1
|
Naidoo TJ, Senzani S, Singh R, Pillay B, Pillay M. Mycobacterium tuberculosis curli pili (MTP) and heparin-binding hemagglutinin adhesin (HBHA) facilitate regulation of central carbon metabolism, enhancement of ATP synthesis and cell wall biosynthesis. Arch Microbiol 2025; 207:156. [PMID: 40437078 PMCID: PMC12119724 DOI: 10.1007/s00203-025-04352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/30/2025] [Indexed: 06/01/2025]
Abstract
Functional 'omics' studies previously identified the M. tuberculosis surface located adhesins, heparin-binding hemagglutinin adhesin (HBHA) and curli pili (MTP) as significant potential targets for the design of tuberculosis (TB) point-of-care diagnostics, effective drugs, and vaccines. Little is known on the effect of these adhesins on the pathogen's transcriptome. The current study, via transcriptomics, elucidated whether the deletion of the single genes, hbhA and mtp, and double genes, hbhA-mtp, via specialised transduction, affected global bacterial gene expression. RNA sequencing of M. tuberculosis wild-type V9124 (WT), single and double deletion HBHA and MTP mutant strains were confirmed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) on selected genes, and a functional bacterial ATP bioluminescence assay. The 43 significantly differentially expressed genes amongst the deletion mutants were functionally categorized into central carbon metabolism (CCM), cell wall biosynthesis and cell wall transport and processes. The increased expression of genes associated with ATP synthase and cell wall processes were confirmed by RT-qPCR. In the absence of the adhesins, a decreased ATP concentration was observed suggesting either increased utilization or alterations to the proton motive force (PMF) that resulted in a potential inhibition of ATP synthesis. Therefore, deletions of the mtp and hbhA genes were associated with significant perturbations in CCM regulation/function, and transport of proteins to the cell wall, indicating the significant contribution of these adhesins in fundamental processes contributing to TB pathogenesis. Thus, this study indicates that MTP and HBHA influence gene expression in M. tuberculosis and represent important targets for TB diagnostic/therapeutic interventions and should be investigated as vaccine and adjunctive therapies.
Collapse
Affiliation(s)
- T J Naidoo
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu- Natal, Doris Duke Medical Research Institute, 1st Floor, Congella, Private Bag 7, Durban, 4013, South Africa
| | - S Senzani
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu- Natal, Doris Duke Medical Research Institute, 1st Floor, Congella, Private Bag 7, Durban, 4013, South Africa
| | - R Singh
- Department of Medical Microbiology, National Health Laboratory Service, College of Health Sciences, University of KwaZulu- Natal, 1st Floor, Congella, Private Bag 7, George Campbell BuildingDurban, 4013, South Africa
| | - B Pillay
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu- Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - M Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu- Natal, Doris Duke Medical Research Institute, 1st Floor, Congella, Private Bag 7, Durban, 4013, South Africa.
| |
Collapse
|
2
|
Savanagouder M, Mukku RP, Kiran U, Yeruva CV, Nagarajan N, Sharma Y, Raghunand TR. Dissecting the Ca 2+ dependence of DesA1 function in Mycobacterium tuberculosis. FEBS Lett 2024; 598:1620-1632. [PMID: 38697952 DOI: 10.1002/1873-3468.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/04/2023] [Accepted: 02/28/2024] [Indexed: 05/05/2024]
Abstract
Mycobacterium tuberculosis (M. tb) has a complex cell wall, composed largely of mycolic acids, that are crucial to its structural maintenance. The M. tb desaturase A1 (DesA1) is an essential Ca2+-binding protein that catalyses a key step in mycolic acid biosynthesis. To investigate the structural and functional significance of Ca2+ binding, we introduced mutations at key residues in its Ca2+-binding βγ-crystallin motif to generate DesA1F303A, E304Q, and F303A-E304Q. Complementation of a conditional ΔdesA1 strain of Mycobacterium smegmatis, with the Ca2+ non-binders F303A or F303A-E304Q, failed to rescue its growth phenotype; these complements also exhibited enhanced cell wall permeability. Our findings highlight the criticality of Ca2+ in DesA1 function, and its implicit role in the maintenance of mycobacterial cellular integrity.
