1
|
Ticha P, Northey JJ, Kersten K, Velozo HG, Ironside AJ, Zidek M, Drain A, Lakins JN, Chen YY, Tsai KK, Weaver VM. NCOR2 represses MHC class I molecule expression to drive metastatic progression of breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642060. [PMID: 40161756 PMCID: PMC11952456 DOI: 10.1101/2025.03.10.642060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Metastatic progression depends upon the ability of disseminated tumor cells to evade immune surveillance. MHC molecule expression facilitates T cell recognition and activation to permit the eradication of metastatic tumor cells. We identified nuclear corepressor 2 (NCOR2) as a key epigenetic regulator of MHC class I molecule expression on breast tumor cells. Patients with triple negative breast cancers (TNBC) that expressed high levels of NCOR2 also exhibited reduced metastasis free survival and decreased MHC class I expression, and the metastatic lesions in patients with TNBC had high nuclear NCOR2 and reduced CD8 T cell levels and activity. Genetically and experimentally reducing NCOR2 expression in tumor cells permitted interferon gamma upregulation of MHC class I, and potentiated CD8 T cell activity and induction of apoptosis to repress metastatic progression of disseminated breast cancer cells. These studies provide evidence to support NCOR2 as a targetable epigenetic regulator of metastasis towards which therapies could be developed to reduce patient mortality.
Collapse
Affiliation(s)
- Pavla Ticha
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
- Current address: Department of Plastic Surgery, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Charles University in Prague, Srobarova 50, 10034, Praha 10, Czech Republic
| | - Jason J. Northey
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly Kersten
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Current address: Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hugo González Velozo
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Laboratory of Tumor Microenvironment and Metastasis, Centro Ciencia & Vida, Santiago, Chile
| | | | - Martin Zidek
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Allison Drain
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan N. Lakins
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yunn-Yi Chen
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelvin K. Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Valerie M. Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Radiation Oncology, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Silva J, Oliveira PA, Duarte JA, Faustino-Rocha AI. Mammary Cancer Models: An Overview from the Past to the Future. In Vivo 2025; 39:1-16. [PMID: 39740866 PMCID: PMC11705154 DOI: 10.21873/invivo.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 01/02/2025]
Abstract
Breast cancer research heavily relies on diverse model systems to comprehend disease progression, develop novel diagnostics, and evaluate new therapeutic strategies. This review offers a comprehensive overview of mammary cancer models, covering both ex vivo and in vivo approaches. We delve into established techniques, such as cell culture and explore cutting-edge advancements, like tumor-on-a-chip and bioprinting. The in vivo section encompasses spontaneous, induced, and transplanted models, genetically engineered models, chick chorioallantoic membrane assays, and the burgeoning field of in silico models. Additionally, this article briefly highlights the key discoveries made using these models, significantly enhancing our understanding of breast cancer. In essence, this article serves as a comprehensive compass, charting the trajectory of mammary cancer modeling from its early beginnings to the promising vistas of tomorrow.
Collapse
Affiliation(s)
- Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal;
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Vila Real, Portugal
- Department of Veterinary Sciences, UTAD, Vila Real, Portugal
| | - José Alberto Duarte
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal
- Comprehensive Health Research Center (CHRC), University of Évora, Évora, Portugal
| |
Collapse
|
3
|
McRae S, Martinez F, Foster P, Ronald J, Scholl T. Single-Frequency Birdcage Coils for Deep Tissue Perfluorocarbon Magnetic Resonance Imaging in Mice. NMR IN BIOMEDICINE 2025; 38:e5296. [PMID: 39648071 PMCID: PMC11625660 DOI: 10.1002/nbm.5296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 12/10/2024]
Abstract
Fluorine-19 (19F) MRI has become an established tool for in vivo cell tracking following ex vivo or in vivo labelling of various cell types with 19F perfluorocarbons (PFCs). Here, we developed and evaluated novel mouse-specific radiofrequency (RF) hardware for improved dual 1H anatomical imaging and deep tissue 19F MR detection of PFCs. Three linearly polarized birdcage RF coils were constructed-a dual-frequency 1H/19F coil, and a pair of single-frequency 1H and 19F coils, designed to be used sequentially. RF coil quality factors (Q values), signal homogeneity and sensitivity were benchmarked against a commercially constructed dual-frequency 1H/19F surface coil. RF homogeneity was assessed using a phantom designed to mimic PFC localization at depth in a mouse. The single-frequency birdcage coils (1H and 19F) displayed more uniform coverage and enhanced signal-to-noise ratios (SNRs) compared to both the birdcage and surface dual-frequency coils for 19F detection. Bilateral injection of a perfluoropolyether nanoemulsion into the footpads of female athymic nude mice, resulting in drainage to various lymph nodes and subsequent accumulation in lymph node macrophages, provided a platform to assess differences in SNRs and contrast-to-noise ratios (CNR) between both coil configurations as a function of depth and location. The single-frequency 1H coil provided significantly increased CNR in anatomical images (p < 0.001) with increased anatomical coverage compared to the dual-frequency surface coil. The single-frequency 19F birdcage coil offered increased PFC detectability with significantly higher SNR in renal, lumbar, sciatic and popliteal lymph nodes (p < 0.01) compared to the dual-frequency surface coil. Interestingly, the percentage difference between SNR measurements in lymph nodes between the single-frequency 19F coil and the 1H/19F surface coil had a linear relationship with increasing distance from the surface coil (R2 = 0.6352; p < 0.0001), indicating a potential disagreement for imaging experiments that rely on 19F spin quantification at increasing depth within the mouse using surface RF coils.
Collapse
Affiliation(s)
- Sean W. McRae
- Department of Medical BiophysicsUniversity of Western OntarioLondonOntarioCanada
| | | | - Paula J. Foster
- Department of Medical BiophysicsUniversity of Western OntarioLondonOntarioCanada
- Imaging Laboratories, Robarts Research InstituteUniversity of Western OntarioLondonOntarioCanada
- Lawson Health Research InstituteSt. Joseph's Health CareLondonOntarioCanada
| | - John A. Ronald
- Department of Medical BiophysicsUniversity of Western OntarioLondonOntarioCanada
- Imaging Laboratories, Robarts Research InstituteUniversity of Western OntarioLondonOntarioCanada
- Lawson Health Research InstituteSt. Joseph's Health CareLondonOntarioCanada
| | - Timothy J. Scholl
- Department of Medical BiophysicsUniversity of Western OntarioLondonOntarioCanada
- Imaging Laboratories, Robarts Research InstituteUniversity of Western OntarioLondonOntarioCanada
- Department of Physics and AstronomyUniversity of Western OntarioLondonOntarioCanada
- Ontario Institute for Cancer ResearchTorontoOntarioCanada
| |
Collapse
|
4
|
Drouin Z, Lévesque F, Mouzakitis K, Labrie M. Current preclinical models of brain metastasis. Clin Exp Metastasis 2024; 42:5. [PMID: 39694975 DOI: 10.1007/s10585-024-10318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024]
Abstract
Brain metastases (BMs) represent the most prevalent intracranial malignancy within the adult. They are identified in up to 20% of patients with solid tumors and this percentage varies between tumor types and age. Due to the selective permeability of the blood-brain barrier, most anticancer drugs can't reach significant concentrations in the brain, representing a major obstacle to the patients' survival. Furthermore, intra- and inter-patient heterogeneity and the unique brain microenvironment add a layer of complexity to the clinical management of BMs. In the perspective of finding new therapeutic approaches and better understanding the molecular mechanisms involved in brain metastasis, the use of appropriate preclinical models is essential. Here, we review current in vivo, in vitro and ex vivo models for the study of brain metastasis while outlining their advantages and limitations.
Collapse
Affiliation(s)
- Zacharie Drouin
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada
| | - Flavie Lévesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada
| | - Korina Mouzakitis
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada
| | - Marilyne Labrie
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada.
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada.
| |
Collapse
|
5
|
Xu J, Wu Q, Rao Y, Li Z, He W, Sun W, Zheng J, Wang Q, Tang A. Establishment of human acute monocytic leukemia model with systemic infiltration in NPG mice. Histol Histopathol 2024; 39:1517-1526. [PMID: 38634557 DOI: 10.14670/hh-18-742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
A model construction of systemic acute leukemia is challenging. Herein, we established a systemic leukemia mouse model using highly immunodeficient NPG mice without any immunosuppressive treatments. NPG mice received tail intravenous injection of SHI-1 cells at the concentration of 1×107 cells (group A) or 5×107 cells (group B) and randomly sacrificed each seven days post-inoculation. Tumor development was monitored using nested-PCR, peripheral blood-smear analysis, flow cytometry, pathological examinations, and immunohistochemistry. The median survival of mice in groups A and B were 33.0 and 30.0 days, respectively. Blast cells in peripheral blood appeared on day 14 in group B, and on day 21 in group A. In addition, SHI-1 cell specific MLL-AF6 mRNA was detected in both spleen and bone marrow on day 14 post-inoculation. 21 days after inoculation, we observed human CD45+CD33+ cells with an SH-1-immunophenotype in the peripheral blood, spleen, and bone marrow, as well as solid neoplasms in multiple organs. Moreover, the histologically infiltrated leukemic cells expressed CD45. In conclusion, the current study demonstrated the normal growth of SHI-1 cells in the NPG mice without immunosuppression, which caused systemic leukemia similar to that observed in acute leukemia patients. We developed an efficient and reproducible model to study leukemia pathogenesis and progression.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Qiong Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Yanfei Rao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Zhenjiang Li
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China.
| | - Wenfeng He
- Key Laboratory of Molecular Medicine of Jiangxi, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Wanlei Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jifu Zheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Qingming Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Aiping Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| |
Collapse
|
6
|
Kwon HJ, Park JW, Chung HK, Jung J. Comprehensive model for simultaneous monitoring of primary tumor to metastatic cancer utilizing Prkdc and Il2rg double knockout mice. Sci Rep 2024; 14:23531. [PMID: 39384980 PMCID: PMC11464514 DOI: 10.1038/s41598-024-75493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024] Open
Abstract
Liver cancer is the second leading cause of cancer-related deaths worldwide, motivating major scientific efforts to understand and treat this cancer type. Over 30% of patients with liver cancer progress to metastasis, which reduces the survival rate. Extensive studies on primary tumors have been conducted to improve the prognosis. However, there is a lack of appropriate and accessible models for studying the progression and metastasis of liver cancer. Moreover, conventional metastasis models do not reproduce metastasis as it occurs in patients. To address this lack of an appropriate model for the monitoring of cancer progression and evaluation of anticancer drugs, we established a spontaneous metastatic xenograft model using NSG mice subcutaneously transplanted with SK-Hep-1 cells. Compared to the conventional experimental metastasis model (intravenous transplantation), in which only lung metastasis was observed, the established spontaneous metastatic xenograft model was superior, as it showed both a primary tumor and metastatic patterns similar to those observed in human patients. Additionally, this model was successfully used to assess the antimetastatic efficacy of sorafenib. In conclusion, our results demonstrate that the established spontaneous metastatic xenograft model better reflects liver cancer metastasis and can be utilized to assess the efficacy of anticancer drugs for liver cancer.
