1
|
Kim YH, Park CH, Kim JM, Yoon YC. Chitooligosaccharides suppress airway inflammation, fibrosis, and mucus hypersecretion in a house dust mite-induced allergy model. FRONTIERS IN ALLERGY 2025; 6:1533928. [PMID: 39927112 PMCID: PMC11799285 DOI: 10.3389/falgy.2025.1533928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Background Respiratory allergy is a serious respiratory disorder characterized by inflammation, mucus hypersecretion, and airway tissue sclerosis. Disruption of the T helper 1 (Th1) and T helper 2 (Th2) immune systems by stimuli induced by house dust mites (HDM) and fine particulate matter leads to the secretion of various inflammatory cytokines, resulting in immune respiratory diseases characterized by airway inflammation. Chitooligosaccharides (COS) are known for their antioxidant and anti-inflammatory properties. Methods Human airway epithelial cells (BEAS-2B) were cultured in DMEM/F12 medium containing COS at concentrations of 25-100 µg/ml for 24 h. No intracellular toxicity was observed up to 1,000 µg/ml. Cell experiments were conducted at COS concentrations below 100 µg/ml, while animal experiments were performed at concentrations below 100 mg/kg body weight for 4 weeks. Samples of right lung tissue obtained from the experimental animals were used for gene and protein expression analysis, whereas samples of contralateral lung tissue were used for immunohistochemical analysis. Results COS regulated Th1 immunity by inhibiting major cytokines, including inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), in BEAS-2B cells. In the HDM-induced allergic respiratory model, COS suppressed the infiltration of inflammatory cells around the airways and inhibited the mRNA expression of Th1 immune cytokines in lung tissues, while also reducing the expression of nuclear factor kappa B (NF-κB)-related proteins. Furthermore, the results confirmed the suppression of the levels of immunoglobulin E (IgE) in the blood secreted by mast cells activated by HDM, which led to a reduction in allergic mucus hypersecretion and airway sclerosis. Conclusion In summary, COS are thought to improve airway resistance by alleviating inflammatory allergic respiratory diseases caused by HDM and are regarded as substances that regulate the balance of the Th1 and Th2 immune systems in epithelial cells affected by mucus hypersecretion.
Collapse
Affiliation(s)
| | | | | | - Yeo Cho Yoon
- Healthcare & Nutrition Laboratory, Amicogen, Inc., Seongnam, Republic of Korea
| |
Collapse
|
2
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
3
|
Vetter C, Schieb J, Vedder N, Lange T, Brunn T, van Geffen C, Gercke P, Kolahian S. The impact of IL-10 and IL-17 on myeloid-derived suppressor cells in vitro and in vivo in a murine model of asthma. Eur J Immunol 2024; 54:e2350785. [PMID: 38654479 DOI: 10.1002/eji.202350785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) hold promise for clinical applications due to their immunosuppressive properties, particularly in the context of inflammation. In the present study, the number and immunosuppressive activity of MDSCs isolated from naïve Il10-/-, Il17-/-, and WT mice as control, as well as from house dust mite extract (HDM)-induced asthmatic Il10-/- and Il17-/- mice, were investigated. IL-10 deficiency increased the number of polymorphonuclear (PMN)-MDSCs in the lung, spleen, and bone marrow, without concurrent impairment of their suppressive activity in vitro. In the asthma model, the IL-17 knockout was concomitant with a lower number and activity of monocytic (M)-MDSCs and an altered inflammatory reaction with impaired lung function. Additionally, we found a higher baseline inflammation of the Il17-/- mice in the lung, manifested in increased airway resistance. We conclude that the impact of IL-10 and IL-17 deficiency on MDSCs differs in the context of inflammation. Accordingly, the in vitro experiments demonstrated an increased number of PMN-MDSCs across tissues in Il10-/- mice, which indicates that IL-10 might serve a pivotal role in preserving immune homeostasis under physiological circumstances. In the context of HDM-induced airway inflammation, IL-17 was found to be an important player in the suppression of pulmonary inflammation and regulation of M-MDSCs.
Collapse
Affiliation(s)
- Charlotte Vetter
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Jakob Schieb
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Nora Vedder
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Tim Lange
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Tobias Brunn
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Chiel van Geffen
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Philipp Gercke
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Saeed Kolahian
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Small Animal Imaging Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Wu J, Song Z, Cai N, Cao N, Wang Q, Xiao X, Yang X, He Y, Zou S. Pharmacokinetics, tissue distribution and excretion of six bioactive components from total glucosides picrorhizae rhizoma, as simultaneous determined by a UHPLC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123830. [PMID: 37459691 DOI: 10.1016/j.jchromb.2023.123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Total glucosides picrorhizae rhizome (TGPR) is an innovative traditional Chinese medicine, which is a candidate drug for the treatment of nonalcoholic steatohepatitis (NASH). However, there is still lack of deep research on the behaviors of TGPR in vivo. In this study, a reliable, specific, and sensitive liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been constructed for simultaneous determination of picroside I, picroside II, vanillic acid, androsin, cinnamic acid and picroside IV, the major active constituents of TGPR, in rat various biological matrices (plasma, tissue, bile, urine and feces) using diphenhydramine hydrochloride and paeoniflorin as the internal standard. All biosamples were prepared using a simple protein precipitation with acetonitrile. Chromatographic separation was achieved on a waters UHPLC® HSS T3 (100×2.1 mm, 1.8 μm) column. The mobile phase consisted of methanol: acetonitrile1(1:1, V/V) and 0.5 mM ammonium formate in water, was employed to separate six components from endogenous interferences. The components were detected with a triple quadrupole mass spectrometer using positive and negative ion multiple reaction monitoring (MRM) mode. The newly developed method was successfully applied to investigate the pharmacokinetics, tissue distribution and excretion of six components in rats. The pharmacokinetic results indicated that the six components in TGPR could be quickly absorbed and slowly eliminated and their bioavailability were less than 12.37%, which implied the poor absorption after intragastric dosing. For tissue distribution, the six components in TGPR were detected in liver and only androsin could penetrate the blood-brain barrier. Meanwhile, the excretion study demonstrated that vanillic acid was mostly excreted as prototype drugs and the remaining five components might be widely metabolized in vivo as the metabolites, the unconverted form was excreted mainly by feces route. The pharmacokinetics, tissue distribution and excretion characteristics of six bioactive components in TGPR were firstly revealed, which will provide references for further clinical application of TGPR as an anti-NASH drug.
