1
|
Messaï CR, Chenouf NS, Khalouta O, Chorfa A, Salhi O, Tucciarone CM, Poletto F, Franzo G, Aberkane C, Cecchinato M, Legnardi M. Infectious Bursal Disease Virus in Algeria: Persistent Circulation of Very Virulent Strains in Spite of Control Efforts. Animals (Basel) 2024; 14:3543. [PMID: 39682508 DOI: 10.3390/ani14233543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Infectious bursal disease (IBD) is among the most impactful immunosuppressive diseases of poultry. Its agent, infectious bursal disease virus (IBDV), is prone to both mutation and reassortment, resulting in a remarkable variability. Traditionally, IBDV characterization relies on antigenicity and pathogenicity assessment, but multiple phylogenetic classifications have been recently proposed, whose implementation in molecular surveys helps generating informative and standardized epidemiological data. In the present study, the Algerian IBDV scenario was assessed based on the novel classification guidelines by sequencing portions of both genome segments. Seventy pools of bursal samples were collected in 2022-2023 in 11 districts of Northern Algeria, mostly from broiler flocks. Out of 55 (78.6%) positive flocks, 40 (57.1%) were infected by field strains, which were characterized as very virulent strains (genotype A3B2) and phylogenetically related to previously reported Algerian strains. Significant differences in the percentage of field infections were observed between vaccinated (25/52, 46.2%) and unvaccinated (14/17, 82.3%) groups, and also between birds immunized with live intermediate (13/20, 65.0%) and intermediate plus (10/28, 35.7%) vaccines. Nonetheless, the number of field strain detections suggests a high infectious pressure and the inadequacy of current vaccination efforts, demanding a reevaluation of control measures coupled with attentive monitoring activities.
Collapse
Affiliation(s)
- Chafik Redha Messaï
- Laboratory of Research Health and Animal Production, High National Veterinary School, Issad Abbes Street, Oued Smar, Algiers 16000, Algeria
- Faculty of Natural and Life Sciences, Earth and Universe Science, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser, Bordj Bou Arreridj 34000, Algeria
| | - Nadia Safia Chenouf
- Faculty of Natural and Life Sciences, Earth and Universe Science, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser, Bordj Bou Arreridj 34000, Algeria
- Laboratory for Exploration and Valorization of Steppe Ecosystems (EVES), Department of Biology, Faculty of Natural Sciences and Life, University of Djelfa, Moudjbara Road BP 3117, Djelfa 17000, Algeria
| | - Oussama Khalouta
- Laboratory of Life Sciences and Techniques, Institute of Agricultural and Veterinary Sciences, University Mohamed Cherif Messaadia, Souk Ahras 41000, Algeria
| | - Abdelhafid Chorfa
- Veterinary Office, Specialized in Avian Diseases and Analyses, El Eulma, Setif 19000, Algeria
| | - Omar Salhi
- Biotechnology Laboratory of Animal Reproduction, Institute of Veterinary Sciences, Blida 09000, Algeria
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
| | - Francesca Poletto
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
| | - Chahrazed Aberkane
- DEDSPAZA Laboratory, Department of Agricultural Sciences, Mohamed-Khider University, Biskra 07000, Algeria
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
| |
Collapse
|
2
|
Reddy VRAP, Bianco C, Poulos C, Egana-Labrin SC, Brodrick AJ, Nazki S, Schock A, Broadbent AJ. Molecular characterization of reassortant infectious bursal disease virus (IBDV) strains of genogroup A3B1 detected in some areas of Britain between 2020 and 2021. Virology 2024; 600:110269. [PMID: 39437533 DOI: 10.1016/j.virol.2024.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Infectious bursal disease virus (IBDV) causes a major immunosuppressive disease of chickens. As part of ongoing epidemiological surveillance for IBDV, the hypervariable region (HVR) of the VP2 capsid gene encoded by segment A, and a region of the VP1 polymerase gene, encoded by segment B, were sequenced from 20 IBDV-positive bursal samples obtained in 2020 and 2021, from 16 commercial British broiler farms. Birds had received a live IBDV vaccine at 17-22 days of age, and samples were obtained at 25-55 days of age. Of the 16 farms, none contained very virulent (vv) strains, one contained a classical virulent strain, two contained vaccine strains, and five contained sequences of reassortant strains with a vv segment A and a non-vv segment B belonging to genogroup A3B1. In eight of the farms, we identified the sequences of both genogroup A3B1 reassortant strains and vaccine strains in the same samples. Therefore, the majority of the farms (13/16 (81%)) contained genogroup A3B1 reassortant viruses. Of the flocks containing reassortant strains, 5/13 (38%) had HVR mutations Q219L, G254D, D279N, and N280T, consistent with a recently described Western European clade, but the rest had other mutations or no mutations, demonstrating that multiple clades were present in the samples. Taken together, vv strains were not detected, but reassortant strains predominated in the farms, which belonged to different clades, and were frequently found together with vaccine strains.
Collapse
Affiliation(s)
- Vishwanatha R A P Reddy
- School of Life Sciences, Keele University, Keele, ST5 5BG, UK; The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK.
| | - Carlo Bianco
- Animal and Plant Health Agency (APHA) Lasswade, Penicuik, Midlothian, EH26 0PZ, UK; School of Veterinary Medicine and Science, University of Nottingham Campus, Sutton Bonington, LE12 5RA, UK
| | - Christopher Poulos
- Animal and Plant Health Agency (APHA) Lasswade, Penicuik, Midlothian, EH26 0PZ, UK
| | - Sofia C Egana-Labrin
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Andrew J Brodrick
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Salik Nazki
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
| | - Alex Schock
- Animal and Plant Health Agency (APHA) Lasswade, Penicuik, Midlothian, EH26 0PZ, UK
| | - Andrew J Broadbent
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK; Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Longa-Bobadilla V, Ormeño-Vásquez P, Criollo-Orozco M, Tataje-Lavanda L, Huamán-Gutierrez K, Montalván Á, Zimic M, Fernández-Sanchez M, Fernández-Díaz M. Standardization and validation of a novel reverse transcriptase polymerase chain reaction method for detecting virulent strains of the infectious bursal disease virus. Vet World 2024; 17:2998-3004. [PMID: 39897347 PMCID: PMC11784051 DOI: 10.14202/vetworld.2024.2998-3004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/27/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim Gumboro disease is an economically crucial veterinary condition in chickens. It is caused by the infectious bursal disease virus (IBDV). This virus consists of two serotype groups, of which serotype I strain is pathogenic to chickens. For many years, the development of molecular techniques for either diagnostic purposes or surveillance of the appearance of new pathogenic strains has mainly focused on targeting the VP2 genomic region. However, due to the constant necessity for the discrimination between already prevalent vaccine strains and new pathogenic strains of this virus, it becomes imperative to have an immediate molecular method targeting a consensus sequence to achieve this task using field samples to reduce costs. Consequently, we focused on developing a novel reverse transcriptase polymerase chain reaction (RT-PCR) procedure solely for this purpose. Materials and Methods Eight VP5 sequences were aligned, and the sequence with the majority of nucleotide coincidences was used to design a set of consensus primers. Then, a pathogenic strain of IBDV was propagated in embryonated chicken eggs, and the viral RNA was extracted. Finally, the conditions for this novel RT-PCR were evaluated using a commercial kit and the newly designed primers. Results After determining the optimal RT-PCR conditions, the newly designed primers successfully amplified a 402-bp consensus sequence of the VP5 gene. In addition, these primers specifically amplified the VP5 sequence of the IBDV-positive samples, not the other samples previously confirmed to be positive for other common poultry pathogens. Conclusion Our novel RT-PCR procedure has been demonstrated to be helpful in selectively amplifying the consensus sequence of the VP5 gene, indicating that this novel RT-PCR procedure constitutes an important and useful tool to execute initial discrimination of field-retrieved samples containing and not containing virulent strains of this virus before deciding to execute a blindly and more costly sequencing procedure of all the samples together.
