1
|
Marchisio L, Gaudillat Q, Muller J, Zedet A, Tissot M, Harakat D, Sénéjoux F, Rolin G, Cardey B, Girard C, Pudlo M. Synthesis and evaluation of piceatannol derivatives as novel arginase inhibitors with radical scavenging activity and their potential for collagen reduction in dermal fibroblasts. Eur J Med Chem 2025; 287:117376. [PMID: 39952100 DOI: 10.1016/j.ejmech.2025.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
High arginase activity is associated with several pathological conditions, including TGF-β-induced fibrosis, by increasing levels of the proline precursor l-ornithine, thereby promoting collagen biosynthesis and increasing oxidative stress due to nitric oxide synthase (NOS) uncoupling. The natural piceatannol has been shown to have beneficial effects on collagen deposition, fibrosis and oxidative stress. In this study, we present an in-depth structure-activity relationship study on arginase I, which resulted in the thioamide derivative 12a with dual catechol rings that displays potent inhibitory activity with IC₅₀ values of 9 μM and 55 μM for bovine and human arginase I, respectively. Quantum chemical modelling suggested that the sulphur atom in the thioamide group plays a crucial role in binding affinity by forming a stable hydrogen bond within the active site of the enzyme. In addition, compound 12a demonstrated high radical scavenging activity and effectively normalised collagen and procollagen levels at 5 μM in an in vitro cell model of a dermal fibrosis.
Collapse
Affiliation(s)
- Luca Marchisio
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Quentin Gaudillat
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Jason Muller
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Andy Zedet
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Marion Tissot
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Dominique Harakat
- Université de Reims Champagne Ardenne, CNRS UMR 7312, ICMR, URCATech, 51100, Reims, France.
| | - François Sénéjoux
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Gwenaël Rolin
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France; INSERM CIC-1431, CHU Besançon, F-25000, Besançon, France.
| | - Bruno Cardey
- Université de Franche-Comté, CNRS, CHRONO-E (UMR 6249), F-25000, Besançon, France.
| | - Corine Girard
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Marc Pudlo
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| |
Collapse
|
2
|
Rajan RK. Piceatannol-Can It Be Used to Treat Hyperpigmentation of the Skin? Pigment Cell Melanoma Res 2025; 38:e70008. [PMID: 40091271 DOI: 10.1111/pcmr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Over the years, the cosmetic industry has shifted its focus from synthtic to natural compounds. This change is driven not only by the safety profile of natural ingredients but also by increased consumer awareness about the products they use. As a result, many natural skincare products have been launched in recent years. Hyperpigmentation disorders, such as melasma, age spots (solar lentigines), post-inflammatory hyperpigmentation, freckles, and acanthosis nigricans, are significant concerns. These conditions not only pose pathological issues but also affect individuals' self-esteem. Consequently, treating hyperpigmentation by reducing melanogenesis has become a key area of interest in cosmetology. Among various natural compounds, piceatannol (PCT) shows great potential in treating hyperpigmentation. The primary mechanism previously explored is the inhibition of the tyrosinase enzyme, which is one of the most researched strategies for combating melanogenesis. Additionally, PCT has been shown to downregulate MITF expression, a key gene responsible for the transcription of various melanogenic proteins and enzymes. However, beyond these two mechanisms, little is known about how PCT may inhibit melanogenesis. In this review, we aim to bridge that gap. We will explore and speculate on the possible upstream signaling pathways to MITF, such as Nrf, FOXO3a, CREB, MAPK signaling, etc., where PCT could potentially act to inhibit melanogenesis. This review will not only pave the way for future research related to PCT and hyperpigmentation but also highlight pathways that could be targeted for developing cosmetics and treatments for hyperpigmentation disorders.
Collapse
|
3
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
4
|
Pan S, Yuan T, Xia Y, Yu W, Zhou X, Cheng F. Role of Histone Modifications in Kidney Fibrosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:888. [PMID: 38929505 PMCID: PMC11205584 DOI: 10.3390/medicina60060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Chronic kidney disease (CKD) is characterized by persistent kidney dysfunction, ultimately resulting in end-stage renal disease (ESRD). Renal fibrosis is a crucial pathological feature of CKD and ESRD. However, there is no effective treatment for this condition. Despite the complex molecular mechanisms involved in renal fibrosis, increasing evidence highlights the crucial role of histone modification in its regulation. The reversibility of histone modifications offers promising avenues for therapeutic strategies to block or reverse renal fibrosis. Therefore, a comprehensive understanding of the regulatory implications of histone modifications in fibrosis may provide novel insights into more effective and safer therapeutic approaches. This review highlights the regulatory mechanisms and recent advances in histone modifications in renal fibrosis, particularly histone methylation and histone acetylation. The aim is to explore the potential of histone modifications as targets for treating renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| |
Collapse
|
5
|
Sisto M, Lisi S. Epigenetic Regulation of EMP/EMT-Dependent Fibrosis. Int J Mol Sci 2024; 25:2775. [PMID: 38474021 PMCID: PMC10931844 DOI: 10.3390/ijms25052775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, considerable efforts have been made to understand the molecular mechanisms underlying fibrotic evolution and to identify possible therapeutic strategies. Great interest has been aroused by the discovery of a molecular association between epithelial to mesenchymal plasticity (EMP), in particular epithelial to mesenchymal transition (EMT), and fibrogenesis, which has led to the identification of complex molecular mechanisms closely interconnected with each other, which could explain EMT-dependent fibrosis. However, the result remains unsatisfactory from a therapeutic point of view. In recent years, advances in epigenetics, based on chromatin remodeling through various histone modifications or through the intervention of non-coding RNAs (ncRNAs), have provided more information on the fibrotic process, and this could represent a promising path forward for the identification of innovative therapeutic strategies for organ fibrosis. In this review, we summarize current research on epigenetic mechanisms involved in organ fibrosis, with a focus on epigenetic regulation of EMP/EMT-dependent fibrosis.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
6
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci 2024; 25:2600. [PMID: 38473850 DOI: 10.3390/ijms25052600] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
7
|
Zhao Y, Wang H, Tang Y, Wang J, Wu X, He Z, He Y, Tang Z. SNHG16/miR-205/HDAC5 is involved in the progression of renal fibrosis. J Biochem Mol Toxicol 2024; 38:e23617. [PMID: 38079211 DOI: 10.1002/jbt.23617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Renal interstitial fibrosis (RIF) represents an irreversible and progressive pathological manifestation of chronic renal disease, which ultimately leads to end-stage renal disease. Long noncoding RNAs (lncRNAs) have been suggested to be involved in the progression of RIF. Small nucleolar RNA host gene 16 (SNHG16), a member of lncRNAs, has been found to be involved in the progression of pulmonary fibrosis. This paper first researched the effect of SNHG16 on renal fibrosis. We established a unilateral ureteral obstruction (UUO)-induced mouse RIF model by ligation of the left ureter to evaluate the biological function of SNHG16 in RIF. As a result, SNHG16 was upregulated in UUO-induced renal fibrotic tissues. Knockdown of SNHG16 inhibited RIF and reduced alpha-smooth muscle actin (α-SMA), fibronectin, and college IV expression. miR-205 was a target of SNHG16, and downregulated in UUO-induced renal fibrotic tissues. Inhibition of miR-205 promoted RIF and increased the expression of α-SMA, college IV, and fibronectin. Overexpression of SNHG16 promoted the UUO-induced RIF, but miR-205 abrogated this effect of SNHG16. Histone deacetylase 5 (HDAC5) showed high expression in UUO-induced renal fibrotic tissues. Knockdown of HDAC5 significantly reduced α-SMA, fibronectin, and college IV expression in renal tissues of UUO-induced mice. Inhibition of miR-205 promoted HDAC5 expression, but knockdown of SNHG16 inhibited HDAC5 expression in renal tissues of UUO-induced mice. In conclusion, SHNG16 is highly expressed in renal fibrotic tissues of UUO-induced mice. Knockdown of SHNG16 may prevent UUO-induced RIF by indirectly upregulating HDAC5 via targeting miR-205. SHNG16 may be novel target for treating renal fibrosis.