Collapse
Affiliation(s)
- Jieyi Wu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhaohui Song
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - Nan Cai
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - Ningning Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingguo Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuefeng Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaokun Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Yi He
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China.
| | - Shuxuan Zou
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Oh ES, Ryu HW, Kim MO, Lee JW, Song YN, Park JY, Kim DY, Ro H, Lee J, Kim TD, Hong ST, Lee SU, Oh SR. Verproside, the Most Active Ingredient in YPL-001 Isolated from Pseudolysimachion rotundum var. subintegrum, Decreases Inflammatory Response by Inhibiting PKCδ Activation in Human Lung Epithelial Cells. Int J Mol Sci 2023; 24:ijms24087229. [PMID: 37108390 PMCID: PMC10138391 DOI: 10.3390/ijms24087229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease which causes breathing problems. YPL-001, consisting of six iridoids, has potent inhibitory efficacy against COPD. Although YPL-001 has completed clinical trial phase 2a as a natural drug for COPD treatment, the most effective iridoid in YPL-001 and its mechanism for reducing airway inflammation remain unclear. To find an iridoid most effectively reducing airway inflammation, we examined the inhibitory effects of the six iridoids in YPL-001 on TNF or PMA-stimulated inflammation (IL-6, IL-8, or MUC5AC) in NCI-H292 cells. Here, we show that verproside among the six iridoids most strongly suppresses inflammation. Both TNF/NF-κB-induced MUC5AC expression and PMA/PKCδ/EGR-1-induced IL-6/-8 expression are successfully reduced by verproside. Verproside also shows anti-inflammatory effects on a broad range of airway stimulants in NCI-H292 cells. The inhibitory effect of verproside on the phosphorylation of PKC enzymes is specific to PKCδ. Finally, in vivo assay using the COPD-mouse model shows that verproside effectively reduces lung inflammation by suppressing PKCδ activation and mucus overproduction. Altogether, we propose YPL-001 and verproside as candidate drugs for treating inflammatory lung diseases that act by inhibiting PKCδ activation and its downstream pathways.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Jae-Won Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinhyuk Lee
- Disease Target Structure Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| |
Collapse
|
6
|
Okwuofu EO, Hui AYC, Woei JLC, Stanslas J. Molecular and Immunomodulatory Actions of New Antiasthmatic Agents: Exploring the Diversity of Biologics in Th2 Endotype Asthma. Pharmacol Res 2022; 181:106280. [PMID: 35661709 DOI: 10.1016/j.phrs.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Asthma is a major respiratory disorder characterised by chronic inflammation and airway remodelling. It affects about 1-8% of the global population and is responsible for over 461,000 deaths annually. Until recently, the pharmacotherapy of severe asthma involved high doses of inhaled corticosteroids in combination with β-agonist for prolonged action, including theophylline, leukotriene antagonist or anticholinergic yielding limited benefit. Although the use of newer agents to target Th2 asthma endotypes has improved therapeutic outcomes in severe asthmatic conditions, there seems to be a paucity of understanding the diverse mechanisms through which these classes of drugs act. This article delineates the molecular and immunomodulatory mechanisms of action of new antiasthmatic agents currently being trialled in preclinical and clinical studies to remit asthmatic conditions. The ultimate goal in developing antiasthmatic agents is based on two types of approaches: either anti-inflammatory or bronchodilators. Biologic and most small molecules have been shown to modulate specific asthma endotypes, targeting thymic stromal lymphopoietin, tryptase, spleen tyrosine kinase (Syk), Janus kinase, PD-L1/PD-L2, GATA-3, and CD38 for the treatment and management of Th2 endotype asthma.