Collapse
Affiliation(s)
- Vladimir Longa-Bobadilla
- Research and Development Laboratories, FARVET S.A.C., Chincha Alta, Ica, Peru
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA
| | | | | | - Luis Tataje-Lavanda
- Research and Development Laboratories, FARVET S.A.C., Chincha Alta, Ica, Peru
- School of Medicine, San Juan Bautista Private University, Lima, Peru
| | | | - Ángela Montalván
- Research and Development Laboratories, FARVET S.A.C., Chincha Alta, Ica, Peru
| | - Mirko Zimic
- Research and Development Laboratories, FARVET S.A.C., Chincha Alta, Ica, Peru
- Laboratories of Bioinformatics, Molecular Biology and Technology Developments, Laboratories of Research and Development, Faculty of Sciences and Philosophy, Cayetano Heredia Peruvian University, Lima, Peru
| | | | | |
Collapse
|
4
|
Comes JDG, Doets K, Zegers T, Kessler M, Slits I, Ballesteros NA, van de Weem NMP, Pouwels H, van Oers MM, van Hulten MCW, Langereis M, Pijlman GP. Evaluation of bird-adapted self-amplifying mRNA vaccine formulations in chickens. Vaccine 2024; 42:2895-2908. [PMID: 38521674 DOI: 10.1016/j.vaccine.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Each year, millions of poultry succumb to highly pathogenic avian influenza A virus (AIV) and infectious bursal disease virus (IBDV) infections. Conventional vaccines based on inactivated or live-attenuated viruses are useful tools for disease prevention and control, yet, they often fall short in terms of safety, efficacy, and development times. Therefore, versatile vaccine platforms are crucial to protect poultry from emerging viral pathogens. Self-amplifying (replicon) RNA vaccines offer a well-defined and scalable option for the protection of both animals and humans. The best-studied replicon platform, based on the Venezuelan equine encephalitis virus (VEEV; family Togaviridae) TC-83 vaccine strain, however, displays limited efficacy in poultry, warranting the exploration of alternative, avian-adapted, replicon platforms. In this study, we engineered two Tembusu virus (TMUV; family Flaviviridae) replicons encoding varying capsid gene lengths and compared these to the benchmark VEEV replicon in vitro. The TMUV replicon system exhibited a robust and prolonged transgene expression compared to the VEEV replicon system in both avian and mammalian cells. Moreover, the TMUV replicon induced a lesser cytopathic effect compared to the VEEV replicon RNA in vitro. DNA-launched versions of the TMUV and VEEV replicons (DREP) were also developed. The replicons successfully expressed the AIV haemagglutinin (HA) glycoproteins and the IBDV capsid protein (pVP2). To assess the immune responses elicited by the TMUV replicon system in chickens, a prime-boost vaccination trial was conducted using lipid nanoparticle (LNP)-formulated replicon RNA and DREP encoding the viral (glyco)proteins of AIV or IBDV. Both TMUV and VEEV replicon RNAs were unable to induce a humoral response against AIV. However, TMUV replicon RNA induced IBDV-specific seroconversion in vaccinated chickens, in contrast to VEEV replicon RNA, which showed no significant humoral response. In both AIV and IBDV immunization studies, VEEV DREP generated the highest (neutralizing) antibody responses, which underscores the potential for self-amplifying mRNA vaccine technology to combat emerging poultry diseases.
Collapse
Affiliation(s)
- Jerome D G Comes
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands
| | - Kristel Doets
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands; MSD Animal Health, Wim de Körverstraat 35, Boxmeer 5831AN, the Netherlands
| | - Thijmen Zegers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands
| | - Merel Kessler
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands
| | - Irene Slits
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands
| | | | | | - Henk Pouwels
- MSD Animal Health, Wim de Körverstraat 35, Boxmeer 5831AN, the Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands
| | | | - Martijn Langereis
- MSD Animal Health, Wim de Körverstraat 35, Boxmeer 5831AN, the Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands.
| |
Collapse
|
5
|
Frontini-López YR, Rivera L, Pocognoni CA, Roldán JS, Colombo MI, Uhart M, Delgui LR. Infectious Bursal Disease Virus Assembly Causes Endoplasmic Reticulum Stress and Lipid Droplet Accumulation. Viruses 2023; 15:1295. [PMID: 37376595 DOI: 10.3390/v15061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Gumboro illness is caused by the highly contagious immunosuppressive infectious bursal disease virus (IBDV), which affects the poultry industry globally. We have previously shown that IBDV hijacks the endocytic pathway to construct viral replication complexes on endosomes linked to the Golgi complex (GC). Then, analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b, the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), and its substrate, the small GTPase ADP-ribosylation factor 1 (ARF1), for IBDV replication. In the current work, we focused on elucidating the IBDV assembly sites. We show that viral assembly occurs within single-membrane compartments closely associated with endoplasmic reticulum (ER) membranes, though we failed to elucidate the exact nature of the virus-wrapping membranes. Additionally, we show that IBDV infection promotes the stress of the ER, characterized by an accumulation of the chaperone binding protein (BiP) and lipid droplets (LDs) in the host cells. Overall, our results represent further original data showing the interplay between IBDV and the secretory pathway, making a substantial contribution to the field of birnaviruses-host cell interactions.
Collapse
Affiliation(s)
- Yesica R Frontini-López
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Lautaro Rivera
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Cristian A Pocognoni
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Julieta S Roldán
- Instituto de Virología e Innovaciones Tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham 1686, Argentina
| | - María I Colombo
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Marina Uhart
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| |
Collapse
|
6
|
Brodrick AJ, Broadbent AJ. The Formation and Function of Birnaviridae Virus Factories. Int J Mol Sci 2023; 24:ijms24108471. [PMID: 37239817 DOI: 10.3390/ijms24108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid-liquid phase separation (LLPS). Although the VFs are not bound by membranes, it is currently thought that viral protein 3 (VP3) initially nucleates the formation of the VF on the cytoplasmic leaflet of early endosomal membranes, and likely drives LLPS. In addition to VP3, IBDV VFs contain VP1 (the viral polymerase) and the dsRNA genome, and they are the sites of de novo viral RNA synthesis. Cellular proteins are also recruited to the VFs, which are likely to provide an optimal environment for viral replication; the VFs grow due to the synthesis of the viral components, the recruitment of other proteins, and the coalescence of multiple VFs in the cytoplasm. Here, we review what is currently known about the formation, properties, composition, and processes of these structures. Many open questions remain regarding the biophysical nature of the VFs, as well as the roles they play in replication, translation, virion assembly, viral genome partitioning, and in modulating cellular processes.
Collapse
Affiliation(s)
- Andrew J Brodrick
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| | - Andrew J Broadbent
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| |
Collapse
|
7
|
Reddy VRAP, Nazki S, Asfor A, Broadbent AJ. An Infectious Bursal Disease Virus (IBDV) Reverse Genetics Rescue System and Neutralization Assay in Chicken B Cells. Curr Protoc 2023; 3:e639. [PMID: 36622206 PMCID: PMC10108048 DOI: 10.1002/cpz1.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Infectious bursal disease virus (IBDV) is a major threat to the productivity of the poultry industry due to morbidity, mortality, and immunosuppression that exacerbates secondary infections and reduces the efficacy of vaccination programs. Field strains of IBDV have a preferred tropism for chicken B cells, the majority of which reside in the bursa of Fabricius (BF). IBDV adaptation to adherent cell culture is associated with mutations altering amino acids in the hypervariable region (HVR) of the capsid protein, which affects immunogenicity and virulence. Until recently, this has limited both the application of reverse genetics systems for engineering molecular clones, and the use of in vitro neutralization assays, to cell-culture-adapted strains of IBDV. Here, we describe the rescue of molecular clones of IBDV containing the HVR from diverse field strains, along with a neutralization assay to quantify antibody responses against the rescued viruses, both using chicken B cells. These methods are readily adaptable to any laboratory with molecular biology expertise and negate the need to obtain wild-type strains. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: A chicken B-cell rescue system for IBDV Basic Protocol 2: A chicken B-cell neutralization assay for IBDV.
