1
|
Hamdy NM, Zaki MB, Abdelmaksoud NM, Ismail RA, Abd-Elmawla MA, Rizk NI, Fathi D, Abulsoud AI. Insights into the genetic and epigenetic mechanisms governing X-chromosome-linked-miRNAs expression in cancer; a step-toward ncRNA precision. Int J Biol Macromol 2025; 289:138773. [PMID: 39675615 DOI: 10.1016/j.ijbiomac.2024.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Sex chromosomes play a significant role in establishing sex-specific differences in gene expression, thereby contributing to phenotypic diversity and susceptibility to various diseases. MicroRNAs (miRNAs), which are small non-coding RNAs encoded by both the X and Y chromosomes, exhibit sex-specific regulatory characteristics. Computational analysis has identified several X-linked miRNAs differentially expressed in sex-specific cancers. This review aims to elucidate the genetic and epigenetic mechanisms that govern the sex-specific expression of X- and Y-linked miRNAs, with particular attention to their functional role in regulating diverse cellular processes in different cancer pathways. In addition, this review provides a comprehensive understanding of the targeted therapeutic interventions and critical insights into the potential clinical implications of targeting sex-specific miRNAs. In conclusion, this review opens new horizons for further research to effectively translate these findings into viable treatment options.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | | | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Ainy, Cairo 11562, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
2
|
Guo Y, Huang Q, Heng Y, Zhou Y, Chen H, Xu C, Wu C, Tao L, Zhou L. Circular RNAs in cancer. MedComm (Beijing) 2025; 6:e70079. [PMID: 39901896 PMCID: PMC11788016 DOI: 10.1002/mco2.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Circular RNA (circRNA), a subtype of noncoding RNA, has emerged as a significant focus in RNA research due to its distinctive covalently closed loop structure. CircRNAs play pivotal roles in diverse physiological and pathological processes, functioning through mechanisms such as miRNAs or proteins sponging, regulation of splicing and gene expression, and serving as translation templates, particularly in the context of various cancers. The hallmarks of cancer comprise functional capabilities acquired during carcinogenesis and tumor progression, providing a conceptual framework that elucidates the nature of the malignant transformation. Although numerous studies have elucidated the role of circRNAs in the hallmarks of cancers, their functions in the development of chemoradiotherapy resistance remain unexplored and the clinical applications of circRNA-based translational therapeutics are still in their infancy. This review provides a comprehensive overview of circRNAs, covering their biogenesis, unique characteristics, functions, and turnover mechanisms. We also summarize the involvement of circRNAs in cancer hallmarks and their clinical relevance as biomarkers and therapeutic targets, especially in thyroid cancer (TC). Considering the potential of circRNAs as biomarkers and the fascination of circRNA-based therapeutics, the "Ying-Yang" dynamic regulations of circRNAs in TC warrant vastly dedicated investigations.
Collapse
Affiliation(s)
- Yang Guo
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Qiang Huang
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yu Heng
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yujuan Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Hui Chen
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chengzhi Xu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chunping Wu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Lei Tao
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Liang Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| |
Collapse
|
3
|
Li C, Zhao X, Zhao J, Zhao J, An L, Wu G. BRAF regulates circPSD3/miR-526b/RAP2A axis to hinder papillary thyroid carcinoma progression. BMC Mol Cell Biol 2025; 26:6. [PMID: 39838328 PMCID: PMC11753155 DOI: 10.1186/s12860-024-00528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is a common malignant tumor. BRAFV600E mutation has become a common molecular event in PTC pathogenesis. Circular RNA PSD3 (circPSD3) is known to be highly expressed in PTC. However, the bio-functional role of circPSD3 and its possible relationship with the BRAF in PTC is not clear. This study aims to probe the biofunction and molecular mechanism of circPSD3 in PTC pathogenesis. METHODS RT-qPCR was utilized to measure the expression of circPSD3 and BRAF in PTC tissues and cells. The CCK-8 and EdU assays were employed to assess cell viability and proliferation. Cell apoptosis was quantified using flow cytometry. The migratory and invasive capabilities of the cells were evaluated via wound healing and transwell assays. The interaction between RNAs was investigated using luciferase reporter assay. Additionally, xenograft tumor experiments were conducted to validate our findings in vivo. RESULTS Data showed that circPSD3 was highly expressed in PTC patients and cell lines. CircPSD3 was found to promote cell growth and migration and inhibit apoptosis in PTC cells. Results also revealed that circPSD3 upregulated RAP2A expression by specifically sponging miR-526b. Interestingly, inhibiting miR-526b reversed the tumorigenic properties of circPSD3 in PTC. Additionally, BRAF expression was low in PTC patients, and overexpression of BRAF hampered PTC development by downregulating circPSD3 and RAP2A while upregulating miR-526b expressions. CONCLUSIONS Our study reveals that circPSD3 is a key regulator promoting PTC progression via the circPSD3/miR-526b/RAP2A pathway. Furthermore, we found that overexpressing BRAF, which inhibits circPSD3, significantly hampers the progression of PTC.
