1
|
Graf LM, Radtke D, Voehringer D. Regulation of eosinophil recruitment and heterogeneity during allergic airway inflammation. FRONTIERS IN ALLERGY 2025; 6:1585142. [PMID: 40276331 PMCID: PMC12018390 DOI: 10.3389/falgy.2025.1585142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Eosinophils represent a granulocyte cell type that is strongly associated with type 2 inflammatory conditions. During steady state conditions few eosinophils are found in lung tissue, though they may contribute to homeostasis. In allergic airway inflammation, eosinophils are strongly increased and associated to disease severity. The underlying type 2 immune response tightly regulates eosinophil development, recruitment, survival, and heterogeneity. Inflammatory eosinophils in the lung are unfavourable, as they can cause tissue damage, amplify type 2 immunity and induce bronchial obstruction by expelling granular proteins and cytokines. In this review we provide an overview about mechanisms regulating development of eosinophils in the bone marrow and their extravasation into the lung including recent findings on induction and diversity of eosinophilia in allergic airway inflammation.
Collapse
Affiliation(s)
| | | | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Medina-Rodriguez EM, Han D, Zeltzer SE, Moraskie Alvarez-Tabío MP, O'Connor G, Daunert S, Beurel E. Stress-induced VIPergic activation mediates microbiota/Th17cell-dependent depressive-like behaviors. Brain Behav Immun 2025; 123:739-751. [PMID: 39419356 DOI: 10.1016/j.bbi.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic stress often has deleterious effects leading to the development of psychiatric diseases. The gut-brain axis represents a novel avenue for stress research. The negative effects of stress on the gut physiology have been well-described, whereas the pathways whereby stress controls microbial composition to modulate behaviors remains mainly unknown. We discovered that vasoactive intestinal peptide (VIP) activation promoted stress-induced microbial changes leading to increased infiltration of T helper (Th) 17 cells and microglial activation in the hippocampus and depressive-like behaviors, uncovering a close crosstalk between intestinal VIPergic release and the gut microbiota during stress and providing a new interaction between the nervous system and the gut microbiome after stress. Neutralization of the signature cytokine of Th17 cells, interleukin (IL)-17A, was sufficient to block depressive-like behaviors, reduce neuronal VIPergic activation and microglia activation induced by VIPergic activation after stress, opening new potential therapeutic targets for depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Dongmei Han
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Shanie E Zeltzer
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Michael P Moraskie Alvarez-Tabío
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
3
|
Kline SN, Orlando NA, Lee AJ, Wu MJ, Zhang J, Youn C, Feller LE, Pontaza C, Dikeman D, Limjunyawong N, Williams KL, Wang Y, Cihakova D, Jacobsen EA, Durum SK, Garza LA, Dong X, Archer NK. Staphylococcus aureus proteases trigger eosinophil-mediated skin inflammation. Proc Natl Acad Sci U S A 2024; 121:e2309243121. [PMID: 38289950 PMCID: PMC10861893 DOI: 10.1073/pnas.2309243121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Staphylococcus aureus skin colonization and eosinophil infiltration are associated with many inflammatory skin disorders, including atopic dermatitis, bullous pemphigoid, Netherton's syndrome, and prurigo nodularis. However, whether there is a relationship between S. aureus and eosinophils and how this interaction influences skin inflammation is largely undefined. We show in a preclinical mouse model that S. aureus epicutaneous exposure induced eosinophil-recruiting chemokines and eosinophil infiltration into the skin. Remarkably, we found that eosinophils had a comparable contribution to the skin inflammation as T cells, in a manner dependent on eosinophil-derived IL-17A and IL-17F production. Importantly, IL-36R signaling induced CCL7-mediated eosinophil recruitment to the inflamed skin. Last, S. aureus proteases induced IL-36α expression in keratinocytes, which promoted infiltration of IL-17-producing eosinophils. Collectively, we uncovered a mechanism for S. aureus proteases to trigger eosinophil-mediated skin inflammation, which has implications in the pathogenesis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Sabrina N. Kline
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Nicholas A. Orlando
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Alex J. Lee
- Department of Oncology, Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Jing Zhang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Christine Youn
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Laine E. Feller
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Cristina Pontaza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Nathachit Limjunyawong
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok10700, Thailand
| | - Kaitlin L. Williams
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Yu Wang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Daniela Cihakova
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ85259
| | - Scott K. Durum
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD21702
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Xinzhong Dong
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| |
Collapse
|
4
|
