-AKI group, complete renal recovery occurred in 39% of patients by 3 months; rechallenge occurred in 16 (43%) of patients, of whom 3 (19%) had recurrence of AKI. CONCLUSION Our findings suggest that serum CRP and uRBP/Cr may help to differentiate AKI due to ICI from other causes.
Collapse
Affiliation(s)
- Busra Isik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Mariam P. Alexander
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sandhya Manohar
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa Vaughan
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa Kottschade
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Svetomir Markovic
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aleksandra Kukla
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Li C, Kong W, Kang L, Zhang T, Zhang W, Wang W. Study on the correlation between urinary retinol-binding protein and nonalcoholic fatty liver disease. J Med Biochem 2021; 40:86-91. [PMID: 33584144 PMCID: PMC7857848 DOI: 10.5937/jomb0-24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/22/2020] [Indexed: 11/23/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) affects human health worldwide. Our objective was to explore the correlation between urinary retinol-binding protein (URBP) and NAFLD. Methods This cross-sectional study included 445 NAFLD patients and 911 healthy controls. The URBP level and other parameters were measured. Results The URBP level (expressed by the RBP/creatinine ratio) was higher in the NAFLD patients compared with the non-NAFLD patients. The urinary RBP/creatinine ratio was an independent risk factor for NAFLD after univariate and multivariate regression analysis, with the or values of 2.271 (1.795-2.872, P < 0.001) and 2.338 (1.775-3.080, P < 0.001), respectively. The prevalence of the urinary RBP/creatinine ratio (groups 1, 2, 3, 4) was 20.0%, 17.3%, 27.3%, and 35.4%, respectively (P < 0.001), and the prevalence of NAFLD in the high urinary RBP/creatinine ratio group was significantly higher than that in the low urinary RBP/creatinine ratio group. Conclusions Our results revealed that the urinary RBP/creatinine ratio was an independent risk factor for NAFLD.
Collapse
Affiliation(s)
- Chuang Li
- Xinxiang Medical University, The Third Affiliated Hospital, Department of Laboratory Medicine, Xinxiang, Henan, China
| | - Weiwei Kong
- Xinxiang Medical University, The Third Affiliated Hospital, Department of Laboratory Medicine, Xinxiang, Henan, China
| | - Lixia Kang
- Xinxiang Medical University, The Third Affiliated Hospital, Department of Laboratory Medicine, Xinxiang, Henan, China
| | - Tiehan Zhang
- Xinxiang Medical University, The Third Affiliated Hospital, Department of Laboratory Medicine, Xinxiang, Henan, China
| | - Weiqun Zhang
- Xinxiang Medical University, The Third Affiliated Hospital, Department of Laboratory Medicine, Xinxiang, Henan, China
| | - Weidong Wang
- Xinxiang Medical University, The Third Affiliated Hospital, Department of Laboratory Medicine, Xinxiang, Henan, China
| |
Collapse
|
20
|
Díaz de León-Martínez L, Ortega-Romero M, Grimaldo-Galeana JM, Barbier O, Vargas-Berrones K, García-Arreola ME, Rodriguez-Aguilar M, Flores-Ramírez R. Assessment of kidney health and exposure to mixture pollutants in the Mexican indigenous population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34557-34566. [PMID: 32557022 DOI: 10.1007/s11356-020-09619-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 05/18/2023]
Abstract
The indigenous population is one of the most vulnerable to suffer from contaminated environments. One of the target organs to suffer early deterioration from exposure to toxins is the kidney. The objective of this article was to evaluate biomarkers of exposure to organic and inorganic toxins and biomarkers of early kidney damage in urine from an indigenous Tenek population in Mexico. The biomarkers of exposure were Li, Be, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Mo, Sn, Ba, and Pb evaluated by ICP-MS and hippuric acid for toluene exposure evaluated by UV-coupled with liquid chromatography; the biomarkers of kidney damage were cystatin C (Cys-C), osteopontin (OPN), retinol-binding protein-4 (RPB-4), and neutrophil gelatinase-associated lipocalin (NGAL). Thirty-one urine samples were obtained from indigenous people; 16, 42, 45.1, and 45.2% of the population exceeded the reference values for Pb, Zn, As, and hippuric acid respectively. Our results demonstrate significant correlations between the metals tested and the proteins associated with renal damage; Cys-C, OPN, and RPB4 showed a significant correlation with Li, B, and Mo, as well as hippuric acid in the case of Cys-C and Zn in OPN and RPB-4; NGAL did not present significant correlations with any of the pollutants of the study. This pilot study contributes to the evidence of great inequity in health associated to environmental pollution matters faced by indigenous people and addresses the need of initiatives for mitigation under the perspective that health is a fundamental human right.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Manolo Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, México
| | - José Moisés Grimaldo-Galeana
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, México
| | - Karla Vargas-Berrones
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - María Elena García-Arreola
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Maribel Rodriguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México.