Collapse
Affiliation(s)
| | | | - Amin Asfor
- The Pirbright InstituteWokingUK
- Department of Comparative Biomedical Sciences, Section Infection and Immunity, School of Veterinary Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuilfordUK
| | - Andrew J. Broadbent
- The Pirbright InstituteWokingUK
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMaryland
| |
Collapse
|
8
|
Evaluating the Breadth of Neutralizing Antibody Responses Elicited by Infectious Bursal Disease Virus Genogroup A1 Strains Using a Novel Chicken B-Cell Rescue System and Neutralization Assay. J Virol 2022; 96:e0125522. [PMID: 36069547 PMCID: PMC9517715 DOI: 10.1128/jvi.01255-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Eight infectious bursal disease virus (IBDV) genogroups have been identified based on the sequence of the capsid hypervariable region (HVR) (A1 to A8). Given reported vaccine failures, there is a need to evaluate the ability of vaccines to neutralize the different genogroups. To address this, we used a reverse genetics system and the chicken B-cell line DT40 to rescue a panel of chimeric IBDVs and perform neutralization assays. Chimeric viruses had the backbone of a lab-adapted strain (PBG98) and the HVRs from diverse field strains as follows: classical F52-70 (A1), U.S. variant Del-E (A2), Chinese variant SHG19 (A2), very virulent UK661 (A3), M04/09 distinct (A4), Italian ITA-04 (A6), and Australian variant Vic-01/94 (A8). Rescued viruses showed no substitutions at amino acid positions 253, 284, or 330, previously found to be associated with cell-culture adaptation. Sera from chickens inoculated with wild-type (wt) (F52-70) or vaccine (228E) A1 strains had the highest mean virus neutralization (VN) titers against the A1 virus (log2 15.4 and 12.7) and the lowest against A2 viruses (log2 7.4 to 7.9; P = 0.0001 to 0.0274), consistent with A1 viruses being most antigenically distant from A2 strains, which correlated with the extent of differences in the predicted HVR structure. VN titers against the other genogroups ranged from log2 9.3 to 13.3, and A1 strains were likely more closely antigenically related to genogroups A3 and A4 than A6 and A8. Our data are consistent with field observations and validate the new method, which can be used to screen future vaccine candidates for breadth of neutralizing antibodies and evaluate the antigenic relatedness of different genogroups. IMPORTANCE There is a need to evaluate the ability of vaccines to neutralize diverse IBDV genogroups and to better understand the relationship between HVR sequence, structure, and antigenicity. Here, we used a chicken B-cell line to rescue a panel of chimeric IBDVs with the HVR from seven diverse IBDV field strains and to conduct neutralization assays and protein modeling. We evaluated the ability of sera from vaccinated or infected birds to neutralize the different genogroups. Our novel chicken B-cell rescue system and neutralization assay can be used to screen IBDV vaccine candidates, platforms, and regimens for the breadth of neutralizing antibody responses elicited, evaluate the antigenic relatedness of diverse IBDV strains, and when coupled with structural modeling, elucidate immunodominant and conserved epitopes to strategically design novel IBDV vaccines in the future.
Collapse
|
9
|
Glycoprotein Production by Bursal Secretory Dendritic Cells in Normal, Vaccinated, and Infectious Bursal Disease Virus (IBDV)-Infected Chickens. Viruses 2022; 14:v14081689. [PMID: 36016310 PMCID: PMC9412378 DOI: 10.3390/v14081689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study is to follow the gp production in IBDV-vaccinated and challenged birds. The progress of IBDV infection was monitored using anti-VP2 immunocytochemistry, light and transmission electron microscopy. In the medulla of the bursal follicle, the Movat pentachrome staining discovered an extracellular glycoprotein (gp) produced by bursal secretory dendritic cells (BSDCs). The secretory granules of BSDCs either discharge resulting in extracellular gp or fuse together forming intracellular corpuscles. The double fate of granules suggests a dual function of BSDCs: (a.) For the discharged granules, gp contributes to the medullary microenvironment (ME). (b.) The intracellular corpuscles may be the sign of BSDC transformation to a macrophage-like cell (Mal). Infectious bursal disease virus (IBDV) infection accelerates the BSDC transformation to Mal. The decreased number of BSDCs is feedback for the precursor cells of BSDCs lodging in the cortico-medullary epithelial arches (CMEA), where they proliferate. Opening the CMEA, the precursor cells enter the medulla, and differentiate to immature BSDCs. The virus uptake in the corpuscles prevents the granular discharge resulting in the absence of gp and alteration in ME. In vaccine-take birds, the mitotic rate of BSDC precursor cells cannot restore the precursor pool; therefore, in the case of IBDV challenge, the number of newly formed BSDCs is too low for outbreak of clinical disease. The BSDCs, as a primary target of IBDV, may contribute to the long-lasting immunosuppressive status of IBDV-infected chickens.
Collapse
|
10
|
Nooruzzaman M, Hossain I, Rahman MM, Uddin AJ, Mustari A, Parvin R, Chowdhury EH, Islam MR. Comparative pathogenicity of infectious bursal disease viruses of three different genotypes. Microb Pathog 2022; 169:105641. [PMID: 35714848 DOI: 10.1016/j.micpath.2022.105641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
Infectious bursal disease (IBD) is a highly immunosuppressive and often fatal viral disease of young chickens. The causal agent IBD virus (IBDV) is an avian Birnavirus having two genome segments that have evolved independently and contributed to the emergence of many genotypes with different pathogenic profile. The present study aimed at genetic and pathogenic characterization of IBDVs from Bangladesh. We performed phylogenetic analysis of 15 IBDV isolates recovered from field outbreaks in chickens during 2020-2021 and compared the pathogenicity of three selected isolates belonging to different genotypes on experimental infection in chickens. Out of 15 isolates, one was the typical vvIBDV of genotype A3B2, 13 were reassortant vvIBDV of genotype A3B3 having very virulent-like segment A and early Australian-like segment B, and the remaining one isolate was a classical virulent IBDV of A1aB1 genotype. A few amino acid substitutions were observed between the genotypes in four putative antigenic sites on VP2. In a comparative pathogenicity study, the typical vvIBDV isolate BD-25(A3B2) appeared to be the most virulent with 100% morbidity and 90% mortality, followed by the segment-reassortant vvIBDV isolate BD-28(A3B3) with 50% morbidity and 30% mortality. However, the gross and histopathological lesions in the bursa of Fabricius were similar. The classical virulent isolate BD-26(A1aB1) did not cause any clinical disease. In conclusion, three genotypes of IBDV are co-circulating in poultry of Bangladesh and the typical vvIBDV of A3B2 genotype was more virulent than the reassortant vvIBDV of A3B3 genotype. Further studies are required to assess the country-wide distribution of IBDV of different genotypes and the efficacy of the currently available vaccines in protecting chickens against different genotypes of IBDV in Bangladesh.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Mijanur Rahman
- Department of Livestock Services, Ministry of Fisheries and Livestock, Krishi Khamar Sarak, Dhaka, Bangladesh
| | - Abm Jalal Uddin
- Department of Livestock Services, Ministry of Fisheries and Livestock, Krishi Khamar Sarak, Dhaka, Bangladesh
| | - Afrina Mustari
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
11
|
Trapp J, Rautenschlein S. Infectious bursal disease virus' interferences with host immune cells: What do we know? Avian Pathol 2022; 51:303-316. [PMID: 35616498 DOI: 10.1080/03079457.2022.2080641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractInfectious bursal disease virus (IBDV) induces one of the most important immunosuppressive diseases in chickens leading to high economic losses due increased mortality and condemnation rates, secondary infections and the need for antibiotic treatment. Over 400 publications have been listed in PubMed.gov in the last five years pointing out the research interest in this disease and the development of improved preventive measures. While B cells are the main target cells of the virus, also other immune and non-immune cell populations are affected leading a multifaceted impact on the normally well orchestrated immune system in IBDV-infected birds. Recent studies clearly revealed the contribution of innate immune cells as well as T cells to a cytokine storm and subsequent death of affected birds in the acute phase of the disease. Transcriptomics identified differential regulation of immune related genes between different chicken genotypes as well as virus strains, which may be associated with a variable disease outcome. The recent availability of primary B cell culture systems allowed a closer look into virus-host interactions during IBDV-infection. The new emerging field of research with transgenic chickens will open up new opportunities to understand the impact of IBDV on the host also under in vivo conditions, which will help to understand the complex virus-host interactions further.