Collapse
Affiliation(s)
- Emmanuel Oshiogwe Okwuofu
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Jonathan Lim Chee Woei
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Hamzeloo-Moghadam M, Athari SS, Kashafroodi H, Dargahi T, Ara L, Choopani R. Effects of a polyherbal formulation on inflammation and histopathological alterations in mice with ovalbumin-induced allergic asthma. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:527-536. [PMID: 36249456 PMCID: PMC9516404 DOI: 10.22038/ajp.2022.20050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/18/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Allergic asthma is a complex inflammatory disorder that affects the airways. As an ancient medical system, Iranian Traditional Medicine (ITM) recommends a polyherbal formula called "Monzej-e-balgham" for the treatment of asthma. In the present investigation, the antiasthmatic effects of "Monzej-e-balgham" were examined in a murine model of allergic asthma. MATERIALS AND METHODS Twenty-eight Balb/c mice weighing 15-20 g were allocated into 4 groups. As negative and positive controls, groups I and II received phosphate-buffered saline (PBS) and ovalbumin (OVA) solutions, respectively. Groups III and IV were first sensitized with OVA and then respectively treated with "Monzej-e-balgham" (63 mg/kg) and budesonide. Finally, bronchoalveolar lavage fluid (BALF) and lung tissues of the animals were collected and used for eosinophil counting, Th2 type interleukins (IL-5, IL-13, and IL-33) measurement, and histological examinations. RESULTS "Monzej-e-balgham" significantly reduced the number of eosinophils and the levels of IL-5, IL-13, and IL-33 in BALF specimens compared to OVA-sensitized group (p<0.05). It also ameliorated histopathological changes of the lung tissues such as goblet cells hyperplasia and mucus overproduction in comparison to group II. Interestingly, the results of the "Monzej-e-balgham"-treated group were comparable with those obtained for budesonide-inhaled mice. CONCLUSION The present data indicated a mechanism that involves Th2 inflammatory responses in allergic asthma and suggested a polyherbal mixture for the treatment of this disease.
Collapse
Affiliation(s)
- Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Shamsadin Athari
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hanieh Kashafroodi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Dargahi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ara
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasool Choopani
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding Author: Tel: +98-2188776027, Fax: +98-2188776027,
| |
Collapse
|
8
|
Guo C, Hua Y, Qian Z. Differentially expressed genes, lncRNAs, and competing endogenous RNAs in Kawasaki disease. PeerJ 2021; 9:e11169. [PMID: 34026343 PMCID: PMC8123229 DOI: 10.7717/peerj.11169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Kawasaki disease (KD) is an acute and febrile systemic vasculitis of unknown etiology. This study aimed to identify the competing endogenous RNA (ceRNA) networks of lncRNAs, miRNAs, and genes in KD and explore the molecular mechanisms underlying KD. METHODS GSE68004 and GSE73464 datasets were downloaded from the Gene Expression Omnibus. Differentially expressed lncRNAs (DElncRNAs) and genes (DEGs) in KD were identified using the criteria of p < 0.05 and | log2 (fold change) | ≥ 1. MicroRNAs (miRNAs) related to KD were searched from databases. The lncRNA-miRNA-mRNA networks involving the DElncRNAs and DEGs were constructed. RESULTS A total of 769 common upregulated, 406 common downregulated DEGs, and six DElncRNAs were identified in the KD samples. The lncRNA-miRNA-mRNA network consisted of four miRNAs, three lncRNAs (including the upregulated PSORS1C3, LINC00999, and the downregulated SNHG5) and four DEGs (including the downregulated GATA3 and the upregulated SOD2, MAPK14, and PPARG). Validation in the GSE18606 dataset showed that intravenous immunoglobulin treatment significantly alleviated the deregulated profiles of the above RNAs in KD patients. Three ceRNA networks of LINC00999-hsa-miR-6780-SOD2, PSORS1C3-hsa-miR-216a-PPARG/MAPK14, and SNHG5-hsa-miR-132/hsa-miR-92-GATA3 were identified. Four genes were associated with functional categories, such as inflammatory response and vascular endothelial cell. CONCLUSIONS The ceRNA networks involve genes, such as SOD2, MAPK14, and PPARG, and lncRNAs, including PSORS1C3, LINC00999, and SNHG5, which might play a key role in the pathogenesis and development of KD by regulating inflammation.
Collapse
Affiliation(s)
- Changsheng Guo
- Department of Pediatrics, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuanqing Hua
- Nanjing Maigaoqiao Community Health Service Center, Nanjing, China
| | - Zuanhao Qian
- Department of Pediatrics, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Park D, Kwak DW, Kim JH. Leukotriene B 4 receptors contribute to house dust mite-induced eosinophilic airway inflammation via T H2 cytokine production. BMB Rep 2021. [PMID: 33612149 PMCID: PMC8016659 DOI: 10.5483/bmbrep.2021.54.3.247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukotriene B4 (LTB4) is a lipid mediator of inflammation that is generated from arachidonic acid via the 5-lipoxygenase pathway. Previous studies have reported that the receptors of LTB4, BLT1, and BLT2 play mediatory roles in the allergic airway inflammation induced by ovalbumin (OVA). However, considering that house dust mites (HDMs) are the most prevalent allergen and well-known risk factor for asthmatic allergies, we are interested in elucidating the contributory roles of BLT1/2 in HDM-induced allergic airway inflammation. Our aim in this study was to investigate whether BLT1/2 play any roles in HDM-induced allergic airway inflammation. In this study, we observed that the levels of ligands for BLT1/2 [LTB4 and 12(S)-HETE (12(S)-hydroxyeicosatetraenoic acid)] were significantly increased in bronchoalveolar lavage fluid (BALF) after HDM challenge. Block-ade of BLT1 or BLT2 as well as of 5-lipoxygenase (5-LO) or 12-lipoxygenase (12-LO) markedly suppressed the production of TH2 cytokines (IL-4, IL-5, and IL-13) and alleviated lung inflammation and mucus secretion in an HDM-induced eosinophilic airway-inflammation mouse model. Together, these results indicate that the 5-/12-LO-BLT1/2 cascade plays a role in HDM-induced airway inflammation by mediating the production of TH2 cytokines. Our findings suggest that BLT1/2 may be a potential therapeutic target for patients with HDM-induced allergic asthma.