Collapse
Affiliation(s)
- Yingdan Zhao
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Hanqing Wang
- Department of Nephrology, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai City, China
| | - Yunhai Tang
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Juan Wang
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Xia Wu
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Zifan He
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Yayun He
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Zhihuan Tang
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| |
Collapse
|
8
|
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol Renal Physiol 2023; 325:F578-F594. [PMID: 37560775 PMCID: PMC11550885 DOI: 10.1152/ajprenal.00091.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The growing prevalence of hypertension, heart disease, diabetes, and obesity along with an aging population is leading to a higher incidence of renal diseases in society. Chronic kidney disease (CKD) is characterized mainly by persistent inflammation, fibrosis, and gradual loss of renal function leading to renal failure. Sex is a known contributor to the differences in incidence and progression of CKD. Epigenetic programming is an essential regulator of renal physiology and is critically involved in the pathophysiology of renal injury and fibrosis. Epigenetic signaling integrates intrinsic and extrinsic signals onto the genome, and various environmental and hormonal stimuli, including sex hormones, which regulate gene expression and downstream cellular responses. The most extensively studied epigenetic alterations that play a critical role in renal damage include histone modifications and DNA methylation. Notably, these epigenetic alterations are reversible, making them candidates for potential therapeutic targets for the treatment of renal diseases. Here, we will summarize the current knowledge on sex differences in epigenetic modulation of renal fibrosis and inflammation and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Heddwen L Brooks
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
9
|
Ezz Eldeen N, Moustafa YM, Alwaili MA, Alrehaili AA, Khodeer DM. Synergistic Power of Piceatannol and/or Vitamin D in Bleomycin-Induced Pulmonary Fibrosis In Vivo: A Preliminary Study. Biomedicines 2023; 11:2647. [PMID: 37893021 PMCID: PMC10604873 DOI: 10.3390/biomedicines11102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress and epigenetic alterations, including the overexpression of all class I and II histone deacetylases (HDACs), particularly HDAC2 and HDAC4, have been identified as key molecular mechanisms driving pulmonary fibrosis. Treatment with piceatannol (PIC) or vitamin D (Vit D) has previously exhibited mitigating impacts in pulmonary fibrosis models. The present study investigated the effects of PIC, Vit D, or a combination (PIC-Vit D) on the expression of HDAC2, HDAC4, and transforming growth factor-beta (TGF-β) in the lungs; the phosphatidylinositide-3-kinase (PI3K)/AKT signaling pathway; and the antioxidant status of the lungs. The objective was to determine if the treatments had protective mechanisms against pulmonary fibrosis caused by bleomycin (BLM) in rats. Adult male albino rats were given a single intratracheal dosage of BLM (10 mg/kg) to induce pulmonary fibrosis. PIC (15 mg/kg/day, oral (p.o.)), Vit D (0.5 μg/kg/day, intraperitoneal (i.p.)), or PIC-Vit D (15 mg/kg/day, p.o. plus 0.5 μg/kg/day, i.p.) were given the day following BLM instillation and maintained for 14 days. The results showed that PIC, Vit D, and PIC-Vit D significantly improved the histopathological sections; downregulated the expression of HDAC2, HDAC4, and TGF-β in the lungs; inhibited the PI3K/AKT signaling pathway; decreased extracellular matrix (ECM) deposition including collagen type I and alpha smooth muscle actin (α-SMA); and increased the antioxidant capacity of the lungs by increasing the levels of glutathione (GSH) that had been reduced and decreasing the levels of malondialdehyde (MDA) compared with the BLM group at a p-value less than 0.05. The concomitant administration of PIC and Vit D had a synergistic impact that was greater than the impact of monotherapy with either PIC or Vit D. PIC, Vit D, and PIC-Vit D exhibited a notable protective effect through their antioxidant effects, modulation of the expression of HDAC2, HDAC4, and TGF-β in the lungs, and suppression of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Nehal Ezz Eldeen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yasser M. Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amani A. Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Wang J, Li J, Zhang X, Zhang M, Hu X, Yin H. Molecular mechanisms of histone deacetylases and inhibitors in renal fibrosis progression. Front Mol Biosci 2022; 9:986405. [PMID: 36148005 PMCID: PMC9485629 DOI: 10.3389/fmolb.2022.986405] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a common progressive manifestation of chronic kidney disease. This phenomenon of self-repair in response to kidney damage seriously affects the normal filtration function of the kidney. Yet, there are no specific treatments for the condition, which marks fibrosis as an irreversible pathological sequela. As such, there is a pressing need to improve our understanding of how fibrosis develops at the cellular and molecular levels and explore specific targeted therapies for these pathogenic mechanisms. It is now generally accepted that renal fibrosis is a pathological transition mediated by extracellular matrix (ECM) deposition, abnormal activation of myofibroblasts, and epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells under the regulation of TGF-β. Histone deacetylases (HDACs) appear to play an essential role in promoting renal fibrosis through non-histone epigenetic modifications. In this review, we summarize the mechanisms of renal fibrosis and the signaling pathways that might be involved in HDACs in renal fibrosis, and the specific mechanisms of action of various HDAC inhibitors (HDACi) in the anti-fibrotic process to elucidate HDACi as a novel therapeutic tool to slow down the progression of renal fibrosis.
Collapse
|
11
|
Piceatannol-mediated JAK2/STAT3 signaling pathway inhibition contributes to the alleviation of oxidative injury and collagen synthesis during pulmonary fibrosis. Int Immunopharmacol 2022; 111:109107. [PMID: 35932616 DOI: 10.1016/j.intimp.2022.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
Pulmonary fibrosis (PF) is characterized by oxidative injury and excessive collagen synthesis in lung fibroblasts, causing impaired pulmonary function and chronic lung injury. Piceatannol, a dietary polyphenol, possesses vital pharmacological effects in metabolic disorders, cancers, cardiovascular disease and infectious disease; however, its role in PF is still not completely elucidated. Mice (8 to 10 weeks old) were administered bleomycin (BLM) intratracheally (2 U/kg) to establish an in vivo PF model. Murine primary lung fibroblasts were isolated and stimulated with TGF-β (10 ng/mL) for 48 h to induce its activation. Meanwhile, mice or primary lung fibroblasts were treated with different doses of piceatannol to observe its protective roles. Pulmonary function and arterial blood gas were detected to assess pulmonary physiological status. Collagen deposition and the mRNA levels of profibrotic genes were determined by H&E staining and RT-PCR. Meanwhile, the protein and mRNA markers, as well as end-product of oxidative stress were detected in vivo and in vitro. The results showed that pulmonary function was significantly impaired in BLM-induced mice, accompanied by elevated oxidative stress and excessive collagen synthesis. Piceatannol significantly improved pulmonary function and decreased oxidative injury as well as collagen synthesis in mice with PF. Mechanically, piceatannol treatment significantly inhibited the activation of JAK2/STAT3 signaling pathway in BLM-induced mice and TGF-β-induced lung fibroblasts. Additional findings also demonstrated that coumermycin A1 (C-A1), an agonist of JAK2, could abolish the effects of piceatannol on TGF-β-induced lung fibroblasts and reactivated the phosphorylation STAT3. Taken together, our study demonstrated that piceatannol could protect against oxidative injury and collagen synthesis during PF in a JAK2/STAT3 signaling pathway-dependent manner.