Collapse
Affiliation(s)
- Johanna Trapp
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
12
|
Wang H, Li W, Zheng SJ. Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses. Front Immunol 2022; 13:901913. [PMID: 35634318 PMCID: PMC9133627 DOI: 10.3389/fimmu.2022.901913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
Innate immunity is not only the first line of host defense against pathogenic infection, but also the cornerstone of adaptive immune response. Upon pathogenic infection, pattern recognition receptors (PRRs) of host engage pathogen-associated molecular patterns (PAMPs) of pathogens, which initiates IFN production by activating interferon regulatory transcription factors (IRFs), nuclear factor-kappa B (NF-κB), and/or activating protein-1 (AP-1) signal transduction pathways in host cells. In order to replicate and survive, pathogens have evolved multiple strategies to evade host innate immune responses, including IFN-I signal transduction, autophagy, apoptosis, necrosis, inflammasome and/or metabolic pathways. Some avian viruses may not be highly pathogenic but they have evolved varied strategies to evade or suppress host immune response for survival, causing huge impacts on the poultry industry worldwide. In this review, we focus on the advances on innate immune evasion by several important avian immunosuppressive viruses (infectious bursal disease virus (IBDV), Marek’s disease virus (MDV), avian leukosis virus (ALV), etc.), especially their evasion of PRRs-mediated signal transduction pathways (IFN-I signal transduction pathway) and IFNAR-JAK-STAT signal pathways. A comprehensive understanding of the mechanism by which avian viruses evade or suppress host immune responses will be of help to the development of novel vaccines and therapeutic reagents for the prevention and control of infectious diseases in chickens.
Collapse
Affiliation(s)
- Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Shijun J. Zheng,
| |
Collapse
|
13
|
Birnaviridae Virus Factories Show Features of Liquid-Liquid Phase Separation and Are Distinct from Paracrystalline Arrays of Virions Observed by Electron Microscopy. J Virol 2022; 96:e0202421. [PMID: 35138130 PMCID: PMC8941928 DOI: 10.1128/jvi.02024-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To gain more information about the nature of Birnaviridae virus factories (VFs), we used a recombinant infectious bursal disease virus (IBDV) expressing split-GFP11 tagged to the polymerase (VP1) that we have previously shown is a marker for VFs in infected cells expressing GFP1-10. We found that VFs colocalized with 5-ethynyl uridine in the presence of actinomycin, demonstrating they contained newly synthesized viral RNA, and VFs were visible in infected cells that were fixed and permeabilized with digitonin, demonstrating that they were not membrane bound. Fluorescence recovery after photobleaching (FRAP) a region of interest within the VFs occurred rapidly, recovering from approximately 25% to 87% the original intensity over 146 s, and VFs were dissolved by 1,6-hexanediol treatment, demonstrating they showed properties consistent with liquid-liquid phase separation. There was a lower colocalization of the VF GFP signal with the capsid protein VP2 (Manders' coefficient [MC] 0.6), compared to VP3 (MC, 0.9), which prompted us to investigate the VF ultrastructure by transmission electron microscopy (TEM). In infected cells, paracrystalline arrays (PAs) of virions were observed in the cytoplasm, as well as discrete electron dense regions. Using correlative light and electron microscopy (CLEM), we observed that the electron dense regions correlated with the GFP signal of the VFs, which were distinct from the PAs. In summary, Birnaviridae VFs contain newly synthesized viral RNA, are not bound by a membrane, show properties consistent with liquid-liquid phase separation, and are distinct from the PAs observed by TEM. IMPORTANCE Members of the Birnaviridae infect birds, fish and insects, and are responsible for diseases of significant economic importance to the poultry industry and aquaculture. Despite their importance, how they replicate in cells remains poorly understood. Here, we show that the Birnaviridae virus factories are not membrane bound, demonstrate properties consistent with liquid-liquid phase separation, and are distinct from the paracrystalline arrays of virions observed by transmission electron microscopy, enhancing our fundamental knowledge of virus replication that could be used to develop strategies to control disease, or optimize their therapeutic application.
Collapse
|
14
|
Abstract
Birnaviruses are members of the Birnaviridae family, responsible for major economic losses to poultry and aquaculture. The family is composed of non-enveloped viruses with a segmented double-stranded RNA (dsRNA) genome. Infectious bursal disease virus (IBDV), the prototypic family member, is the etiological agent of Gumboro disease, a highly contagious immunosuppressive disease in the poultry industry worldwide. We previously demonstrated that IBDV hijacks the endocytic pathway for establishing the viral replication complexes on endosomes associated with the Golgi complex (GC). In this work, we report that IBDV reorganizes the GC to localize the endosome-associated replication complexes without affecting its secretory functionality. Analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b for viral replication. Rab1b comprises a key regulator of GC transport and we demonstrate that transfecting the negative mutant Rab1b N121I or knocking down Rab1b expression by RNA interference significantly reduces the yield of infectious viral progeny. Furthermore, we showed that the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), which activates the small GTPase ADP-ribosylation factor 1 (ARF1), is required for IBDV replication since inhibiting its activity by treatment with brefeldin A (BFA) or Golgicide A (GCA) significantly reduces the yield of infectious viral progeny. Finally, we show that ARF1 dominant negative-mutant T31N over-expression hampered the IBDV infection. Taken together, these results demonstrate that IBDV requires the function of the Rab1b-GBF1-ARF1 axis to promote its replication, making a substantial contribution to the field of birnaviruses-host cell interactions. IMPORTANCE Birnaviruses are unconventional members of the dsRNA viruses, being the lack of a transcriptionally active core the main differential feature. This structural trait, among others that resemble the plus single-stranded (+ssRNA) viruses features, suggests that birnaviruses might follow a different replication program from that conducted by prototypical dsRNA members and have argued the hypothesis that birnaviruses could be evolutionary links between +ssRNA and dsRNA viruses. Here, we present original data showing the IBDV-induced GC reorganization and the crosstalk between IBDV and the Rab1b-GBF1-ARF1 mediated intracellular trafficking pathway. The replication of several +ssRNA viruses depends on the cellular protein GBF1, but its role in the replication process is not clear. Thus, our findings make a substantial contribution to the field of birnaviruses-host cells and provide further evidence supporting the proposed evolutionary connection role of birnaviruses, an aspect which we consider especially relevant for researchers working in the virology field.
Collapse
|
15
|
The Novel Genetic Background of Infectious Bursal Disease Virus Strains Emerging from the Action of Positive Selection. Viruses 2021; 13:v13030396. [PMID: 33801413 PMCID: PMC7998436 DOI: 10.3390/v13030396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
The circulation in Europe of novel reassortant strains of infectious bursal disease virus (IBDV), containing a unique genetic background composition, represents a serious problem for animal health. Since the emergence of this novel IBDV mosaic was first described in Poland, this scenario has become particularly attractive to uncover the evolutionary forces driving the genetic diversity of IBDV populations. This study additionally addressed the phenotypic characterization of these emergent strains, as well as the main features affecting the viral fitness during the competition process of IBDV lineages in the field. Our results showed how different evolutionary mechanisms modulate the genetic diversity of co-existent IBDV lineages, leading to the error catastrophe effect, Muller ratchet effect, or prevalence, depending on their genetic compositions. We also determined that the action of the positive selection pressure, depending on the genomic segment on which it is acting, can drive two main phenotypes for IBDV: immune-escaping strains from the selection on segment A or strains with functional advantages from the selection on segment B. This last group seems to possess an increased fitness landscape in the viral quasispecies composition, presenting better adaptability to dissimilar environmental conditions and likely becoming the dominant population. The reassortant strains also exhibited a lower mortality rate compared with the well-known vvIBDV strains, which can facilitate their spreading.