Collapse
Affiliation(s)
- Donghwan Park
- Department of Biotechnology, College of Life Sciences, Korea University, Seoul 02841, Korea
| | - Dong-Wook Kwak
- Department of Biotechnology, College of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jae-Hong Kim
- Department of Life Sciences, College of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
10
|
Zhang X, Zhang M, Li L, Chen W, Zhou W, Gao J. IRAK-M knockout promotes allergic airway inflammation, but not airway hyperresponsiveness, in house dust mite-induced experimental asthma model. J Thorac Dis 2021; 13:1413-1426. [PMID: 33841934 PMCID: PMC8024803 DOI: 10.21037/jtd-20-2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background IL-1 receptor associated-kinase (IRAK)-M, expressed by airway epithelium and macrophages, was shown to regulate acute and chronic airway inflammation exhibiting a biphasic response in an OVA-based animal model. House dust mite (HDM) is a common real-life aeroallergen highly relevant to asthma pathogenesis. The role of IRAK-M in HDM-induced asthma remains unknown. This study was aimed to investigate the effect of IRAK-M on allergic airway inflammation induced by HDM using IRAK-M knockout (KO) mice and the potential underlying mechanisms. Methods IRAK-M KO and wild-type (WT) mice were sensitized and challenged with HDM. The differences in airway inflammation were evaluated 24 hours after the last challenge between the two genotypes of mice using a number of cellular and molecular biological techniques. In vitro mechanistic investigation was also involved. Results Lung expression of IRAK-M was significantly upregulated by HDM in the WT mice. Compared with the WT controls, HDM-treated IRAK-M KO mice showed exacerbated infiltration of inflammatory cells, particularly Th2 cells, in the airways and mucus overproduction, higher epithelial mediators IL-25, IL-33 and TSLP and Th2 cytokines in bronchoalveolar lavage (BAL) fluid. Lung IRAK-M KO macrophages expressed higher percentage of costimulatory molecules OX40L and CD 80 and exhibited enhanced antigen uptake. However, IRAK-M KO didn’t impact the airway hyperreactivity (AHR) indirectly induced by HDM. Conclusions The findings indicate that IRAK-M protects allergic airway inflammation, not AHR, by modifying activation and antigen uptake of lung macrophages following HDM stimulation. Optimal regulation of IRAK-M might indicate an intriguing therapeutic avenue for allergic airway inflammation.
Collapse
Affiliation(s)
- Xudong Zhang
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingqiang Zhang
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lun Li
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Chen
- Departments of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wexun Zhou
- Departments of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinming Gao
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Park SJ, Lee K, Kang MA, Kim TH, Jang HJ, Ryu HW, Oh SR, Lee HJ. Tilianin attenuates HDM-induced allergic asthma by suppressing Th2-immune responses via downregulation of IRF4 in dendritic cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153392. [PMID: 33113503 DOI: 10.1016/j.phymed.2020.153392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Acacetin 7-O-β-D-glucoside (tilianin) is a major constituent of Agastache rugosa, a traditional medicine that has long been used for the treatment of gastrointestinal disorders. Tilianin has a wide variety of pharmacological properties such as cardioprotective, neuroprotective, and anti-atherogenic activities. We recently discovered that tilianin has the ability to suppress MUC5AC expression in vitro. In addition, we have established an in vivo model of allergic asthma using house dust mite (HDM) that can be applied to tilianin. PURPOSE We investigated the effects of tilianin on airway inflammation in a HDM-induced asthma mouse model and associated mechanisms. METHODS Tilianin was treated in splenocytes cultured in Th0 condition and HDM-stimulated bone marrow-derived dendritic cells (BMDCs), and their mRNA expression and cytokines production were determined by quantitative real-time PCR and ELISA. To evaluate the effects of tilianin in an allergic asthma model, mice were sensitized and challenged with HDM. Tilianin was administered prior to challenge by oral gavage and airway hyper-reactivity (AHR) to methacholine, inflammatory cell infiltration, cytokine levels, and airway remodeling were assessed. RESULTS Tilianin inhibited the production of Th2-related cytokines in splenocytes, which play pivotal roles in allergic airway inflammation. When treated in HDM-stimulated BMDCs, tilianin decreased Th2-skewing cytokine IL-33 and transcription factor IRF4. On the contrary, tilianin increased Th1-skewing regulators, IL-12 and IRF1. In an HDM-induced asthmatic mouse model, tilianin attenuated AHR and airway inflammation. Tilianin suppressed the expression of Th2-related cytokines, IL-13 and IL-33 in lung tissues. As seen in HDM-stimulated BMDCs, tilianin also downregulated the expression of the transcription factor IRF4 but not IRF1. CONCLUSION Taken together, these results suggest that tilianin attenuates HDM-induced allergic airway inflammation by inhibiting Th2-mediated inflammation through the selective inhibition of the IRF4-IL-33 axis in dendritic cells.