Collapse
|
12
|
Chiou YS, Lan YM, Lee PS, Lin Q, Nagabhushanam K, Ho CT, Pan MH. Piceatannol Prevents Colon Cancer Progression via Dual-Targeting to M2-Polarized Tumor-Associated Macrophages and the TGF-β1 Positive Feedback Signaling Pathway. Mol Nutr Food Res 2022; 66:e2200248. [PMID: 35616191 DOI: 10.1002/mnfr.202200248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Indexed: 01/10/2023]
Abstract
SCOPE M2 phenotype tumor-associated macrophages (M2-TAMs) play a key role in distant metastasis and poor clinical outcomes. Herein, a specific molecular mechanism that contributes to malignant progression is illuminated and investigates whether piceatannol (PIC) can target the crosstalk between M2-TAMs and cancer cells for potential colorectal cancer (CRC) therapy. METHODS AND RESULTS To mimic the tumor microenvironment (TME), direct and indirect coculture systems in vitro and in vivo mouse xenograft models are established. The results demonstrate that post-treatment with PIC in TME more effectively prevented the aggressive features and stemness of SW480 cells by restricting the polarization of M2-like macrophages and blocking the transforming growth factor β1 (TGF-β1) positive feedback autocrine/paracrine loop that exists between M2-like polarized macrophages and cancer cells. Furthermore, xenograft assays also observe significant repression in tumor growth and lung metastases with the administration of PIC. The key mechanism underlying the antimetastasis effects of PIC may include its directly inhibitory activity against TGF-β receptor type-1 (TGF-βR1) in the M2-like TAMs-created TME. CONCLUSION These novel findings demonstrate that PIC is a potent TGF-β1/TGF-βR1 pathway inhibitor and TME modulator for preventing tumor progression and metastasis in CRC by reeducating TAMs.
Collapse
Affiliation(s)
- Yi-Shiou Chiou
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ming Lan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Qianyu Lin
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, P. R. China
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
13
|
Shen F, Zhuang S. Histone Acetylation and Modifiers in Renal Fibrosis. Front Pharmacol 2022; 13:760308. [PMID: 35559244 PMCID: PMC9086452 DOI: 10.3389/fphar.2022.760308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Histones are the most abundant proteins bound to DNA in eukaryotic cells and frequently subjected to post-modifications such as acetylation, methylation, phosphorylation and ubiquitination. Many studies have shown that histone modifications, especially histone acetylation, play an important role in the development and progression of renal fibrosis. Histone acetylation is regulated by three families of proteins, including histone acetyltransferases (HATs), histone deacetylases (HDACs) and bromodomain and extraterminal (BET) proteins. These acetylation modifiers are involved in a variety of pathophysiological processes leading to the development of renal fibrosis, including partial epithelial-mesenchymal transition, renal fibroblast activation, inflammatory response, and the expression of pro-fibrosis factors. In this review, we summarize the role and regulatory mechanisms of HATs, HDACs and BET proteins in renal fibrosis and provide evidence for targeting these modifiers to treat various chronic fibrotic kidney diseases in animal models.
Collapse
Affiliation(s)
- Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
14
|
Liu L, Sun Q, Davis F, Mao J, Zhao H, Ma D. Epithelial-mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. BURNS & TRAUMA 2022; 10:tkac011. [PMID: 35402628 PMCID: PMC8990740 DOI: 10.1093/burnst/tkac011] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/16/2021] [Indexed: 01/10/2023]
Abstract
Organ fibrosis is a process in which cellular homeostasis is disrupted and extracellular matrix is excessively deposited. Fibrosis can lead to vital organ failure and there are no effective treatments yet. Although epithelial–mesenchymal transition (EMT) may be one of the key cellular mechanisms, the underlying mechanisms of fibrosis remain largely unknown. EMT is a cell phenotypic process in which epithelial cells lose their cell-to-cell adhesion and polarization, after which they acquire mesenchymal features such as infiltration and migration ability. Upon injurious stimulation in different organs, EMT can be triggered by multiple signaling pathways and is also regulated by epigenetic mechanisms. This narrative review summarizes the current understanding of the underlying mechanisms of EMT in fibrogenesis and discusses potential strategies for attenuating EMT to prevent and/or inhibit fibrosis. Despite better understanding the role of EMT in fibrosis development, targeting EMT and beyond in developing therapeutics to tackle fibrosis is challenging but likely feasible.
Collapse
Affiliation(s)
- Lexin Liu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.,Department of Nephrology and Urology, Pediatric Urolith Center, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, 310003, China
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Frank Davis
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Jianhua Mao
- Department of Nephrology, The Children Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| |
Collapse
|
15
|
Potential of Polyphenols to Restore SIRT1 and NAD+ Metabolism in Renal Disease. Nutrients 2022; 14:nu14030653. [PMID: 35277012 PMCID: PMC8837945 DOI: 10.3390/nu14030653] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
SIRT1 is an NAD+-dependent class III histone deacetylase that is abundantly expressed in the kidney, where it modulates gene expression, apoptosis, energy homeostasis, autophagy, acute stress responses, and mitochondrial biogenesis. Alterations in SIRT1 activity and NAD+ metabolism are frequently observed in acute and chronic kidney diseases of diverse origins, including obesity and diabetes. Nevertheless, in vitro and in vivo studies and clinical trials with humans show that the SIRT1-activating compounds derived from natural sources, such as polyphenols found in fruits, vegetables, and plants, including resveratrol, quercetin, and isoflavones, can prevent disease and be part of treatments for a wide variety of diseases. Here, we summarize the roles of SIRT1 and NAD+ metabolism in renal pathophysiology and provide an overview of polyphenols that have the potential to restore SIRT1 and NAD+ metabolism in renal diseases.
Collapse
|
16
|
Dwibedi V, Jain S, Singhal D, Mittal A, Rath SK, Saxena S. Inhibitory activities of grape bioactive compounds against enzymes linked with human diseases. Appl Microbiol Biotechnol 2022; 106:1399-1417. [PMID: 35106636 DOI: 10.1007/s00253-022-11801-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
A quest for identification of novel, safe and efficient natural compounds, as additives in the modern food and cosmetic industries, has been prompted by concerns about toxicity and side effects of synthetic products. Plant phenolic compounds are one of the most documented natural products due to their multifarious biological applications. Grape (Vitis vinifera) is an important source of phenolic compounds such as phenolic acids, tannins, quinones, coumarins and, most importantly, flavonoids/flavones. This review crisply encapsulates enzyme inhibitory activities of various grape polyphenols towards different key human-ailment-associated enzymes: xanthine oxidase (gout), tyrosinase (hyperpigmentation), α-amylase and α-glucosidase (diabetes mellitus), pancreatic lipase (obesity), cholinesterase (Alzheimer's disease), angiotensin i-converting enzymes (hypertension), α-synuclein (Parkinson's disease) and histone deacetylase (various diseases). The review also depicts the enzyme inhibitory mechanism of various grape polyphenols and briefly discusses their stature as potential therapeutic and drug development candidates. KEY POINTS: • Nineteen major bioactive polyphenols from the grape/grape products and their disease targets are presented • Sixty-two important polyphenols as enzyme inhibitors from grape/grape products are presented • A thorough description and graphical presentation of biological significance of polyphenols against various diseases.
Collapse
Affiliation(s)
- Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| | - Sahil Jain
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Divya Singhal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Anuradha Mittal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Santosh Kumar Rath
- Department of Pharmaceutical Chemistry, Danteswari College of Pharmacy, Borpadar, Jagdalpur, Chhattisgarh, 494221, India.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| |
Collapse
|
17
|
Mittal A, Garg R, Bahl A, Khullar M. Molecular Mechanisms and Epigenetic Regulation in Diabetic Cardiomyopathy. Front Cardiovasc Med 2022; 8:725532. [PMID: 34977165 PMCID: PMC8716459 DOI: 10.3389/fcvm.2021.725532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) is an important lifestyle disease. Type 2 diabetes is one of the prime contributors to cardiovascular diseases (CVD) and diabetic cardiomyopathy (DbCM) and leads to increased morbidity and mortality in patients with DM. DbCM is a typical cardiac disease, characterized by cardiac remodeling in the presence of DM and in the absence of other comorbidities such as hypertension, valvular diseases, and coronary artery disease. DbCM is associated with defective cardiac metabolism, altered mitochondrial structure and function, and other physiological and pathophysiological signaling mechanisms such as oxidative stress, inflammation, myocardial apoptosis, and autophagy. Epigenetic modifiers are crucial players in the pathogenesis of DbCM. Thus, it is important to explore the role of epigenetic modifiers or modifications in regulating molecular pathways associated with DbCM. In this review, we have discussed the role of various epigenetic mechanisms such as histone modifications (acetylation and methylation), DNA methylation and non-coding RNAs in modulating molecular pathways involved in the pathophysiology of the DbCM.
