1
|
Xu Z, Xue B, Kao JPY, Kanold PO. Sex-Specific Age-Related Changes in Excitatory and Inhibitory Intracortical Circuits in Mouse Primary Auditory Cortex. eNeuro 2025; 12:ENEURO.0378-24.2024. [PMID: 39626952 PMCID: PMC11826992 DOI: 10.1523/eneuro.0378-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/11/2024] [Indexed: 02/08/2025] Open
Abstract
A common impairment in aging is age-related hearing loss (presbycusis), which manifests as impaired spectrotemporal processing. Presbycusis can be caused by a dysfunction of the peripheral and central auditory system, and these dysfunctions might differ between the sexes. To date, the circuit mechanisms in the central nervous system responsible for age-related auditory dysfunction remain mostly unknown. In the auditory cortex (ACtx), aging is accompanied by alteration in normal inhibitory (GABA) neurotransmission and changes in excitatory (NMDA and AMPA) synapses, but which circuits are affected has been unclear. Here we investigated how auditory cortical microcircuits change with age and if sex-dependent differences existed. We performed laser-scanning photostimulation (LSPS) combined with whole-cell patch-clamp recordings from layer (L) 2/3 cells in the primary auditory cortex (A1) in young adult (2-3 months) and aged (older than 18 months) male and female CBA/CaJ mice which have normal peripheral hearing. We found that L2/3 cells in aged male animals display functional hypoconnectivity of inhibitory circuits originating from L2/3 and L4. Compared with cells from young adult mice, cells from aged male mice have weaker excitatory connections from L2/3. We also observed an increased diversity of excitatory and inhibitory inputs. These results suggest a sex-specific reduction and diversification in excitatory and inhibitory intralaminar cortical circuits in aged mice compared with young adult animals. We speculate that these unbalanced changes in cortical circuits contribute to the functional manifestations of age-related hearing loss in both males and females.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
| | - Binghan Xue
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
- Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
2
|
Mukherjee D, Xue B, Chen CT, Chang M, Kao JPY, Kanold PO. Early retinal deprivation crossmodally alters nascent subplate circuits and activity in the auditory cortex during the precritical period. Cereb Cortex 2023; 33:9038-9053. [PMID: 37259176 PMCID: PMC10350824 DOI: 10.1093/cercor/bhad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Sensory perturbation in one modality results in the adaptive reorganization of neural pathways within the spared modalities, a phenomenon known as "crossmodal plasticity," which has been examined during or after the classic "critical period." Because peripheral perturbations can alter the auditory cortex (ACX) activity and functional connectivity of the ACX subplate neurons (SPNs) even before the critical period, called the precritical period, we investigated if retinal deprivation at birth crossmodally alters the ACX activity and SPN circuits during the precritical period. We deprived newborn mice of visual inputs after birth by performing bilateral enucleation. We performed in vivo widefield imaging in the ACX of awake pups during the first two postnatal weeks to investigate cortical activity. We found that enucleation alters spontaneous and sound-evoked activities in the ACX in an age-dependent manner. Next, we performed whole-cell patch clamp recording combined with laser scanning photostimulation in ACX slices to investigate circuit changes in SPNs. We found that enucleation alters the intracortical inhibitory circuits impinging on SPNs, shifting the excitation-inhibition balance toward excitation and this shift persists after ear opening. Together, our results indicate that crossmodal functional changes exist in the developing sensory cortices at early ages before the onset of the classic critical period.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Binghan Xue
- Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Chih-Ting Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Minzi Chang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Joseph P Y Kao
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
- Department of Biology, University of Maryland, College Park, MD 20742, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
3
|
Xue B, Meng X, Kao JPY, Kanold PO. Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice. Hear Res 2023; 429:108685. [PMID: 36701895 PMCID: PMC9928889 DOI: 10.1016/j.heares.2022.108685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
A common impairment in aging is age-related hearing loss (presbycusis), which manifests as impaired spectrotemporal processing. Aging is accompanied by alteration in normal inhibitory (GABA) neurotransmission, and changes in excitatory (NMDA and AMPA) synapses in the auditory cortex (ACtx). However, the circuits affected by these synaptic changes remain unknown. Mice of the C57Bl/6J strain show premature age-related hearing loss and changes in functional responses in ACtx. We thus investigated how auditory cortical microcircuits change with age by comparing young (∼ 6 weeks) and aged (>1 year old) C57Bl/6J mice. We performed laser scanning photostimulation (LSPS) combined with whole-cell patch clamp recordings from Layer (L) 2/3 cells in primary auditory cortex (A1) of young adult and aged C57Bl/6J mice. We found that L2/3 cells in aged C57Bl/6J mice display functional hypoconnectivity of both excitatory and inhibitory circuits. Compared to cells from young C57Bl/6 mice, cells from aged C57Bl/6J mice have fewer excitatory connections with weaker connection strength. Whereas young adult and aged C57Bl/6J mice have similar amounts of inhibitory connections, the strength of local inhibition is weaker in the aged group. We confirmed these results by recording miniature excitatory (mEPSCs) and inhibitory synaptic currents (mIPSCs). Our results suggest a specific reduction in excitatory and inhibitory intralaminar cortical circuits in aged C57Bl/6J mice compared with young adult animals. We speculate that these unbalanced changes in cortical circuits contribute to the functional manifestations of age-related hearing loss.