| |
Collapse
|
21
|
Liu DJX, Stock E, Broeckx BJG, Daminet S, Meyer E, Delanghe JR, Croubels S, Devreese M, Nguyen P, Bogaerts E, Hesta M, Vanderperren K. Weight-gain induced changes in renal perfusion assessed by contrast-enhanced ultrasound precede increases in urinary protein excretion suggestive of glomerular and tubular injury and normalize after weight-loss in dogs. PLoS One 2020; 15:e0231662. [PMID: 32315336 PMCID: PMC7173781 DOI: 10.1371/journal.pone.0231662] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Early detection of obesity-related glomerulopathy in humans is challenging as it might not be detected by routine biomarkers of kidney function. This study's aim was to use novel kidney biomarkers and contrast-enhanced ultrasound (CEUS) to evaluate the effect of obesity development and weight-loss on kidney function, perfusion, and injury in dogs. Sixteen healthy lean adult beagles were assigned randomly but age-matched to a control group (CG) (n = 8) fed to maintain a lean body weight (BW) for 83 weeks; or to a weight-change group (WCG) (n = 8) fed the same diet to induce obesity (week 0-47), to maintain stable obese weight (week 47-56) and to lose BW (week 56-83). At 8 time points, values of systolic blood pressure (sBP); serum creatinine (sCr); blood urea nitrogen (BUN); serum cystatin C (sCysC); urine protein-to-creatinine ratio (UPC); and urinary biomarkers of glomerular and tubular injury were measured. Glomerular filtration rate (GFR) and renal perfusion using CEUS were assayed (except for week 68). For CEUS, intensity- and time-related parameters representing blood volume and velocity were derived from imaging data, respectively. At 12-22% weight-gain, cortical time-to-peak, representing blood velocity, was shorter in the WCG vs. the CG. After 37% weight-gain, sCysC, UPC, glomerular and tubular biomarkers of injury, urinary immunoglobulin G and urinary neutrophil gelatinase-associated lipocalin, respectively, were higher in the WCG. sBP, sCr, BUN and GFR were not significantly different. After 23% weight-loss, all alterations were attenuated. Early weight-gain in dogs induced renal perfusion changes measured with CEUS, without hyperfiltration, preceding increased urinary protein excretion with potential glomerular and tubular injury. The combined use of routine biomarkers of kidney function, CEUS and site-specific urinary biomarkers might be valuable in assessing kidney health of individuals at risk for obesity-related glomerulopathy in a non-invasive manner.