Collapse
Affiliation(s)
| | | | - Uday Kiran
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | | | - Yogendra Sharma
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Tirumalai R Raghunand
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
3
|
Qian W, Ma N, Zeng X, Shi M, Wang M, Yang Z, Tsui SKW. Identification of novel single nucleotide variants in the drug resistance mechanism of Mycobacterium tuberculosis isolates by whole-genome analysis. BMC Genomics 2024; 25:478. [PMID: 38745294 PMCID: PMC11094924 DOI: 10.1186/s12864-024-10390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) represents a major global health challenge. Drug resistance in Mycobacterium tuberculosis (MTB) poses a substantial obstacle to effective TB treatment. Identifying genomic mutations in MTB isolates holds promise for unraveling the underlying mechanisms of drug resistance in this bacterium. METHODS In this study, we investigated the roles of single nucleotide variants (SNVs) in MTB isolates resistant to four antibiotics (moxifloxacin, ofloxacin, amikacin, and capreomycin) through whole-genome analysis. We identified the drug-resistance-associated SNVs by comparing the genomes of MTB isolates with reference genomes using the MuMmer4 tool. RESULTS We observed a strikingly high proportion (94.2%) of MTB isolates resistant to ofloxacin, underscoring the current prevalence of drug resistance in MTB. An average of 3529 SNVs were detected in a single ofloxacin-resistant isolate, indicating a mutation rate of approximately 0.08% under the selective pressure of ofloxacin exposure. We identified a set of 60 SNVs associated with extensively drug-resistant tuberculosis (XDR-TB), among which 42 SNVs were non-synonymous mutations located in the coding regions of nine key genes (ctpI, desA3, mce1R, moeB1, ndhA, PE_PGRS4, PPE18, rpsA, secF). Protein structure modeling revealed that SNVs of three genes (PE_PGRS4, desA3, secF) are close to the critical catalytic active sites in the three-dimensional structure of the coding proteins. CONCLUSION This comprehensive study elucidates novel resistance mechanisms in MTB against antibiotics, paving the way for future design and development of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Weiye Qian
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Nan Ma
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mai Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingqiang Wang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zhiyuan Yang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Poonawala H, Zhang Y, Kuchibhotla S, Green AG, Cirillo DM, Di Marco F, Spitlaeri A, Miotto P, Farhat MR. Transcriptomic responses to antibiotic exposure in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0118523. [PMID: 38587412 PMCID: PMC11064486 DOI: 10.1128/aac.01185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Transcriptional responses in bacteria following antibiotic exposure offer insights into antibiotic mechanism of action, bacterial responses, and characterization of antimicrobial resistance. We aimed to define the transcriptional antibiotic response (TAR) in Mycobacterium tuberculosis (Mtb) isolates for clinically relevant drugs by pooling and analyzing Mtb microarray and RNA-seq data sets. We generated 99 antibiotic transcription profiles across 17 antibiotics, with 76% of profiles generated using 3-24 hours of antibiotic exposure and 49% within one doubling of the WHO antibiotic critical concentration. TAR genes were time-dependent, and largely specific to the antibiotic mechanism of action. TAR signatures performed well at predicting antibiotic exposure, with the area under the receiver operating curve (AUC) ranging from 0.84-1.00 (TAR <6 hours of antibiotic exposure) and 0.76-1.00 (>6 hours of antibiotic exposure) for upregulated genes and 0.57-0.90 and 0.87-1.00, respectfully, for downregulated genes. This work desmonstrates that transcriptomics allows for the assessment of antibiotic activity in Mtb within 6 hours of exposure.
Collapse
Affiliation(s)
- Husain Poonawala
- Department of Medicine and Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, USA
- Department of Medicine and Department of Anatomic and Clinical Pathology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yu Zhang
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Anna G. Green
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Di Marco
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Spitlaeri
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maha R. Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Sharma A, Bansal S, Kumari N, Vashistt J, Shrivastava R. Comparative proteomic investigation unravels the pathobiology of Mycobacterium fortuitum biofilm. Appl Microbiol Biotechnol 2023; 107:6029-6046. [PMID: 37542577 DOI: 10.1007/s00253-023-12705-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 08/07/2023]
Abstract
Biofilm formation by Mycobacterium fortuitum causes serious threats to human health due to its increased contribution to nosocomial infections. In this study, the first comprehensive global proteome analysis of M. fortuitum was reported under planktonic and biofilm growth states. A label-free Q Exactive Quadrupole-Orbitrap tandem mass spectrometry analysis was performed on the protein lysates. The differentially abundant proteins were functionally characterized and re-annotated using Blast2GO and CELLO2GO. Comparative analysis of the proteins among two growth states provided insights into the phenotypic switch, and fundamental pathways associated with pathobiology of M. fortuitum biofilm, such as lipid biosynthesis and quorum-sensing. Interaction network generated by the STRING database revealed associations between proteins that endure M. fortuitum during biofilm growth state. Hypothetical proteins were also studied to determine their functional alliance with the biofilm phenotype. CARD, VFDB, and PATRIC analysis further showed that the proteins upregulated in M. fortuitum biofilm exhibited antibiotic resistance, pathogenesis, and virulence. Heatmap and correlation analysis provided the biomarkers associated with the planktonic and biofilm growth of M. fortuitum. Proteome data was validated by qPCR analysis. Overall, the study provides insights into previously unexplored biochemical pathways that can be targeted by novel inhibitors, either for shortened treatment duration or for eliminating biofilm of M. fortuitum and related nontuberculous mycobacterial pathogens. KEY POINTS: • Proteomic analyses of M. fortuitum reveals novel biofilm markers. • Acetyl-CoA acetyltransferase acts as the phenotype transition switch. • The study offers drug targets to combat M. fortuitum biofilm infections.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Rahul Shrivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India.
| |
Collapse
|
6
|
Levendosky K, Janisch N, Quadri LEN. Comprehensive essentiality analysis of the Mycobacterium kansasii genome by saturation transposon mutagenesis and deep sequencing. mBio 2023; 14:e0057323. [PMID: 37350613 PMCID: PMC10470612 DOI: 10.1128/mbio.00573-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium kansasii (Mk) is an opportunistic pathogen that is frequently isolated from urban water systems, posing a health risk to susceptible individuals. Despite its ability to cause tuberculosis-like pulmonary disease, very few studies have probed the genetics of this opportunistic pathogen. Here, we report a comprehensive essentiality analysis of the Mk genome. Deep sequencing of a high-density library of Mk Himar1 transposon mutants revealed that 86.8% of the chromosomal thymine-adenine (TA) dinucleotide target sites were permissive to insertion, leaving 13.2% TA sites unoccupied. Our analysis identified 394 of the 5,350 annotated open reading frames (ORFs) as essential. The majority of these essential ORFs (84.8%) share essential mutual orthologs with Mycobacterium tuberculosis (Mtb). A comparative genomics analysis identified 139 Mk essential ORFs that share essential orthologs in four other species of mycobacteria. Thirteen Mk essential ORFs share orthologs in all four species that were identified as being not essential, while only two Mk essential ORFs are absent in all species compared. We used the essentiality data and a comparative genomics analysis reported here to highlight differences in essentiality between candidate Mtb drug targets and the corresponding Mk orthologs. Our findings suggest that the Mk genome encodes redundant or additional pathways that may confound validation of potential Mtb drugs and drug target candidates against the opportunistic pathogen. Additionally, we identified 57 intergenic regions containing four or more consecutive unoccupied TA sites. A disproportionally large number of these regions were located upstream of pe/ppe genes. Finally, we present an essentiality and orthology analysis of the Mk pRAW-like plasmid, pMK1248. IMPORTANCE Mk is one of the most common nontuberculous mycobacterial pathogens associated with tuberculosis-like pulmonary disease. Drug resistance emergence is a threat to the control of Mk infections, which already requires long-term, multidrug courses. A comprehensive understanding of Mk biology is critical to facilitate the development of new and more efficacious therapeutics against Mk. We combined transposon-based mutagenesis with analysis of insertion site identification data to uncover genes and other genomic regions required for Mk growth. We also compared the gene essentiality data set of Mk to those available for several other mycobacteria. This analysis highlighted key similarities and differences in the biology of Mk compared to these other species. Altogether, the genome-wide essentiality information generated and the results of the cross-species comparative genomics analysis represent valuable resources to assist the process of identifying and prioritizing potential Mk drug target candidates and to guide future studies on Mk biology.