Collapse
Affiliation(s)
- Hee Jung Kwon
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, 01369, Korea
| | - Jang Woo Park
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Hye Kyung Chung
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Joohee Jung
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Korea.
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, 01369, Korea.
| |
Collapse
|
7
|
Yadav R, Mahajan S, Singh H, Mehra NK, Madan J, Doijad N, Singh PK, Guru SK. Emerging In Vitro and In Vivo Models: Hope for the Better Understanding of Cancer Progression and Treatment. Adv Biol (Weinh) 2024; 8:e2300487. [PMID: 38581078 DOI: 10.1002/adbi.202300487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Nandkumar Doijad
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
8
|
Stribbling SM, Beach C, Ryan AJ. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther 2024; 257:108631. [PMID: 38467308 PMCID: PMC11781865 DOI: 10.1016/j.pharmthera.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.
Collapse
Affiliation(s)
- Stephen M Stribbling
- Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | - Callum Beach
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anderson J Ryan
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK; Fast Biopharma, Aston Rowant, Oxfordshire, OX49 5SW, UK.
| |
Collapse
|
9
|
Ferreira T, Azevedo T, Silva J, Faustino-Rocha AI, Oliveira PA. Current views on in vivo models for breast cancer research and related drug development. Expert Opin Drug Discov 2024; 19:189-207. [PMID: 38095187 DOI: 10.1080/17460441.2023.2293152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Animal models play a crucial role in breast cancer research, in particular mice and rats, who develop mammary tumors that closely resemble their human counterparts. These models allow the study of mechanisms behind breast carcinogenesis, as well as the efficacy and safety of new, and potentially more effective and advantageous therapeutic approaches. Understanding the advantages and disadvantages of each model is crucial to select the most appropriate one for the research purpose. AREA COVERED This review provides a concise overview of the animal models available for breast cancer research, discussing the advantages and disadvantages of each one for searching new and more effective approaches to treatments for this type of cancer. EXPERT OPINION Rodent models provide valuable information on the genetic alterations of the disease, the tumor microenvironment, and allow the evaluation of the efficacy of chemotherapeutic agents. However, in vivo models have limitations, and one of them is the fact that they do not fully mimic human diseases. Choosing the most suitable model for the study purpose is crucial for the development of new therapeutic agents that provide better care for breast cancer patients.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal
- Department of Zootechnics, School of Sciences and Technology, Comprehensive Health Research Center, Évora, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
10
|
Sananes A, Cohen I, Allon I, Ben‐David O, Abu Shareb R, Yegodayev KM, Stepensky D, Elkabets M, Papo N. Serine protease inhibitors decrease metastasis in prostate, breast, and ovarian cancers. Mol Oncol 2023; 17:2337-2355. [PMID: 37609678 PMCID: PMC10620120 DOI: 10.1002/1878-0261.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023] Open
Abstract
Targeted therapies for prostate, breast, and ovarian cancers are based on their activity against primary tumors rather than their anti-metastatic activity. Consequently, there is an urgent need for new agents targeting the metastatic process. Emerging evidence correlates in vitro and in vivo cancer invasion and metastasis with increased activity of the proteases mesotrypsin (prostate and breast cancer) and kallikrein 6 (KLK6; ovarian cancer). Thus, mesotrypsin and KLK6 are attractive putative targets for therapeutic intervention. As potential therapeutics for advanced metastatic prostate, breast, and ovarian cancers, we report novel mesotrypsin- and KLK6-based therapies, based on our previously developed mutants of the human amyloid β-protein precursor Kunitz protease inhibitor domain (APPI). These mutants, designated APPI-3M (prostate and breast cancer) and APPI-4M (ovarian cancer), demonstrated significant accumulation in tumors and therapeutic efficacy in orthotopic preclinical models, with the advantages of long retention times in vivo, high affinity and favorable pharmacokinetic properties. The applicability of the APPIs, as a novel therapy and for imaging purposes, is supported by their good safety profile and their controlled and scalable manufacturability in bioreactors.
Collapse
Affiliation(s)
- Amiram Sananes
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Itay Cohen
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Irit Allon
- Institute of Pathology, Barzilai University Medical Center, Ashkelon, Israel ad Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Oshrit Ben‐David
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Raghda Abu Shareb
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Ksenia M. Yegodayev
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - David Stepensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Niv Papo
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
11
|
Mathur D, Liao C, Lin W, La Ferlita A, Alaimo S, Taylor S, Zhong Y, Iacobuzio-Donahue C, Ferro A, Xavier JB. The Ratio of Key Metabolic Transcripts Is a Predictive Biomarker of Breast Cancer Metastasis to the Lung. Cancer Res 2023; 83:3478-3491. [PMID: 37526524 PMCID: PMC10570685 DOI: 10.1158/0008-5472.can-23-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Understanding the rewired metabolism underlying organ-specific metastasis in breast cancer could help identify strategies to improve the treatment and prevention of metastatic disease. Here, we used a systems biology approach to compare metabolic fluxes used by parental breast cancer cells and their brain- and lung-homing derivatives. Divergent lineages had distinct, heritable metabolic fluxes. Lung-homing cells maintained high glycolytic flux despite low levels of glycolytic intermediates, constitutively activating a pathway sink into lactate. This strong Warburg effect was associated with a high ratio of lactate dehydrogenase (LDH) to pyruvate dehydrogenase (PDH) expression, which correlated with lung metastasis in patients with breast cancer. Although feature classification models trained on clinical characteristics alone were unable to predict tropism, the LDH/PDH ratio was a significant predictor of metastasis to the lung but not to other organs, independent of other transcriptomic signatures. High lactate efflux was also a trait in lung-homing metastatic pancreatic cancer cells, suggesting that lactate production may be a convergent phenotype in lung metastasis. Together, these analyses highlight the essential role that metabolism plays in organ-specific cancer metastasis and identify a putative biomarker for predicting lung metastasis in patients with breast cancer. SIGNIFICANCE Lung-homing metastatic breast cancer cells express an elevated ratio of lactate dehydrogenase to pyruvate dehydrogenase, indicating that ratios of specific metabolic gene transcripts have potential as metabolic biomarkers for predicting organ-specific metastasis.
Collapse
Affiliation(s)
- Deepti Mathur
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Wendy Lin
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Samuel Taylor
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD–PhD Program, New York, New York
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yi Zhong
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | | | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Joao B. Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
12
|
Yang L, Han P, Cui T, Miao Y, Zhao T, Cui Z, Chen Y, Chi H, Zhang J, Zhang Y. M2 macrophage inhibits the antitumor effects of Lenvatinib on intrahepatic cholangiocarcinoma. Front Immunol 2023; 14:1251648. [PMID: 37809069 PMCID: PMC10556255 DOI: 10.3389/fimmu.2023.1251648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The relationship between the tumor microenvironment and the network of key signaling pathways in cancer plays a key role in the occurrence and development of tumors. Tumor-associated macrophages (TAMs) are important inflammatory cells in the tumor microenvironment and play an important role in tumorigenesis and progression. Macrophages in malignant tumors, mainly the M2 subtype, promote tumor progression by producing cytokines and down-regulating anti-inflammatory immune responses. Several articles have investigated the effect of macrophages on the sensitivity of cancer chemotherapeutic agents, but few such articles have been reported in cholangiocarcinoma, so we investigated the effect of M2 macrophage on the sensitivity of cholangiocarcinoma cells to Lenvatinib compared to M1. METHODS THP-1 monocytes were polarized to M0 macrophage by phorbol 12-myristate 13-acetate (PMA) and then induced to differentiate into M1 and M2 macrophages by LPS, IFN-γ and IL-4 and IL-13, respectively. Macrophages and cholangiocarcinoma cells were co-cultured prior to 24 hours of Lenvatinib administration, cancer cell apoptosis was detected by western-blot, FACS analysis of Annexin V and PI staining. Furthermore, we use xCELLigence RTCA SP Instrument (ACEA Bio-sciences) to monitor cell viability of Lenvatinib administration in co-culture of cholangiocarcinoma cells and macrophages. After tumorigenesis in immunodeficient mice, Lenvatinib was administered, and the effects of M2 on biological characteristics of cholangiocarcinoma cells were investigated by immuno-histochemistry. RESULTS mRNA and protein expression of M1 and M2 markers confirmed the polarization of THP-1 derived macrophages, which provided a successful and efficient model of monocyte polarization to TAMs. Lenvatinib-induced apoptosis of cholangiocarcinoma cells was significantly reduced when co-cultured with M2 macrophage, whereas apoptosis of cholangiocarcinoma cells co-cultured with M1 macrophage was increased. In the CDX model, Lenvatinib-induced cancer cell apoptosis was markedly reduced, and proliferative cells increased in the presence of M2 macrophages. Angiogenesis related factors was significantly increased in cholangiocarcinoma cells co-cultured with M2. CONCLUSION Compared with M1, M2 macrophages can inhibit the anti-tumor effect of Lenvatinib on cholangiocarcinoma through immune regulation, which may be related to the tumor angiogenesis factor effect of M2 macrophage.
Collapse
Affiliation(s)
- Long Yang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Pinsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Tao Cui
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Miao
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Tianyu Zhao
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Zilin Cui
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yijia Chen
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jieying Zhang
- Department of Tuina, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Tuina, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Katner S, Ginsburg EP, Hampton JD, Peterson EJ, Koblinski JE, Farrell NP. A Comparison of Di- and Trinuclear Platinum Complexes Interacting with Glycosaminoglycans for Targeted Chemotherapy. ACS Med Chem Lett 2023; 14:1224-1230. [PMID: 37736178 PMCID: PMC10510529 DOI: 10.1021/acsmedchemlett.3c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) and their associated proteins aid in tumor progression through modulation of biological events such as cell invasion, angiogenesis, metastasis, and immunological responses. Metalloshielding of the anionic heparan sulfate (HS) chains by cationic polynuclear platinum complexes (PPCs) prevents the HS from interacting with HS-associated proteins and thus diminishes the critical functions of HSPG. Studies herein exploring the PPC-HS interactions demonstrated that a series of PPCs varying in charge, nuclearity, distance between Pt centers, and hydrogen-bonding ability influence HS affinity. We report that the polyamine-linked complexes have high HS affinity and display excellent in vivo activity against breast cancer metastases and those arising in the bone and liver compared to carboplatin. Overall, the PPC-HS niche offers an attractive approach for targeting HSPG-expressing tumor cells.