Collapse
Affiliation(s)
- Daisy J. X. Liu
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Emmelie Stock
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart J. G. Broeckx
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joris R. Delanghe
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Health Medicine and Life Sciences, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Nguyen
- Oniris, National College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Evelien Bogaerts
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Myriam Hesta
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
22
|
Abbasi F, Moosaie F, Khaloo P, Dehghani Firouzabadi F, Fatemi Abhari SM, Atainia B, Ardeshir M, Nakhjavani M, Esteghamati A. Neutrophil Gelatinase-Associated Lipocalin and Retinol-Binding Protein-4 as Biomarkers for Diabetic Kidney Disease. Kidney Blood Press Res 2020; 45:222-232. [PMID: 32008005 DOI: 10.1159/000505155] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/01/2019] [Indexed: 11/19/2022] Open
Abstract
AIMS This study was designed to evaluate the conflicting association between 2 tubular protein markers including neutrophil gelatinase-associated lipocalin (NGAL) and retinol-binding protein-4 (RBP-4) with albuminuria and glomerular filtration rate (GFR) and calculate the accuracy of the role of NGAL and RBP-4 in diagnosis of diabetic nephropathy (DN) in patients with type2 diabetes. METHODS This is a cross-sectional study that included 133 patients with type 2 diabetes. There were 3 diabetic study groups with normoalbuminuria, moderately increased albuminuria, severely increased albuminuria, and non-diabetic control group without any renal disease. We analyzed the difference of urinary NGAL (uNGAL) and RBP-4 between nondiabetics and diabetics, as well as within the diabetic group. We also assessed the association between albuminuria and NGAL and RBP-4. RESULTS The urinary levels of NGAL and RBP-4 were higher in patients with type 2 diabetes compared to nondiabetics as well as in albuminuric diabetics compared to nonalbuminuric patients with diabetes (p value <0.001). These 2 proteins were higher in patients with severely increased albuminuria compared to patients with moderately increased albuminuria, even after adjustment for other metabolic factors (all p < 0.01). Moreover, areas under the curve of NGAL and RBP-4 for the diagnosis of chronic kidney disease were 80.6 and 74.6%, respectively. CONCLUSION uNGAL and RBP-4 are potential markers of tubular damage that may increase before the onset of glomerular markers such as albuminuria and GFR in patients with type 2 diabetes. Therefore, these markers can be used as complementary measurements to albuminuria and GFR in the earlier diagnosis of DN.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moosaie
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Khaloo
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dehghani Firouzabadi
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahar Atainia
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ardeshir
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
23
|
Tsai YL, Liu CW, Huang SF, Yang YY, Lin MW, Huang CC, Li TH, Huang YH, Hou MC, Lin HC. Urinary fatty acid and retinol binding protein-4 predict CKD progression in severe NAFLD patients with hypertension: 4-year study with clinical and experimental approaches. Medicine (Baltimore) 2020; 99:e18626. [PMID: 31914044 PMCID: PMC6959901 DOI: 10.1097/md.0000000000018626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Detection of the chronic kidney disease (CKD) progression can begin early intervention to improve the prognosis of severe non-alcoholic fatty liver disease (NAFLD). This bi-directional cross-sectional study evaluates the roles of fatty acid-binding protein (FABP) and retinol binding protein (RBP4), which are produced from inflamed liver, adipose tissue and immune cells, for the prediction of CKD progression in severe NAFLD. Ninety severe NAFLD patients with hypertension and proteinuria (NAFLDHTN) were enrolled and divided into CKD (n = 39) and non-CKD groups (n = 51). Among 39 NAFLDHTN patients, 18 cases were categorized as CKD progression group. In comparison with CKD stable group (n = 21), the positive correlation between fold change values of hepatic fibrotic score (KPa), urinary FABP4 or urinary RBP4 versus severity of albuminuria were noted among CKD progression group. On multivariate analysis, high body mass index (BMI, >25 kg/m), high hepatic fibrosis score (>9.5 KPa), high urinary level of vascular cell adhesion molecule-1 (VCAM-1, >2239 μg/g cr), high urinary level of FABP4 (>115 ng/g cr) and high urinary level of RBP4 (>33.5 mg/g cr) are 5 independent predictors for progressive CKD during 24 months of follow-up. Synergetic effect was noted among these 5 risk factors for the prediction of CKD progression in NAFLDHTN patients. The in vitro experiments revealed that both FABP4 and RBP4 directly enhanced albumin-induced ER stress and apoptosis of human renal tubular epithelial cell line HK-2 cells and human podocytes cell lines. Through clinical and experimental approaches, this study revealed new 5 synergetic predictors including high BMI, hepatic fibrosis score, urinary level of VCAM-1, urinary level of FABP4 and RBP4, for the CKD progression in severe NAFLD patients with hypertension and proteinuria.