Collapse
Affiliation(s)
- Soo-Jin Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, 28116, South Korea
| | - Kiram Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, 28116, South Korea; Department of Biomolecular Science, University of Science & Technology (UST), Daejeon 341113, South Korea
| | - Min-Ah Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, 28116, South Korea
| | - Tae-Hyoun Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, 28116, South Korea
| | - Hyun-Jae Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, 28116, South Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, 28116, South Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, 28116, South Korea
| | - Hyun-Jun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, 28116, South Korea.
| |
Collapse
|
12
|
Lee C, Ryu HW, Kim S, Kim M, Oh SR, Ahn KS, Park J. Verminoside from Pseudolysimachion rotundum var. subintegrum sensitizes cisplatin-resistant cancer cells and suppresses metastatic growth of human breast cancer. Sci Rep 2020; 10:20337. [PMID: 33230126 PMCID: PMC7683595 DOI: 10.1038/s41598-020-77401-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/10/2020] [Indexed: 01/07/2023] Open
Abstract
Breast cancer is one of the most common cancers in women and is associated with a high mortality rate. The majority of deaths resulting from breast cancer are attributable to metastatic growth; in addition, chemoresistance is a major concern in the treatment of patients with breast cancer. However, limited drugs are available for the treatment of metastatic breast cancer. In this study, the chemoadjuvant effects of a methanolic extract from the leaves of Pseudolysimachion rotundum var. subintegrum (NC13) and an active component isolated from the plant, verminoside (Vms), were evaluated. Furthermore, their potent anti-metastatic activities were validated in vitro and in vivo in animal models. The anti-metastatic and chemosensitizing activities of NC13 and Vms on cisplatin treatment were found to be partly mediated by suppression of the epithelial-mesenchymal transition of cancer cells. Collectively, our results implied that NC13 and its bioactive component Vms could be developed as effective chemoadjuvants in combination with conventional therapeutics.
Collapse
Affiliation(s)
- Changhu Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Building #110, Rm 501-7, Ulsan, 44919, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheong-ju si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Sahee Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Building #110, Rm 501-7, Ulsan, 44919, Republic of Korea
| | - Min Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Building #110, Rm 501-7, Ulsan, 44919, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheong-ju si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheong-ju si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Building #110, Rm 501-7, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
13
|
Ma S, Wang X, Lai F, Lou C. The beneficial pharmacological effects and potential mechanisms of picroside II: Evidence of its benefits from in vitro and in vivo. Pharmacotherapy 2020; 130:110421. [PMID: 32674016 DOI: 10.1016/j.biopha.2020.110421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Picrorhiza kurroa, the dried rhizome of Picrorhiza kurroa Royle ex Benth, is a famous Chinese herb that has been traditionally used in China. Picroside II (PII), a glycoside derivative, is the main bioactive constituent of Picrorhiza kurroa. In the past several decades, bioactive components from Picrorhiza kurroa have attracted the attention of researchers due to their promising therapeutic effects. A large number of studies have demonstrated the therapeutic potential of PII for the prevention and treatment of some diseases, such as organic ischemia/reperfusion (I/R) injury, liver damage, inflammation, cancer metastasis and angiogenesis. In the present paper, we aimed to provide an overview of the pharmacology of PII, focusing on its anti-oxidant, anti-inflammatory and anti-apoptotic activities. Meanwhile, the plant tissue distribution and pharmacokinetic properties were also described. Due to its beneficial pharmacological effects in I/R injury, PII may serve as a promising therapeutic agent for organic I/R injury prevention.
Collapse
Affiliation(s)
- Shangying Ma
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xueyi Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feifan Lai
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chenghua Lou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
14
|
Lee SU, Oh ES, Ryu HW, Kim MO, Kang MJ, Song YN, Lee RW, Kim DY, Ro H, Jung S, Hong ST, Oh SR. Longifolioside A inhibits TLR4-mediated inflammatory responses by blocking PKCδ activation in LPS-stimulated THP-1 macrophages. Cytokine 2020; 131:155116. [PMID: 32388485 DOI: 10.1016/j.cyto.2020.155116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
Longifolioside A is an iridoid glucoside compound isolated from Pseudolysimachion rotundum var. subintegrum, which has been used in traditional herbal medicines to treat respiratory inflammatory diseases. Logifolioside A is a potent antioxidant; however, its underlying pharmacological mechanisms of action in inflammatory diseases are unknown. Here, we investigated the inhibitory effects of longifolioside A in lipopolysaccharide (LPS)-stimulated toll-like receptor 4 (TLR4) signal transduction systems using human THP-1 macrophages and HEK293 cells stably expressing human TLR4 protein (293/HA-hTLR4). Longifolioside A significantly reduced the release of inflammatory cytokines such as interleukin (IL)-6, -8, and tumor necrosis factor (TNF)-α in LPS-stimulated THP-1 macrophages. Furthermore, longifolioside A inhibited the expression of inflammatory mediator genes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 that produce nitric oxide (NO) and prostaglandin E2 (PGE2), respectively. Longifolioside A suppressed the phosphorylation of PKCδ, IRAK4, IKKα/β, IκBα, and mitogen-activated protein (MAP) kinases (ERK 1/2 and JNK, but not p38), thereby inactivating the nuclear localization of NF-κB and AP-1, and thus decreasing the expression of inflammatory response genes. Notably, longifolioside A disrupted the interaction between human TLR4 and the TIR domain-containing adaptor protein (TIRAP), an early step during TLR4 activation, thereby reducing IL-8 secretion in 293/HA-hTLR4 cells. This inhibitory effect was comparable to that of TAK-242 (a TLR4 inhibitor, or resatorvid). Our results indicate that longifolioside A prevents inflammatory response by suppressing TLR4 activation required for NF-κB and AP-1 activation.