Collapse
Affiliation(s)
- Binghan Xue
- Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
4
|
Mukherjee D, Xue B, Chen CT, Chang M, Kao JPY, Kanold PO. Early retinal deprivation crossmodally alters nascent subplate circuits and activity in the auditory cortex during the precritical period. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529453. [PMID: 36865142 PMCID: PMC9980129 DOI: 10.1101/2023.02.21.529453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Sensory perturbation in one modality results in adaptive reorganization of neural pathways within the spared modalities, a phenomenon known as "crossmodal plasticity", which has been examined during or after the classic 'critical period'. Because peripheral perturbations can alter auditory cortex (ACX) activity and functional connectivity of the ACX subplate neurons (SPNs) even before the classic critical period, called the precritical period, we investigated if retinal deprivation at birth crossmodally alters ACX activity and SPN circuits during the precritical period. We deprived newborn mice of visual inputs after birth by performing bilateral enucleation. We performed in vivo imaging in the ACX of awake pups during the first two postnatal weeks to investigate cortical activity. We found that enucleation alters spontaneous and sound-evoked activity in the ACX in an age-dependent manner. Next, we performed whole-cell patch clamp recording combined with laser scanning photostimulation in ACX slices to investigate circuit changes in SPNs. We found that enucleation alters the intracortical inhibitory circuits impinging on SPNs shifting the excitation-inhibition balance towards excitation and this shift persists after ear opening. Together, our results indicate that crossmodal functional changes exist in the developing sensory cortices at early ages before the onset of the classic critical period.
Collapse
|
5
|
de Carvalho Borges B, Meng X, Long P, Kanold PO, Corfas G. Loss of oligodendrocyte ErbB receptor signaling leads to hypomyelination, reduced density of parvalbumin-expressing interneurons, and inhibitory function in the auditory cortex. Glia 2023; 71:187-204. [PMID: 36052476 PMCID: PMC9771935 DOI: 10.1002/glia.24266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022]
Abstract
For a long time, myelin was thought to be restricted to excitatory neurons, and studies on dysmyelination focused primarily on excitatory cells. Recent evidence showed that axons of inhibitory neurons in the neocortex are also myelinated, but the role of myelin on inhibitory circuits remains unknown. Here we studied the impact of mild hypomyelination on both excitatory and inhibitory connectivity in the primary auditory cortex (A1) with well-characterized mouse models of hypomyelination due to loss of oligodendrocyte ErbB receptor signaling. Using laser-scanning photostimulation, we found that mice with mild hypomyelination have reduced functional inhibitory connections to A1 L2/3 neurons without changes in excitatory connections, resulting in altered excitatory/inhibitory balance. These effects are not associated with altered expression of GABAergic and glutamatergic synaptic components, but with reduced density of parvalbumin-positive (PV+ ) neurons, axons, and synaptic terminals, which reflect reduced PV expression by interneurons rather than PV+ neuronal loss. While immunostaining shows that hypomyelination occurs in both PV+ and PV- axons, there is a strong correlation between MBP and PV expression, suggesting that myelination influences PV expression. Together, the results indicate that mild hypomyelination impacts A1 neuronal networks, reducing inhibitory activity, and shifting networks towards excitation.