Collapse
Affiliation(s)
- Anupam Mittal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Garg
- Council of Scientific and Industrial Research - Institute of Microbial Technology, Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
18
|
Li M, Li P, Tang R, Lu H. Resveratrol and its derivates improve inflammatory bowel disease by targeting gut microbiota and inflammatory signaling pathways. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health. Antioxidants (Basel) 2021; 10:antiox10121893. [PMID: 34942997 PMCID: PMC8750933 DOI: 10.3390/antiox10121893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The impact of dietary phytoestrogens on human health has been a topic of continuous debate since their discovery. Nowadays, based on their presumptive beneficial effects, the amount of phytoestrogens consumed in the daily diet has increased considerably worldwide. Thus, there is a growing need for scientific data regarding their mode of action in the human body. Recently, new insights of phytoestrogens’ bioavailability and metabolism have demonstrated an inter-and intra-population heterogeneity of final metabolites’ production. In addition, the phytoestrogens may have the ability to modulate epigenetic mechanisms that control gene expression. This review highlights the complexity and particularity of the metabolism of each class of phytoestrogens, pointing out the diversity of their bioactive gut metabolites. Futhermore, it presents emerging scientific data which suggest that, among well-known genistein and resveratrol, other phytoestrogens and their gut metabolites can act as epigenetic modulators with a possible impact on human health. The interconnection of dietary phytoestrogens’ consumption with gut microbiota composition, epigenome and related preventive mechanisms is discussed. The current challenges and future perspectives in designing relevant research directions to explore the potential health benefits of dietary phytoestrogens are also explored.
Collapse
|
20
|
Hung WL, Hsiao YT, Chiou YS, Nagabhushanam K, Ho CT, Pan MH. Hepatoprotective effect of piceatannol against carbon tetrachloride-induced liver fibrosis in mice. Food Funct 2021; 12:11229-11240. [PMID: 34676843 DOI: 10.1039/d1fo02545g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Piceatannol (3,5,3',4'-trans-tetrahydroxystilbene) is a natural analog and a metabolite of resveratrol present in grapes and red wine. Previous studies have reported that piceatannol exerts a broad spectrum of health benefits including antioxidant, anti-inflammatory, chemopreventive, and neuroprotective effects. However, little is known about the hepatoprotective effect of piceatannol against toxin-induced liver fibrosis. Therefore, the objective of this study is to evaluate the protective effect of piceatannol in a mouse model of CCl4-induced hepatic fibrosis. Oral administration of piceatannol significantly improved the hepatic functions of CCl4-treated mice in both therapeutic and preventive models. Additionally, the immunohistochemical staining results revealed that collagen deposition in CCl4-injected mice was significantly reduced by treatment with piceatannol. Moreover, piceatannol remarkably suppressed the expressions of collagen I, α-smooth muscle protein (α-SMA), and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) induced by CCl4. The anti-fibrotic mechanism of piceatannol was associated with the regulation of the transforming growth factor-β (TGF-β)/Smad signaling pathway. Finally, piceatannol also profoundly alleviated CCl4-induced hepatic oxidative damage by elevating the level of glutathione and catalase activity. Altogether, our current findings suggest that piceatannol may serve as a bioactive agent that inhibits or alleviates toxic-induced fibroproliferative diseases, especially in the prevention of liver fibrosis.
Collapse
Affiliation(s)
- Wei-Lun Hung
- School of Food Safety, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi-Ting Hsiao
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yi-Shiou Chiou
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
21
|
Zhou X, Chen H, Shi Y, Ma X, Zhuang S, Liu N. The Role and Mechanism of Histone Deacetylases in Acute Kidney Injury. Front Pharmacol 2021; 12:695237. [PMID: 34220520 PMCID: PMC8242167 DOI: 10.3389/fphar.2021.695237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/25/2021] [Indexed: 01/11/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical complication with an incidence of up to 8-18% in hospitalized patients. AKI is also a complication of COVID-19 patients and is associated with an increased risk of death. In recent years, numerous studies have suggested that epigenetic regulation is critically involved in the pathophysiological process and prognosis of AKI. Histone acetylation, one of the epigenetic regulations, is negatively regulated by histone deacetylases (HDACs). Increasing evidence indicates that HDACs play an important role in the pathophysiological development of AKI by regulation of apoptosis, inflammation, oxidative stress, fibrosis, cell survival, autophagy, ATP production, and mitochondrial biogenesis (MB). In this review, we summarize and discuss the role and mechanism of HDACs in the pathogenesis of AKI.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Histone deacetylase 10, a potential epigenetic target for therapy. Biosci Rep 2021; 41:228655. [PMID: 33997894 PMCID: PMC8182986 DOI: 10.1042/bsr20210462] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylase (HDAC) 10, a class II family, has been implicated in various tumors and non-tumor diseases, which makes the discovery of biological functions and novel inhibitors a fundamental endeavor. In cancers, HDAC10 plays crucial roles in regulating various cellular processes through its epigenetic functions or targeting some decisive molecular or signaling pathways. It also has potential clinical utility for targeting tumors and non-tumor diseases, such as renal cell carcinoma, prostate cancer, immunoglobulin A nephropathy (IgAN), intracerebral hemorrhage, human immunodeficiency virus (HIV) infection and schizophrenia. To date, relatively few studies have investigated HDAC10-specific inhibitors. Therefore, it is important to study the biological functions of HDAC10 for the future development of specific HDAC10 inhibitors. In this review, we analyzed the biological functions, mechanisms and inhibitors of HDAC10, which makes HDAC10 an appealing therapeutic target.
Collapse
|
23
|
Abstract
Histone deacetylases (HDACs) are part of the epigenetic machinery that regulates transcriptional processes. The current paradigm is that HDACs silence gene expression via regulation of histone protein lysine deacetylation, or by forming corepressor complexes with transcription factors. However, HDACs are more than just nuclear proteins, and they can interact and deacetylate a growing number of nonhistone proteins to regulate cellular function. Cancer-field studies have shown that deranged HDAC activity results in uncontrolled proliferation, inflammation, and fibrosis; all pathologies that also may occur in kidney disease. Over the past decade, studies have emerged suggesting that HDAC inhibitors may prevent and potentially treat various models of acute kidney injury. This review focuses on the physiology of kidney HDACs and highlights the recent advances using HDAC inhibitors to potentially treat kidney disease patients.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
24
|
Chen F, Gao Q, Wei A, Chen X, Shi Y, Wang H, Cao W. Histone deacetylase 3 aberration inhibits Klotho transcription and promotes renal fibrosis. Cell Death Differ 2021; 28:1001-1012. [PMID: 33024274 PMCID: PMC7937860 DOI: 10.1038/s41418-020-00631-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
Development of renal fibrosis is a hallmark of renal aging and chronic kidney disease of all etiologies and characterized by extensive renal cell injuries and subsequent myofibroblast transdifferentiations (MTDs), which are significantly influenced by aberrant histone deacetylase (HDAC) activities. However, the key HDAC isoforms and effectors that are causally involved in the processes remain poorly understood. Here, we report that aberrant HDAC3 induction and its inhibition of Klotho, a renal epithelium-enriched aging suppressor, contribute significantly to renal fibrogenesis. HDAC3 was preferentially elevated with concomitant Klotho suppression in fibrotic kidneys incurred by unilateral ureter obstruction (UUO) and aristolochic acid nephropathy (AAN), whereas Hdac3 knockout resisted the fibrotic pathologies. The HDAC3 elevation is substantially blocked by the inhibitors of TGFβ receptor and Smad3 phosphorylation, suggesting that TGFβ/Smad signal activates Hdac3 transcription. Consistently, an HDAC3-selective inhibitor RGFP966 derepressed Klotho and mitigated the renal fibrotic injuries in both UUO and AAN mice. Further, HDAC3 overexpression or inhibition in renal epithelia inversely affected Klotho abundances and HDAC3 was inducibly associated with transcription regulators NCoR and NF-kB and bound to Klotho promoter in fibrotic kidney, supporting that aberrant HDAC3 targets and transcriptionally inhibits Klotho under renal fibrotic conditions. More importantly, the antirenal fibrosis effects of RGFP966 were largely compromised in mice with siRNA-mediated Klotho knockdown. Hence, HDAC3 aberration and the subsequent Klotho suppression constitute an important regulatory loop that promotes MTD and renal fibrosis and uses of HDAC3-selective inhibitors are potentially effective in treating renal fibrotic disorders.