Collapse
|
16
|
Phosphatidylinositol 3-Phosphate Mediates the Establishment of Infectious Bursal Disease Virus Replication Complexes in Association with Early Endosomes. J Virol 2021; 95:JVI.02313-20. [PMID: 33361427 DOI: 10.1128/jvi.02313-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is the archetypal member of the family Birnaviridae and the etiological agent of Gumboro disease, a highly contagious immunosuppressive infection of concern to the global poultry sector for its adverse health effects in chicks. Unlike most double-stranded RNA (dsRNA) viruses, which enclose their genomes within specialized cores throughout their viral replication cycle, birnaviruses organize their bisegmented dsRNA genome in ribonucleoprotein (RNP) structures. Recently, we demonstrated that IBDV exploits endosomal membranes for replication. The establishment of IBDV replication machinery on the cytosolic leaflet of endosomal compartments is mediated by the viral protein VP3 and its intrinsic ability to target endosomes. In this study, we identified the early endosomal phosphatidylinositol 3-phosphate [PtdIns(3)P] as a key host factor of VP3 association with endosomal membranes and consequent establishment of IBDV replication complexes in early endosomes. Indeed, our data reveal a crucial role for PtdIns(3)P in IBDV replication. Overall, our findings provide new insights into the replicative strategy of birnaviruses and strongly suggest that it resembles those of positive-strand RNA (+ssRNA) viruses, which replicate in association with host membranes. Furthermore, our findings support the role of birnaviruses as evolutionary intermediaries between +ssRNA and dsRNA viruses and, importantly, demonstrate a novel role for PtdIns(3)P in the replication of a dsRNA virus.IMPORTANCE Infectious bursal disease virus (IBDV) infects chicks and is the causative agent of Gumboro disease. During IBDV outbreaks in recent decades, the emergence of very virulent variants and the lack of effective prevention/treatment strategies to fight this disease have had devastating consequences for the poultry industry. IBDV belongs to the peculiar family Birnaviridae Unlike most dsRNA viruses, birnaviruses organize their genomes in ribonucleoprotein complexes and replicate in a core-independent manner. We recently demonstrated that IBDV exploits host cell endosomes as platforms for viral replication, a process that depends on the VP3 viral protein. In this study, we delved deeper into the molecular characterization of IBDV-endosome association and investigated the role of host cell phosphatidylinositide lipids in VP3 protein localization and IBDV infection. Together, our findings demonstrate that PtdIns(3)P serves as a scaffold for the association of VP3 to endosomes and reveal its essential role for IBDV replication.
Collapse
|
17
|
Ma ST, Wang YS, Wang XL, Xia XX, Bi ZW, Wang JY, Zhu YM, Ouyang W, Qian J. Mass spectrometry-based proteomic analysis of potential infectious bursal disease virus VP3-interacting proteins in chicken embryo fibroblasts cells. Virus Genes 2021; 57:194-204. [PMID: 33559837 DOI: 10.1007/s11262-021-01828-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
The structural protein VP3 of infectious bursal disease virus (IBDV) plays a critical role in viral assembly, replication, immune escape, and anti-apoptosis. Interaction between VP3 and host protein factors can affect stages in the viral replication cycle. In this study, 137 host proteins interacting with VP3 protein were screened through liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics approach. The functions and relevance of the proteins were obtained through bioinformatics analysis. Most VP3-interacting proteins were linked to binding, catalytic activity, and structural molecular activity, and performed functions in cell parts and cells. Biological functions of VP3-interacting proteins were mainly relevant to "Cytoskeleton", "Translation", and "Signal transduction mechanisms", involving ribosomes, "Tight junction", regulation of actin cytoskeleton, and other pathways. Six potential VP3-interacting proteins in host cells were knocked down, and vimentin, myosin-9, and annexin A2 were found to be related to IBDV replication. This study would help explore regulatory pathways and cellular mechanisms in IBDV-infected cells, and also provided clues for the in-depth study of VP3 biological functions and IBDV replication or pathogenesis.
Collapse
Affiliation(s)
- Sun-Ting Ma
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Yong-Shan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Xiao-Li Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Xing-Xia Xia
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Zhen-Wei Bi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Jing-Yu Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Yu-Mei Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Wei Ouyang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China.
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China.
| |
Collapse
|
18
|
Felföldi B, Bódi I, Minkó K, Benyeda Z, Nagy N, Magyar A, Oláh I. Infection of bursal disease virus abrogates the extracellular glycoprotein in the follicular medulla. Poult Sci 2021; 100:101000. [PMID: 33690054 PMCID: PMC7938241 DOI: 10.1016/j.psj.2021.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/25/2020] [Accepted: 01/02/2021] [Indexed: 11/11/2022] Open
Abstract
In the medulla of bursal follicle, only the secretory dendritic cell (BSDC) is furnished with secretory machinery. The granular discharge of BSDC appears in membrane-bound and solubilized forms. Movat pentachrome staining proves that the solubilized form is a glycoprotein, which fills up the extracellular space of follicular medulla. The glycoprotein contributes to bursal microenvironment and may be attached to the surface of medullary lymphocytes. The secretory granules of BSDC may be fused, resulting in large, irregular dense bodies, which are the first sign of BSDC transformation to macrophage-like cells (Mal). To determine the effect of infectious bursal disease virus (IBDV) infection on the extracellular glycoprotein and BSDC, SPF chickens were experimentally infected with IBDV. On the surface of BSDC, the secretory substance is in high concentration, which may contribute to primary binding of IBDV to BSDC. The early distribution of IBDV infected cells is in consent with that BSDC. The IBDV infected BSDC rapidly transforms to Mal in which the glycoprotein staining appears. In the dense bodies, the packed virus particles inhibit the virus particles preventing the granular discharge, which may represent the first, early phase of virus replication cycle. The absence of extracellular glycoprotein results in alteration in the medullary microenvironment and subsequently B cell apoptosis. On the surface of medullary B cells, the solubilized secretory substance can be in much lower concentration, which results in secondary binding of IBDV to B cells. In secondary, late phase of virus replication cycle, the virus particles are not packed in electron dense substance which results in cytolytic lymphocytes and presence of virus in extracellular space. The Mal emigrates into the cortex, where induces inflammation, recruiting heterophil granulocyte and monocyte.
Collapse
Affiliation(s)
- Balázs Felföldi
- Scientific Support and Investigation Unit, Ceva-Phylaxia Co. Ltd., Ceva Animal Health, 1107 Budapest, Hungary
| | - Ildikó Bódi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
| | - Krisztina Minkó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
| | | | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
| | - Attila Magyar
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
| | - Imre Oláh
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary.
| |
Collapse
|
19
|
Yang H, Ye C. Reverse genetics approaches for live-attenuated vaccine development of infectious bursal disease virus. Curr Opin Virol 2020; 44:139-144. [PMID: 32892072 DOI: 10.1016/j.coviro.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 02/02/2023]
Abstract
Infectious bursal disease (IBD), which is caused by infectious bursal disease virus (IBDV) infection, leads to severe immunosuppression in young chickens and results in significant economic losses in the poultry industry. To date, vaccination with live-attenuated vaccine (LAV) is a convenient method to provide effective protection against IBDV infection. Classical attenuated viruses are usually obtained by either passaging virus in cultured cells or natural isolation. However, these empiric attenuation methods, which are time-consuming and not guaranteed, are not reliable for emergent antigenic variant and very virulent IBDV strains. The reverse genetics (RG) system opens a new avenue for the development of IBDV LAV. In this review, we summarize the current knowledge on the biological characteristics of IBDV structure and genome organization, as well as the established RG systems. We also describe the details for the strategies used to develop IBDV LAV based on the RG systems.