Collapse
Affiliation(s)
- Beatriz de Carvalho Borges
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205,Department of Biology, University of Maryland, College Park, MD 20742
| | - Patrick Long
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Patrick Oliver Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205,Department of Biology, University of Maryland, College Park, MD 20742
| | - Gabriel Corfas
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
6
|
Deng R, Chang M, Kao JPY, Kanold PO. Cortical inhibitory but not excitatory synaptic transmission and circuit refinement are altered after the deletion of NMDA receptors during early development. Sci Rep 2023; 13:656. [PMID: 36635357 PMCID: PMC9837136 DOI: 10.1038/s41598-023-27536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Neurons in the cerebral cortex form excitatory and inhibitory circuits with specific laminar locations. The mechanisms underlying the development of these spatially specific circuits is not fully understood. To test if postsynaptic N-methyl-D-aspartate (NMDA) receptors on excitatory neurons are required for the development of specific circuits to these neurons, we genetically ablated NMDA receptors from a subset of excitatory neurons in the temporal association cortex (TeA) through in utero electroporation and assessed the intracortical circuits connecting to L5 neurons through in vitro whole-cell patch clamp recordings coupled with laser-scanning photostimulation (LSPS). In NMDAR knockout neurons, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated connections were largely intact. In contrast both LSPS and mini-IPSC recordings revealed that γ-aminobutyric acid type A (GABAA) receptor-mediated connections were impaired in NMDAR knockout neurons. These results suggest that postsynaptic NMDA receptors are important for the development of GABAergic circuits.
Collapse
Affiliation(s)
- Rongkang Deng
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, 20742, USA
| | - Minzi Chang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 733 N. Broadway Avenue / Miller 379, Baltimore, MD, 21205, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 733 N. Broadway Avenue / Miller 379, Baltimore, MD, 21205, USA.
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
7
|
Xue B, Alipio JB, Kao JPY, Kanold PO. Perinatal Opioid Exposure Results in Persistent Hypoconnectivity of Excitatory Circuits and Reduced Activity Correlations in Mouse Primary Auditory Cortex. J Neurosci 2022; 42:3676-3687. [PMID: 35332087 PMCID: PMC9053845 DOI: 10.1523/jneurosci.2542-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Opioid use by pregnant women results in neonatal opioid withdrawal syndrome (NOWS) and lifelong neurobehavioral deficits including language impairments. Animal models of NOWS show impaired performance in a two-tone auditory discrimination task, suggesting abnormalities in sensory processing in the auditory cortex. To investigate the consequences of perinatal opioid exposure on auditory cortex circuits, we administered fentanyl to mouse dams in their drinking water throughout gestation and until litters were weaned at postnatal day (P)21. We then used in vivo two-photon Ca2+ imaging in adult animals of both sexes to investigate how primary auditory cortex (A1) function was altered. Perinatally exposed animals showed fewer sound-responsive neurons in A1, and the remaining sound-responsive cells exhibited lower response amplitudes but normal frequency selectivity and stimulus-specific adaptation (SSA). Populations of nearby layer 2/3 (L2/3) cells in exposed animals showed reduced correlated activity, suggesting a reduction of shared inputs. We then investigated A1 microcircuits to L2/3 cells by performing laser-scanning photostimulation (LSPS) combined with whole-cell patch-clamp recordings from A1 L2/3 cells. L2/3 cells in exposed animals showed functional hypoconnectivity of excitatory circuits of ascending inputs from L4 and L5/6 to L2/3, while inhibitory connections were unchanged, leading to an altered excitatory/inhibitory balance. These results suggest a specific reduction in excitatory ascending interlaminar cortical circuits resulting in decreased activity correlations after fentanyl exposure. We speculate that these changes in cortical circuits contribute to the impaired auditory discrimination ability after perinatal opioid exposure.SIGNIFICANCE STATEMENT This is the first study to investigate the functional effects of perinatal fentanyl exposure on the auditory cortex. Experiments show that perinatal fentanyl exposure results in decreased excitatory functional circuits and altered population activity in primary sensory areas in adult mice. These circuit changes might underlie the observed language and cognitive deficits in infants exposed to opioids.