Collapse
Affiliation(s)
- Samantha
J. Katner
- Department
of Biochemistry, Chemistry, and Geology, Minnesota State University, Mankato, Mankato, Minnesota 56001, United States
| | - Eric P. Ginsburg
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - James D. Hampton
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Erica J. Peterson
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Jennifer E. Koblinski
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department
of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Nicholas P. Farrell
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
14
|
Zhang AQ, Hostetler A, Chen LE, Mukkamala V, Abraham W, Padilla LT, Wolff AN, Maiorino L, Backlund CM, Aung A, Melo M, Li N, Wu S, Irvine DJ. Universal redirection of CAR T cells against solid tumours via membrane-inserted ligands for the CAR. Nat Biomed Eng 2023; 7:1113-1128. [PMID: 37291434 PMCID: PMC10504084 DOI: 10.1038/s41551-023-01048-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/01/2023] [Indexed: 06/10/2023]
Abstract
The effectiveness of chimaeric antigen receptor (CAR) T cell therapies for solid tumours is hindered by difficulties in the selection of an effective target antigen, owing to the heterogeneous expression of tumour antigens and to target antigen expression in healthy tissues. Here we show that T cells with a CAR specific for fluorescein isothiocyanate (FITC) can be directed against solid tumours via the intratumoural administration of a FITC-conjugated lipid-poly(ethylene)-glycol amphiphile that inserts itself into cell membranes. In syngeneic and human tumour xenografts in mice, 'amphiphile tagging' of tumour cells drove tumour regression via the proliferation and accumulation of FITC-specific CAR T cells in the tumours. In syngeneic tumours, the therapy induced the infiltration of host T cells, elicited endogenous tumour-specific T cell priming and led to activity against distal untreated tumours and to protection against tumour rechallenge. Membrane-inserting ligands for specific CARs may facilitate the development of adoptive cell therapies that work independently of antigen expression and of tissue of origin.
Collapse
Affiliation(s)
- Angela Q Zhang
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biophysics, Harvard University, Cambridge, MA, USA
| | - Alexander Hostetler
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura E Chen
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vainavi Mukkamala
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Lucia T Padilla
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra N Wolff
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | | | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Mariane Melo
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Na Li
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
15
|
Wu JT, Cheuk A, Isanogle K, Robinson C, Zhang X, Ceribelli M, Beck E, Shinn P, Klumpp-Thomas C, Wilson KM, McKnight C, Itkin Z, Sotome H, Hirai H, Calleja E, Wacheck V, Gouker B, Peer CJ, Corvalan N, Milewski D, Kim YY, Figg WD, Edmondson EF, Thomas CJ, Difilippantonio S, Wei JS, Khan J. Preclinical Evaluation of the FGFR-Family Inhibitor Futibatinib for Pediatric Rhabdomyosarcoma. Cancers (Basel) 2023; 15:4034. [PMID: 37627061 PMCID: PMC10452847 DOI: 10.3390/cancers15164034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. Despite decades of clinical trials, the overall survival rate for patients with relapsed and metastatic disease remains below 30%, underscoring the need for novel treatments. FGFR4, a receptor tyrosine kinase that is overexpressed in RMS and mutationally activated in 10% of cases, is a promising target for treatment. Here, we show that futibatinib, an irreversible pan-FGFR inhibitor, inhibits the growth of RMS cell lines in vitro by inhibiting phosphorylation of FGFR4 and its downstream targets. Moreover, we provide evidence that the combination of futibatinib with currently used chemotherapies such as irinotecan and vincristine has a synergistic effect against RMS in vitro. However, in RMS xenograft models, futibatinib monotherapy and combination treatment have limited efficacy in delaying tumor growth and prolonging survival. Moreover, limited efficacy is only observed in a PAX3-FOXO1 fusion-negative (FN) RMS cell line with mutationally activated FGFR4, whereas little or no efficacy is observed in PAX3-FOXO1 fusion-positive (FP) RMS cell lines with FGFR4 overexpression. Alternative treatment modalities such as combining futibatinib with other kinase inhibitors or targeting FGFR4 with CAR T cells or antibody-drug conjugate may be more effective than the approaches tested in this study.
Collapse
Affiliation(s)
- Jerry T. Wu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| | - Adam Cheuk
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| | - Kristine Isanogle
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (K.I.); (C.R.); (S.D.)
| | - Christina Robinson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (K.I.); (C.R.); (S.D.)
| | - Xiaohu Zhang
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Michele Ceribelli
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Erin Beck
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Paul Shinn
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Crystal McKnight
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Zina Itkin
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Hiroshi Sotome
- Taiho Pharmaceutical Co., Ltd., Tsukuba 300-0034, Japan; (H.S.); (H.H.)
| | - Hiroshi Hirai
- Taiho Pharmaceutical Co., Ltd., Tsukuba 300-0034, Japan; (H.S.); (H.H.)
| | | | - Volker Wacheck
- Taiho Oncology, Princeton, NJ 08540, USA; (E.C.); (V.W.)
| | - Brad Gouker
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (K.I.); (C.R.); (S.D.)
| | - Cody J. Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (N.C.)
| | - Natalia Corvalan
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (N.C.)
| | - David Milewski
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| | - Yong Y. Kim
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| | - William D. Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (N.C.)
| | - Elijah F. Edmondson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (K.I.); (C.R.); (S.D.)
| | - Craig J. Thomas
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA; (X.Z.); (M.C.); (E.B.); (P.S.); (C.K.-T.); (K.M.W.); (C.M.); (Z.I.); (C.J.T.)
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (K.I.); (C.R.); (S.D.)
| | - Jun S. Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.T.W.); (A.C.); (D.M.); (Y.Y.K.); (J.S.W.)
| |
Collapse
|
16
|
Zeng M, Ruan Z, Tang J, Liu M, Hu C, Fan P, Dai X. Generation, evolution, interfering factors, applications, and challenges of patient-derived xenograft models in immunodeficient mice. Cancer Cell Int 2023; 23:120. [PMID: 37344821 DOI: 10.1186/s12935-023-02953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Establishing appropriate preclinical models is essential for cancer research. Evidence suggests that cancer is a highly heterogeneous disease. This follows the growing use of cancer models in cancer research to avoid these differences between xenograft tumor models and patient tumors. In recent years, a patient-derived xenograft (PDX) tumor model has been actively generated and applied, which preserves both cell-cell interactions and the microenvironment of tumors by directly transplanting cancer tissue from tumors into immunodeficient mice. In addition to this, the advent of alternative hosts, such as zebrafish hosts, or in vitro models (organoids and microfluidics), has also facilitated the advancement of cancer research. However, they still have a long way to go before they become reliable models. The development of immunodeficient mice has enabled PDX to become more mature and radiate new vitality. As one of the most reliable and standard preclinical models, the PDX model in immunodeficient mice (PDX-IM) exerts important effects in drug screening, biomarker development, personalized medicine, co-clinical trials, and immunotherapy. Here, we focus on the development procedures and application of PDX-IM in detail, summarize the implications that the evolution of immunodeficient mice has brought to PDX-IM, and cover the key issues in developing PDX-IM in preclinical studies.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijing Ruan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxi Tang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Nyström NN, McRae SW, Martinez FM, Kelly JJ, Scholl TJ, Ronald JA. A Genetically Encoded Magnetic Resonance Imaging Reporter Enables Sensitive Detection and Tracking of Spontaneous Metastases in Deep Tissues. Cancer Res 2023; 83:673-685. [PMID: 36512633 DOI: 10.1158/0008-5472.can-22-2770] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Metastasis is the leading cause of cancer-related death. However, it remains a poorly understood aspect of cancer biology, and most preclinical cancer studies do not examine metastasis, focusing solely on the primary tumor. One major factor contributing to this paradox is a gap in available tools for accurate spatiotemporal measurements of metastatic spread in vivo. Here, our objective was to develop an imaging reporter system that offers sensitive three-dimensional (3D) detection of cancer cells at high resolutions in live mice. An organic anion-transporting polypeptide 1b3 (oatp1b3) was used as an MRI reporter gene, and its sensitivity was systematically optimized for in vivo tracking of viable cancer cells in a spontaneous metastasis model. Metastases with oatp1b3-MRI could be observed at the single lymph node level and tracked over time as cancer cells spread to multiple lymph nodes and different organ systems in individual animals. While initial single lesions were successfully imaged in parallel via bioluminescence, later metastases were largely obscured by light scatter from the initial node. Importantly, MRI could detect micrometastases in lung tissue comprised on the order of 1,000 cancer cells. In summary, oatp1b3-MRI enables longitudinal tracking of cancer cells with combined high resolution and high sensitivity that provides 3D spatial information and the surrounding anatomical context. SIGNIFICANCE An MRI reporter gene system optimized for tracking metastasis in deep tissues at high resolutions and able to detect spontaneous micrometastases in lungs of mice provides a useful tool for metastasis research.
Collapse
Affiliation(s)
- Nivin N Nyström
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Sean W McRae
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Francisco M Martinez
- Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - John J Kelly
- Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physics and Astronomy, Western University, London, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - John A Ronald
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
18
|
Abstract
The genomics and pathways governing metastatic dormancy are critically important drivers of long-term patient survival given the considerable portion of cancers that recur aggressively months to years after initial treatments. Our understanding of dormancy has expanded greatly in the last two decades, with studies elucidating that the dormant state is regulated by multiple genes, microenvironmental (ME) interactions, and immune components. These forces are exerted through mechanisms that are intrinsic to the tumor cell, manifested through cross-talk between tumor and ME cells including those from the immune system, and regulated by angiogenic processes in the nascent micrometastatic niche. The development of new in vivo and 3D ME models, as well as enhancements to decades-old tumor cell pedigree models that span the development of metastatic dormancy to aggressive growth, has helped fuel what arguably is one of the least understood areas of cancer biology that nonetheless contributes immensely to patient mortality. The current review focuses on the genes and molecular pathways that regulate dormancy via tumor-intrinsic and ME cells, and how groups have envisioned harnessing these therapeutically to benefit patient survival.
Collapse
|
19
|
Ramos R, Cabré E, Vinyals A, Lorenzo D, Ferreres JR, Varela M, Gomá M, Paules MJ, Gutierrez C, Piulats JM, Fabra À, Caminal JM. Orthotopic murine xenograft model of uveal melanoma with spontaneous liver metastasis. Melanoma Res 2023; 33:1-11. [PMID: 36302215 DOI: 10.1097/cmr.0000000000000860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Uveal melanoma is the most common intraocular malignancy in adults. Despite the effective primary treatment, up to 50% of patients with uveal melanoma will develop metastatic lesions mainly in the liver, which are resistant to conventional chemotherapy and lead to patient's death. To date, no orthotopic murine models of uveal melanoma which can develop spontaneous metastasis are available for preclinical studies. Here, we describe a spontaneous metastatic model of uveal melanoma based on the orthotopic injection of human uveal melanoma cells into the suprachoroidal space of immunodeficient NSG mice. All mice injected with bioluminescent OMM2.5 ( n = 23) or MP41 ( n = 19) cells developed a primary tumor. After eye enucleation, additional bioluminescence signals were detected in the lungs and in the liver. At necropsy, histopathological studies confirmed the presence of lung metastases in 100% of the mice. Liver metastases were assessed in 87 and in 100% of the mice that received OMM2.5 or MP41 cells, respectively. All tumors and metastatic lesions expressed melanoma markers and the signaling molecules insulin-like growth factor type I receptor and myristoylated alanine-rich C-kinase substrate, commonly activated in uveal melanoma. The novelty of this orthotopic mouse xenograft model is the development of spontaneous metastases in the liver from the primary site, reproducing the organoespecificity of metastasis observed in uveal melanoma patients. The faster growth and the high metastatic incidence may be attributed at least in part, to the severe immunodeficiency of NSG mice. This model may be useful for preclinical testing of targeted therapies with potential uveal melanoma antimetastatic activity and to study the mechanisms involved in liver metastasis.