Collapse
Affiliation(s)
- Hui Yang
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, 666 Wusu Street, Hangzhou, Zhejiang 311300, China
| | - Chengjin Ye
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, 666 Wusu Street, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
20
|
Ex vivo rescue of recombinant very virulent IBDV using a RNA polymerase II driven system and primary chicken bursal cells. Sci Rep 2020; 10:13298. [PMID: 32764663 PMCID: PMC7411059 DOI: 10.1038/s41598-020-70095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/17/2020] [Indexed: 02/04/2023] Open
Abstract
Infectious Bursal Disease Virus (IBDV), a member of the Birnaviridae family, causes an immunosuppressive disease in young chickens. Although several reverse genetics systems are available for IBDV, the isolation of most field-derived strains, such as very virulent IBDV (vvIBDV) and their subsequent rescue, has remained challenging due to the lack of replication of those viruses in vitro. Such rescue required either the inoculation of animals, embryonated eggs, or the introduction of mutations in the capsid protein (VP2) hypervariable region (HVR) to adapt the virus to cell culture, the latter option concomitantly altering its virulence in vivo. We describe an improved ex vivo IBDV rescue system based on the transfection of an avian cell line with RNA polymerase II-based expression vectors, combined with replication on primary chicken bursal cells, the main cell type targeted in vivo of IBDV. We validated this system by rescuing to high titers two recombinant IBDV strains: a cell-culture adapted attenuated strain and a vvIBDV. Sequencing of VP2 HVR confirmed the absence of unwanted mutations that may alter the biological properties of the recombinant viruses. Therefore, this approach is efficient, economical, time-saving, reduces animal suffering and can be used to rescue other non-cell culture adapted IBDV strains.
Collapse
|
21
|
Fernández de Castro I, Tenorio R, Ortega-González P, Knowlton JJ, Zamora PF, Lee CH, Fernández JJ, Dermody TS, Risco C. A modified lysosomal organelle mediates nonlytic egress of reovirus. J Cell Biol 2020; 219:e201910131. [PMID: 32356864 PMCID: PMC7337502 DOI: 10.1083/jcb.201910131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Mammalian orthoreoviruses (reoviruses) are nonenveloped viruses that replicate in cytoplasmic membranous organelles called viral inclusions (VIs) where progeny virions are assembled. To better understand cellular routes of nonlytic reovirus exit, we imaged sites of virus egress in infected, nonpolarized human brain microvascular endothelial cells (HBMECs) and observed one or two distinct egress zones per cell at the basal surface. Transmission electron microscopy and 3D electron tomography (ET) of the egress zones revealed clusters of virions within membrane-bound structures, which we term membranous carriers (MCs), approaching and fusing with the plasma membrane. These virion-containing MCs emerged from larger, LAMP-1-positive membranous organelles that are morphologically compatible with lysosomes. We call these structures sorting organelles (SOs). Reovirus infection induces an increase in the number and size of lysosomes and modifies the pH of these organelles from ∼4.5-5 to ∼6.1 after recruitment to VIs and before incorporation of virions. ET of VI-SO-MC interfaces demonstrated that these compartments are connected by membrane-fusion points, through which mature virions are transported. Collectively, our results show that reovirus uses a previously undescribed, membrane-engaged, nonlytic egress mechanism and highlights a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Isabel Fernández de Castro
- Cell Structure Laboratory, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Paula Ortega-González
- Cell Structure Laboratory, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Jonathan J. Knowlton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paula F. Zamora
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christopher H. Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - José J. Fernández
- Department of Macromolecular Structures, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
22
|
Jumaa RS, Allawi AB, Jabbar RN. Genetic Analysis of Field Isolates of Infectious Bursal Disease Virus in Iraqi Farms. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i1.931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Sixty samples of bursa of Fabricius were collected from broiler chickens suspected to be infected with infectious bursal disease virus (IBDV) in different areas of Iraq for molecular evaluation. The extracted nucleic acid was amplified using reverse transcriptase polymerase chain reaction (RT-PCR) targeting genes of segment A (Vp2, Vp3, Vp4 and Vp5 genes) and segment B (VP1 genes). The products of amplification were sent to Korea for sequencing using Sanger method. The sequencing analysis of the IBDV from the Iraqi isolates revealed that each gene had different transition and transversion (nonsense and missense of point mutation) compared to reference genes. The phylogenetic tree analysis showed that the VP2 of segment A of the Iraqi samples was similar to that of an Egyptian strain with 96%similarity, the polypeptide VP2-3-4 of segment A of the Iraqi samples was similar to those of a Chinese strain with 99% similarity and the VP5 of segment A was similar to that of Chinese strain with 99% similarity. However, the phylogenetic tree analysis showed that the VP1 of segment B had 95% similarity with that of a Chinese strain.
Collapse
|
23
|
Saari H, Turunen T, Lõhmus A, Turunen M, Jalasvuori M, Butcher SJ, Ylä-Herttuala S, Viitala T, Cerullo V, Siljander PRM, Yliperttula M. Extracellular vesicles provide a capsid-free vector for oncolytic adenoviral DNA delivery. J Extracell Vesicles 2020; 9:1747206. [PMID: 32363012 PMCID: PMC7178890 DOI: 10.1080/20013078.2020.1747206] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) have been showcased as auspicious candidates for delivering therapeutic cargo, including oncolytic viruses for cancer treatment. Delivery of oncolytic viruses in EVs could provide considerable advantages, hiding the viruses from the immune system and providing alternative entry pathways into cancer cells. Here we describe the formation and viral cargo of EVs secreted by cancer cells infected with an oncolytic adenovirus (IEVs, infected cell-derived EVs) as a function of time after infection. IEVs were secreted already before the lytic release of virions and their structure resembled normally secreted EVs, suggesting that they were not just apoptotic fragments of infected cells. IEVs were able to carry the viral genome and induce infection in other cancer cells. As such, the role of EVs in the life cycle of adenoviruses may be an important part of a successful infection and may also be harnessed for cancer- and gene therapy.
Collapse
Affiliation(s)
- Heikki Saari
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tiia Turunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andres Lõhmus
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikko Turunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Matti Jalasvuori
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyvaskyla, Finland
| | - Sarah J. Butcher
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tapani Viitala
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Pia R. M. Siljander
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- EV-group, EV-core Unit, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Chicken eEF1α is a Critical Factor for the Polymerase Complex Activity of Very Virulent Infectious Bursal Disease Virus. Viruses 2020; 12:v12020249. [PMID: 32102240 PMCID: PMC7077273 DOI: 10.3390/v12020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Infectious bursal disease (IBD) is an immunosuppressive, highly contagious, and lethal disease of young chickens caused by IBD virus (IBDV). It results in huge economic loss to the poultry industry worldwide. Infection caused by very virulent IBDV (vvIBDV) strains results in high mortality in young chicken flocks. However, the replication characteristics of vvIBDV are not well studied. Publications have shown that virus protein 3 (VP3) binds to VP1 and viral double-stranded RNA, and together they form a ribonucleoprotein complex that plays a key role in virus replication. In this study, vvIBDV VP3 was used to identify host proteins potentially involved in modulating vvIBDV replication. Chicken eukaryotic translation elongation factor 1α (cheEF1α) was chosen to further investigate effects on vvIBDV replication. By small interfering RNA-mediated cheEF1α knockdown, we demonstrated the possibility of significantly reducing viral polymerase activity, with a subsequent reduction in virus yields. Conversely, over-expression of cheEF1α significantly increased viral polymerase activity and virus replication. Further study confirmed that cheEF1α interacted only with vvIBDV VP3 but not with attenuated IBDV (aIBDV) VP3. Furthermore, the amino acids at the N- and C-termini were important in the interaction between vvIBDV VP3 and cheEF1α. Domain III was essential for interactions between cheEF1α and vvIBDV VP3. In summary, cheEF1α enhances vvIBDV replication by promoting the activity of virus polymerase. Our study indicates cheEF1α is a potential target for limiting vvIBDV infection.