Collapse
Affiliation(s)
- Binghan Xue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Jason B Alipio
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
- Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
8
|
Mukherjee D, Meng X, Kao JPY, Kanold PO. Impaired Hearing and Altered Subplate Circuits During the First and Second Postnatal Weeks of Otoferlin-Deficient Mice. Cereb Cortex 2021; 32:2816-2830. [PMID: 34849612 DOI: 10.1093/cercor/bhab383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 02/01/2023] Open
Abstract
Sensory deprivation from the periphery impacts cortical development. Otoferlin deficiency leads to impaired cochlear synaptic transmission and is associated with progressive hearing loss in adults. However, it remains elusive how sensory deprivation due to otoferlin deficiency impacts the early development of the auditory cortex (ACX) especially before the onset of low threshold hearing. To test that, we performed in vivo imaging of the ACX in awake mice lacking otoferlin (Otof-/-) during the first and second postnatal weeks and found that spontaneous and sound-driven cortical activity were progressively impaired. We then characterized the effects on developing auditory cortical circuits by performing in vitro recordings from subplate neurons (SPN), the first primary targets of thalamocortical inputs. We found that in Otof-/- pups, SPNs received exuberant connections from excitatory and inhibitory neurons. Moreover, as a population, SPNs showed higher similarity with respect to their circuit topology in the absence of otoferlin. Together, our results show that otoferlin deficiency results in impaired hearing and has a powerful influence on cortical connections and spontaneous activity in early development even before complete deafness. Therefore, peripheral activity has the potential to sculpt cortical structures from the earliest ages, even before hearing impairment is diagnosed.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Biology, University of Maryland, College Park, MD 20742, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Sheikh A, Meng X, Kao JPY, Kanold PO. Neonatal Hypoxia-Ischemia Causes Persistent Intracortical Circuit Changes in Layer 4 of Rat Auditory Cortex. Cereb Cortex 2021; 32:2575-2589. [PMID: 34729599 DOI: 10.1093/cercor/bhab365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
The connection between early brain injury and subsequent development of disorders is unknown. Neonatal hypoxia-ischemia (HI) alters circuits associated with subplate neurons (SPNs). SPNs are among the first maturing cortical neurons, project to thalamorecipient layer 4 (L4), and are required for the development of thalamocortical connections. Thus, early HI might influence L4 and such influence might persist. We investigated functional circuits to L4 neurons in neonatal rat HI models of different severities (mild and moderate) shortly after injury and at adolescence. We used laser-scanning photostimulation in slices of auditory cortex during P5-10 and P18-23. Mild injuries did not initially (P6/P7) alter the convergence of excitatory inputs from L2/3, but hyperconnectivity emerged by P8-10. Inputs from L4 showed initial hypoconnectivity which resolved by P8-10. Moderate injuries resulted in initial hypoconnectivity from both layers which resolved by P8-10 and led to persistent strengthening of connections. Inhibitory inputs to L4 cells showed similar changes. Functional changes were mirrored by reduced dendritic complexity. We also observed a persistent increase in similarity of L4 circuits, suggesting that HI interferes with developmental circuit refinement and diversification. Altogether, our results show that neonatal HI injuries lead to persistent changes in intracortical connections.
Collapse
Affiliation(s)
- Aminah Sheikh
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Xiangying Meng
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Meng X, Solarana K, Bowen Z, Liu J, Nagode DA, Sheikh A, Winkowski DE, Kao JPY, Kanold PO. Transient Subgranular Hyperconnectivity to L2/3 and Enhanced Pairwise Correlations During the Critical Period in the Mouse Auditory Cortex. Cereb Cortex 2021; 30:1914-1930. [PMID: 31667495 DOI: 10.1093/cercor/bhz213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
During the critical period, neuronal connections are shaped by sensory experience. While the basis for this temporarily heightened plasticity remains unclear, shared connections introducing activity correlations likely play a key role. Thus, we investigated the changing intracortical connectivity in primary auditory cortex (A1) over development. In adult, layer 2/3 (L2/3) neurons receive ascending inputs from layer 4 (L4) and also receive few inputs from subgranular layer 5/6 (L5/6). We measured the spatial pattern of intracortical excitatory and inhibitory connections to L2/3 neurons in slices of mouse A1 across development using laser-scanning photostimulation. Before P11, L2/3 cells receive most excitatory input from within L2/3. Excitatory inputs from L2/3 and L4 increase after P5 and peak during P9-16. L5/6 inputs increase after P5 and provide most input during P12-16, the peak of the critical period. Inhibitory inputs followed a similar pattern. Functional circuit diversity in L2/3 emerges after P16. In vivo two-photon imaging shows low pairwise signal correlations in neighboring neurons before P11, which peak at P15-16 and decline after. Our results suggest that the critical period is characterized by high pairwise activity correlations and that transient hyperconnectivity of specific circuits, in particular those originating in L5/6, might play a key role.