Collapse
Affiliation(s)
- Fang Chen
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Qi Gao
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Ai Wei
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xingren Chen
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Hongwei Wang
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| | - Wangsen Cao
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
25
|
METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial-mesenchymal transition of renal tubular cells in diabetic kidney disease. Cell Death Dis 2021; 12:32. [PMID: 33414476 PMCID: PMC7791055 DOI: 10.1038/s41419-020-03312-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
Histone deacetylase 5 (HDAC5) belongs to class II HDAC subfamily and is reported to be increased in the kidneys of diabetic patients and animals. However, little is known about its function and the exact mechanism in diabetic kidney disease (DKD). Here, we found that HDAC5 was located in renal glomeruli and tubular cells, and significantly upregulated in diabetic mice and UUO mice, especially in renal tubular cells and interstitium. Knockdown of HDAC5 ameliorated high glucose-induced epithelial–mesenchymal transition (EMT) of HK2 cells, indicated in the increased E-cadherin and decreased α-SMA, via the downregulation of TGF-β1. Furthermore, HDAC5 expression was regulated by PI3K/Akt signaling pathway and inhibition of PI3K/Akt pathway by LY294002 treatment or Akt phosphorylation mutation reduced HDAC5 and TGF-β1 expression in vitro high glucose-cultured HK2 cells. Again, high glucose stimulation downregulated total m6A RNA methylation level of HK2 cells. Then, m6A demethylase inhibitor MA2 treatment decreased Akt phosphorylation, HDAC5, and TGF-β1 expression in high glucose-cultured HK2 cells. In addition, m6A modification-associated methylase METTL3 and METTL14 were decreased by high glucose at the levels of mRNA and protein. METTL14 not METTL3 overexpression led to PI3K/Akt pathway inactivation in high glucose-treated HK2 cells by enhancing PTEN, followed by HDAC5 and TGF-β1 expression downregulation. Finally, in vivo HDACs inhibitor TSA treatment alleviated extracellular matrix accumulation in kidneys of diabetic mice, accompanied with HDAC5, TGF-β1, and α-SMA expression downregulation. These above data suggest that METTL14-regulated PI3K/Akt signaling pathway via PTEN affected HDAC5-mediated EMT of renal tubular cells in diabetic kidney disease.
Collapse
|
26
|
Cao Y, Smith W, Yan L, Kong L. Overview of Cellular Mechanisms and Signaling Pathways of Piceatannol. Curr Stem Cell Res Ther 2020; 15:4-10. [PMID: 30947674 DOI: 10.2174/1574888x14666190402100054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/26/2018] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene. However, differences in the nature and position of substituents have made it possible to produce many derivatives. Piceatannol [PT], a hydroxylated derivative from resveratrol, exerts various biological activities ranging from cancer prevention, cardio- protection, neuro-protection, anti-diabetic, depigmentation and so on. Although positive results were obtained in most cell culture and animal studies, the relevant cellular and molecular mechanisms of cytokines and signaling pathway about their biological effects still unclear. Thus, in the current review, we focus on the latest findings of PT on cellular biology in order to better understand the underlying therapeutic mechanisms of PT among various diseases.
Collapse
Affiliation(s)
- Yang Cao
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Yan'an University Medical School, Yan'an, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States
| | - Liang Yan
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Lingbo Kong
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| |
Collapse
|
27
|
Evans LW, Athukorala M, Martinez-Guryn K, Ferguson BS. The Role of Histone Acetylation and the Microbiome in Phytochemical Efficacy for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E4006. [PMID: 32503339 PMCID: PMC7313062 DOI: 10.3390/ijms21114006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVD) are the main cause of death worldwide and create a substantial financial burden. Emerging studies have begun to focus on epigenetic targets and re-establishing healthy gut microbes as therapeutic options for the treatment and prevention of CVD. Phytochemicals, commonly found in fruits and vegetables, have been shown to exert a protective effect against CVD, though their mechanisms of action remain incompletely understood. Of interest, phytochemicals such as curcumin, resveratrol and epigallocatechin gallate (EGCG) have been shown to regulate both histone acetylation and microbiome re-composition. The purpose of this review is to highlight the microbiome-epigenome axis as a therapeutic target for food bioactives in the prevention and/or treatment of CVD. Specifically, we will discuss studies that highlight how the three phytochemicals above alter histone acetylation leading to global changes in gene expression and CVD protection. Then, we will expand upon these phytochemicals to discuss the impact of phytochemical-microbiome-histone acetylation interaction in CVD.
Collapse
Affiliation(s)
- Levi W. Evans
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
| | - Maheshi Athukorala
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
| | | | - Bradley S. Ferguson
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
- Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
28
|
Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, Al-Mohannadi A, Abdel-Rahman WM, Eid AH, Nasrallah GK, Pintus G. Potential Adverse Effects of Resveratrol: A Literature Review. Int J Mol Sci 2020; 21:2084. [PMID: 32197410 PMCID: PMC7139620 DOI: 10.3390/ijms21062084] [Citation(s) in RCA: 402] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols. Resveratrol's health benefits were first highlighted in the early 1990s in the French paradox study, which opened extensive research activity into this compound. Ever since, several pharmacological activities including antioxidant, anti-aging, anti-inflammatory, anti-cancerous, anti-diabetic, cardioprotective, and neuroprotective properties, were attributed to RE. However, results from the available human clinical trials were controversial concerning the protective effects of RE against diseases and their sequelae. The reason for these conflicting findings is varied but differences in the characteristics of the enrolled patients, RE doses used, and duration of RE supplementation were proposed, at least in part, as possible causes. In particular, the optimal RE dosage capable of maximizing its health benefits without raising toxicity issues remains an area of extensive research. In this context, while there is a consistent body of literature on the protective effects of RE against diseases, there are relatively few reports investigating its possible toxicity. Indeed, toxicity and adverse effects were reported following consumption of RE; therefore, extensive future studies on the long-term effects, as well as the in vivo adverse effects, of RE supplementation in humans are needed. Furthermore, data on the interactions of RE when combined with other therapies are still lacking, as well as results related to its absorption and bioavailability in the human body. In this review, we collect and summarize the available literature about RE toxicity and side effects. In this process, we analyze in vitro and in vivo studies that have addressed this stilbenoid. These studies suggest that RE still has an unexplored side. Finally, we discuss the new delivery methods that are being employed to overcome the low bioavailability of RE.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, 1105 Beirut, Lebanon;
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Nadin Younes
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 1105 Beirut, Lebanon;
| | - Dalal Alhababi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Anjud Al-Mohannadi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon
| | - Gheyath K. Nasrallah
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| |
Collapse
|
29
|
Dai Y, Lim JX, Yeo SCM, Xiang X, Tan KS, Fu JH, Huang L, Lin HS. Biotransformation of Piceatannol, a Dietary Resveratrol Derivative: Promises to Human Health. Mol Nutr Food Res 2020; 64:e1900905. [PMID: 31837280 DOI: 10.1002/mnfr.201900905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/08/2019] [Indexed: 12/13/2022]
Abstract
SCOPE To evaluate the health-promoting potentials of piceatannol (PIC), a dietary resveratrol derivative, its biotransformation is examined. METHODS AND RESULTS The biotransformation is tested in human/rat hepatic microsomes and cytosols; its pharmacokinetic profiles are assessed in rats. Although limited phase I metabolism exists in microsomes, PIC is rapidly converted to two pharmacologically active metabolites, namely rhapontigenin (RHA) and isorhapontigenin (ISO) in cytosols. Such biotransformation is completely blocked by entacapone, a well-known catechol-O-methyltransferase (COMT) inhibitor, demonstrating that the O-methylation is mediated by COMT. Moreover, PIC is identified as a substrate inhibitor of COMT, suggesting its potential benefits in Alzheimer's disease. Due to extensive phase II metabolism including glucuronidation, sulfation, and O-methylation, PIC displays rapid clearance and at least 4.02% ± 0.61% and 17.70% ± 0.91% of PIC is converted to RHA and ISO, respectively, in rats after intravenous administration. Similarly, PIC serves as an effective precursor of ISO upon oral administration. CONCLUSION Since PIC and its metabolites possess pleiotropic health-promoting activities, it has emerged as a promising nutraceutical candidate for further development. This study also reinforces the importance of in vivo testing in nutritional researches as the active metabolite(s) may be absent from the in vitro system.