Gibb M, Sayes CM. An In Vitro Alveolar Model Allows for the Rapid Assessment of Particles for Respiratory Sensitization Potential. Int J Mol Sci 2023; 24:10104. [PMID: 37373252 DOI: 10.3390/ijms241210104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dust, both industrial and household, contains particulates that can reach the most distal aspects of the lung. Silica and nickel compounds are two such particulates and have known profiles of poor health outcomes. While silica is well-characterized, nickel compounds still need to be fully understood for their potential to cause long-term immune responses in the lungs. To assess these hazards and decrease animal numbers used in testing, investigations that lead to verifiable in vitro methods are needed. To understand the implications of these two compounds reaching the distal aspect of the lungs, the alveoli, an architecturally relevant alveolar model consisting of epithelial cells, macrophages, and dendritic cells in a maintained submerged system, was utilized for high throughput testing. Exposures include crystalline silica (SiO2) and nickel oxide (NiO). The endpoints measured included mitochondrial reactive oxygen species and cytostructural changes assessed via confocal laser scanning microscopy; cell morphology evaluated via scanning electron microscopy; biochemical reactions assessed via protein arrays; transcriptome assessed via gene arrays, and cell surface activation markers evaluated via flow cytometry. The results showed that, compared to untreated cultures, NiO increased markers for dendritic cell activation, trafficking, and antigen presentation; oxidative stress and cytoskeletal changes, and gene and cytokine expression of neutrophil and other leukocyte chemoattractants. The chemokines and cytokines CCL3, CCL7, CXCL5, IL-6, and IL-8 were identified as potential biomarkers of respiratory sensitization.
Collapse
Affiliation(s)
- Matthew Gibb
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Christie M Sayes
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
5
|
Mycobacterium intracellulare induces a Th17 immune response via M1-like macrophage polarization in canine peripheral blood mononuclear cells. Sci Rep 2022; 12:11818. [PMID: 35821058 PMCID: PMC9276657 DOI: 10.1038/s41598-022-16117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Abstract
Mycobacterium avium-intracellulare complex (MAC) is one of the most prevalent pathogenic nontuberculous mycobacteria that cause chronic pulmonary disease. The prevalence of MAC infection has been rising globally in a wide range of hosts, including companion animals. MAC infection has been reported in dogs; however, little is known about interaction between MAC and dogs, especially in immune response. In this study, we investigated the host immune response driven by M. intracellulare using the co-culture system of canine T helper cells and autologous monocyte-derived macrophages (MDMs). Transcriptomic analysis revealed that canine MDMs differentiated into M1-like macrophages after M. intracellulare infection and the macrophages secreted molecules that induced Th1/Th17 cell polarization. Furthermore, canine lymphocytes co-cultured with M. intracellulare-infected macrophages induced the adaptive Th17 responses after 5 days. Taken together, our results indicate that M. intracellulare elicits a Th17 response through macrophage activation in this system. Those findings might help the understanding of the canine immune response to MAC infection and diminishing the potential zoonotic risk in One Health aspect.
Collapse
|
6
|
Kong M, Dong W, Zhu Y, Fan Z, Miao X, Guo Y, Li C, Duan Y, Lu Y, Li Z, Xu Y. Redox-sensitive activation of CCL7 by BRG1 in hepatocytes during liver injury. Redox Biol 2021; 46:102079. [PMID: 34454163 PMCID: PMC8406035 DOI: 10.1016/j.redox.2021.102079] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Liver injuries induced by various stimuli share in common an acute inflammatory response, in which circulating macrophages home to the liver parenchyma to participate in the regulation of repair, regeneration, and fibrosis. In the present study we investigated the role of hepatocyte-derived C-C motif ligand 7 (CCL7) in macrophage migration during liver injury focusing on its transcriptional regulation. We report that CCL7 expression was up-regulated in the liver by lipopolysaccharide (LPS) injection (acute liver injury) or methionine-and-choline-deficient (MCD) diet feeding (chronic liver injury) paralleling increased macrophage infiltration. CCL7 expression was also inducible in hepatocytes, but not in hepatic stellate cells or in Kupffer cells, by LPS treatment or exposure to palmitate in vitro. Hepatocyte-specific deletion of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, resulted in a concomitant loss of CCL7 induction and macrophage infiltration in the murine livers. Of interest, BRG1-induced CCL7 transcription and macrophage migration was completely blocked by the antioxidant N-acetylcystine. Further analyses revealed that BRG1 interacted with activator protein 1 (AP-1) to regulate CCL7 transcription in hepatocytes in a redox-sensitive manner mediated in part by casein kinase 2 (CK2)-catalyzed phosphorylation of BRG1. Importantly, a positive correlation between BRG1/CCL7 expression and macrophage infiltration was identified in human liver biopsy specimens. In conclusion, our data unveil a novel role for BRG1 as a redox-sensitive activator of CCL7 transcription.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Chengping Li
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yunfei Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China.