Collapse
Affiliation(s)
- Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea; Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Myung-Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea; Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Ro Woon Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea; Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Sunin Jung
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea.
| |
Collapse
|
15
|
Picroside II Isolated from Pseudolysimachion rotundum var. subintegrum Inhibits Glucocorticoid Refractory Serum Amyloid A (SAA) Expression and SAA-induced IL-33 Secretion. Molecules 2019; 24:molecules24102020. [PMID: 31137813 PMCID: PMC6572537 DOI: 10.3390/molecules24102020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 11/29/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major inflammatory lung disease characterized by irreversible and progressive airflow obstruction. Although corticosteroids are often used to reduce inflammation, steroid therapies are insufficient in patients with refractory COPD. Both serum amyloid A (SAA) and IL-33 have been implicated in the pathology of steroid-resistant lung inflammation. Picroside II isolated from Pseudolysimachion rotundum var. subintegrum(Plantaginaceae) is a major bioactive component of YPL-001, which has completed phase-2a clinical trials in chronic obstructive pulmonary disease patients. In this study, we investigated whether picroside II is effective in treating steroid refractory lung inflammation via the inhibition of the SAA-IL-33 axis. Picroside II inhibited LPS-induced SAA1 expression in human monocytes, which are resistant to steroids. SAA induced the secretion of IL-33 without involving cell necrosis. Picroside II, but not dexamethasone effectively inhibited SAA-induced IL-33 expression and secretion. The inhibitory effect by picroside II was mediated by suppressing the mitogen-activated protein kinase (MAPK) p38, ERK1/2, and nuclear factor-κB pathways. Our results suggest that picroside II negatively modulates the SAA-IL-33 axis that has been implicated in steroid-resistant lung inflammation. These findings provide valuable information for the development of picroside II as an alternative therapeutic agent against steroid refractory lung inflammation in COPD.
Collapse
|
16
|
Gunasekaran P, Rajasekaran G, Han EH, Chung YH, Choi YJ, Yang YJ, Lee JE, Kim HN, Lee K, Kim JS, Lee HJ, Choi EJ, Kim EK, Shin SY, Bang JK. Cationic Amphipathic Triazines with Potent Anti-bacterial, Anti-inflammatory and Anti-atopic Dermatitis Properties. Sci Rep 2019; 9:1292. [PMID: 30718691 PMCID: PMC6361992 DOI: 10.1038/s41598-018-37785-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022] Open
Abstract
The emergence of multi-drug resistant bacteria forces the therapeutic world into a position, where the development of new and alternative kind of antibiotics is highly important. Herein, we report the development of triazine-based amphiphilic small molecular antibacterial agents as mimics of lysine- and arginine-based cationic peptide antibiotics (CPAs). These compounds were screened against a panel of both Gram-positive and Gram-negative bacterial strains. Further, anti-inflammatory evaluation of these compounds led to the identification of four efficient compounds, DG-5, DG-6, DL-5, and DL-6. These compounds displayed significant potency against drug-resistant bacteria, including methicillin-resistant S. aureus (MRSA), multidrug-resistant P. aeruginosa (MDRPA), and vancomycin-resistant E. faecium (VREF). Mechanistic studies, including cytoplasmic membrane depolarization, confocal imaging and flow cytometry suggest that DG-5, DG-6, and DL-5 kill bacteria by targeting bacterial membrane, while DL-6 follows intracellular targeting mechanism. We also demonstrate that these molecules have therapeutic potential by showing the efficiency of DG-5 in preventing the lung inflammation of lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. More interestingly, DL-6 exhibited impressive potency on atopic dermatitis (AD)-like skin lesions in BALB/c mice model by suppressing pro-inflammatory cytokines. Collectively, these results suggest that they can serve a new class of antimicrobial, anti-inflammatory and anti-atopic agents with promising therapeutic potential.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Ganesan Rajasekaran
- Department of Cellular and Molecular Medicine, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Young-Ho Chung
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Young-Jin Choi
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea
| | - Yu Jin Yang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Ji Eun Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Kiram Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Jin-Seok Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Hyun-Jun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, Daegu Catholic University, Gyeongsan, 38430, Republic of Korea
| | - Eun-Kyung Kim
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, Chosun University, Gwangju, 501-759, Republic of Korea.
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.
- Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
17
|
Song Y, Wu Y, Li X, Shen Y, Ding Y, Zhu H, Liu F, Yu K, Sun L, Qian F. Protostemonine attenuates alternatively activated macrophage and DRA-induced asthmatic inflammation. Biochem Pharmacol 2018; 155:198-206. [PMID: 29991449 DOI: 10.1016/j.bcp.2018.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
Asthma is one of the most common pulmonary diseases that threatens human life because of lack of effective medicines. Protostemonine (PSN), an active alkaloid extracted from the roots of Stemona sesslifolia, has anti-inflammatory effects on acute lung injury and acute liver failure. However, it has not been defined whether PSN alleviates asthmatic inflammation. Here, we reported that PSN inhibits pulmonary eosinophil infiltration, goblet cell hyperplasia, mucus secretion, IgE and Th2 cytokine (IL-4, IL-5, IL-13 and IL-33) production by using DRA (dust mites, ragweed and aspergillus)-induced murine asthma model. Moreover, PSN also attenuated the expression of Arginase-1 (Arg-1), Ym-1 and Fizz-1, markers of AAM (alternatively activated macrophage) polarization, in lung tissues. In addition, PSN attenuated IL-4-induced expression of Arg-1, Ym-1 and Fizz-1 in bone marrow derived macrophages (BMDMs). Treatment with PSN decreased IL-4-induced STAT6 phosphorylation, KLF4 and IRF4 expression in BMDMs. Collectively, our results indicated that PSN ameliorates AAM polarization and asthmatic inflammation and might be a potential agent for treating asthma.