Collapse
Affiliation(s)
- Yu-Lien Tsai
- Department of Medicine
- National Yang-Ming University School of Medicine, Taipei
| | - Chih-Wei Liu
- Division of Allergy and Immunology
- Department of Medicine
- Institute of Clinical Medicine, Taipei Veterans General Hospital
- National Yang-Ming University School of Medicine, Taipei
| | - Shiang-Fen Huang
- Division of Infection
- Department of Medicine
- Institute of Clinical Medicine, Taipei Veterans General Hospital
- National Yang-Ming University School of Medicine, Taipei
| | - Ying-Ying Yang
- Division of Gastroenterology and Hepatology
- Division of General Medicine
- Institute of Clinical Medicine, Taipei Veterans General Hospital
- National Yang-Ming University School of Medicine, Taipei
- Division of clinical skills training center, Department of medical education, Taipei, Taiwan
| | - Ming-Wei Lin
- Division of Preventive Medicine, Institute of public Health
- National Yang-Ming University School of Medicine, Taipei
| | - Chia-Chang Huang
- Department of Medicine
- National Yang-Ming University School of Medicine, Taipei
| | - Tzu-Hao Li
- Division of Allergy and Immunology
- Institute of Clinical Medicine, Taipei Veterans General Hospital
- National Yang-Ming University School of Medicine, Taipei
- Chia-Yi Branch of Taichung Veterans General Hospital, Chiayi
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology
- Department of Medicine
- Institute of Clinical Medicine, Taipei Veterans General Hospital
- National Yang-Ming University School of Medicine, Taipei
| | - Ming-Chih Hou
- Department of Medicine
- National Yang-Ming University School of Medicine, Taipei
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology
- National Yang-Ming University School of Medicine, Taipei
| |
Collapse
|
24
|
Pérez-López L, Boronat M, Melián C, Brito-Casillas Y, Wägner AM. Animal Models and Renal Biomarkers of Diabetic Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:521-551. [PMID: 32329028 DOI: 10.1007/5584_2020_527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus (DM) is the first cause of end stage chronic kidney disease (CKD). Animal models of the disease can shed light on the pathogenesis of the diabetic nephropathy (DN) and novel and earlier biomarkers of the condition may help to improve diagnosis and prognosis. This review summarizes the most important features of animal models used in the study of DN and updates the most recent progress in biomarker research.
Collapse
Affiliation(s)
- Laura Pérez-López
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Mauro Boronat
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Carlos Melián
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
- Department of Animal Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Arucas, Las Palmas, Spain
| | - Yeray Brito-Casillas
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
25
|
Maifata SM, Hod R, Zakaria F, Abd Ghani F. Primary Membranous Glomerulonephritis: The Role of Serum and Urine Biomarkers in Patient Management. Biomedicines 2019; 7:E86. [PMID: 31683874 PMCID: PMC6966460 DOI: 10.3390/biomedicines7040086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
The detection of phospholipase A2 receptor (PLA2R) and thrombospondin domain containing 7A THSD7A among primary membranous glomerulonephritis (MGN) patients transformed the diagnosis, treatment monitoring, and prognosis. Anti-PLA2R can be detected in 70-90% of primary MGN patients while anti-THSD7A in 2-3% of anti-PLA2R negative primary MGN patients depending on the technique used. Serum and urine samples are less invasive and non-invasive, respectively, and thus can detect the presence of anti-PLA2R and anti-THSD7A with higher sensitivity and specificity, which is significant in patient monitoring and prognosis. It is better than exposing patients to a frequent biopsy, which is an invasive procedure. Different techniques of detection of PLA2R and THSD7A in patients' urine and sera were reviewed to provide newer and alternative techniques. We proposed the use of biomarkers (PLA2R and THSD7A) in the diagnosis, treatment decision, and follow-up of patients with primary MGN. In addition, other prognostic renal biomarkers like retinol binding protein (RBP) and beta-2 microglobulin were reviewed to detect the progression of renal damage for early intervention.