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China.
| |
Collapse
|
7
|
Jung HJ, Ko YK, Shim WS, Kim HJ, Kim DY, Rhee CS, Park MK, Han DH. Diesel exhaust particles increase nasal symptoms and IL-17A in house dust mite-induced allergic mice. Sci Rep 2021; 11:16300. [PMID: 34381060 PMCID: PMC8357916 DOI: 10.1038/s41598-021-94673-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Diesel exhaust particles (DEPs), traffic-related air pollutants, are considered environmental factors adversely affecting allergic diseases. However, the immunological basis for the adjuvant effects of DEP in allergic rhinitis (AR) remains unclear. Therefore, this study aimed to investigate the effect of DEP exposure on AR using a mouse model. BALB/c mice sensitized to house dust mite (HDM) were intranasally challenged with HDM in the presence and absence of DEP. Allergic symptom scores, serum total and HDM-specific immunoglobulins (Igs), eosinophil infiltration in the nasal mucosa, cytological profiles in bronchoalveolar lavage fluid (BALF), and cytokine levels in the nasal mucosa and spleen cell culture were analyzed. Mice co-exposed to HDM and DEP showed increased allergic symptom scores compared with mice exposed to HDM alone. Reduced total IgE and HDM-specific IgE and IgG1 levels, decreased eosinophil infiltration in the nasal mucosa, and increased proportion of neutrophils in BALF were found in mice co-exposed to HDM and DEP. Interleukin (IL)-17A level was found to be increased in the nasal mucosa of the co-exposure group compared with that in the HDM-exposed group. The levels of IL-4, IL-13, interferon-γ, IL-25, IL-33, and TSLP expression showed no difference between the groups with and without DEP treatment. Increased expression of IL-17A in the nasal mucosa may contribute to DEP-mediated exacerbation of AR in HDM-sensitized murine AR model.
Collapse
Affiliation(s)
- Hahn Jin Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Young-Kyung Ko
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Sub Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Doo Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
8
|
Wang WW, Yu HW, Zhang B, Pan YL, Shao SW. Interleukin-17A up-regulates thymic stromal lymphopoietin production by nasal fibroblasts from patients with allergic rhinitis. Eur Arch Otorhinolaryngol 2020; 278:127-133. [PMID: 32783069 DOI: 10.1007/s00405-020-06274-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Emerging evidence has shown that interleukin (IL)-17A is implicated in the pathogenesis of allergic rhinitis (AR). Thymic stromal lymphopoietin (TSLP) orchestrates the immune response toward a Th2 phenotype. Although increased TSLP is found in AR, the contribution of IL-17A in TSLP production by nasal fibroblasts is not well understood. We aimed to investigate the effect and mechanism of IL-17A on TSLP production by human nasal fibroblasts (HNFs) from AR patients. METHODS HNFs from AR patients were cultured and stimulated with IL-17A in the absence or presence of a Janus kinase (JAK) 2 or JAK1/3 inhibitor. Western blotting was used to assay phosphorylated signal transducer and activator of transcription 3 (p-STAT3) and nuclear factor-kappa B (NF-κB) p65 in HNFs. The TSLP expression in the cells and culture supernatants was evaluated by real-time polymerase chain reaction and enzyme-linked immunoassay. RESULTS Stimulation with IL-17A induced STAT3 phosphorylation, which was inhibited by the pretreatment with JAK2 inhibitor AZD1480 or JAK1/3 inhibitor tofacitinib. IL-17A promoted the nuclear translocation of NF-κBp65 protein, leading to increased TSLP production, while the pre-incubation with AZD1480 prior to IL-17A attenuated these effects. However, the pre-incubation with tofacitinib before IL-17A stimulation had no impact on the expression of NF-κBp65 and TSLP. CONCLUSIONS IL-17A up-regulated TSLP production by HNFs through JAK2/NF-κB pathway. Although IL-17A induced STAT3 activation through JAK1/2/3, IL-17A-mediated TSLP expression was not dependent on STAT3 signaling. These observations would provide mechanistic insight into therapeutic strategies to improve the immune and inflammation associated with Th17A in the management of AR.