Collapse
Affiliation(s)
- Yunduan Song
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, PR China
| | - Yaxian Wu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Xiaozong Li
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, PR China
| | - Yao Shen
- Department of Respiratory Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, PR China
| | - Yunhe Ding
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Hongbo Zhu
- Department of Pathology, Shanghai Pudong Hospital, Fudan University ,Shanghai 201399, PR China
| | - Fangfang Liu
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, PR China
| | - Kaikai Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui Province 233003, PR China.
| |
Collapse
|
18
|
Liu C, Yuan L, Zou Y, Yang M, Chen Y, Qu X, Liu H, Jiang J, Xiang Y, Qin X. ITGB4 is essential for containing HDM-induced airway inflammation and airway hyperresponsiveness. J Leukoc Biol 2018; 103:897-908. [PMID: 29393977 DOI: 10.1002/jlb.3a1017-411rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
Airway epithelial cells play a significant role in the pathogenesis of asthma. Although the structural and functional defects of airway epithelial cells have been postulated to increase asthma susceptibility and exacerbate asthma severity, the mechanism and implication of these defects remain uncertain. Integrin β4 (ITGB4) is a structural adhesion molecule that is downregulated in the airway epithelium of asthma patients. In this study, we demonstrated that ITGB4 deficiency leads to severe allergy-induced airway inflammation and airway hyper-responsiveness (AHR) in mice. After house dust mite (HDM) challenge, epithelial cell-specific ITGB4-deleted mice showed increased lymphocyte, eosinophil, and neutrophil infiltration into lung compared with that of the wild-type mice. ITGB4 deficiency also resulted in increased expression of the Th2 cytokine IL-4, IL-13, and the Th17 cytokine IL-17A in the lung tissue and in the T cells after HDM challenge. The aggravated inflammation in ITGB4 defect mice was partly caused by enhanced disrupted epithelial barrier integrity after HDM stress, which induced the increased thymic stromal lymphopoietin secretion from airway epithelial cells. This study therefore demonstrates that ITGB4 plays a pivotal role in containing allergen-mediated lung inflammation and airway hyper-responsiveness in allergic asthma.
Collapse
Affiliation(s)
- Chi Liu
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lin Yuan
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Yu Chen
- Department of Examination, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Xiangping Qu
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Huijun Liu
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Yang Xiang
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoqun Qin
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Abou-Hamdan M, Gharib B, Bajenoff M, Julia V, de Reggi M. Pantethine Down-Regulates Leukocyte Recruitment and Inflammatory Parameters in a Mouse Model of Allergic Airway Inflammation. Med Sci Monit Basic Res 2017; 23:368-372. [PMID: 29176546 PMCID: PMC5717997 DOI: 10.12659/msmbr.904077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Migration of leukocytes into airways is the hallmark of allergic asthma. The aim of this study was to target the pathological process using pantethine, a pleiotropic natural compound which has been recently shown to down-regulate chemokine-driven T cell migration. Material/Methods Mice were sensitized to the Leishmania LACK antigen, then treated or not treated with pantethine and exposed to LACK or saline aerosol. After sacrifice of the animals, cells in the bronchoalveolar lavage were analyzed and inflammatory parameters were determined to evaluate inflammation seriousness. Results As compared to untreated animals, pantethine-treated animals displayed a moderated response to the allergen, as documented by decreased infiltration of inflammatory cells (all types), in addition to reduced levels of lung Th2 cytokines and circulating LACK-specific IgE. Conclusions These data reveal the potential therapeutic importance of pantethine to moderate allergic asthma pathology. The compound has been previously shown to exert a broad range of protective activity in animals and in humans, with few or no adverse effects.