Collapse
Affiliation(s)
- Xiangying Meng
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Krystyna Solarana
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Zac Bowen
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ji Liu
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Daniel A Nagode
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Aminah Sheikh
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Deng R, Kao JPY, Kanold PO. Aberrant development of excitatory circuits to inhibitory neurons in the primary visual cortex after neonatal binocular enucleation. Sci Rep 2021; 11:3163. [PMID: 33542365 PMCID: PMC7862622 DOI: 10.1038/s41598-021-82679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/22/2021] [Indexed: 11/09/2022] Open
Abstract
The development of GABAergic interneurons is important for the functional maturation of cortical circuits. After migrating into the cortex, GABAergic interneurons start to receive glutamatergic connections from cortical excitatory neurons and thus gradually become integrated into cortical circuits. These glutamatergic connections are mediated by glutamate receptors including AMPA and NMDA receptors and the ratio of AMPA to NMDA receptors decreases during development. Since previous studies have shown that retinal input can regulate the early development of connections along the visual pathway, we investigated if the maturation of glutamatergic inputs to GABAergic interneurons in the visual cortex requires retinal input. We mapped the spatial pattern of glutamatergic connections to layer 4 (L4) GABAergic interneurons in mouse visual cortex at around postnatal day (P) 16 by laser-scanning photostimulation and investigated the effect of binocular enucleations at P1/P2 on these patterns. Gad2-positive interneurons in enucleated animals showed an increased fraction of AMPAR-mediated input from L2/3 and a decreased fraction of input from L5/6. Parvalbumin-expressing (PV) interneurons showed similar changes in relative connectivity. NMDAR-only input was largely unchanged by enucleation. Our results show that retinal input sculpts the integration of interneurons into V1 circuits and suggest that the development of AMPAR- and NMDAR-only connections might be regulated differently.
Collapse
Affiliation(s)
- Rongkang Deng
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.,Biological Sciences Graduate Program, University of Maryland, College Park, 20742, MD, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, 379 Miller Res. Bldg, Baltimore, MD, 21205, USA. .,Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
12
|
Meng X, Mukherjee D, Kao JPY, Kanold PO. Early peripheral activity alters nascent subplate circuits in the auditory cortex. SCIENCE ADVANCES 2021; 7:eabc9155. [PMID: 33579707 PMCID: PMC7880598 DOI: 10.1126/sciadv.abc9155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/28/2020] [Indexed: 05/10/2023]
Abstract
Cortical function can be shaped by sensory experience during a critical period. The onset of the critical period is thought to coincide with the onset of thalamocortical transmission to the thalamo-recipient layer 4 (L4). In early development, subplate neurons (SPNs), and not L4 neurons, are the first targets of thalamic afferents. SPNs are transiently involved in early development and are largely eliminated during development. Activation of L4 by thalamic afferents coincides with the opening of ear canal (~P11 in mice) and precedes the later critical period. Here, we show in mice that abolishing peripheral function or presenting sound stimuli even before P11 leads to bidirectionally altered functional connectivity of SPNs in auditory cortex. Thus, early sensory experience can sculpt subplate circuits before thalamocortical circuits to L4 are mature. Our results show that peripheral activity shapes cortical circuits in a sequential manner and from earlier ages than has been appreciated.