Collapse
Affiliation(s)
- Sadiq Mu'azu Maifata
- Histopathology Unit, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Physiology Unit, Department of Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Department of Physiology, Faculty of Basic Medical Science, College of Medicine, Federal University Lafia, Lafia, Nasarawa 950102, Nigeria.
| | - Rafidah Hod
- Physiology Unit, Department of Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Fadhlina Zakaria
- Nephrology Unit, Department of Medicine, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Fauzah Abd Ghani
- Histopathology Unit, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
26
|
Abstract
Acute kidney injury (AKI) is a severe and frequent condition in hospitalized patients. Currently, no efficient therapy of AKI is available. Therefore, efforts focus on early prevention and potentially early initiation of renal replacement therapy to improve the outcome in AKI. The detection of AKI in hospitalized patients implies the need for early, accurate, robust, and easily accessible biomarkers of AKI evolution and outcome prediction because only a narrow window exists to implement the earlier-described measures. Even more challenging is the multifactorial origin of AKI and the fact that the changes of molecular expression induced by AKI are difficult to distinguish from those of the diseases associated or causing AKI as shock or sepsis. During the past decade, a considerable number of protein biomarkers for AKI have been described and we expect from recent advances in the field of omics technologies that this number will increase further in the future and be extended to other sorts of biomolecules, such as RNAs, lipids, and metabolites. However, most of these biomarkers are poorly defined by their AKI-associated molecular context. In this review, we describe the state-of-the-art tissue and biofluid proteomic and metabolomic technologies and new bioinformatics approaches for proteomic and metabolomic pathway and molecular interaction analysis. In the second part of the review, we focus on AKI-associated proteomic and metabolomic biomarkers and briefly outline their pathophysiological context in AKI.
Collapse
|
27
|
Tan L, Meng Y, Zeng T, Wang Q, Long T, Wu S, Guan X, Fu H, Zheng W, Tian Y, Chen J, Yu J, Wu Y, Li H, Cao L. Clinical diagnostic significance of prealbumin, cholinesterase and retinol binding protein in liver cirrhosis combined with encephalopathy. Br J Biomed Sci 2018; 76:24-28. [PMID: 30392460 DOI: 10.1080/09674845.2018.1523673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Hepatic encephalopathy is a common consequence of liver cirrhosis, but diagnosis can be difficult as it is based on clinical criteria alone. We hypothesised that serum prealbumin, cholinesterase and retinol binding protein (RBP) can help support the diagnosis of hepatic encephalopathy. METHODS We enrolled 306 cirrhotic patients (110 with encephalopathy), 100 chronic hepatitis B patients and 50 healthy controls, measuring routine liver function tests (ALT, AST, GGT, ALP, and bilirubin), albumin, prothrombin time, prealbumin, cholinesterase and RBP by routine methods. Logistic regression analysis and areas under the receiver operating characteristic curves (AUCs) were used to find predictive factors for hepatic encephalopathy. RESULTS There were differences in all laboratory indices between the three groups (all p < 0.001). In univariate analysis, albumin, prothrombin time, prealbumin, cholinesterase and RBP were significantly altered in those with encephalopathy (p < 0.01), but only prealbumin, cholinesterase and RBP levels were significant predictors in multivariate analysis, and each was linked to the severity of liver fibrosis defined by the Child-Pugh score (all p < 0.001). The AUCs (95% CI) of prealbumin, cholinesterase and RBP for diagnosing liver cirrhosis with hepatic encephalopathy were comparable at 0.85 (81-90), 0.81 (0.76-0.85) and 0.81 (0.76-0.86), respectively (all p < 0.01). CONCLUSIONS Serum prealbumin, cholinesterase and RBP levels are of potential clinical value in diagnosis of liver cirrhosis complicated by encephalopathy.