Collapse
Affiliation(s)
- Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
- Biochemistry Program, Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
7
|
Liu Y, Kaffah N, Pandor S, Sartain MJ, Larrouy-Maumus G. Ion mobility mass spectrometry for the study of mycobacterial mycolic acids. Sci Rep 2023; 13:10390. [PMID: 37369807 DOI: 10.1038/s41598-023-37641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/25/2023] [Indexed: 06/29/2023] Open
Abstract
Lipids are highly structurally diverse molecules involved in a wide variety of biological processes. The involvement of lipids is even more pronounced in mycobacteria, including the human pathogen Mycobacterium tuberculosis, which produces a highly complex and diverse set of lipids in the cell envelope. These lipids include mycolic acids, which are among the longest fatty acids in nature and can contain up to 90 carbon atoms. Mycolic acids are ubiquitously found in mycobacteria and are alpha branched and beta hydroxylated lipids. Discrete modifications, such as alpha, alpha', epoxy, methoxy, keto, and carboxy, characterize mycolic acids at the species level. Here, we used high precision ion mobility-mass spectrometry to build a database including 206 mass-resolved collision cross sections (CCSs) of mycolic acids originating from the strict human pathogen M. tuberculosis, the opportunistic strains M. abscessus, M. marinum and M. avium, and the nonpathogenic strain M. smegmatis. Primary differences between the mycolic acid profiles could be observed between mycobacterial species. Acyl tail length and modifications were the primary structural descriptors determining CCS magnitude. As a resource for researchers, this work provides a detailed catalogue of the mass-resolved collision cross sections for mycolic acids along with a workflow to generate and analyse the dataset generated.
Collapse
Affiliation(s)
- Yi Liu
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Nadhira Kaffah
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
8
|
Simcox BS, Tomlinson BR, Shaw LN, Rohde KH. Mycobacterium abscessus DosRS two-component system controls a species-specific regulon required for adaptation to hypoxia. Front Cell Infect Microbiol 2023; 13:1144210. [PMID: 36968107 PMCID: PMC10034137 DOI: 10.3389/fcimb.2023.1144210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Mycobacterium abscessus (Mab), an emerging opportunistic pathogen, predominantly infects individuals with underlying pulmonary diseases such as cystic fibrosis (CF). Current treatment outcomes for Mab infections are poor due to Mab's inherent antibiotic resistance and unique host interactions that promote phenotypic tolerance and hinder drug access. The hypoxic, mucus-laden airways in the CF lung and antimicrobial phagosome within macrophages represent hostile niches Mab must overcome via alterations in gene expression for survival. Regulatory mechanisms important for the adaptation and long-term persistence of Mab within the host are poorly understood, warranting further genetic and transcriptomics study of this emerging pathogen. DosRS Mab , a two-component signaling system (TCS), is one proposed mechanism utilized to subvert host defenses and counteract environmental stress such as hypoxia. The homologous TCS of Mycobacterium tuberculosis (Mtb), DosRS Mtb , is known to induce a ~50 gene regulon in response to hypoxia, carbon monoxide (CO) and nitric oxide (NO) in vitro and in vivo. Previously, a small DosR Mab regulon was predicted using bioinformatics based on DosR Mtb motifs however, the role and regulon of DosRS Mab in Mab pathogenesis have yet to be characterized in depth. To address this knowledge gap, our lab generated a Mab dosRS knockout strain (MabΔdosRS) to investigate differential gene expression, and phenotype in an in vitro hypoxia model of dormancy. qRT-PCR and lux reporter assays demonstrate Mab_dosR and 6 predicted downstream genes are induced in hypoxia. In addition, RNAseq revealed induction of a much larger hypoxia response comprised of >1000 genes, including 127 differentially expressed genes in a dosRS mutant strain. Deletion of DosRS Mab led to attenuated growth under low oxygen conditions, a shift in morphotype from smooth to rough, and down-regulation of 216 genes. This study provides the first look at the global transcriptomic response of Mab to low oxygen conditions encountered in the airways of CF patients and within macrophage phagosomes. Our data also demonstrate the importance of DosRS Mab for adaptation of Mab to hypoxia, highlighting a distinct regulon (compared to Mtb) that is significantly larger than previously described, including both genes conserved across mycobacteria as well as Mab-specific genes.