Collapse
Affiliation(s)
- Wei Wei Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, School of Medicine, Huzhou University, No. 759, East Second Ring Road, Huzhou, 313000, Zhejiang, China
| | - Hong Wei Yu
- School of Medicine, Huzhou University, No. 759, East Second Ring Road, Huzhou, 313000, Zhejiang, China
| | - Bo Zhang
- School of Medicine, Huzhou University, No. 759, East Second Ring Road, Huzhou, 313000, Zhejiang, China
| | - Yong Liang Pan
- School of Medicine, Huzhou University, No. 759, East Second Ring Road, Huzhou, 313000, Zhejiang, China
| | - Sheng Wen Shao
- School of Medicine, Huzhou University, No. 759, East Second Ring Road, Huzhou, 313000, Zhejiang, China.
| |
Collapse
|
9
|
Berghi NO, Dumitru M, Vrinceanu D, Ciuluvica RC, Simioniuc-Petrescu A, Caragheorgheopol R, Tucureanu C, Cornateanu RS, Giurcaneanu C. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp Ther Med 2020; 20:2352-2360. [PMID: 32765714 PMCID: PMC7401840 DOI: 10.3892/etm.2020.8961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic diseases have been classified in the last decades using various theories. The main classes of the newest classification in allergic respiratory diseases focus on the characterization of the endotype (which takes into account biomarkers related to determinant pathophysiological mechanisms) and of the phenotype (based on the description of the disease). Th2, Th1 and Th17 lymphocytes and the type of inflammatory response mediated by them represent the basis for Th2 and non-Th2 endotype classification. In addition, new lymphocytes were also used to characterize allergic diseases: Th9 lymphocytes, Th22 lymphocytes, T follicular helper cells (TFH) lymphocytes and invariant natural killer T (iNKT) lymphocytes. In the last decade, a growing body of evidence focused on chemokines, chemoattractant cytokines, which seems to have an important contribution to the pathogenesis of this pathology. This review presents the interactions between chemokines and Th lymphocytes in the context of Th2/non-Th2 endotype classification of respiratory allergies.
Collapse
Affiliation(s)
- Nicolae Ovidiu Berghi
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| | - Mihai Dumitru
- Anatomy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Vrinceanu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | | | - Anca Simioniuc-Petrescu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | - Ramona Caragheorgheopol
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Catalin Tucureanu
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Roxana Sfrent Cornateanu
- Department of Physiopathology and Immunology, 'Carol Davila' University of Medicine and Pharmacy, 041914 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| |
Collapse
|
10
|
Wang WW, Zhu K, Yu HW, Pan YL. Interleukin-17A potentiates interleukin-13-induced eotaxin-3 production by human nasal epithelial cells from patients with allergic rhinitis. Int Forum Allergy Rhinol 2019; 9:1327-1333. [PMID: 31403761 DOI: 10.1002/alr.22382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/13/2019] [Accepted: 06/30/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Interleukin (IL)-17A is involved in the pathogenesis of allergic rhinitis (AR). Increased expression of IL-17A is correlated with disease severity and nasal eosinophilia. However, the molecular mechanisms by which IL-17A contributes to T-helper 2 cytokine IL-13-driven pathology in AR remain unclear. We sought to obtain mechanistic insight into how IL-17A and IL-13 regulate the epithelial production of eotaxin-3 representing eosinophilic inflammation in AR. METHODS Human nasal epithelial cells (HNECs) from AR patients were cultured and stimulated with IL-17A, IL-13, or IL-17A and IL-13. Phosphorylated signal transducer activator of transcription 6 (p-STAT6) and suppressor of cytokine signaling 1 (SOCS1) in HNECs were assayed using Western blotting. Immunocytochemistry was used to determine p-STAT6-positive expression in the cells. Eotaxin-3 expression in the cells and culture supernatants was evaluated using real-time polymerase chain reaction and enzyme-linked immunosorbent assays. RESULTS Stimulation with IL-13 alone induced STAT6 phosphorylation and promoted p-STAT6 nuclear translocation, leading to eotaxin-3 production by HNECs. These effects were further enhanced by cotreatment with IL-13 and IL-17A, whereas IL-17A alone had no impact on STAT6 or eotaxin-3 expression. Incubation with IL-17A or IL-13 increased the level of SOCS1 protein in the cells, whereas the addition of IL-17A attenuated IL-13-induced SOCS1 expression. CONCLUSION IL-17A potentiated IL-13-driven STAT6 activation through the downregulation of SOCS1 expression, leading to enhancement of eotaxin-3 production by HNECs. These factors contributed to eosinophilic inflammation in AR.
Collapse
Affiliation(s)
- Wei Wei Wang
- Schools of Medicine and Nursing Sciences, Huzhou University, Zhejiang, PR China
| | - Kai Zhu
- Department of Pathology, Huzhou Maternity and Child Health Care Hospital, Zhejiang, PR China
| | - Hong Wei Yu
- Schools of Medicine and Nursing Sciences, Huzhou University, Zhejiang, PR China
| | - Yong Liang Pan
- Schools of Medicine and Nursing Sciences, Huzhou University, Zhejiang, PR China
| |
Collapse
|