Collapse
Affiliation(s)
| | - Bouchra Gharib
- CNRS, NICN UMR 7259, Aix Marseille University, Marseille, France
| | | | - Valérie Julia
- IPMC - CNRS UMR7275 - INSERM ERL1080, University of Nice-Sophia Antipolis, Nice, France
| | - Max de Reggi
- CNRS, NICN UMR 7259, Aix Marseille University, Marseille, France
| |
Collapse
|
20
|
He Q, Liu L, Yang Q, Wang A, Chen S, Li R, Huang Y, Zhang G, Ding X, Yu H, Hu S, Nie H. Invariant natural killer T cells promote immunogenic maturation of lung dendritic cells in mouse models of asthma. Am J Physiol Lung Cell Mol Physiol 2017; 313:L973-L990. [PMID: 28912381 DOI: 10.1152/ajplung.00340.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/17/2023] Open
Abstract
Our previous study showed that invariant natural killer T (iNKT) cells might act as an adjuvant to promote Th2 inflammatory responses in an OVA-induced mouse model of allergic asthma, but the mechanism remains unknown. To clarify the underlying mechanism through which iNKT cells promote Th2 inflammatory responses, we investigated the modulatory influence of iNKT cells on phenotypic and functional maturation of lung dendritic cells (LDCs) using iNKT cell-knockout mice, specific iNKT cell activation, coculture experiments, and adoptive transfer of iNKT cells in mouse models of asthma. Our data showed that iNKT cell deficiency could downregulate surface maturation markers and proinflammatory cytokine secretion of LDCs from a mouse model of asthma. However, elevated activation of iNKT cells by α-galactosylceramide and adoptive transfer of iNKT cells could upregulate surface maturation markers and proinflammatory cytokine secretion of LDCs from mouse models of asthma. Meanwhile, iNKT cells significantly influenced the function of LDCs, markedly enhancing Th2 responses in vivo and in vitro. In addition, iNKT cell can induce LDCs expression of CD206 and RELM-α, reflecting alternative activation of LDCs in a mouse model of asthma. α-Galactosylceramide treatment significantly enhanced expression of CD40L of lung iNKT cells from a mouse model of asthma, and the coculture experiment of LDCs with iNKT cells showed that the blockade of CD40L strongly suppressed surface maturation markers and proinflammatory cytokine production by LDCs. Our data suggest that iNKT cells can promote immunogenic maturation of LDCs to enhance Th2 responses in mouse models of asthma.
Collapse
Affiliation(s)
- Qing He
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linlin Liu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiaoyu Yang
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ailing Wang
- Nursing Department, Wuhan University School of Health Sciences, Wuhan, China; and
| | - Shuo Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruiyun Li
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Huang
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guqin Zhang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuhong Ding
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongying Yu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Suping Hu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanxiang Nie
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China;
| |
Collapse
|
21
|
Reduction of Asthmatic Parameters by Sea Hare Hydrolysates in a Mouse Model of Allergic Asthma. Nutrients 2017; 9:nu9070699. [PMID: 28678189 PMCID: PMC5537814 DOI: 10.3390/nu9070699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Sea hare has a variety of biological activities. However, little is known regarding the anti-asthmatic effects of sea hare. This study was performed to identify the effect of sea hare hydrolysates (SHH) on an ovalbumin (OVA)-induced allergic asthma model. The experimental asthma model was sensitized and challenged with OVA. We found that a high-dose of SHH (HSHH) significantly inhibited OVA-induced airway inflammation and mucus production around the airway in lung sections, while low- and medium-dose SHH showed an insignificant effect. In addition, HSHH highly reduced OVA-induced production of interleukin-4, -5, -13, leukotriene D4, E4, and histamine in bronchoalveolar lavage fluid. HSHH decreased the histamine-induced increase in the intracellular Ca2+ level and contractions in asthmatic smooth muscle cells. Furthermore, HSHH did not affect the weights of the spleen nor thymus, whereas dexamethasone (DEX), a steroidal anti-inflammatory drug, reduced them. Taken together, these results showed that HSHH reduced asthmatic parameters in a mouse model of allergic asthma, and suggest that SHH could be used as a potential therapeutic agent for asthma.
Collapse
|
22
|
Kumar V, Bansal A, Chauhan RS. Modular Design of Picroside-II Biosynthesis Deciphered through NGS Transcriptomes and Metabolic Intermediates Analysis in Naturally Variant Chemotypes of a Medicinal Herb, Picrorhiza kurroa. FRONTIERS IN PLANT SCIENCE 2017; 8:564. [PMID: 28443130 PMCID: PMC5387076 DOI: 10.3389/fpls.2017.00564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Picroside-II (P-II), an iridoid glycoside, is used as an active ingredient of various commercial herbal formulations available for the treatment of liver ailments. Despite this, the knowledge of P-II biosynthesis remains scarce owing to its negligence in Picrorhiza kurroa shoots which sets constant barrier for function validation experiments. In this study, we utilized natural variation for P-II content in stolon tissues of different P. kurroa accessions and deciphered its metabolic route by integrating metabolomics of intermediates with differential NGS transcriptomes. Upon navigating through high vs. low P-II content accessions (1.3-2.6%), we have established that P-II is biosynthesized via degradation of ferulic acid (FA) to produce vanillic acid (VA) which acts as its immediate biosynthetic precursor. Moreover, the FA treatment in vitro at 150 μM concentration provided further confirmation with 2-fold rise in VA content. Interestingly, the cross-talk between different compartments of P. kurroa, i.e., shoots and stolons, resolved spatial complexity of P-II biosynthesis and consequently speculated the burgeoning necessity to bridge gap between VA and P-II production in P. kurroa shoots. This work thus, offers a forward looking strategy to produce both P-I and P-II in shoot cultures, a step toward providing a sustainable production platform for these medicinal compounds via-à-vis relieving pressure from natural habitat of P. kurroa.
Collapse
|
23
|
Choi J, Choi BK, Kim JS, Lee JW, Park HA, Ryu HW, Lee SU, Hwang KW, Yun WK, Kim HC, Ahn KS, Oh SR, Lee HJ. Correction: Picroside II Attenuates Airway Inflammation by Downregulating the Transcription Factor GATA3 and Th2-Related Cytokines in a Mouse Model of HDM-Induced Allergic Asthma. PLoS One 2017; 12:e0170832. [PMID: 28107518 PMCID: PMC5249111 DOI: 10.1371/journal.pone.0170832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|