Collapse
Affiliation(s)
- Breven S. Simcox
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Kyle H. Rohde
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
9
|
Bailo R, Radhakrishnan A, Singh A, Nakaya M, Fujiwara N, Bhatt A. The mycobacterial desaturase DesA2 is associated with mycolic acid biosynthesis. Sci Rep 2022; 12:6943. [PMID: 35484172 PMCID: PMC9050676 DOI: 10.1038/s41598-022-10589-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Mycolic acids are critical for the survival and virulence of Mycobacterium tuberculosis, the causative agent of tuberculosis. Double bond formation in the merochain of mycolic acids remains poorly understood, though we have previously shown desA1, encoding an aerobic desaturase, is involved in mycolic acid desaturation. Here we show that a second desaturase encoded by desA2 is also involved in mycolate biosynthesis. DesA2 is essential for growth of the fast-growing Mycobacterium smegmatis in laboratory media. Conditional depletion of DesA2 led to a decrease in mycolic acid biosynthesis and loss of mycobacterial viability. Additionally, DesA2-depleted cells also accumulated fatty acids of chain lengths C19-C24. The complete loss of mycolate biosynthesis following DesA2 depletion, and the absence of any monoenoic derivatives (found to accumulate on depletion of DesA1) suggests an early role for DesA2 in the mycolic acid biosynthesis machinery, highlighting its potential as a drug target.
Collapse
Affiliation(s)
- Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Makoto Nakaya
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, Sakai City, Osaka, 599-8531, Japan
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara City, Nara, 631-8585, Japan
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
10
|
Cooper C, Peterson EJR, Bailo R, Pan M, Singh A, Moynihan P, Nakaya M, Fujiwara N, Baliga N, Bhatt A. MadR mediates acyl CoA-dependent regulation of mycolic acid desaturation in mycobacteria. Proc Natl Acad Sci U S A 2022; 119:e2111059119. [PMID: 35165190 PMCID: PMC8872791 DOI: 10.1073/pnas.2111059119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis has a lipid-rich cell envelope that is remodeled throughout infection to enable adaptation within the host. Few transcriptional regulators have been characterized that coordinate synthesis of mycolic acids, the major cell wall lipids of mycobacteria. Here, we show that the mycolic acid desaturase regulator (MadR), a transcriptional repressor of the mycolate desaturase genes desA1 and desA2, controls mycolic acid desaturation and biosynthesis in response to cell envelope stress. A madR-null mutant of M. smegmatis exhibited traits of an impaired cell wall with an altered outer mycomembrane, accumulation of a desaturated α-mycolate, susceptibility to antimycobacterials, and cell surface disruption. Transcriptomic profiling showed that enriched lipid metabolism genes that were significantly down-regulated upon madR deletion included acyl-coenzyme A (aceyl-CoA) dehydrogenases, implicating it in the indirect control of β-oxidation pathways. Electromobility shift assays and binding affinities suggest a unique acyl-CoA pool-sensing mechanism, whereby MadR is able to bind a range of acyl-CoAs, including those with unsaturated as well as saturated acyl chains. MadR repression of desA1/desA2 is relieved upon binding of saturated acyl-CoAs of chain length C16 to C24, while no impact is observed upon binding of shorter chain and unsaturated acyl-CoAs. We propose this mechanism of regulation as distinct to other mycolic acid and fatty acid synthesis regulators and place MadR as the key regulatory checkpoint that coordinates mycolic acid remodeling during infection in response to host-derived cell surface perturbation.
Collapse
Affiliation(s)
- Charlotte Cooper
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Rebeca Bailo
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Min Pan
- Institute for Systems Biology, Seattle, WA 98109
| | - Albel Singh
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Patrick Moynihan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara 631-8585, Japan
| | - Nitin Baliga
- Institute for Systems Biology, Seattle, WA 98109;
- Department of Biology, University of Washington, Seattle, WA 98105
- Department of Microbiology, University of Washington, Seattle, WA 98105
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98105
- Lawrence Berkeley National Lab, Berkeley, CA 94720
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Sakallioglu IT, Maroli AS, Leite ADL, Powers R. A reversed phase ultra-high-performance liquid chromatography-data independent mass spectrometry method for the rapid identification of mycobacterial lipids. J Chromatogr A 2021; 1662:462739. [PMID: 34929571 DOI: 10.1016/j.chroma.2021.462739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022]
Abstract
A rapid reversed-phase ultra-high-performance liquid chromatography-high resolution mass spectrometry based mycobacterial lipidomics approach is described. This method enables the separation of various lipid classes including lipids specific to mycobacterial, such as methoxy mycolic acid and α-mycolic acid. Lipid separation occurs during a relatively short runtime of 14 min on a charged surface hybrid C18 column. A high-resolution quadrupole-time of flight mass spectrometer and a data independent acquisition mode allowed for the simultaneous acquisition of the full scan and collision induced dissociation fragmentation. The proposed method provides lipid detection results equivalent to or better than existing methods, but with a faster throughput and an overall higher sensitivity. The reversed-phase ultra-high-performance liquid chromatography-high resolution mass spectrometry method was shown to obtain structural information for lipids extracted from Mycobacterium smegmatis, but the method is applicable to the analysis of lipids from various bacterial and mammalian cell lines.
Collapse
Affiliation(s)
- Isin T Sakallioglu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA
| | - Amith S Maroli
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA
| | - Aline De Lima Leite
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA.
| |
Collapse
|
12
|
Dokic A, Peterson E, Arrieta-Ortiz ML, Pan M, Di Maio A, Baliga N, Bhatt A. Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profile. Cell Surf 2021; 7:100051. [PMID: 33912773 PMCID: PMC8066798 DOI: 10.1016/j.tcsw.2021.100051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
A non-tuberculous mycobacterium, Mycobacterium abscessus is an emerging opportunistic pathogen associated with difficult to treat pulmonary infections, particularly in patients suffering from cystic fibrosis. It is capable of forming biofilms in vitro that result in an increase of already high levels of antibiotic resistance in this bacterium. Evidence that M. abscessus forms biofilm-like microcolonies in patient lungs and on medical devices further implicated the need to investigate this biofilm in detail. Therefore, in this study we characterized the M. abscessus pellicular biofilm, formed on a liquid-air interface, by studying its molecular composition, and its transcriptional profile in comparison to planktonic cells. Using scanning electron micrographs and fluorescence microscopy, we showed that M. abscessus biofilms produce an extracellular matrix composed of lipids, proteins, carbohydrates and extracellular DNA. Transcriptomic analysis of biofilms revealed an upregulation of pathways involved in the glyoxylate shunt, redox metabolism and mycolic acid biosynthesis. Genes involved in elongation and desaturation of mycolic acids were highly upregulated in biofilms and, mirroring those findings, biochemical analysis of mycolates revealed molecular changes and an increase in mycolic acid chain length. Together these results give us an insight into the complex structure of M. abscessus biofilms, the understanding of which may be adapted for clinical use in treatment of biofilm infections, including strategies for dispersing the extracellular matrix, allowing antibiotics to gain access to bacteria within the biofilm.