Collapse
Affiliation(s)
- Raquel Ramos
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| | - Eduard Cabré
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| | - Antònia Vinyals
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| | - Daniel Lorenzo
- Ophthalmology Department, Spanish Ocular Oncology National referal center (CSUR) and Ocular Translational Eye Research Unit, Hospital Universitari de Bellvitge (HUB)-IDIBELL
| | | | - Mar Varela
- Pathology Department, Hospital Universitari de Bellvitge
| | - Montse Gomá
- Pathology Department, Hospital Universitari de Bellvitge
| | | | - Cristina Gutierrez
- Radiotherapy Department, Institut Catalá d'Oncologia (ICO), Hospital Duran Reynals
| | - Josep M Piulats
- Medical Oncology, Institut Catalá d'Oncologia (ICO), Hospital Duran Reynals, Barcelona, Spain
| | - Àngels Fabra
- Ophthalmology Department, Spanish Ocular Oncology National referal center (CSUR) and Ocular Translational Eye Research Unit, Hospital Universitari de Bellvitge (HUB)-IDIBELL
| | - José M Caminal
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| |
Collapse
|
20
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
21
|
Morais SR, K C, Jeyabalan S, Wong LS, Sekar M, Chidambaram K, Gan SH, Begum MY, Izzati Mat Rani NN, Subramaniyan V, Fuloria S, Fuloria NK, Safi SZ, Sathasivam KV, Selvaraj S, Sharma VK. Anticancer potential of Spirastrella pachyspira (marine sponge) against SK-BR-3 human breast cancer cell line and in silico analysis of its bioactive molecule sphingosine. FRONTIERS IN MARINE SCIENCE 2022; 9. [DOI: 10.3389/fmars.2022.950880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
The rate of breast cancer is rapidly increasing and discovering medications with therapeutic effects play a significant role in women’s health. Drugs derived from marine sponges have recently received FDA approval for the treatment of malignant tumors, including metastatic breast cancer. Spirastrella pachyspira (marine sponge) is mainly obtained from the western coastal region of India, and its anticancer potential has not been explored. Hence, the present study aimed to evaluate the anticancer potential of Spirastrella pachyspira extracts and its bioactive molecule sphingosine. The extracts were prepared using hexane, chloroform, ethyl acetate, and ethanol. The cytotoxic potential of the extracts were determined by an in-vitro MTT assay using SK-BR-3 cancer cell line. Subsequently, acute toxicity investigation was conducted in Swiss albino mice. Then, the anticancer effects of the extract was investigated in a xenograft model of SK-BR-3 caused breast cancer. DAPI staining was used to assess the extract’s ability to induce apoptosis. In addition, in-silico study was conducted on sphingosine with extracellular site of HER2. The ethyl acetate extract of Spirastrella pachyspira (IC50: 0.04 µg/ml) showed comparable anticancer effects with standard doxorubicin (IC50: 0.054 µg/ml). The LD50 of the extracts in acute toxicity testing was fund to be 2000 mg/kg b.wt. The survival index of mice in ethanol extract was 83.33%, whereas that of standard doxirubicin was 100%, indicating that ethyl acetate extract Spirastrella pachyspira has good antiproliferative/cytotoxic properties. The results were well comparable with standard doxorubicin. Further, the docking studies of sphingosine against HER2 demonstrated that the bioactive molecule engage with the extracellular region of HER2 and block the protein as also shown by standard trastuzumab. The findings of this research suggest that Spirastrella pachyspira and sphingosine may be potential candidate for the treatments of breast cancer, particularly for HER2 positive cells. Overall, the present results demonstrate that sphingosine looks like a promising molecule for the development of new drugs for the treatment of cancer. However, in order to carefully define the sphingosine risk-benefit ratio, future research should focus on evaluating in-vivo and clinical anticancer studies. This will involve balancing both their broad-spectrum effectiveness and their toxicity.
Collapse
|
22
|
Ambur Sankaranarayanan R, Florea A, Allekotte S, Vogg ATJ, Maurer J, Schäfer L, Bolm C, Terhorst S, Classen A, Bauwens M, Morgenroth A, Mottaghy FM. PARP targeted Auger emitter therapy with [ 125I]PARPi-01 for triple-negative breast cancer. EJNMMI Res 2022; 12:60. [PMID: 36104637 PMCID: PMC9474773 DOI: 10.1186/s13550-022-00932-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) lacks biomarkers for targeted therapy. Auger emitters display the best therapeutic effect, if delivered directly into the nucleus proximal to DNA. The nuclear protein Poly (ADP-ribose)-Polymerase 1 (PARP1) is a suitable target against which few inhibitors (PARPi) are clinically approved for treatment of breast cancer with germline BRCA mutation (BRCAmut). In this study, a theranostic approach was investigated in a TNBC xenografted mouse model by radiolabelling a close derivative of a PARPi Olaparib (termed PARPi-01) with the Auger emitters 123/125I. METHODS TNBC cell line MDA-MB-231 was subcutaneously implanted in female NOD/SCID mice. At a tumour size of ~ 500mm3, [123I]PARPi-01 was administered intravenously, and SPECT/CT images were obtained at 4 h or 24 h post injection (p.i). A therapy study was performed with [125I]PARPi-01 in 4 doses (10 MBq/dose, 10 days apart). Tumour growth was monitored by CT scans longitudinally once per week. Upon reaching study endpoint, tissues were harvested and stained with TUNEL assay for detection of apoptosis induction. RESULTS SPECT/CT images showed rapid hepatobiliary tracer clearance at 4 h post injection (p.i.). Retention in thyroid at 24 h p.i. suggested tracer deiodination in vivo. The tumour and liver uptake were 0.2%ID/g and 2.5%ID/g, respectively. The tumour: blood ratio was 1.3. Endogenous therapy induced a significant delay in tumour growth (doubling time increased from 8.3 to 14.2 days), but no significant survival advantage. Significantly higher apoptosis ratio was observed in [125I]PARPi-01 treated tumour tissues. No radiotoxicity was detected in the liver and thyroid. CONCLUSION Considering the radio-cytotoxic effect in the tumour tissue and a delay on tumour doubling time, [125I]PARPi-01 presents a potential radiotherapeutics for treatment of TNBC. Improvements to overcome the suboptimal pharmacokinetics are necessary for its potential clinical application.
Collapse
Affiliation(s)
- Ramya Ambur Sankaranarayanan
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexandru Florea
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany ,grid.412966.e0000 0004 0480 1382Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre (MUMC+), 6229HX Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Susanne Allekotte
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas T. J. Vogg
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Jochen Maurer
- grid.1957.a0000 0001 0728 696XClinic for Gynaecology and Obstetrics, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Laura Schäfer
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Carsten Bolm
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Steven Terhorst
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Arno Classen
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Bauwens
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany ,grid.412966.e0000 0004 0480 1382Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre (MUMC+), 6229HX Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Research School NUTRIM, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Agnieszka Morgenroth
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Felix M. Mottaghy
- grid.1957.a0000 0001 0728 696XDepartment of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany ,grid.412966.e0000 0004 0480 1382Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre (MUMC+), 6229HX Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
| |
Collapse
|
23
|
Wang S, Chen L, Feng Y, Yin T, Yu J, De Keyzer F, Peeters R, Van Ongeval C, Bormans G, Swinnen J, Soete J, Wevers M, Li Y, Ni Y. Development and characterization of a rat brain metastatic tumor model by multiparametric magnetic resonance imaging and histomorphology. Clin Exp Metastasis 2022; 39:479-493. [PMID: 35218457 DOI: 10.1007/s10585-022-10155-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
To facilitate the development of new brain metastasis (BM) treatment, an easy-to-use and clinically relevant animal model with imaging platform is needed. Rhabdomyosarcoma BM was induced in WAG/Rij rats. Post-implantation surveillance and characterizations were systematically performed with multiparametric MRI including 3D T1 and T2 weighted imaging, diffusion-weighted imaging (DWI), T1 and T2 mapping, and perfusion-weighted imaging (PWI), which were validated by postmortem digital radiography (DR), µCT angiography and histopathology. The translational potential was exemplified by the application of a vascular disrupting agent (VDA). BM was successfully induced in most rats of both genders (18/20). Multiparametric MRI revealed significantly higher T2 value, pre-contrast-enhanced (preCE) T1 value, DWI-derived apparent diffusion coefficient (ADC) and CE ratio, but a lower post-contrast-enhanced (postCE) T1 value in BM lesions than in adjacent brain (p < 0.01). PWI showed the dynamic and higher contrast agent uptake in the BM compared with the adjacent brain. DR, µCT and histopathology characterized the BM as hypervascular tumors. After VDA treatment, the BM showed drug-related perfusion changes and partial necrosis as evidenced by anatomical, functional MRI parameters and postmortem findings. The present BM model and imaging modalities represent a feasible and translational platform for developing BM-targeting therapeutics.
Collapse
Affiliation(s)
- Shuncong Wang
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Lei Chen
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Yuanbo Feng
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Ting Yin
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000, Leuven, Belgium.,MR Collaborations, Siemens Healthineers Ltd, Shanghai, China
| | - Jie Yu
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Frederik De Keyzer
- Department of Radiology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Chantal Van Ongeval
- Department of Radiology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Guy Bormans
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Johan Swinnen
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Jeroen Soete
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001, Leuven, Belgium
| | - Martine Wevers
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001, Leuven, Belgium
| | - Yue Li
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000, Leuven, Belgium. .,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000, Leuven, Belgium. .,Department of Radiology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
24
|
Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 2022; 20:206. [PMID: 35538576 PMCID: PMC9088152 DOI: 10.1186/s12967-022-03405-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
The establishing of the first cancer models created a new perspective on the identification and evaluation of new anti-cancer therapies in preclinical studies. Patient-derived xenograft models are created by tumor tissue engraftment. These models accurately represent the biology and heterogeneity of different cancers and recapitulate tumor microenvironment. These features have made it a reliable model along with the development of humanized models. Therefore, they are used in many studies, such as the development of anti-cancer drugs, co-clinical trials, personalized medicine, immunotherapy, and PDX biobanks. This review summarizes patient-derived xenograft models development procedures, drug development applications in various cancers, challenges and limitations.