Collapse
|
25
|
Identification and assessment of virulence of a natural reassortant of infectious bursal disease virus. Vet Res 2018; 49:89. [PMID: 30208951 PMCID: PMC6134583 DOI: 10.1186/s13567-018-0586-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is one of the most important immunosuppressive viral agents in poultry production. Prophylactic vaccinations of chicken flocks are the primary tool for disease control. Widely used immunoprophylaxis can, however, provide high pressure which contributes to the genetic diversification of circulating viruses, e.g. through reassortment of genome segments. We report the genetic and phenotypic characterization of a field reassortant IBDV (designated as Bpop/03) that acquired segment A from very virulent IBDV and segment B from classical attenuated D78-like IBDV. Despite the mosaic genetic make-up, the virus caused high mortality (80%) in experimentally infected SPF chickens and induced lesions typical of the acute form of IBD. The in vivo study results are in contrast with the foregoing experimental investigations in which the natural reassortants exhibited an intermediate pathotype, and underline the complex nature of IBDV virulence.
Collapse
|
26
|
van der Grein SG, Defourny KAY, Slot EFJ, Nolte-'t Hoen ENM. Intricate relationships between naked viruses and extracellular vesicles in the crosstalk between pathogen and host. Semin Immunopathol 2018; 40:491-504. [PMID: 29789863 PMCID: PMC6208671 DOI: 10.1007/s00281-018-0678-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
It is a long-standing paradigm in the field of virology that naked viruses cause lysis of infected cells to release progeny virus. However, recent data indicate that naked virus types of the Picornaviridae and Hepeviridae families can also leave cells via an alternative route involving enclosure in fully host-derived lipid bilayers. The resulting particles resemble extracellular vesicles (EV), which are 50 nm–1 μm vesicles released by all cells. These EV contain lipids, proteins, and RNA, and generally serve as vehicles for intercellular communication in various (patho)physiological processes. EV can act as carriers of naked viruses and as invisibility cloaks to evade immune attacks. However, the exact combination of virions and host-derived molecules determines how these virus-containing EV affect spread of infection and/or triggering of antiviral immune responses. An underexposed aspect in this research area is that infected cells likely release multiple types of virus-induced and constitutively released EV with unique molecular composition and function. In this review, we identify virus-, cell-, and environment-specific factors that shape the EV population released by naked virus-infected cells. In addition, current findings on the formation and molecular composition of EV induced by different virus types will be compared and placed in the context of the widely proven heterogeneity of EV populations and biases caused by different EV isolation methodologies. Close interactions between the fields of EV biology and virology will help to further delineate the intricate relationship between EV and naked viruses and its relevance for viral life cycles and outcomes of viral infections.
Collapse
Affiliation(s)
- Susanne G van der Grein
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kyra A Y Defourny
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Erik F J Slot
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
27
|
Infectious Bursal Disease Virus Hijacks Endosomal Membranes as the Scaffolding Structure for Viral Replication. J Virol 2018. [PMID: 29540593 DOI: 10.1128/jvi.01964-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Birnaviruses are unconventional members of the group of double-stranded RNA (dsRNA) viruses that are characterized by the lack of a transcriptionally active inner core. Instead, the birnaviral particles organize their genome in ribonucleoprotein complexes (RNPs) composed by dsRNA segments, the dsRNA-binding VP3 protein, and the virally encoded RNA-dependent RNA polymerase (RdRp). This and other structural features suggest that birnaviruses may follow a completely different replication program from that followed by members of the Reoviridae family, supporting the hypothesis that birnaviruses are the evolutionary link between single-stranded positive RNA (+ssRNA) and dsRNA viruses. Here we demonstrate that infectious bursal disease virus (IBDV), a prototypical member of the Birnaviridae family, hijacks endosomal membranes of infected cells through the interaction of a viral protein, VP3, with the phospholipids on the cytosolic leaflet of these compartments for replication. Employing a mutagenesis approach, we demonstrated that VP3 domain PATCH 2 (P2) mediates the association of VP3 with the endosomal membranes. To determine the role of VP3 P2 in the context of the virus replication cycle, we used avian cells stably overexpressing VP3 P2 for IBDV infection. Importantly, the intra- and extracellular virus yields, as well as the intracellular levels of VP2 viral capsid protein, were significantly diminished in cells stably overexpressing VP3 P2. Together, our results indicate that the association of VP3 with endosomes has a relevant role in the IBDV replication cycle. This report provides direct experimental evidence for membranous compartments such as endosomes being required by a dsRNA virus for its replication. The results also support the previously proposed role of birnaviruses as an evolutionary link between +ssRNA and dsRNA viruses.IMPORTANCE Infectious bursal disease (IBD; also called Gumboro disease) is an acute, highly contagious immunosuppressive disease that affects young chickens and spreads worldwide. The etiological agent of IBD is infectious bursal disease virus (IBDV). This virus destroys the central immune organ (bursa of Fabricius), resulting in immunosuppression and reduced responses of chickens to vaccines, which increase their susceptibility to other pathogens. IBDV is a member of Birnaviridae family, which comprises unconventional members of dsRNA viruses, whose replication strategy has been scarcely studied. In this report we show that IBDV hijacks the endosomes of the infected cells for establishing viral replication complexes via the association of the ribonucleoprotein complex component VP3 with the phospholipids in the cytosolic leaflet of endosomal membranes. We show that this interaction is mediated by the VP3 PATCH 2 domain and demonstrate its relevant role in the context of viral infection.
Collapse
|
28
|
Soubies SM, Courtillon C, Abed M, Amelot M, Keita A, Broadbent A, Härtle S, Kaspers B, Eterradossi N. Propagation and titration of infectious bursal disease virus, including non-cell-culture-adapted strains, using ex vivo-stimulated chicken bursal cells. Avian Pathol 2018; 47:179-188. [PMID: 29039212 DOI: 10.1080/03079457.2017.1393044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infectious bursal disease virus (IBDV) is a Birnaviridae family member of economic importance for poultry. This virus infects and destroys developing B lymphocytes in the cloacal bursa, resulting in a potentially fatal or immunosuppressive disease in chickens. Naturally occurring viruses and many vaccine strains are not able to grow in in vitro systems without prior adaptation, which often affects viral properties such as virulence. Primary bursal cells, which are the main target cells of lymphotropic IBDV in vivo, may represent an attractive system for the study of IBDV. Unfortunately, bursal cells isolated from bursal follicles undergo apoptosis within hours following their isolation. Here, we demonstrate that ex vivo stimulation of bursal cells with phorbol 12-myristate 13-acetate maintains their viability long enough to allow IBDV replication to high titres. A wide range of field-derived or vaccine serotype 1 IBDV strains could be titrated in these phorbol 12-myristate 13-acetate -stimulated bursal cells and furthermore were permissive for replication of non-cell-culture-adapted viruses. These cells also supported multistep replication experiments and flow cytometry analysis of infection. Ex vivo-stimulated bursal cells therefore offer a promising tool in the study of IBDV.