Collapse
Affiliation(s)
- Anja Dokic
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | - Min Pan
- Institute for Systems Biology, Seattle, WA 98109 USA
| | - Alessandro Di Maio
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Nitin Baliga
- Institute for Systems Biology, Seattle, WA 98109 USA
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
13
|
Hariharan VN, Yadav R, Thakur C, Singh A, Gopinathan R, Singh DP, Sankhe G, Malhotra V, Chandra N, Bhatt A, Saini DK. Cyclic di-GMP sensing histidine kinase PdtaS controls mycobacterial adaptation to carbon sources. FASEB J 2021; 35:e21475. [PMID: 33772870 DOI: 10.1096/fj.202002537rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/11/2022]
Abstract
Cell signaling relies on second messengers to transduce signals from the sensory apparatus to downstream signaling pathway components. In bacteria, one of the most important and ubiquitous second messenger is the small molecule cyclic diguanosine monophosphate (c-di-GMP). While the biosynthesis, degradation, and regulatory pathways controlled by c-di-GMP are well characterized, the mechanisms through which c-di-GMP controls these processes are not entirely understood. Herein we present the report of a c-di-GMP sensing sensor histidine kinase PdtaS (Rv3220c), which binds to c-di-GMP at submicromolar concentrations, subsequently perturbing signaling of the PdtaS-PdtaR (Rv1626) two-component system. Aided by biochemical analysis, genetics, molecular docking, FRET microscopy, and structural modelling, we have characterized the binding of c-di-GMP in the GAF domain of PdtaS. We show that a pdtaS knockout in Mycobacterium smegmatis is severely compromised in growth on amino acid deficient media and exhibits global transcriptional dysregulation. The perturbation of the c-di-GMP-PdtaS-PdtaR axis results in a cascade of cellular changes recorded by a multiparametric systems' approach of transcriptomics, unbiased metabolomics, and lipid analyses.
Collapse
Affiliation(s)
- Vignesh Narayan Hariharan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Rahul Yadav
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Renu Gopinathan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Devendra Pratap Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gaurav Sankhe
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Vandana Malhotra
- Department of Biochemistry, Sri Venkateswara College, Delhi University, Delhi, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
14
|
Zhou Y, Zhong T, Wei W, Wu Z, Yang A, Liu N, Wang M, Zhang X. Single START-domain protein Mtsp17 is involved in transcriptional regulation in Mycobacterium smegmatis. PLoS One 2021; 16:e0249379. [PMID: 33857164 PMCID: PMC8049324 DOI: 10.1371/journal.pone.0249379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/17/2021] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis caused by the pathogen Mycobacterium tuberculosis (MTB), remains a significant threat to global health. Elucidating the mechanisms of essential MTB genes provides an important theoretical basis for drug exploitation. Gene mtsp17 is essential and is conserved in the Mycobacterium genus. Although Mtsp17 has a structure closely resembling typical steroidogenic acute regulatory protein-related lipid transfer (START) family proteins, its biological function is different. This study characterizes the transcriptomes of Mycobacterium smegmatis to explore the consequences of mtsp17 downregulation on gene expression. Suppression of the mtsp17 gene resulted in significant down-regulation of 3% and upregulation of 1% of all protein-coding genes. Expression of desA1, an essential gene involved in mycolic acid synthesis, and the anti-SigF antagonist MSMEG_0586 were down-regulated in the conditional Mtsp17 knockout mutant and up-regulated in the Mtsp17 over-expression strain. Trends in the changes of 70 of the 79 differentially expressed genes (Log2 fold change > 1.5) in the conditional Mtsp17 knockout strain were the same as in the SigF knockout strain. Our data suggest that Mtsp17 is likely an activator of desA1 and Mtsp17 regulates the SigF regulon by SigF regulatory pathways through the anti-SigF antagonist MSMEG_0586. Our findings indicate the role of Mtsp17 may be in transcriptional regulation, provide new insights into the molecular mechanisms of START family proteins, and uncover a new node in the regulatory network of mycobacteria.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tianying Zhong
- Guangdong Province Green and High Performance Novel Materials Engineering Research Center, Jiangmen Polytechnic, Jiangmen, China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Zhuhua Wu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Anping Yang
- School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Ning Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- * E-mail: (NL); (MW); (XZ)
| | - Ming Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (NL); (MW); (XZ)
| | - Xiaoli Zhang
- School of Medicine, Foshan University, Foshan, Guangdong, China
- * E-mail: (NL); (MW); (XZ)
| |
Collapse
|
15
|
Laval T, Chaumont L, Demangel C. Not too fat to fight: The emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis. Immunol Rev 2021; 301:84-97. [PMID: 33559209 DOI: 10.1111/imr.12952] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
Abstract
While the existence of a special relationship between Mycobacterium tuberculosis (Mtb) and host lipids has long been known, it remains a challenging enigma. It was clearly established that Mtb requires host fatty acids (FAs) and cholesterol to produce energy, build its distinctive lipid-rich cell wall, and produce lipid virulence factors. It was also observed that in infected hosts, Mtb constantly resides in a FA-rich environment that the pathogen contributes to generate by inducing a lipid-laden "foamy" phenotype in host macrophages. These observations and the proximity between lipid droplets and phagosomes containing bacteria within infected macrophages gave rise to the hypothesis that Mtb reprograms host cell lipid metabolism to ensure a continuous supply of essential nutrients and its long-term persistence in vivo. However, recent studies question this principle by indicating that in Mtb-infected macrophages, lipid droplet formation prevents bacterial acquisition of host FAs while supporting the production of FA-derived protective lipid mediators. Further, in vivo investigations reveal discrete macrophage phenotypes linking the FA metabolisms of host cell and intracellular pathogen. Notably, FA storage within lipid droplets characterizes both macrophages controlling Mtb infection and dormant intracellular Mtb. In this review, we integrate findings from immunological and microbiological studies illustrating the new concept that cytoplasmic accumulation of FAs is a metabolic adaptation of macrophages to Mtb infection, which potentiates their antimycobacterial responses and forces the intracellular pathogen to shift into fat-saving, survival mode.