Collapse
Affiliation(s)
- Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Controlled Inhibition of Apoptosis by Photoactivatable Caspase Inhibitors. Cell Chem Biol 2020; 27:1434-1440.e10. [DOI: 10.1016/j.chembiol.2020.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
|
14
|
Sheikh A, Meng X, Liu J, Mikhailova A, Kao JPY, McQuillen PS, Kanold PO. Neonatal Hypoxia-Ischemia Causes Functional Circuit Changes in Subplate Neurons. Cereb Cortex 2020; 29:765-776. [PMID: 29365081 DOI: 10.1093/cercor/bhx358] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 01/16/2023] Open
Abstract
Neonatal hypoxia-ischemia (HI) in the preterm human results in damage to subcortical developing white matter and cognitive impairments. Subplate neurons (SPNs) are among the first-born cortical neurons and are necessary for normal cerebral development. While moderate or severe HI at P1 in rats leads to SPN loss, it is unclear if HI, esp. forms not associated with overt cell loss lead to altered SPN circuits. Thus, we used two HI models with different severities in P1 rats. Cauterization of the common carotid artery (CCA) causes a largely transient and thus milder ischemia (HI-Caut) while CCA ligation causes more severe ischemia (HI-Lig). While HI-Lig caused subplate damage, HI-Caut did not cause overt histological damage on the light microscopic level. We used laser-scanning photostimulation (LSPS) in acute thalamocortical slices of auditory cortex during P5-10 to study the functional connectivity of SPNs. Both HI categories resulted in hyperconnectivity of excitatory and inhibitory circuits to SPNs. Thus, alterations on the circuit level are present in the absence of cell loss. Our results show that SPN circuits are uniquely susceptible to HI. Given the key developmental role of SPNs, our results suggest that altered SPN circuits might underlie the abnormal development of cortical function after HI.
Collapse
Affiliation(s)
- Aminah Sheikh
- Department of Biology, University of Maryland, College Park, MD, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Xiangying Meng
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Ji Liu
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Alexandra Mikhailova
- Departments of Pediatrics and Neurology, University of California, San Francisco, CA, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick S McQuillen
- Departments of Pediatrics and Neurology, University of California, San Francisco, CA, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
15
|
Distinct Translaminar Glutamatergic Circuits to GABAergic Interneurons in the Neonatal Auditory Cortex. Cell Rep 2018; 19:1141-1150. [PMID: 28494864 DOI: 10.1016/j.celrep.2017.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/09/2017] [Accepted: 04/16/2017] [Indexed: 11/23/2022] Open
Abstract
GABAergic activity is important in neocortical development and plasticity. Because the maturation of GABAergic interneurons is regulated by neural activity, the source of excitatory inputs to GABAergic interneurons plays a key role in development. We show, by laser-scanning photostimulation, that layer 4 and layer 5 GABAergic interneurons in the auditory cortex in neonatal mice (<P7) receive extensive translaminar glutamatergic input via NMDAR-only synapses. Extensive translaminar AMPAR-mediated input developed during the second postnatal week, whereas NMDAR-only presynaptic connections decreased. GABAergic interneurons showed two spatial patterns of translaminar connection: inputs originating predominantly from supragranular or from supragranular and infragranular layers, including the subplate, which relays early thalamocortical activity. Sensory deprivation altered the development of translaminar inputs. Thus, distinct translaminar circuits to GABAergic interneurons exist throughout development, and the maturation of excitatory synapses is input-specific. Glutamatergic signaling from subplate and intracortical sources likely plays a role in the maturation of GABAergic interneurons.
Collapse
|
16
|
Meng X, Winkowski DE, Kao JPY, Kanold PO. Sublaminar Subdivision of Mouse Auditory Cortex Layer 2/3 Based on Functional Translaminar Connections. J Neurosci 2017; 37:10200-10214. [PMID: 28931571 PMCID: PMC5647773 DOI: 10.1523/jneurosci.1361-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/23/2017] [Indexed: 11/21/2022] Open
Abstract
The cerebral cortex is subdivided into six layers based on morphological features. The supragranular layers 2/3 (L2/3) contain morphologically and genetically diverse populations of neurons, suggesting the existence of discrete classes of cells. In primates and carnivores L2/3 can be subdivided morphologically, but cytoarchitectonic divisions are less clear in rodents. Nevertheless, discrete classes of cells could exist based on their computational requirement, which might be linked to their associated functional microcircuits. Through in vitro slice recordings coupled with laser-scanning photostimulation we investigated whether L2/3 of male mouse auditory cortex contains discrete subpopulations of cells with specific functional microcircuits. We use hierarchical clustering on the laminar connection patterns to reveal the existence of multiple distinct classes of L2/3 neurons. The classes of L2/3 neurons are distinguished by the pattern of their laminar and columnar inputs from within A1 and their location within L2/3. Cells in superficial L2 show more extensive columnar integration than deeper L3 cells. Moreover, L3 cells receive more translaminar input from L4. In vivo imaging in awake mice revealed that L2 cells had higher bandwidth than L3 cells, consistent with the laminar differences in columnar integration. These results suggest that similar to higher mammals, rodent L2/3 is not a homogenous layer but contains several parallel microcircuits.SIGNIFICANCE STATEMENT Layer 2/3 of auditory cortex is functionally diverse. We investigated whether L2/3 cells form classes based on their functional connectivity. We used in vitro whole-cell patch-clamp recordings with laser-scanning photostimulation and performed unsupervised clustering on the resulting excitatory and inhibitory connection patterns. Cells within each class were located in different sublaminae. Superficial cells showed wider integration along the tonotopic axis and the amount of L4 input varied with sublaminar location. To identify whether sensory responses varied with sublaminar location, we performed in vivo Ca2+ imaging and found that L2 cells were less frequency-selective than L3 cells. Our results show that the diversity of receptive fields in L2/3 is likely due to diversity in the underlying functional circuits.