Collapse
Affiliation(s)
- Yu Dai
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| | - Jin Xuan Lim
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| | - Samuel Chao Ming Yeo
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| | - Xiaoqiang Xiang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore, 119083
| | - Jia Hui Fu
- Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore, 119083
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| |
Collapse
|
30
|
Feng YL, Chen DQ, Vaziri ND, Guo Y, Zhao YY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev 2020; 40:54-78. [PMID: 31131921 DOI: 10.1002/med.21596] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Tissue fibrosis and cancer both lead to high morbidity and mortality worldwide; thus, effective therapeutic strategies are urgently needed. Because drug resistance has been widely reported in fibrotic tissue and cancer, developing a strategy to discover novel targets for targeted drug intervention is necessary for the effective treatment of fibrosis and cancer. Although many factors lead to fibrosis and cancer, pathophysiological analysis has demonstrated that tissue fibrosis and cancer share a common process of epithelial-mesenchymal transition (EMT). EMT is associated with many mediators, including transcription factors (Snail, zinc-finger E-box-binding protein and signal transducer and activator of transcription 3), signaling pathways (transforming growth factor-β1, RAC-α serine/threonine-protein kinase, Wnt, nuclear factor-kappa B, peroxisome proliferator-activated receptor, Notch, and RAS), RNA-binding proteins (ESRP1 and ESRP2) and microRNAs. Therefore, drugs targeting EMT may be a promising therapy against both fibrosis and tumors. A large number of compounds that are synthesized or derived from natural products and their derivatives suppress the EMT by targeting these mediators in fibrosis and cancer. By targeting EMT, these compounds exhibited anticancer effects in multiple cancer types, and some of them also showed antifibrotic effects. Therefore, drugs targeting EMT not only have both antifibrotic and anticancer effects but also exert effective therapeutic effects on multiorgan fibrosis and cancer, which provides effective therapy against fibrosis and cancer. Taken together, the results highlighted in this review provide new concepts for discovering new antifibrotic and antitumor drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Dan-Qian Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Nosratola D Vaziri
- Department of Medicine, University of California Irvine, Irvine, California
| | - Yan Guo
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Zhang X, Lu H, Xie S, Wu C, Guo Y, Xiao Y, Zheng S, Zhu H, Zhang Y, Bai Y. Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in kidneys via proliferation-related signalling pathways. Br J Pharmacol 2019; 176:4745-4759. [PMID: 31454852 PMCID: PMC6965682 DOI: 10.1111/bph.14842] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Renal fibrosis acts as the common pathway leading to the development of end-stage renal disease. Previous studies have shown that resveratrol has anti-fibrotic activity, but its potential molecular mechanisms of action are not well understood. EXPERIMENTAL APPROACH The anti-fibrotic effects of resveratrol were assayed in a rat model of unilateral ureteral obstruction (UUO) in vivo and in fibroblasts and tubular epithelial cells (TECs) stimulated by TGF-β1 in vitro. Gene and protein expression levels were analysed by PCR, Western blotting, and immunohistochemical staining. KEY RESULTS Resveratrol inhibits the myofibroblastic phenotype and fibrosis formation in UUO kidneys by targeting fibroblast-myofibroblast differentiation (FMD) and epithelial-mesenchymal transition (EMT). The anti-fibrotic effects of resveratrol correlated with decreased proliferation of TECs in the interstitium and tubules, resulting in suppressed activity of the proliferation-related signalling pathways, including that of the MAPK, PI3K/Akt, Wnt/β-catenin, and JAK2/STAT3 pathways. Resveratrol treatment suppressed TGF-β1-induced FMD and the expression of the myofibroblastic phenotype in fibroblasts in vitro by antagonizing the activation of proliferation-related signalling. Similarly, TGF-β1-mediated overactivation of the proliferation-related signalling in TECs induced EMT, and the myofibroblastic phenotype was suppressed by resveratrol. The anti-fibrotic and anti-proliferative effects of resveratrol were associated with the inactivation of Smad2/3 signalling and resulted in a partial reversal of FMD and EMT and the inhibition of the myofibroblastic phenotype. CONCLUSIONS AND IMPLICATIONS Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in vivo and in vitro via proliferation-related pathways, making it a potential therapeutic agent for preventing renal fibrosis.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Hong Lu
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | | | - Cunzao Wu
- Department of TransplantationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shizhang Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yan Zhang
- Department of TransplantationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Kidney Health, Center for Health AssessmentWenzhou Medical UniversityWenzhouChina
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Kidney Health, Center for Health AssessmentWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
32
|
Montgomery M, Srinivasan A. Epigenetic Gene Regulation by Dietary Compounds in Cancer Prevention. Adv Nutr 2019; 10:1012-1028. [PMID: 31100104 PMCID: PMC6855955 DOI: 10.1093/advances/nmz046] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Traditionally, cancer has been viewed as a set of diseases that are driven by the accumulation of genetic mutations, but we now understand that disruptions in epigenetic regulatory mechanisms are prevalent in cancer as well. Unlike genetic mutations, however, epigenetic alterations are reversible, making them desirable therapeutic targets. The potential for diet, and bioactive dietary components, to target epigenetic pathways in cancer is now widely appreciated, but our understanding of how to utilize these compounds for effective chemopreventive strategies in humans is in its infancy. This review provides a brief overview of epigenetic regulation and the clinical applications of epigenetics in cancer. It then describes the capacity for dietary components to contribute to epigenetic regulation, with a focus on the efficacy of dietary epigenetic regulators as secondary cancer prevention strategies in humans. Lastly, it discusses the necessary precautions and challenges that will need to be overcome before the chemopreventive power of dietary-based intervention strategies can be fully harnessed.
Collapse
Affiliation(s)
- McKale Montgomery
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK,Address correspondence to MM (E-mail: )
| | | |
Collapse
|
33
|
Lyu X, Hu M, Peng J, Zhang X, Sanders YY. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther Adv Chronic Dis 2019; 10:2040622319862697. [PMID: 31367296 PMCID: PMC6643173 DOI: 10.1177/2040622319862697] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Fibrosis usually results from dysregulated wound repair and is characterized by
excessive scar tissue. It is a complex process with unclear mechanisms.
Accumulating evidence indicates that epigenetic alterations, including histone
acetylation, play a pivotal role in this process. Histone acetylation is
governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs).
HDACs are enzymes that remove the acetyl groups from both histone and nonhistone
proteins. Aberrant HDAC activities are observed in fibrotic diseases, including
cardiac and pulmonary fibrosis. HDAC inhibitors (HDACIs) are molecules that
block HDAC functions. HDACIs have been studied extensively in a variety of
tumors. Currently, there are four HDACIs approved by the US Food and Drug
Administration for cancer treatment yet none for fibrotic diseases. Emerging
evidence from in vitro and in vivo preclinical
studies has presented beneficial effects of HDACIs in preventing or reversing
fibrogenesis. In this review, we summarize the latest findings of the roles of
HDACs in the pathogenesis of cardiac and pulmonary fibrosis and highlight the
potential applications of HDACIs in these two fibrotic diseases.