Collapse
Affiliation(s)
- Thomas Laval
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Lise Chaumont
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| |
Collapse
|
16
|
Chen S, Teng T, Wen S, Zhang T, Huang H. The aceE involves in mycolic acid synthesis and biofilm formation in Mycobacterium smegmatis. BMC Microbiol 2020; 20:259. [PMID: 32811434 PMCID: PMC7437000 DOI: 10.1186/s12866-020-01940-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 11/26/2022] Open
Abstract
Background The integrity of cell wall structure is highly significant for the in vivo survival of mycobacteria. We hypothesized that changes in morphology may indicate changes in cell wall metabolism and identified an aceE gene mutant (aceE-mut) which presented a deficient colony morphology on 7H10 agar by screening transposon mutagenesis in Mycolicibacterium smegmatis, basonym Mycobacterium smegmatis (M. smegmatis). This study aimed to identify the functional role of aceE gene in cell wall biosynthesis in M. smegmatis. Results We observed that the colony morphology of aceE-mut was quite different, smaller and smoother on the solid culture medium than the wild-type (WT) strain during the transposon library screening of M. smegmatis. Notably, in contrast with the WT, which aggregates and forms biofilm, the aceE-mut lost its ability of growing aggregately and biofilm formation, which are two very important features of mycobacteria. The morphological changes in the aceE-mut strain were further confirmed by electron microscopy which indicated smoother and thinner cell envelope images in contrast with the rough morphology of WT strains. Additionally, the aceE-mut was more fragile to acidic stress and exhibited a pronounced defects in entering the macrophages as compared to the WT. The analysis of mycolic acid (MA) using LC-MS indicated deficiency of alpha-MA and epoxy-MA in aceE-mut strain whereas complementation of the aceE-mut with a wild-type aceE gene restored the composition of MA. Conclusions Over all, this study indicates that aceE gene plays a significant role in the mycolic acid synthesis and affects the colony morphology, biofilm formation of M. smegmatis and bacteria invasion of macrophage.
Collapse
Affiliation(s)
- Suting Chen
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, China
| | - Tianlu Teng
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, China
| | - Shuan Wen
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, China
| | - Tingting Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, China.
| |
Collapse
|
17
|
Riggs-Shute SD, Falkinham JO, Yang Z. Construction and Use of Transposon MycoTetOP 2 for Isolation of Conditional Mycobacteria Mutants. Front Microbiol 2020; 10:3091. [PMID: 32038540 PMCID: PMC6985430 DOI: 10.3389/fmicb.2019.03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
Mycobacteria are unique in many aspects of their biology. The development of genetic tools to identify genes critical for their growth by forward genetic analysis holds great promises to advance our understanding of their cellular, physiological and biochemical processes. Here we report the development of a novel transposon, MycoTetOP 2, to aid the identification of such genes by direct transposon mutagenesis. This mariner-based transposon contains nested anhydrotetracycline (ATc)-inducible promoters to drive transcription outward from both of its ends. In addition, it includes the Escherichia coli R6Kγ origin to facilitate the identification of insertion sites. MycoTetOP 2 was placed in a shuttle plasmid with a temperature-sensitive DNA replication origin in mycobacteria. This allows propagation of mycobacteria harboring the plasmid at a permissive temperature. The resulting population of cells can then be subjected to a temperature shift to select for transposon mutants. This transposon and its delivery system, once constructed, were tested in the fast-growing model Mycobacterium smegmatis and 13 mutants with ATc-dependent growth were isolated. The identification of the insertion sites in these mutants led to nine unique genetic loci with genes critical for essential processes in both M. smegmatis and Mycobacterium tuberculosis. These results demonstrate that MycoTetOP 2 and its delivery vector provide valuable tools for the studies of mycobacteria by forward genetics.
Collapse
Affiliation(s)
- Sarah D. Riggs-Shute
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biology, Tidewater Community College, Portsmouth, VA, United States
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
18
|
Rehberg N, Omeje E, Ebada SS, van Geelen L, Liu Z, Sureechatchayan P, Kassack MU, Ioerger TR, Proksch P, Kalscheuer R. 3- O-Methyl-Alkylgallates Inhibit Fatty Acid Desaturation in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:e00136-19. [PMID: 31209015 PMCID: PMC6709504 DOI: 10.1128/aac.00136-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/10/2019] [Indexed: 11/20/2022] Open
Abstract
In the quest for new antibacterial lead structures, activity screening against Mycobacterium tuberculosis identified antitubercular effects of gallic acid derivatives isolated from the Nigerian mistletoe Loranthus micranthus Structure-activity relationship studies indicated that 3-O-methyl-alkylgallates comprising aliphatic ester chains with four to eight carbon atoms showed the strongest growth inhibition in vitro against M. tuberculosis, with a MIC of 6.25 μM. Furthermore, the most active compounds (3-O-methyl-butyl-, 3-O-methyl-hexylgallate, and 3-O-methyl-octylgallate) were devoid of cytotoxicity against various human cell lines. Furthermore, 3-O-methyl-butylgallate showed favorable absorption, distribution, metabolism, and excretion (ADME) criteria, with a Papp of 6.2 × 10-6 cm/s, and it did not inhibit P-glycoprotein (P-gp), CYP1A2, CYP2B6 or CYP3A4. Whole-genome sequencing of spontaneous resistant mutants indicated that the compounds target the stearoyl-coenzyme A (stearoyl-CoA) delta-9 desaturase DesA3 and thereby inhibit oleic acid synthesis. Supplementation assays demonstrated that oleic acid addition to the culture medium antagonizes the inhibitory properties of gallic acid derivatives and that sodium salts of saturated palmitic and stearic acid did not show compensatory effects. The moderate bactericidal effect of 3-O-methyl-butylgallate in monotreatment was synergistically enhanced in combination treatment with isoniazid, leading to sterilization in liquid culture.