Collapse
Affiliation(s)
- L Tan
- a Department of Clinical Laboratory Science, Jiangxi Province Key Laboratory of Laboratory Medicine , the Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Y Meng
- b School of Public Health , Nanchang University , Nanchang , Jiangxi , China
| | - T Zeng
- a Department of Clinical Laboratory Science, Jiangxi Province Key Laboratory of Laboratory Medicine , the Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Q Wang
- b School of Public Health , Nanchang University , Nanchang , Jiangxi , China
| | - T Long
- b School of Public Health , Nanchang University , Nanchang , Jiangxi , China
| | - S Wu
- b School of Public Health , Nanchang University , Nanchang , Jiangxi , China
| | - X Guan
- b School of Public Health , Nanchang University , Nanchang , Jiangxi , China
| | - H Fu
- b School of Public Health , Nanchang University , Nanchang , Jiangxi , China
| | - W Zheng
- b School of Public Health , Nanchang University , Nanchang , Jiangxi , China
| | - Y Tian
- a Department of Clinical Laboratory Science, Jiangxi Province Key Laboratory of Laboratory Medicine , the Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - J Chen
- a Department of Clinical Laboratory Science, Jiangxi Province Key Laboratory of Laboratory Medicine , the Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - J Yu
- a Department of Clinical Laboratory Science, Jiangxi Province Key Laboratory of Laboratory Medicine , the Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Y Wu
- a Department of Clinical Laboratory Science, Jiangxi Province Key Laboratory of Laboratory Medicine , the Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - H Li
- a Department of Clinical Laboratory Science, Jiangxi Province Key Laboratory of Laboratory Medicine , the Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - L Cao
- a Department of Clinical Laboratory Science, Jiangxi Province Key Laboratory of Laboratory Medicine , the Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| |
Collapse
|
28
|
Zhang J, Liu Z, Zhang X, Zhang L, Jin X. Association between urine retinol-binding protein levels and nonalcoholic fatty liver disease: A cross-sectional study in Chinese population. J Clin Lab Anal 2018; 32:e22359. [PMID: 29194759 PMCID: PMC6817258 DOI: 10.1002/jcla.22359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rapidly increased, becoming a public health problem worldwide. Our objective was to investigate the association between urine retinol-binding protein (RBP) and NAFLD in a Chinese population and develop a multivariate logistic regression model for NAFLD prediction. METHODS A total of 317 NAFLD patients and 391 healthy controls were enrolled in this cross-sectional study based on inclusion and exclusion criteria, from whom fasting urine and blood were collected for further study. Urine RBP level and other parameters were measured and compared between NAFLD subjects and controls. RESULTS Urine RBP levels (expressed by RBP/creatinine ratio) in NAFLD patients were significantly higher than controls (median 133.1 mg/g vs 110.7 mg/g; P < .001). Urine RBP/creatinine ratio was verified as an independent factor for NAFLD prediction after adjustment in multivariate logistic regression. The area under curve (AUC) of receiver operating characteristic (ROC) was 0.889 with the 95% confidence interval from 0.867 to 0.912.With a cutoff point of 0.215, the sensitivity and specificity of urine RBP/creatinine ratio in NAFLD prediction were 81.1% and 84.5%, respectively. CONCLUSION Our results demonstrated that urine RBP/creatinine ratio was an independent risk factor for NAFLD while the predictive model for NAFLD diagnosis is noninvasive with high sensitivity and specificity.
Collapse
Affiliation(s)
- Juanwen Zhang
- Department of Laboratory MedicineThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zeyu Liu
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated to School of MedicineZhejiang UniversityHangzhouChina
| | - Xuyao Zhang
- Clinical MedicineHangzhou Normal University Qianjiang CollegeHangzhouChina
| | - Li Zhang
- Kidney Disease CenterThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xi Jin
- Department of GastroenterologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
29
|
Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel) 2018; 10:33. [PMID: 29316724 PMCID: PMC5793120 DOI: 10.3390/toxins10010033] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
In this narrative review, the biological/biochemical impact (toxicity) of a large array of known individual uremic retention solutes and groups of solutes is summarized. We classified these compounds along their physico-chemical characteristics as small water-soluble compounds or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin) affected at least one mechanism with the potential to contribute to the uremic syndrome. In general, several mechanisms were influenced for each individual solute or group of solutes, with some impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular and fibrogenic systems were those most frequently affected and they are one by one major actors in the high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied. A scoring system was built with the intention to classify the reviewed compounds according to the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds [asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein bound compounds or groups of protein bound compounds [advanced glycation end products (AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and 3 middle molecules [β₂-microglobulin; ghrelin; parathyroid hormone). In general, more experimental data were provided for the protein bound molecules but for almost half of them clinical evidence was missing in spite of robust experimental data. The picture emanating is one of a complex disorder, where multiple factors contribute to a multisystem complication profile, so that it seems of not much use to pursue a decrease of concentration of a single compound.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|