Collapse
Affiliation(s)
- Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieting Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
34
|
Li H, Shi Y, Wang X, Li P, Zhang S, Wu T, Yan Y, Zhan Y, Ren Y, Rong X, Xia T, Chu M, Wu R. Piceatannol alleviates inflammation and oxidative stress via modulation of the Nrf2/HO-1 and NF-κB pathways in diabetic cardiomyopathy. Chem Biol Interact 2019; 310:108754. [PMID: 31323227 DOI: 10.1016/j.cbi.2019.108754] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
Diabetic cardiomyopathy (DCM) is one of the leading causes of morbidity and mortality in diabetic patients. Piceatannol (PIC) has protective effects against cardiovascular disease; however, it remains unknown whether it also protects against DCM. A Cell Counting Kit-8 (CCK-8) assay was used to evaluate the effects of PIC on the viability of high glucose (HG)-induced H9C2 cells. Protein expression and mRNA levels were detected by western blotting and real-time polymerase chain reaction (RT-PCR), respectively. In vivo, physical and biochemical analyses, together with transthoracic echocardiography and hemodynamic measurements, were used to detect the effects of PIC treatment on cardiac function in DCM rats. Reactive oxygen species production was determined using an ELISA kit, and inflammatory cytokines were detected by RT-PCR. Pathological changes were assessed by hematoxylin-eosin staining, immunohistochemical staining, and TUNEL staining. According to the results, PIC treatment improved cell viability and inhibited cell apoptosis in HG-induced H9C2 cardiac myoblasts. In addition, PIC not only attenuated the over-production of interleukin-6 (IL-6) (P < 0.05) and tumor necrosis factor alpha (TNF-α) (P < 0.05), but also improved the expression of nuclear factor E2-related factor 2 (Nrf2) (P < 0.05) and heme oxygenase-1 (HO-1) (P < 0.01). Importantly, knockdown of Nrf2 suppressed PIC-mediated activation of the Nrf2/HO-1 pathway and abolished its anti-inflammatory effects. In vivo, oral administration of PIC suppressed STZ-induced inflammation, oxidative stress hypertrophy, fibrosis(myocardial collagen volume fraction in 5 mg/kg and 10 mg/kg PIC group was decreased 25.83% and 55.61% compared with the DM group), and apoptosis(Caspase-3 level in 5 mg/kg and 10 mg/kg PIC group was decreased 13.21% and 33.91% compared with the DM group), thereby relieving cardiac dysfunction and improving both fibrosis and pathological changes in cardiac tissues of diabetic rats. These findings define for the first time that the effects of PIC against DCM can be attributed to its role in inflammation and oxidative stress inhibition.
Collapse
Affiliation(s)
- Hao Li
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Youyang Shi
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Xuliang Wang
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Ping Li
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Songyue Zhang
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Tingting Wu
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Yaoyao Yan
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Yi Zhan
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Yue Ren
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Xing Rong
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Tianhe Xia
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Maoping Chu
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China.
| | - Rongzhou Wu
- Children's Heart Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China.
| |
Collapse
|
35
|
Landolt L, Furriol J, Babickova J, Ahmed L, Eikrem Ø, Skogstrand T, Scherer A, Suliman S, Leh S, Lorens JB, Gausdal G, Marti H, Osman T. AXL targeting reduces fibrosis development in experimental unilateral ureteral obstruction. Physiol Rep 2019; 7:e14091. [PMID: 31134766 PMCID: PMC6536582 DOI: 10.14814/phy2.14091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
The AXL receptor tyrosine kinase (RTK) is involved in partial epithelial-to-mesenchymal transition (EMT) and inflammation - both main promoters of renal fibrosis development. The study aim was to investigate the role of AXL inhibition in kidney fibrosis due to unilateral ureteral obstruction (UUO). Eight weeks old male C57BL/6 mice underwent UUO and were treated with oral AXL inhibitor bemcentinib (n = 22), Angiotensin-converting enzyme inhibitor (ACEI, n = 10), ACEI and bemcentinib (n = 10) or vehicle alone (n = 22). Mice were sacrificed after 7 or 15 days and kidney tissues were analyzed by immunohistochemistry (IHC), western blot, ELISA, Sirius Red (SR) staining, and hydroxyproline (Hyp) quantification. RNA was extracted from frozen kidney tissues and sequenced on an Illumina HiSeq4000 platform. After 15 days the ligated bemcentinib-treated kidneys showed less fibrosis compared to the ligated vehicle-treated kidneys in SR analyses and Hyp quantification. Reduced IHC staining for Vimentin (VIM) and alpha smooth muscle actin (αSMA), as well as reduced mRNA abundance of key regulators of fibrosis such as transforming growth factor (Tgfβ), matrix metalloproteinase 2 (Mmp2), Smad2, Smad4, myofibroblast activation (Aldh1a2, Crlf1), and EMT (Snai1,2, Twist), in ligated bemcentinib-treated kidneys was compatible with reduced (partial) EMT induction. Furthermore, less F4/80 positive cells, less activity of pathways related to the immune system and lower abundance of MCP1, MCP3, MCP5, and TARC in ligated bemcentinib-treated kidneys was compatible with reduction in inflammatory infiltrates by bemcentinib treatment. The AXL RTK pathway represents a promising target for pharmacologic therapy of kidney fibrosis.
Collapse
Affiliation(s)
- Lea Landolt
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Jessica Furriol
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Janka Babickova
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | | | - Øystein Eikrem
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Trude Skogstrand
- Department of MedicineHaukeland University HospitalBergenNorway
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Andreas Scherer
- SpheromicsKontiolahtiFinland
- Institute for Molecular Medicine Finland FIMMHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Salwa Suliman
- Department of Clinical DentistryCenter for Clinical Dental ResearchUniversity of BergenBergenNorway
| | - Sabine Leh
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - James B. Lorens
- Department of BiomedicineCenter for Cancer BiomarkersUniversity of BergenBergenNorway
| | | | - Hans‐Peter Marti
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Tarig Osman
- Department of Clinical MedicineUniversity of BergenBergenNorway
| |
Collapse
|
36
|
Jaguva Vasudevan AA, Hoffmann MJ, Beck MLC, Poschmann G, Petzsch P, Wiek C, Stühler K, Köhrer K, Schulz WA, Niegisch G. HDAC5 Expression in Urothelial Carcinoma Cell Lines Inhibits Long-Term Proliferation but Can Promote Epithelial-to-Mesenchymal Transition. Int J Mol Sci 2019; 20:E2135. [PMID: 31052182 PMCID: PMC6539474 DOI: 10.3390/ijms20092135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/25/2022] Open
Abstract
Class I histone deacetylases (HDACs) generally promote cell proliferation and tumorigenesis, whereas class IIA HDACs like HDAC4 and HDAC5 may promote or impede cancer development in a tissue-dependent manner. In urothelial carcinoma (UC), HDAC5 is often downregulated. Accordingly, HDAC5 was weakly expressed in UC cell lines suggesting a possible tumor-suppressive function. We therefore characterized the effects of stable HDAC5 expression in four UC cell lines (RT112, VM-Cub-1, SW1710 and UM-UC-3) with different phenotypes reflecting the heterogeneity of UC, by assessing proliferation, clonogenicity and migration ability. Further, we detailed changes in the proteome and transcriptome by immunoblotting, mass spectrometry and RNA sequencing analysis. We observed that HDAC5 overexpression in general decreased cell proliferation, but in one cell line (VM-Cub-1) induced a dramatic change from an epitheloid to a mesenchymal phenotype, i.e., epithelial-mesenchymal transition (EMT). These phenotypical changes were confirmed by comprehensive proteomics and transcriptomics analyses. In contrast to HDAC5, overexpression of HDAC4 exerted only weak effects on cell proliferation and phenotypes. We conclude that overexpression of HDAC5 may generally decrease proliferation in UC, but, intriguingly, may induce EMT on its own in certain circumstances.