Collapse
Affiliation(s)
- Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Muhammadnejad
- Cell-Based Therapies Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Allen V, Coulombe J, Zhao H, Kreps LM, Cook DP, Pryce B, Clemons M, Vanderhyden BC, Gray DA, Addison CL. VIVA1: a more invasive subclone of MDA-MB-134VI invasive lobular carcinoma cells with increased metastatic potential in xenograft models. Br J Cancer 2022; 127:56-68. [PMID: 35318435 PMCID: PMC9276762 DOI: 10.1038/s41416-022-01778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/28/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Invasive lobular carcinoma (ILC) is the second most common type of breast cancer. As few tools exist to study ILC metastasis, we isolated ILC cells with increased invasive properties to establish a spontaneously metastasising xenograft model. METHODS MDA-MB-134VI ILC cells were placed in transwells for 7 days. Migrated cells were isolated and expanded to create the VIVA1 cell line. VIVA1 cells were compared to parental MDA-MB-134VI cells in vitro for ILC marker expression and relative proliferative and invasive ability. An intraductally injected orthotopic xenograft model was used to assess primary and metastatic tumour growth in vivo. RESULTS Similar to MDA-MB-134VI, VIVA1 cells retained expression of oestrogen receptor (ER) and lacked expression of E-cadherin, however showed increased invasion in vitro. Following intraductal injection, VIVA1 and MDA-MB-134VI cells had similar primary tumour growth and survival kinetics. However, macrometastases were apparent in 7/10 VIVA1-injected animals. Cells from a primary orthotopic tumour (VIVA-LIG43) were isolated and showed similar proliferative rates but were also more invasive than parental cells. Upon re-injection intraductally, VIVA-LIG43 cells had more rapid tumour growth with similar metastatic incidence and location. CONCLUSIONS We generated a new orthotopic spontaneously metastasising xenograft model for ER+ ILC amenable for the study of ILC metastasis.
Collapse
Affiliation(s)
- Victoria Allen
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Josée Coulombe
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada
| | - Huijun Zhao
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada
| | - Lauren M Kreps
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - David P Cook
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Benjamin Pryce
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Mark Clemons
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Medicine, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Barbara C Vanderhyden
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Douglas A Gray
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Christina L Addison
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1H 8M5, ON, Canada. .,Department of Medicine, University of Ottawa, Ottawa, K1H 8M5, ON, Canada.
| |
Collapse
|
26
|
Bitsouni V, Tsilidis V. Mathematical modeling of tumor-immune system interactions: the effect of rituximab on breast cancer immune response. J Theor Biol 2022; 539:111001. [PMID: 34998860 DOI: 10.1016/j.jtbi.2021.111001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
tBregs are a newly discovered subcategory of B regulatory cells, which are generated by breast cancer, resulting in the increase of Tregs and therefore in the death of NK cells. In this study, we use a mathematical and computational approach to investigate the complex interactions between the aforementioned cells as well as CD8+ T cells, CD4+ T cells and B cells. Furthermore, we use data fitting to prove that the functional response regarding the lysis of breast cancer cells by NK cells has a ratio-dependent form. Additionally, we include in our model the concentration of rituximab - a monoclonal antibody that has been suggested as a potential breast cancer therapy - and test its effect, when the standard, as well as experimental dosages, are administered.
Collapse
Affiliation(s)
- Vasiliki Bitsouni
- Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis, GR-15784 Athens, Greece; School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous Str., GR-26335 Patras, Greece.
| | - Vasilis Tsilidis
- School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous Str., GR-26335 Patras, Greece.
| |
Collapse
|
27
|
Hampton JD, Peterson EJ, Katner SJ, Turner TH, Alzubi MA, Harrell JC, Dozmorov MG, Turner JBM, Gigliotti PJ, Kraskauskiene V, Shende M, Idowu MO, Puchallapalli M, Hu B, Litovchick L, Katsuta E, Takabe K, Farrell NP, Koblinski JE. Exploitation of sulfated glycosaminoglycan status for precision medicine of Triplatin in triple-negative breast cancer. Mol Cancer Ther 2021; 21:271-281. [PMID: 34815360 DOI: 10.1158/1535-7163.mct-20-0969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer lacking targetable biomarkers. TNBC is known to be most aggressive, and when metastatic is often drug resistant and uncurable. Biomarkers predicting response to therapy improve treatment decisions and allow personalized approaches for TNBC patients. This study explores sulfated glycosaminoglycan (sGAG) levels as a predictor of TNBC response to platinum therapy. sGAG levels were quantified in three distinct TNBC tumor models including cell line-derived, patient-derived xenograft (PDX) tumors, and isogenic models deficient in sGAG biosynthesis. The in vivo antitumor efficacy of Triplatin, a sGAG-directed platinum agent, was compared in these models to the clinical platinum agent, carboplatin. We determined that >40% of TNBC PDX tissue microarray samples have high levels of sGAGs. The in vivo accumulation of Triplatin in tumors as well as antitumor efficacy of Triplatin positively correlated with sGAG levels on tumor cells, whereas carboplatin followed the opposite trend. In carboplatin-resistant tumor models expressing high levels of sGAGs, Triplatin decreased primary tumor growth, reduced lung metastases, and inhibited metastatic growth in lungs, liver, and ovaries. sGAG levels served as a predictor of Triplatin sensitivity in TNBC. Triplatin may be particularly beneficial in treating patients with chemotherapy-resistant tumors who have evidence of residual disease after standard neoadjuvant chemotherapy. More effective neoadjuvant and adjuvant treatment will likely improve clinical outcome of TNBC.
Collapse
Affiliation(s)
| | | | - Samantha J Katner
- Biochemistry, Chemistry, and Geology, Minnesota State University, Mankato
| | | | | | | | | | | | | | | | | | - Michael O Idowu
- Pathology, Virginia Commonwealth University Massey Cancer Center
| | | | - Bin Hu
- Department of Pathology, Virginia Commonwealth University
| | | | | | - Kazuaki Takabe
- Surgical Oncology, Roswell Park Comprehensive Cancer Center
| | | | | |
Collapse
|
28
|
Block CJ, Mitchell AV, Wu L, Glassbrook J, Craig D, Chen W, Dyson G, DeGracia D, Polin L, Ratnam M, Gibson H, Wu G. RNA binding protein RBMS3 is a common EMT effector that modulates triple-negative breast cancer progression via stabilizing PRRX1 mRNA. Oncogene 2021; 40:6430-6442. [PMID: 34608266 PMCID: PMC9421946 DOI: 10.1038/s41388-021-02030-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) has been recognized as a driving force for tumor progression in breast cancer. Recently, our group identified the RNA Binding Motif Single Stranded Interacting Protein 3 (RBMS3) to be significantly associated with an EMT transcriptional program in breast cancer. Additional expression profiling demonstrated that RBMS3 was consistently upregulated by multiple EMT transcription factors and correlated with mesenchymal gene expression in breast cancer cell lines. Functionally, RBMS3 was sufficient to induce EMT in two immortalized mammary epithelial cell lines. In triple-negative breast cancer (TNBC) models, RBMS3 was necessary for maintaining the mesenchymal phenotype and invasion and migration in vitro. Loss of RBMS3 significantly impaired both tumor progression and spontaneous metastasis in vivo. Using a genome-wide approach to interrogate mRNA stability, we found that ectopic expression of RBMS3 upregulates many genes that are resistant to degradation following transcriptional blockade by actinomycin D (ACTD). Specifically, RBMS3 was shown to interact with the mRNA of EMT transcription factor PRRX1 and promote PRRX1 mRNA stability. PRRX1 is required for RBMS3-mediated EMT and is partially sufficient to rescue the effect of RBMS3 knockdown in TNBC cell lines. Together, this study identifies RBMS3 as a novel and common effector of EMT, which could be a promising therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- C. James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Allison V. Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA.,Department of Molecular and Cellular Biology, McNair Medical Institute Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - James Glassbrook
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Douglas Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Gregory Dyson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Donald DeGracia
- Department of Physiology, Wayne State University school of Medicine, Detroit, MI 48201, USA
| | - Lisa Polin
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Manohar Ratnam
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
29
|
Abstract
Modeling of metastatic disease in animal models is a critical resource to study the complexity of this multi-step process in a relevant system. Available models of metastatic disease to the brain are still far from ideal but they allow to address specific aspects of the biology or mimic clinically relevant scenarios. We not only review experimental models and their potential improvements but also discuss specific answers that could be obtained from them on unsolved aspects of clinical management.
Collapse
Affiliation(s)
- Lauritz Miarka
- Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
30
|
Preclinical pharmacology modeling of chimeric antigen receptor T therapies. Curr Opin Pharmacol 2021; 61:49-61. [PMID: 34619442 DOI: 10.1016/j.coph.2021.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have largely been successful in treating hematological malignancies in the clinic but have not been as effective in treating solid tumors, in part, owing to poor access and the immunosuppressive tumor microenvironment. In addition, CAR-T therapy can cause potentially life-threatening side effects, including cytokine release syndrome and neurotoxicity. Current preclinical testing of CAR-T therapy efficacy is typically performed in mouse tumor models, which often fails to predict toxicity. Recent developments in humanized models and transgenic mice as well as in vitro three-dimensional organoids in early development and nonhuman primate models are being adopted for CAR-T cell efficacy and toxicity assessment. However, because no single model perfectly recapitulates the human immune system and tumor microenvironment, careful model selection based on their respective pros and cons is crucial for adequate evaluation of different CAR-T treatments, so that their clinical development can be better supported.
Collapse
|
31
|
Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling. Acta Neuropathol 2021; 142:537-564. [PMID: 34302498 PMCID: PMC8357694 DOI: 10.1007/s00401-021-02347-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3.
Collapse
|
32
|
Price MJ, Baëta C, Dalton TE, Nguyen A, Lavau C, Pennington Z, Sciubba DM, Goodwin CR. Animal Models of Metastatic Lesions to the Spine: a Focus on Epidural Spinal Cord Compression. World Neurosurg 2021; 155:122-134. [PMID: 34343682 DOI: 10.1016/j.wneu.2021.07.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
Epidural spinal cord compression (ESCC) secondary to spine metastases is one of the most devastating sequelae of primary cancer as it may lead to muscle weakness, paresthesia, pain, and paralysis. Spine metastases occur through a multi-step process that can result in eventual ESCC; however, the lack of a preclinical model to effectively recapitulate each step of this metastatic cascade and the symptom burden of ESCC has limited our understanding of this disease process. In this review, we discuss animal models that best recapitulate ESCC; we start with a broad discussion of commonly used models of bone metastasis and end with a focused discussion of models used to specifically study ESCC. Orthotopic models offer the most authentic recapitulation of metastasis development; however, they rarely result in symptomatic ESCC and are challenging to replicate. Conversely, models that involve injection of tumor cells directly into the bloodstream or bone better mimic the symptoms of ESCC; however, they provide limited insight into the epithelial to mesenchymal transition (EMT) and natural hematogenous spread of tumor cell. Therefore, until an ideal model is created, it is critical to select an animal model that is specifically designed to answer the scientific question of interest.