Collapse
Affiliation(s)
- Xiangying Meng
- Department of Biology, University of Maryland, College Park, Maryland 20742, and
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, College Park, Maryland 20742, and
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
17
|
Meng X, Kao JPY, Lee HK, Kanold PO. Intracortical Circuits in Thalamorecipient Layers of Auditory Cortex Refine after Visual Deprivation. eNeuro 2017; 4:ENEURO.0092-17.2017. [PMID: 28396883 PMCID: PMC5383732 DOI: 10.1523/eneuro.0092-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 11/21/2022] Open
Abstract
Sensory cortices do not work in isolation. The functional responses of neurons in primary sensory cortices can be affected by activity from other modalities. For example, short-term visual deprivations, or dark exposure (DE), leads to enhanced neuronal responses and frequency selectivity to sounds in layer 4 (L4) of primary auditory cortex (A1). Circuit changes within A1 likely underlie these changes. Prior studies revealed that DE enhanced thalamocortical transmission to L4 in A1. Because the frequency selectivity of L4 neurons is determined by both thalamocortical and intracortical inputs, changes in intralaminar circuits to L4 neurons might also contribute to improved sound responses. We thus investigated in mouse A1 whether intracortical circuits to L4 cells changed after DE. Using in vitro whole-cell patch recordings in thalamocortical slices from mouse auditory cortex, we show that DE can lead to refinement of interlaminar excitatory as well as inhibitory connections from L2/3 to L4 cells, manifested as a weakening of these connections. The circuit refinement is present along the tonotopic axis, indicating reduced integration along the tonotopic axis. Thus, cross-modal influences may alter the spectral and temporal processing of sensory stimuli in multiple cortical layers by refinement of thalamocortical and intracortical circuits.
Collapse
Affiliation(s)
- Xiangying Meng
- Department of Biology, University of Maryland, College Park, MD 20742
| | - Joseph P. Y. Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Hey-Kyoung Lee
- Department of Biology, University of Maryland, College Park, MD 20742
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218
| | - Patrick O. Kanold
- Department of Biology, University of Maryland, College Park, MD 20742
| |
Collapse
|
18
|
Nagode DA, Meng X, Winkowski DE, Smith E, Khan-Tareen H, Kareddy V, Kao JPY, Kanold PO. Abnormal Development of the Earliest Cortical Circuits in a Mouse Model of Autism Spectrum Disorder. Cell Rep 2017; 18:1100-1108. [PMID: 28147267 PMCID: PMC5488290 DOI: 10.1016/j.celrep.2017.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/21/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) involves deficits in speech and sound processing. Cortical circuit changes during early development likely contribute to such deficits. Subplate neurons (SPNs) form the earliest cortical microcircuits and are required for normal development of thalamocortical and intracortical circuits. Prenatal valproic acid (VPA) increases ASD risk, especially when present during a critical time window coinciding with SPN genesis. Using optical circuit mapping in mouse auditory cortex, we find that VPA exposure on E12 altered the functional excitatory and inhibitory connectivity of SPNs. Circuit changes manifested as "patches" of mostly increased connection probability or strength in the first postnatal week and as general hyper-connectivity after P10, shortly after ear opening. These results suggest that prenatal VPA exposure severely affects the developmental trajectory of cortical circuits and that sensory-driven activity may exacerbate earlier, subtle connectivity deficits. Our findings identify the subplate as a possible common pathophysiological substrate of deficits in ASD.
Collapse
Affiliation(s)
- Daniel A Nagode
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Xiangying Meng
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ed Smith
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Hamza Khan-Tareen
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|