Collapse
Affiliation(s)
- Nidja Rehberg
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Edwin Omeje
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Sherif S Ebada
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Parichat Sureechatchayan
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Thomas R Ioerger
- Department of Computer Science, Texas A&M University, College Station, Texas, USA
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| |
Collapse
|
19
|
Peterson EJ, Bailo R, Rothchild AC, Arrieta-Ortiz ML, Kaur A, Pan M, Mai D, Abidi AA, Cooper C, Aderem A, Bhatt A, Baliga NS. Path-seq identifies an essential mycolate remodeling program for mycobacterial host adaptation. Mol Syst Biol 2019; 15:e8584. [PMID: 30833303 PMCID: PMC6398593 DOI: 10.15252/msb.20188584] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The success of Mycobacterium tuberculosis (MTB) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path-seq) to sequence miniscule amounts of MTB transcripts within up to million-fold excess host RNA Using Path-seq and regulatory network analyses, we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1/desA2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection.
Collapse
Affiliation(s)
| | - Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Alissa C Rothchild
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Charlotte Cooper
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Molecular and Cellular Biology Program, Departments of Microbiology and Biology, University of Washington, Seattle, WA, USA
- Lawrence Berkeley National Laboratories, Berkeley, CA, USA
| |
Collapse
|
20
|
He J, Fu W, Zhao S, Zhang C, Sun T, Jiang T. Lack of MSMEG_6281, a peptidoglycan amidase, affects cell wall integrity and virulence of Mycobacterium smegmatis. Microb Pathog 2019; 128:405-413. [PMID: 30685363 DOI: 10.1016/j.micpath.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
Mycolyl-arabinogalactan-peptidoglycan (mAGP) is the major content of the mycobacterium cell wall structure and essential for mycobacterial survival. Peptidoglycan (PG) plays an important role in maintenance of cell division, cell wall integrity and pathogenesis. Mycobacterium smegmatis MSMEG_6281, a peptidoglycan amidase, is vital for mycobacterial cell division. However, the effects of MSMEG_6281on cell wall integrity and mycobacterial virulence remain unknown. In the current study, we demonstrate that MSMEG_6281gene knockout in M.smegmatis alters the microbiological characteristics. Our results revealed that MSMEG_6281gene knockout bacteria (M. sm-ΔM_6281) lost their acid-fastness, increased their sensitivity to lipophilic compounds and presented an abnormal morphology. Our results revealed that MSMEG_6281was related to maintaining the cell wall integrity. Furthermore, we investigated the effects of MSMEG_6281 inactivation on mycobacterial virulence using mice models infected by different M.smegmatis strains. MSMEG_6281 inactivation in the M sm-ΔM_6281 infected group caused less mycobacterial colonization, reduced pathological signs, decreased the anti-microbial enzymes production including iNOS and β-defensins in mouse lungs. Moreover, IL-1β and TLR2 expression were significantly down-regulated, while the production of IFN-γ and TNF-α was up-regulated. These findings indicated the diversity of host immune responses induced by different strains of M.smegmatis, suggesting that MSMEG_6281 inactivation impact mycobacterial virulence. In conclusion, the MSMEG_6281 protein plays important roles in maintaining cell wall integrity and mycobacterial virulence.
Collapse
Affiliation(s)
- Jiajia He
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Weizhe Fu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shijia Zhao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cuili Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Tieying Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Tao Jiang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
21
|
Lefebvre C, Boulon R, Ducoux M, Gavalda S, Laval F, Jamet S, Eynard N, Lemassu A, Cam K, Bousquet MP, Bardou F, Burlet-Schiltz O, Daffé M, Quémard A. HadD, a novel fatty acid synthase type II protein, is essential for alpha- and epoxy-mycolic acid biosynthesis and mycobacterial fitness. Sci Rep 2018; 8:6034. [PMID: 29662082 PMCID: PMC5902629 DOI: 10.1038/s41598-018-24380-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Mycolic acids (MAs) have a strategic location within the mycobacterial envelope, deeply influencing its architecture and permeability, and play a determinant role in the pathogenicity of mycobacteria. The fatty acid synthase type II (FAS-II) multienzyme system is involved in their biosynthesis. A combination of pull-downs and proteomics analyses led to the discovery of a mycobacterial protein, HadD, displaying highly specific interactions with the dehydratase HadAB of FAS-II. In vitro activity assays and homology modeling showed that HadD is, like HadAB, a hot dog folded (R)-specific hydratase/dehydratase. A hadD knockout mutant of Mycobacterium smegmatis produced only the medium-size alpha’-MAs. Data strongly suggest that HadD is involved in building the third meromycolic segment during the late FAS-II elongation cycles, leading to the synthesis of the full-size alpha- and epoxy-MAs. The change in the envelope composition induced by hadD inactivation strongly altered the bacterial fitness and capacities to aggregate, assemble into colonies or biofilms and spread by sliding motility, and conferred a hypersensitivity to the firstline antimycobacterial drug rifampicin. This showed that the cell surface properties and the envelope integrity were greatly affected. With the alarmingly increasing case number of nontuberculous mycobacterial diseases, HadD appears as an attractive target for drug development.