Collapse
Affiliation(s)
- Meghan J Price
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - César Baëta
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Tara E Dalton
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Annee Nguyen
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Catherine Lavau
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zach Pennington
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Northwell Health, Manhasset, New York, USA
| | - C Rory Goodwin
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
33
|
Liu S, Nyström NN, Kelly JJ, Hamilton AM, Fu Y, Ronald JA. Molecular Imaging Reveals a High Degree of Cross-Seeding of Spontaneous Metastases in a Novel Mouse Model of Synchronous Bilateral Breast Cancer. Mol Imaging Biol 2021; 24:104-114. [PMID: 34312806 PMCID: PMC8760205 DOI: 10.1007/s11307-021-01630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
Purpose Synchronous bilateral breast cancer (SBBC) patients present with cancer in both breasts at the time of diagnosis or within a short time interval. They show higher rates of metastasis and lower overall survival compared to women with unilateral breast cancer. Here we established the first preclinical SBBC model and used molecular imaging to visualize the patterns of metastasis from each primary tumor. Procedures We engineered human breast cancer cells to express either Akaluc or Antares2 for bioluminescence imaging (BLI) and tdTomato or zsGreen for ex vivo fluorescence microscopy. Both cell populations were implanted into contralateral mammary fat pads of mice (n=10), and dual-BLI was performed weekly for up to day 29 (n=3), 38 (n=4), or 42 (n=3). Primary tumors and lungs were fixed, and ex vivo fluorescence microscopy was used to analyze the cellular makeup of micrometastases. Results Signal from both Antares2 and Akaluc was first detected in the lungs on day 28 and was present in 9 of 10 mice at endpoint. Ex vivo fluorescence microscopy of the lungs revealed that for mice sacrificed on day 38, a significant percentage of micrometastases were composed of cancer cells from both primary tumors (mean 37%; range 27 to 45%), while two mice sacrificed on day 42 showed percentages of 51% and 70%. Conclusions A high degree of metastatic cross-seeding of cancer cells derived from bilateral tumors may contribute to faster metastatic growth and intratumoral heterogeneity. We posit that our work will help understand treatment resistance and optimal planning of SBBC treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01630-z.
Collapse
Affiliation(s)
- Shirley Liu
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Nivin N Nyström
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John J Kelly
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Amanda M Hamilton
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Yanghao Fu
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John A Ronald
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
34
|
Fabian KP, Padget MR, Donahue RN, Solocinski K, Robbins Y, Allen CT, Lee JH, Rabizadeh S, Soon-Shiong P, Schlom J, Hodge JW. PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations. J Immunother Cancer 2021; 8:jitc-2019-000450. [PMID: 32439799 PMCID: PMC7247398 DOI: 10.1136/jitc-2019-000450] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Although immune checkpoint inhibitors have revolutionized cancer treatment, clinical benefit with this class of agents has been limited to a subset of patients. Hence, more effective means to target tumor cells that express immune checkpoint molecules should be developed. For the first time, we report a novel natural killer (NK) cell line, programmed death-ligand 1 (PD-L1) targeting high-affinity natural killer (t-haNK), which was derived from NK-92 and was engineered to express high-affinity CD16, endoplasmic reticulum-retained interleukin (IL)-2, and a PD-L1-specific chimeric antigen receptor (CAR). We show that PD-L1 t-haNK cells also retained the expression of native NK receptors and carried a high content of granzyme and perforin granules. Methods NanoString, flow cytometry, and immunofluorescence analyses were performed to characterize the phenotype of irradiated PD-L1 t-haNK cells. In vitro PD-L1 t-haNK cell activity against cancer cell lines and human peripheral blood mononuclear cells (PBMCs) was determined via flow-based and 111In-release killing assays. The antitumor effect of PD-L1 t-haNK cells in vivo was investigated using MDA-MB-231, H460, and HTB1 xenograft models in NOD-scid IL2Rgammanull (NSG) mice. Additionally, the antitumor effect of PD-L1 t-haNK cells, in combination with anti-PD-1 and N-803, an IL-15 superagonist, was evaluated using mouse oral cancer 1 syngeneic model in C57BL/6 mice. Results We show that PD-L1 t-haNK cells expressed PD-L1-targeting CAR and CD16, retained the expression of native NK receptors, and carried a high content of granzyme and perforin granules. In vitro, we demonstrate the ability of irradiated PD-L1 t-haNK cells to lyse 20 of the 20 human cancer cell lines tested, including triple negative breast cancer (TNBC) and lung, urogenital, and gastric cancer cells. The cytotoxicity of PD-L1 t-haNK cells was correlated to the PD-L1 expression of the tumor targets and can be improved by pretreating the targets with interferon (IFN)-γ. In vivo, irradiated PD-L1 t-haNK cells inhibited the growth of engrafted TNBC and lung and bladder tumors in NSG mice. The combination of PD-L1 t-haNK cells with N-803 and anti-PD-1 antibody resulted in superior tumor growth control of engrafted oral cavity squamous carcinoma tumors in C57BL/6 mice. In addition, when cocultured with human PBMCs, PD-L1 t-haNK cells preferentially lysed the myeloid-derived suppressor cell population but not other immune cell types. Conclusion These studies demonstrate the antitumor efficacy of PD-L1 t-haNK cells and provide a rationale for the potential use of these cells in clinical studies.
Collapse
Affiliation(s)
- Kellsye P Fabian
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Michelle R Padget
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Kristen Solocinski
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Yvette Robbins
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland, USA
| | - John H Lee
- ImmunityBio, Santa Cruz, California, USA
| | - Shahrooz Rabizadeh
- NantOmics, Culver City, California, USA.,ImmunityBio, Culver City, California, USA
| | - Patrick Soon-Shiong
- NantOmics, Culver City, California, USA.,ImmunityBio, Culver City, California, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
35
|
Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021; 173:306-330. [PMID: 33798642 PMCID: PMC8191594 DOI: 10.1016/j.addr.2021.03.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Even given recent advances in nanomedicine development of breast cancer treatment in recent years and promising results in pre-clinical models, cancer nanomedicines often fail at the clinical trial stage. Limitations of conventional in vitro models include the lack of representation of the stromal population, the absence of a three-dimensional (3D) structure, and a poor representation of inter-tumor and intra-tumor heterogeneity. Herein, we review those cell culture strategies that aim to overcome these limitations, including cell co-cultures, advanced 3D cell cultures, patient-derived cells, bioprinting, and microfluidics systems. The in vivo evaluation of nanomedicines must consider critical parameters that include the enhanced permeability and retention effect, the host's immune status, and the site of tumor implantation. Here, we critically discuss the advantages and limitations of current in vivo models and report how the improved selection and application of breast cancer models can improve the clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Paz Boix-Montesinos
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Paula M Soriano-Teruel
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain; Centro de Investigación Príncipe Felipe, Targeted Therapies on Cancer and Inflammation Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Ana Armiñán
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Mar Orzáez
- Centro de Investigación Príncipe Felipe, Targeted Therapies on Cancer and Inflammation Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
36
|
Bushnell GG, Deshmukh AP, den Hollander P, Luo M, Soundararajan R, Jia D, Levine H, Mani SA, Wicha MS. Breast cancer dormancy: need for clinically relevant models to address current gaps in knowledge. NPJ Breast Cancer 2021; 7:66. [PMID: 34050189 PMCID: PMC8163741 DOI: 10.1038/s41523-021-00269-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/08/2021] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in the USA. Although advances in treatment over the past several decades have significantly improved the outlook for this disease, most women who are diagnosed with estrogen receptor positive disease remain at risk of metastatic relapse for the remainder of their life. The cellular source of late relapse in these patients is thought to be disseminated tumor cells that reactivate after a long period of dormancy. The biology of these dormant cells and their natural history over a patient's lifetime is largely unclear. We posit that research on tumor dormancy has been significantly limited by the lack of clinically relevant models. This review will discuss existing dormancy models, gaps in biological understanding, and propose criteria for future models to enhance their clinical relevance.
Collapse
Affiliation(s)
- Grace G Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Abhijeet P Deshmukh
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Luo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics and Departments of Physics and Bioengineering, Northeastern University, Boston, MA, USA.
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
38
|
Scopim-Ribeiro R, Lizardo MM, Zhang HF, Dhez AC, Hughes CS, Sorensen PH. NSG Mice Facilitate ex vivo Characterization of Ewing Sarcoma Lung Metastasis Using the PuMA Model. Front Oncol 2021; 11:645757. [PMID: 33828989 PMCID: PMC8019912 DOI: 10.3389/fonc.2021.645757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ewing sarcoma (EwS) is a highly malignant bone and soft tissue tumor primarily affecting children and young adults. While most patients initially respond well to conventional front-line therapy, frequent metastasis results in poor 5-year overall survival rates for this disease. Accordingly, there is a critical need to develop better models to understand EwS metastasis. We and others previously used the ex vivo pulmonary metastasis assay (PuMA) to study lung metastasis in solid tumors including osteosarcoma (OS), but this technique has to date not been achievable for EwS. PuMA involves tail vein injection of fluorescent tumor cells into NOD-SCID mice, followed by their visualization in long-term cultures of tumor-bearing lung explants. Here we demonstrate successful implementation of PuMA for EwS cells using NOD-SCID-IL2 receptor gamma null (NSG) immunocompromised mice, which demonstrated high engraftment of EwS cell lines compared to NOD-SCID mice. This may be linked to immune permissiveness required by EwS cells, as increased basal cytotoxicity of EwS cells was observed in NOD-SCID compared to NSG lung sections, possibly due to the absence of natural killer (NK) cell activity in the latter. Together, our data demonstrate the utility of NSG mice for PuMA modeling of EwS lung metastasis.
Collapse
Affiliation(s)
| | | | - Hai-Feng Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Anne-Chloé Dhez
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Spadazzi C, Mercatali L, Esposito M, Wei Y, Liverani C, De Vita A, Miserocchi G, Carretta E, Zanoni M, Cocchi C, Bongiovanni A, Recine F, Kang Y, Ibrahim T. Trefoil factor-1 upregulation in estrogen-receptor positive breast cancer correlates with an increased risk of bone metastasis. Bone 2021; 144:115775. [PMID: 33249323 DOI: 10.1016/j.bone.2020.115775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Bone is one of the most preferred sites of metastatic spread from different cancer types, including breast cancer. However, different breast cancer subtypes exhibit distinct metastatic behavior in terms of kinetics and anatomic sites of relapse. Despite advances in the diagnosis, the identification of patients at high-risk of bone recurrence is still an unmet clinical need. We conducted a retrospective analysis, by gene expression and immunohistochemical assays, on 90 surgically resected breast cancer samples collected from patients who experienced no evidence of distant metastasis, bone or visceral metastasis in order to identify a primary tumor-derived marker of bone recurrence. We identified trefoil factor-1 (pS2 or TFF1) as strictly correlated to bone metastasis from ER+ breast cancer. In silico analysis was carried out to confirm this observation, linking gene expression data with clinical characteristics available from public clinical datasets. Then, we investigated TFF1 function in ER+ breast cancer tumorigenesis and bone metastasis through xenograft in vivo models of MCF 7 breast cancer with gain and loss of function of TFF1. As a response to microenvironmental features in primary tumors, TFF1 expression could modulate ER+ breast cancer growth, leading to a less proliferative phenotype. Our results showed it may not play a role in late stages of bone metastasis, however further studies are warranted to understand whether it could contribute in the early-stages of the metastatic cascade. In conclusion, TFF1 upregulation in primary ER+ breast cancer could be useful to identify patients at high-risk of bone metastasis. This could help clinicians in the identification of patients who likely can develop bone metastasis and who could benefit from personalized treatments and follow-up strategies to prevent metastatic disease.