Collapse
Affiliation(s)
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Michael L C Beck
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Gereon Poschmann
- Institute for Molecular Medicine, University Hospital Düsseldorf, 40225 Düsseldorf, Germany.
| | - Patrick Petzsch
- Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Constanze Wiek
- Department of Otolaryngology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Kai Stühler
- Institute for Molecular Medicine, University Hospital Düsseldorf, 40225 Düsseldorf, Germany.
- Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Karl Köhrer
- Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
37
|
Hyndman KA, Kasztan M, Mendoza LD, Monteiro-Pai S. Dynamic changes in histone deacetylases following kidney ischemia-reperfusion injury are critical for promoting proximal tubule proliferation. Am J Physiol Renal Physiol 2019; 316:F875-F888. [PMID: 30810062 DOI: 10.1152/ajprenal.00499.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Deranged histone deacetylase (HDAC) activity causes uncontrolled proliferation, inflammation, fibrosis, and organ damage. It is unclear whether deranged HDAC activity results in acute kidney injury in the renal hypoperfusion model of bilateral ischemia-reperfusion injury (IRI) and whether in vivo inhibition is an appropriate therapeutic approach to limit injury. Male mice were implanted with intraperitoneal osmotic minipumps containing vehicle, the class I HDAC inhibitor, MS275, or the pan-HDAC inhibitor, trichostatin A (TSA), 3 days before sham/bilateral IRI surgery. Kidney cortical samples were analyzed using histological, immunohistochemical, and Western blotting techniques. HDAC-dependent proliferation rate was measured in immortalized rat epithelial cells and primary mouse or human proximal tubule (PT) cells. There were dynamic changes in cortical HDAC localization and abundance following IRI including a fourfold increase in HDAC4 in the PT. HDAC inhibition resulted in a significantly higher plasma creatinine, increased kidney damage, but reduced interstitial fibrosis compared with vehicle-treated IRI mice. HDAC-inhibited mice had reduced interstitial α-smooth muscle actin, fibronectin expression, and Sirius red-positive area, suggesting that IRI activates HDAC-mediated fibrotic pathways. In vivo proliferation of the kidney epithelium was significantly reduced in TSA-treated, but not MS275-treated, IRI mice, suggesting class II HDACs mediate proliferation. Furthermore, HDAC4 activation increased proliferation of human and mouse PTs. Kidney HDACs are activated during IRI with isoform-specific expression patterns. Our data point to mechanisms whereby IRI activates HDACs resulting in fibrotic pathways but also activation of PT proliferation and repair pathways. This study demonstrates the need to develop isoform-selective HDAC inhibitors for the treatment of renal hypoperfusion-induced injury.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Malgorzata Kasztan
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Luciano D Mendoza
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Sureena Monteiro-Pai
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
38
|
Dolivo DM, Larson SA, Dominko T. Tryptophan metabolites kynurenine and serotonin regulate fibroblast activation and fibrosis. Cell Mol Life Sci 2018; 75:3663-3681. [PMID: 30027295 PMCID: PMC11105268 DOI: 10.1007/s00018-018-2880-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Abstract
Fibrosis is a pathological form of aberrant tissue repair, the complications of which account for nearly half of all deaths in the industrialized world. All tissues are susceptible to fibrosis under particular pathological sets of conditions. Though each type of fibrosis has characteristics and hallmarks specific to that particular condition, there appear to be common factors underlying fibrotic diseases. One of these ubiquitous factors is the paradigm of the activated myofibroblast in the promotion of fibrotic phenotypes. Recent research has implicated metabolic byproducts of the amino acid tryptophan, namely serotonin and kynurenines, in the pathology or potential pharmacologic therapy of fibrosis, in part through their effects on development of myofibroblast phenotypes. Here, we review literature underlying what is known mechanistically about the effects of these compounds and their respective pathways on fibrosis. Pharmacologic administration of kynurenine improves scarring outcomes in vivo likely not only through its well-characterized immunosuppressive properties but also via its demonstrated antagonism of fibroblast activation and of collagen deposition. In contrast, serotonin directly promotes activation of fibroblasts via activation of canonical TGF-β signaling, and overstimulation with serotonin leads to fibrotic outcomes in vivo. Recently discovered feedback inhibition between serotonin and kynurenine pathways also reveals more information about the cellular physiology of tryptophan metabolism and may also underlie possible paradigms for anti-fibrotic therapy. Together, understanding of the effects of tryptophan metabolism on modulation of fibrosis may lead to the development of new therapeutic avenues for treatment through exploitation of these effects.
Collapse
Affiliation(s)
- David M Dolivo
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Sara A Larson
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Tanja Dominko
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
39
|
Choi SY, Kee HJ, Jin L, Ryu Y, Sun S, Kim GR, Jeong MH. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat. Biomed Pharmacother 2018; 101:145-154. [DOI: 10.1016/j.biopha.2018.02.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
|
40
|
Dolivo DM, Larson SA, Dominko T. FGF2-mediated attenuation of myofibroblast activation is modulated by distinct MAPK signaling pathways in human dermal fibroblasts. J Dermatol Sci 2017; 88:339-348. [PMID: 28899582 DOI: 10.1016/j.jdermsci.2017.08.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Previous human and animal studies have demonstrated the ability of exogenously administered basic fibroblast growth factor (FGF2) to act as an antifibrotic agent in the skin. Though the activity of FGF2 as an anti-scarring agent is well-established for fibrotic skin wounds, the mechanisms by which FGF2 exerts these actions are not entirely understood. Canonical FGF2 signaling proceeds in part via FGFR/MAPK pathways in human dermal fibroblasts, and FGF2 has been described to prevent or reverse the fibroblast-to-myofibroblast transition, which is driven by TGFβ signaling and understood to be an important step in the formation of a fibrotic scar in vivo. Thus, we set out to investigate the antagonistic effects of FGF2 on TGFβ signaling as well as the broader effects of MAPK inhibition on the TGFβ-mediated induction of myofibroblast gene expression. OBJECTIVE To better understand the effects of FGF2 signaling pathways on myofibroblastic gene expression and cell phenotypes. METHODS Human dermal fibroblasts were cultured in vitro in the presence of FGF2, TGFβ, and/or MAPK inhibitors, and the effects of these agents were investigated by molecular biology techniques including qRT-PCR, immunofluorescence, Western blot, and flow cytometry. RESULTS FGF2 inhibited TGFβ-mediated fibroblast activation, resulting in more rapidly proliferating, spindle-shaped cells, compared to the more slowly proliferating, flatter TGFβ-treated cells. Treatment with FGF2 also attenuated TGFβ-mediated increase in expression of myofibroblast markers smooth muscle α-actin, calponin, transgelin, connective tissue growth factor, ED-A fibronectin, and collagen I. FGF2-mediated antagonism of the TGFβ-mediated fibroblast-to-myofibroblast transition was reversed by small molecule inhibition of ERK or JNK, and it was potentiated by inhibition of p38. MAPK inhibition was demonstrated to have qualitatively similar effects even in the absence of exogenous FGF2, and small molecule inhibition of p38 MAPK was sufficient to attenuate TGFβ-mediated fibroblast activation. CONCLUSIONS Inhibition of select MAPK signaling pathways can reverse or potentiate anti-fibrotic FGF2 effects on human dermal fibroblasts, as well as exert their effects independently of exogenous FGF2 supplementation.
Collapse
Affiliation(s)
- David M Dolivo
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, 100 Institute Road, Worcester, MA, 01609, United States
| | - Sara A Larson
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, 100 Institute Road, Worcester, MA, 01609, United States
| | - Tanja Dominko
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, 100 Institute Road, Worcester, MA, 01609, United States.
| |
Collapse
|