Collapse
Affiliation(s)
- Cyril Lefebvre
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Richard Boulon
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Manuelle Ducoux
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Sabine Gavalda
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Françoise Laval
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Stevie Jamet
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Nathalie Eynard
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Anne Lemassu
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Kaymeuang Cam
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Marie-Pierre Bousquet
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Fabienne Bardou
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Odile Burlet-Schiltz
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Mamadou Daffé
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Annaïk Quémard
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France.
| |
Collapse
|
22
|
Di Capua CB, Doprado M, Belardinelli JM, Morbidoni HR. Complete auxotrophy for unsaturated fatty acids requires deletion of two sets of genes in Mycobacterium smegmatis. Mol Microbiol 2017; 106:93-108. [PMID: 28762586 DOI: 10.1111/mmi.13753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
The synthesis of unsaturated fatty acids in Mycobacterium smegmatis is poorly characterized. Bioinformatic analysis revealed four putative fatty acid desaturases in its genome, one of which, MSMEG_1886, is highly homologous to desA3, the only palmitoyl/stearoyl desaturase present in the Mycobacterium tuberculosis genome. A MSMEG_1886 deletion mutant was partially auxotrophic for oleic acid and viable at 37°C and 25°C, although with a long lag phase in liquid medium. Fatty acid analysis suggested that MSMEG_1886 is a palmitoyl/stearoyl desaturase, as the synthesis of palmitoleic acid was abrogated, while oleic acid contents dropped by half in the mutant. Deletion of the operon MSMEG_1741-1743 (highly homologous to a Pseudomonas aeruginosa acyl-CoA desaturase) had little effect on growth of the parental strain; however the double mutant MSMEG_1886-MSMEG_1741-1743 strictly required oleic acid for growth. The ΔMSMEG_1886-ΔMSMEG_1741 double mutant was able to grow (poorly but better than the ΔMSMEG_1886 single mutant) in solid and liquid media devoid of oleic acid, suggesting a repressor role for ΔMSMEG_1741. Fatty acid analysis of the described mutants suggested that MSMEG_1742-43 desaturates C18:0 and C24:0 fatty acids. Thus, although the M. smegmatis desA3 homologue is the major player in unsaturated fatty acid synthesis, a second set of genes is also involved.
Collapse
Affiliation(s)
- Cecilia B Di Capua
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana Doprado
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan Manuel Belardinelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
23
|
Samanta S, Singh A, Biswas P, Bhatt A, Visweswariah SS. Mycobacterial phenolic glycolipid synthesis is regulated by cAMP-dependent lysine acylation of FadD22. MICROBIOLOGY-SGM 2017; 163:373-382. [PMID: 28141495 DOI: 10.1099/mic.0.000440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mycobacterial cell envelope is unique in its chemical composition, and has an important role to play in pathogenesis. Phthiocerol dimycocerosates (PDIMs) and glycosylated phenolphthiocerol dimycocerosates, also known as phenolic glycolipids (PGLs), contribute significantly to the virulence of Mycobacterium tuberculosis. FadD22 is essential for PGL biosynthesis. We have recently shown in vitro that FadD22 is a substrate for lysine acylation by a unique cAMP-dependent, protein lysine acyltransferase found only in mycobacteria. The lysine residue that is acylated is at the active site of FadD22. Therefore, acylation is likely to inhibit FadD22 activity and reduce PGL biosynthesis. Here, we show accumulation of PGLs in a strain of M. bovis BCG deleted for the gene encoding the cAMP-dependent acyltransferase, katbcg, with no change seen in PDIM synthesis. Complementation using KATbcg mutants that are deficient in cAMP-binding or acyltransferase activity shows that PGL accumulation is regulated by cAMP-dependent protein acylation in vivo. Expression of FadD22 and KATbcg mutants in Mycobacterium smegmatis confirmed that FadD22 is a substrate for lysine acylation by KATbcg. We have therefore described a mechanism by which cAMP can regulate mycobacterial virulence as a result of the ability of this second messenger to modulate critical cell wall components that affect the host immune response.
Collapse
Affiliation(s)
- Sintu Samanta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.,Present address: Indian Institute of Information Technology, Allahabad, India
| | - Albel Singh
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Priyanka Biswas
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Apoorva Bhatt
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
24
|
Degiacomi G, Benjak A, Madacki J, Boldrin F, Provvedi R, Palù G, Kordulakova J, Cole ST, Manganelli R. Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression. Sci Rep 2017; 7:43495. [PMID: 28240248 PMCID: PMC5327466 DOI: 10.1038/srep43495] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/25/2017] [Indexed: 12/28/2022] Open
Abstract
MmpL3 is an inner membrane transporter of Mycobacterium tuberculosis responsible for the export of trehalose momomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. MmpL3 represents an emerging target for tuberculosis therapy. In this paper, we describe the construction and characterization of an mmpL3 knockdown strain of M. tuberculosis. Downregulation of mmpL3 led to a stop in bacterial division and rapid cell death, preceded by the accumulation of TDM precursors. MmpL3 was also shown to be essential for growth in monocyte-derived human macrophages. Using RNA-seq we also found that MmpL3 depletion caused up-regulation of 47 genes and down-regulation of 23 genes (at least 3-fold change and false discovery rate ≤1%). Several genes related to osmoprotection and metal homeostasis were induced, while several genes related to energy production and mycolic acids biosynthesis were repressed suggesting that inability to synthesize a correct outer membrane leads to changes in cellular permeability and a metabolic downshift.
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jan Madacki
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jana Kordulakova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|