Collapse
Affiliation(s)
- Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | | | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Claudia Cocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| |
Collapse
|
40
|
Lee MW, Miljanic M, Triplett T, Ramirez C, Aung KL, Eckhardt SG, Capasso A. Current methods in translational cancer research. Cancer Metastasis Rev 2021; 40:7-30. [PMID: 32929562 PMCID: PMC7897192 DOI: 10.1007/s10555-020-09931-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Recent developments in pre-clinical screening tools, that more reliably predict the clinical effects and adverse events of candidate therapeutic agents, has ushered in a new era of drug development and screening. However, given the rapid pace with which these models have emerged, the individual merits of these translational research tools warrant careful evaluation in order to furnish clinical researchers with appropriate information to conduct pre-clinical screening in an accelerated and rational manner. This review assesses the predictive utility of both well-established and emerging pre-clinical methods in terms of their suitability as a screening platform for treatment response, ability to represent pharmacodynamic and pharmacokinetic drug properties, and lastly debates the translational limitations and benefits of these models. To this end, we will describe the current literature on cell culture, organoids, in vivo mouse models, and in silico computational approaches. Particular focus will be devoted to discussing gaps and unmet needs in the literature as well as current advancements and innovations achieved in the field, such as co-clinical trials and future avenues for refinement.
Collapse
Affiliation(s)
- Michael W Lee
- Department of Medical Education, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Mihailo Miljanic
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Todd Triplett
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Craig Ramirez
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Kyaw L Aung
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - S Gail Eckhardt
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Anna Capasso
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
41
|
Hinz N, Baranowsky A, Horn M, Kriegs M, Sibbertsen F, Smit DJ, Clezardin P, Lange T, Schinke T, Jücker M. Knockdown of AKT3 Activates HER2 and DDR Kinases in Bone-Seeking Breast Cancer Cells, Promotes Metastasis In Vivo and Attenuates the TGFβ/CTGF Axis. Cells 2021; 10:cells10020430. [PMID: 33670586 PMCID: PMC7922044 DOI: 10.3390/cells10020430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bone metastases frequently occur in breast cancer patients and lack appropriate treatment options. Hence, understanding the molecular mechanisms involved in the multistep process of breast cancer bone metastasis and tumor-induced osteolysis is of paramount interest. The serine/threonine kinase AKT plays a crucial role in breast cancer bone metastasis but the effect of individual AKT isoforms remains unclear. Therefore, AKT isoform-specific knockdowns were generated on the bone-seeking MDA-MB-231 BO subline and the effect on proliferation, migration, invasion, and chemotaxis was analyzed by live-cell imaging. Kinome profiling and Western blot analysis of the TGFβ/CTGF axis were conducted and metastasis was evaluated by intracardiac inoculation of tumor cells into NOD scid gamma (NSG) mice. MDA-MB-231 BO cells exhibited an elevated AKT3 kinase activity in vitro and responded to combined treatment with AKT- and mTOR-inhibitors. Knockdown of AKT3 significantly increased migration, invasion, and chemotaxis in vitro and metastasis to bone but did not significantly enhance osteolysis. Furthermore, knockdown of AKT3 increased the activity and phosphorylation of pro-metastatic HER2 and DDR1/2 but lowered protein levels of CTGF after TGFβ-stimulation, an axis involved in tumor-induced osteolysis. We demonstrated that AKT3 plays a crucial role in bone-seeking breast cancer cells by promoting metastatic potential without facilitating tumor-induced osteolysis.
Collapse
Affiliation(s)
- Nico Hinz
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Anke Baranowsky
- Center for Experimental Medicine, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.B.); (T.S.)
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Horn
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Mildred Scheel Cancer Career Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- UCCH Kinomics Core Facility, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Freya Sibbertsen
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Daniel J. Smit
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Philippe Clezardin
- INSERM, Research Unit UMR S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, 69372 Lyon, France;
| | - Tobias Lange
- Center for Experimental Medicine, Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Thorsten Schinke
- Center for Experimental Medicine, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.B.); (T.S.)
| | - Manfred Jücker
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
- Correspondence: ; Tel.: +49-(0)-40-7410-56339
| |
Collapse
|
42
|
Wen J, Wang L, Ren J, Kranz E, Chen S, Wu D, Kanazawa T, Chen I, Lu Y, Kamata M. Nanoencapsulated rituximab mediates superior cellular immunity against metastatic B-cell lymphoma in a complement competent humanized mouse model. J Immunother Cancer 2021; 9:jitc-2020-001524. [PMID: 33593826 PMCID: PMC7888328 DOI: 10.1136/jitc-2020-001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Despite the numerous applications of monoclonal antibodies (mAbs) in cancer therapeutics, animal models available to test the therapeutic efficacy of new mAbs are limited. NOD.Cg-Prkdcscid Il2rg tm1Wjl /SzJ (NSG) mice are one of the most highly immunodeficient strains and are universally used as a model for testing cancer-targeting mAbs. However, this strain lacks several factors necessary to fully support antibody-mediated effector functions-including antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity (CDC)-due to the absence of immune cells as well as a mutation in the Hc gene, which is needed for a functional complement system. METHODS We have developed a humanized mouse model using a novel NSG strain, NOD.Cg-Hc1 Prkdcscid Il2rgtm1Wjl/SzJ (NSG-Hc1), which contains the corrected mutation in the Hc gene to support CDC in addition to other mechanisms endowed by humanization. With this model, we reevaluated the anticancer efficacies of nanoencapsulated rituximab after xenograft of the human Burkitt lymphoma cell line 2F7-BR44. RESULTS As expected, xenografted humanized NSG-Hc1 mice supported superior lymphoma clearance of native rituximab compared with the parental NSG strain. Nanoencapsulated rituximab with CXCL13 conjugation as a targeting ligand for lymphomas further enhanced antilymphoma activity in NSG-Hc1 mice and, more importantly, mediated antilymphoma cellular responses. CONCLUSIONS These results indicate that NSG-Hc1 mice can serve as a feasible model for both studying antitumor treatment using cancer targeting as well as understanding induction mechanisms of antitumor cellular immune response.
Collapse
Affiliation(s)
- Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Lan Wang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Jie Ren
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Emiko Kranz
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Shilin Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Di Wu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Toshio Kanazawa
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Irvin Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Masakazu Kamata
- Microbiology, University of Alabama at Birmingham School of Arts and Humanities, Birmingham, Alabama, USA
| |
Collapse
|
43
|
Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021; 169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Brain metastasis is emerging as a unique entity in oncology based on its particular biology and, consequently, the pharmacological approaches that should be considered. We discuss the current state of modelling this specific progression of cancer and how these experimental models have been used to test multiple pharmacologic strategies over the years. In spite of pre-clinical evidences demonstrating brain metastasis vulnerabilities, many clinical trials have excluded patients with brain metastasis. Fortunately, this trend is getting to an end given the increasing importance of secondary brain tumors in the clinic and a better knowledge of the underlying biology. We discuss emerging trends and unsolved issues that will shape how we will study experimental brain metastasis in the years to come.
Collapse
|
44
|
Verma A, Cohen DJ, Jacobs TW, Boyan BD, Schwartz Z. The Relative Expression of ERα Isoforms ERα66 and ERα36 Controls the Cellular Response to 24R,25-Dihydroxyvitamin D3 in Breast Cancer. Mol Cancer Res 2020; 19:99-111. [PMID: 33082240 DOI: 10.1158/1541-7786.mcr-20-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/04/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
Vitamin D3 and its metabolites have antitumorigenic properties in vitro and in vivo; however, clinical trials and retrospective studies on the effectiveness of vitamin D3 oral supplementation against cancer have been inconclusive. One reason for this may be that clinical trials ignore the complex vitamin D metabolome and the many active vitamin D3 metabolites present in the body. Recent work by our lab showed that 24R,25(OH)2D3, a vitamin D3 metabolite that is active in chondrocyte proliferation and differentiation, has antitumorigenic properties in estrogen receptor alpha-66 (ERα66)-positive (ER+) breast cancer, but not in ERα66-negative (ER-) breast cancer. Here we show that 24R,25(OH)2D3 is protumorigenic in an in vivo mouse model (NOD.Cg-PrkdcscidIl2rgtm1Wjl /SzJ (NSG) mice) of ER- breast cancer, causing greater tumor growth than in mice treated with vehicle alone. In vitro results indicate that the effect of 24R,25(OH)2D3 is via a membrane-associated mechanism involving ERs and phospholipase D. 24R,25(OH)2D3 increased proliferation and reduced apoptosis in ERα66-negative HCC38 breast cancer cells, and stimulated expression of metastatic markers. Overexpressing ESRI, which encodes ERα66, ERα46, and ERα36, reduced the proapoptotic response of ERα66- cells to 24R,25(OH)2D3, possibly by upregulating ERα66. Silencing ESR1 in ERα66+ cells increased apoptosis. This suggests 24R,25(OH)2D3 is differentially tumorigenic in cancers with different ERα isoform profiles. Antiapoptotic actions of 24R,25(OH)2D3 require ERα36 and proapoptotic actions require ERα66. IMPLICATIONS: These results suggest that 24R,25(OH)2D3, which is a major circulating metabolite of vitamin D, is functionally active in breast cancer and that the regulatory properties of 24R,25(OH)2D3 are dependent upon the relative expression of ERα66 and ERα36.
Collapse
Affiliation(s)
- Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Thomas W Jacobs
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia. .,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.,Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
45
|
Valiente M, Van Swearingen AED, Anders CK, Bairoch A, Boire A, Bos PD, Cittelly DM, Erez N, Ferraro GB, Fukumura D, Gril B, Herlyn M, Holmen SL, Jain RK, Joyce JA, Lorger M, Massague J, Neman J, Sibson NR, Steeg PS, Thorsen F, Young LS, Varešlija D, Vultur A, Weis-Garcia F, Winkler F. Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Res 2020; 80:4314-4323. [PMID: 32641416 PMCID: PMC7572582 DOI: 10.1158/0008-5472.can-20-0291] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/27/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Spread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.e., specific microenvironment) and particular therapeutic requirements (i.e., presence of blood-brain barrier, blood-tumor barrier, molecular differences with the primary tumor) are thought to be critical aspects that must be functionally exploited using preclinical models. We present the coordinated effort of 19 laboratories to compile comprehensive information related to brain metastasis experimental models. Each laboratory has provided details on the cancer cell lines they have generated or characterized as being capable of forming metastatic colonies in the brain, as well as principle methodologies of brain metastasis research. The Brain Metastasis Cell Lines Panel (BrMPanel) represents the first of its class and includes information about the cell line, how tropism to the brain was established, and the behavior of each model in vivo. These and other aspects described are intended to assist investigators in choosing the most suitable cell line for research on brain metastasis. The main goal of this effort is to facilitate research on this unmet clinical need, to improve models through a collaborative environment, and to promote the exchange of information on these valuable resources.