Collapse
Affiliation(s)
- Sébastien Mathieu Soubies
- a OIE Reference Laboratory for Gumboro Disease, Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES) , Ploufragan , France
| | - Céline Courtillon
- a OIE Reference Laboratory for Gumboro Disease, Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES) , Ploufragan , France
| | | | - Michel Amelot
- a OIE Reference Laboratory for Gumboro Disease, Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES) , Ploufragan , France
| | - Alassane Keita
- a OIE Reference Laboratory for Gumboro Disease, Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES) , Ploufragan , France
| | | | - Sonja Härtle
- d Veterinärwissenschaftliches Department , Institut für Tierphysiologie, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Bernd Kaspers
- d Veterinärwissenschaftliches Department , Institut für Tierphysiologie, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Nicolas Eterradossi
- a OIE Reference Laboratory for Gumboro Disease, Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES) , Ploufragan , France
| |
Collapse
|
29
|
Structural and functional modeling of viral protein 5 of Infectious Bursal Disease Virus. Virus Res 2018; 247:55-60. [PMID: 29427596 DOI: 10.1016/j.virusres.2018.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 11/22/2022]
Abstract
Infectious Bursal Disease (IBD) is an acute, highly contagious and immunosuppressive disease of young chicken. The causative virus (IBDV) is a bi-segmented, double-stranded RNA virus. The virus encodes five major proteins, viral protein (VP) 1-5. VPs 1-3 have been characterized crystallographically. Albeit a rise in the number of studies reporting successful heterologous expression of VP5 in recent times, challenging the notion that rapid death of host cells overexpressing VP5 disallows obtaining sufficiently pure preparations of the protein for crystallographic studies, the structure of VP5 remains unknown and its function controversial. Our study describes the first 3D model of IBD VP5 obtained through an elaborate computational workflow. Based on the results of the study, IBD VP5 can be predicted to be a structural analog of the leucine-rich repeat (LRR) family of proteins. Functional implications arising from structural similarity of VP5 with host Toll-like receptor (Tlr) 3 also satisfy the previously reported opposing roles of the protein in first abolishing and later inducing host-cell apoptosis.
Collapse
|
30
|
Abed M, Soubies S, Courtillon C, Briand FX, Allée C, Amelot M, De Boisseson C, Lucas P, Blanchard Y, Belahouel A, Kara R, Essalhi A, Temim S, Khelef D, Eterradossi N. Infectious bursal disease virus in Algeria: Detection of highly pathogenic reassortant viruses. INFECTION GENETICS AND EVOLUTION 2018; 60:48-57. [PMID: 29409800 DOI: 10.1016/j.meegid.2018.01.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 11/17/2022]
Abstract
Infectious bursal disease (IBD) is an immunosuppressive viral disease, present worldwide, which causes mortality and immunosuppression in young chickens. The causative agent, the Avibirnavirus IBDV, is a non-enveloped virus whose genome consists of two segments (A and B) of double-stranded RNA. Different pathotypes of IBDV exist, ranging from attenuated vaccine strains to very virulent viruses (vvIBDV). In Algeria, despite the prophylactic measures implemented, cases of IBD are still often diagnosed clinically and the current molecular epidemiology of IBDV remains unknown. The presence of the virus and especially of strains genetically close to vvIBDV was confirmed in 2000 by an unpublished OIE report. In this study, nineteen IBDV isolates were collected in Algeria between September 2014 and September 2015 during clinical outbreaks. These isolates were analyzed at the genetic, antigenic and pathogenic levels. Our results reveal a broad genetic and phenotypic diversity of pathogenic IBDV strains in Algeria, with, i) the circulation of viruses with both genome segments related to European vvIBDV, which proved as pathogenic for specific pathogen-free chickens as vvIBDV reference strain, ii) the circulation of viruses closely related - yet with a specific segment B - to European vvIBDV, their pathogenicity being lower than reference vvIBDV, iii) the detection of reassortant viruses whose segment A was related to vvIBDV whereas their segment B did not appear closely related to any reference sequence. Interestingly, the pathogenicity of these potentially reassortant strains was comparable to that of reference vvIBDV. All strains characterized in this study exhibited an antigenicity similar to the cognate reference IBDV strains. These data reveal the continuous genetic evolution of IBDV strains in Algerian poultry through reassortment and acquisition of genetic material of unidentified origin. Continuous surveillance of the situation as well as good vaccination practice associated with appropriate biosecurity measures are necessary for disease control.
Collapse
Affiliation(s)
- Mouna Abed
- Algiers High Veterinary School (ENSV), Issad Abbes Street, Oued Smar 16000, Algiers, Algeria.
| | - Sébastien Soubies
- Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Zoopole - rue des Fusillés BP 53, 22440 Ploufragan, France
| | - Céline Courtillon
- Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Zoopole - rue des Fusillés BP 53, 22440 Ploufragan, France
| | - François-Xavier Briand
- Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Zoopole - rue des Fusillés BP 53, 22440 Ploufragan, France
| | - Chantal Allée
- Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Zoopole - rue des Fusillés BP 53, 22440 Ploufragan, France
| | - Michel Amelot
- Experimental Poultry Unit (SELEAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Zoopole - rue des Fusillés BP 53, 22440 Ploufragan, France
| | - Claire De Boisseson
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Zoopole - rue des Fusillés BP 53, 22440 Ploufragan, France
| | - Pierrick Lucas
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Zoopole - rue des Fusillés BP 53, 22440 Ploufragan, France
| | - Yannick Blanchard
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Zoopole - rue des Fusillés BP 53, 22440 Ploufragan, France
| | - Ali Belahouel
- Veterinary Practice, Beni Slimane, 26000, Medea, Algeria
| | | | | | - Soraya Temim
- Algiers High Veterinary School (ENSV), Issad Abbes Street, Oued Smar 16000, Algiers, Algeria
| | - Djamel Khelef
- Algiers High Veterinary School (ENSV), Issad Abbes Street, Oued Smar 16000, Algiers, Algeria
| | - Nicolas Eterradossi
- Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Zoopole - rue des Fusillés BP 53, 22440 Ploufragan, France.
| |
Collapse
|
31
|
Early immune responses and profiling of cell-mediated immunity-associated gene expression in response to rHVT-IBD vaccination. Vaccine 2017; 36:615-623. [PMID: 29290477 DOI: 10.1016/j.vaccine.2017.12.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
Infectious bursal disease (IBD) remains a major threat to the poultry industry. Recombinant herpesvirus of turkey (rHVT)-IBD vaccines have been successfully used to induce a protective immune response against IBD. However, the capacity for rHVT-IBD vaccines to induce early protection without detectable antibodies, and the underlying mechanisms mediating specific cell-mediated responses in the early stages following vaccination, have been poorly investigated. Therefore, in this study, specific pathogen-free (SPF) chickens were vaccinated with rHVT-IBD and T-cell subsets were analyzed. Both splenic and circulating CD8+ cell populations increased at 7 days postvaccination (dpv). Next, the expression of adaptive immunity-related genes was analyzed in the spleen and lung of rHVT-IBD-vaccinated chickens. Upregulation of CD8 expression was observed at 7 dpv. Interestingly, a parallel increase in the transcription of granzymes A and K was also detected from 7 dpv. To our knowledge, the latter result is the first to be reported, and it suggests that cytotoxic activity of CD8+ T lymphocytes is activated. In contrast, expression of the innate genes examined remained largely unchanged following vaccination. To further investigate the IBD virus (IBDV)-specific responses triggered by rHVT-IBD vaccination, vaccinated chickens were inoculated with an attenuated IBDV strain with the aim of restimulating induced immune responses in vivo. The expression profiles of various genes associated with adaptive immune responses were subsequently analyzed in lung, spleen, and bursa of Fabricius samples. Significant upregulation of CD4, CD8, perforin, and IFNγ expression were observed in the bursa samples 7 days postinoculation (dpi). In the lung, transcript levels of CD8, granzymes and perforin were also significantly higher in the rHVT-IBD-vaccinated chickens at 7 dpi, thereby suggesting that specific cellular immune responses were activated. Overall, these results support the hypothesis that stimulation of specific CD8+ cell-mediated immunity contributes to the response against IBDV in rHVT-IBD-vaccinated chickens.
Collapse
|