Collapse
Affiliation(s)
- Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | | | - Carey K Anders
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Durham, North Carolina
| | - Amos Bairoch
- CALIPHO group, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paula D Bos
- Department of Pathology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Diana M Cittelly
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gino B Ferraro
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Dai Fukumura
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | | | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Rakesh K Jain
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Johanna A Joyce
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mihaela Lorger
- Brain Metastasis Research Group, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Joan Massague
- Cancer Cell Biology Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Josh Neman
- Departments of Neurological Surgery, Physiology & Neuroscience, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Frits Thorsen
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, P.R. China
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Adina Vultur
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Frances Weis-Garcia
- Antibody & Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
46
|
Baptista Moreno Martin AC, Tomasin R, Luna-Dulcey L, Graminha AE, Araújo Naves M, Teles RHG, da Silva VD, da Silva JA, Vieira PC, Annabi B, Cominetti MR. [10]-Gingerol improves doxorubicin anticancer activity and decreases its side effects in triple negative breast cancer models. Cell Oncol (Dordr) 2020; 43:915-929. [PMID: 32761561 DOI: 10.1007/s13402-020-00539-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Although doxorubicin is widely used to treat cancer, severe side effects limit its clinical use. Combination of standard chemotherapy with natural products can increase the efficacy and attenuate the side effects of current therapies. Here we studied the anticancer effects of a combined regimen comprising doxorubicin and [10]-gingerol against triple-negative breast cancer, which does not respond to hormonal or targeted therapies. METHODS Cytotoxicity was evaluated by MTT assay, cell cycle progression and apoptosis were analyzed by flow cytometry and signaling pathways were analyzed by Western blotting in human and murine triple negative breast cancer cell systems. The anticancer/antimetastatic and toxic effects of the combined regimen was evaluated using syngeneic and xenograft orthotopic models. RESULTS The combination of doxorubicin and [10]-gingerol significantly increased the number of apoptotic cells, compared to each compound alone. In 4T1Br4 cells, the combined regimen was the only condition able to increase the levels of active caspase 3 and γH2AX and to decrease the level of Cdk-6 cyclin. In vivo, doxorubicin (3 mg/Kg, D3) and [10]-gingerol (10 mg/Kg, G10) resulted in a significant reduction in the volume of primary tumors and a decrease in the number of circulating tumor cells (CTCs). Interestingly, only the combined regimen led to decreased tumor burdens to distant organs (i.e., metastasis) and reduced chemotherapy-induced weight loss and hepatotoxicity in tumor-bearing animals. Likewise, in a xenograft model, only the combined regimen was effective in significantly reducing the primary tumor volume and the prevalence of CTCs. CONCLUSIONS Our data indicate that [10]-gingerol has potential to be used as a neoadjuvant or in combined therapy with doxorubicin, to improve its anticancer activity.
Collapse
Affiliation(s)
| | - Rebeka Tomasin
- Department of Gerontology, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
- E-signal Lab, Biochemistry Department, Institute of Chemistry, São Paulo University, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Liany Luna-Dulcey
- Department of Gerontology, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Angélica Elen Graminha
- Department of Gerontology, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Marina Araújo Naves
- Department of Gerontology, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Ramon Handerson Gomes Teles
- Department of Gerontology, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Vinicius Duval da Silva
- Department of Pathology, Barretos Cancer Hospital, R. Antenor Duarte Vilela, 1331 - Dr. Paulo Prata, Barretos, SP, 14784-4003, Brazil
| | - James Almada da Silva
- Departament of Pharmacology, Federal University of Sergipe, Av. Gov. Marcelo Déda, 13, CEP 49400-000, Lagarto, SE, Brazil
| | - Paulo Cezar Vieira
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, 14040-903, Ribeirao Preto, SP, Brazil
| | - Borhane Annabi
- Department of Chemistry, Université du Québec à Montréal, Succursale Centre-ville, Case postale 8888, Montréal, Québec, H3C 3P8, Canada
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
47
|
Chakravarty D, Huang L, Kahn M, Tewari AK. Immunotherapy for Metastatic Prostate Cancer: Current and Emerging Treatment Options. Urol Clin North Am 2020; 47:487-510. [PMID: 33008499 DOI: 10.1016/j.ucl.2020.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of immunotherapy has revolutionized cancer treatment. Prostate cancer has an immunosuppressive microenvironment and a low tumor mutation burden, resulting in low neoantigen expression. The consensus was that immunotherapy would be less effective in prostate cancer. However, recent studies have reported that prostate cancer does have a high number of DNA damage and repair gene defects. Immunotherapies that have been tested in prostate cancer so far have been mainly vaccines and checkpoint inhibitors. A combination of genomically targeted therapies, with approaches to alleviate immune response and thereby make the tumor microenvironment immunologically hot, is promising.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Urology and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Li Huang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Matthew Kahn
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ashutosh K Tewari
- Department of Urology and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
48
|
Macrophage migration inhibitory factor inhibition as a novel therapeutic approach against triple-negative breast cancer. Cell Death Dis 2020; 11:774. [PMID: 32943608 PMCID: PMC7498597 DOI: 10.1038/s41419-020-02992-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC), defined as loss of estrogen, progesterone, and Her2 receptors, is a subtype of highly aggressive breast cancer with worse prognosis and poor survival rate. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine aberrantly expressed in many solid tumors and known to promote tumor progression and metastasis. However, its role in TNBC progression and metastasis is unexplored. Here we have shown that in TNBC patients, MIF expression was significantly enriched in the tumor compared to adjacent normal tissue. Using publically available patient datasets, we showed that MIF overexpression correlates with worse survival in TNBC compared to other hormonal status. Orthotopic implantation of TNBC cells into MIF knockout mice showed reduced tumor growth compared to wild-type mice. In addition, we have shown that MIF downregulation inhibits TNBC growth and progression in a syngeneic mouse model. We further showed that CPSI-1306, a small-molecule MIF inhibitor, inhibits the growth of TNBC cells in vitro. Mechanistic studies revealed that CPSI-1306 induces intrinsic apoptosis by alteration in mitochondrial membrane potential, cytochrome c (Cyt c) release, and activation of different caspases. In addition, CPSI-1306 inhibits the activation of cell survival and proliferation-related molecules. CPSI-1306 treatment also reduced the tumor growth and metastasis in orthotopic mouse models of mammary carcinoma. CPSI-1306 treatment of tumor-bearing mice significantly inhibited TNBC growth and pulmonary metastasis in a dose-dependent manner. Histological analysis of xenograft tumors revealed a higher number of apoptotic cells in CPSI-1306-treated tumors compared to vehicle controls. Our studies, for the first time, show that MIF overexpression in TNBC enhances growth and metastasis. Taken together, our results indicate that using small molecular weight MIF inhibitors could be a promising strategy to inhibit TNBC progression and metastasis.
Collapse
|
49
|
To B, Isaac D, Andrechek ER. Studying Lymphatic Metastasis in Breast Cancer: Current Models, Strategies, and Clinical Perspectives. J Mammary Gland Biol Neoplasia 2020; 25:191-203. [PMID: 33034778 DOI: 10.1007/s10911-020-09460-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/24/2020] [Indexed: 03/23/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and the second most common cause of cancer-related deaths in the United States. Although early detection has significantly decreased breast cancer mortality, patients diagnosed with distant metastasis still have a very poor prognosis. The most common site that breast cancer spreads to are local lymph nodes. Therefore, the presence of lymph node metastasis remains one of most important prognostic factors in breast cancer patients. Given its significant clinical implications, increased efforts have been dedicated to better understand the molecular mechanism governing lymph node metastasis in breast cancer. The identification of lymphatic-specific biomarkers, including podoplanin and LYVE-1, has propelled the field of lymphatic metastasis forward. In addition, several animal models such as cell line-derived xenografts, patient-derived xenografts, and spontaneous tumor models have been developed to recreate the process of lymphatic metastasis. Moreover, the incorporation of various -omic platforms have provided further insight into the genetic drivers facilitating lymphatic metastasis, as well as potential biomarkers and therapeutic targets. Here, we highlight various models of lymphatic metastasis, their potential pitfalls, and other tools available to study lymphatic metastasis including imaging modalities and -omic studies.
Collapse
Affiliation(s)
- Briana To
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Daniel Isaac
- Division of Hematology and Oncology, MSU Breslin Cancer Center, Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
50
|
Knier NN, Hamilton AM, Foster PJ. Comparing the fate of brain metastatic breast cancer cells in different immune compromised mice with cellular magnetic resonance imaging. Clin Exp Metastasis 2020; 37:465-475. [PMID: 32533389 DOI: 10.1007/s10585-020-10044-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/05/2020] [Indexed: 01/28/2023]
Abstract
Metastasis is the leading cause of mortality in breast cancer patients, with brain metastases becoming increasingly prevalent. Studying this disease is challenging due to the limited experimental models and methods available. Here, we used iron-based cellular MRI to track the fate of a mammary carcinoma cell line (MDA-MB-231-BR) in vivo to characterize the growth of brain metastases in the nude and severely immune-compromised NOD/SCID/ILIIrg-/- (NSG) mouse. Nude and NSG mice received injections of iron-labeled MDA-MB-231-BR cells. Images were acquired with a 3T MR system and assessed for signal voids and metastases. The percentage of signal voids and the number and volume of metastases were quantified. Ex vivo imaging of the liver, histology, and immunofluorescence labeling was performed. Brain metastases grew more rapidly in NSG mice. At day 21 post cell injection, the average number of brain tumors in NSG mice was approximately four times greater than in nude mice. The persistence of iron-labeled cells, visualized as signal voids by MRI, was also examined. The percentage of voids decreased significantly over time for both nude and NSG mice. Body images revealed that the NSG mice also had metastases in the liver, lungs, and lymph nodes while tumors were only detected in the brains of nude mice. This work demonstrates the advantages of using the highly immune-compromised NSG mouse to study breast cancer metastasis, treatments aimed at inhibiting metastasis and outgrowth of breast cancer metastases in multiple organs, and the role that imaging can play toward credentialing these models that cannot be done with other in vitro or histopathologic methods alone.
Collapse
Affiliation(s)
- Natasha N Knier
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond St. N., London, ON, N6A 5B7, Canada. .,Department of Medical Biophysics, Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| | - Amanda M Hamilton
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| | - Paula J Foster
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond St. N., London, ON, N6A 5B7, Canada.,Department of Medical Biophysics, Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
| |
Collapse
|