Collapse
Affiliation(s)
- Chuang Li
- Department of Ultrasound, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450000, China
| | - Xiaojuan Zhao
- Department of Ultrasound, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450000, China
| | - Jingge Zhao
- Department of Clinical Scientific Research Service Center, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450000, China
| | - Jing Zhao
- Department of Ultrasound, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450000, China
| | - Lemei An
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450000, China
| | - Gang Wu
- Department of Ultrasound, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450000, China.
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
4
|
Cheng C, Zhang L, Wang Q, Yang M, Liu W. Analysis of the Clinical Value of hsa_circ_0001955 in Papillary Thyroid Cancer Treated with 131 Iodine. J Environ Pathol Toxicol Oncol 2025; 44:37-45. [PMID: 39462448 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The prevalent histological variant within differentiated thyroid carcinoma is papillary thyroid carcinoma, also known as PTC. The study investigated the clinical performance of serum hsa_circ_0001955 in predicting the prognosis of PTC treated with radical thyroidectomy and iodine 131 nail clearance. The relative expression of serum circ_0001955 of PTC patients was detected before and after accepting radical thyroidectomy combined with 131I thyroid remnant ablation by RT-qPCR. Serum thyroglobulin (Tg) and thyroglobulin antibody (TgAb) levels were quantified by an automatic chemiluminescence immunoassay analyzer. Multivariate logistic regression analysis was employed to investigate the risk factors associated with the prognosis of PTC patients with postoperative 131I therapy. The serum circ_0001955 levels in 127 PTC patients were higher than that in 96 multinodular goiter patients and 110 healthy controls before treatment and had diagnostic values for PTC patients. After 131I treatment, serum circ_0001955 levels and Tg value have a correlation with potential recurrence (WBS positive). Serum circ_0001955, Tg, and TgAb value, and their combination may have diagnostic value in predicting recurrence. Serum circ_0001955 levels in patients with PTC after radical thyroidectomy and iodine 131 thyroidectomy may help predict recurrence.
Collapse
Affiliation(s)
- Chong Cheng
- Department of Nuclear Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde 415000, China
| | - Ling Zhang
- Centre for Reproductive Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde 415000, China
| | - Quanyong Wang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital Group Suqian Hospital, Zhenjiang Medical College, Suqian 223800, China
| | | | - Wenlin Liu
- Department of Breast, Gansu Wuwei Tumour Hospital, Wuwei 733000, China
| |
Collapse
|
5
|
Chen Y, Lian Z, Zhang G, Lin Y, Zhang G, Liu W, Gao J, Zheng Z. CircRNA ITCH Inhibits Epithelial-Mesenchymal Transformation and Promotes Apoptosis in Papillary Thyroid Carcinoma via miR-106a-5p/JAZF1 Axis. Biochem Genet 2024; 62:4755-4769. [PMID: 38358587 PMCID: PMC11604786 DOI: 10.1007/s10528-024-10672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024]
Abstract
Circular RNA ITCH (circ-ITCH) is implicated in papillary thyroid carcinoma (PTC) development. Nevertheless, the more detailed molecular mechanism remains uncovered. The transcriptional level of circ-ITCH was tested via quantitative real-time PCR. Transwell assay was introduced to assess the migrative and invasive abilities of cells. RNA interference technology was employed to reduce the level of circ-ITCH as well as JAZF1 in PTC cells. Western blot assay was utilized to reveal the content of JAZF1 and proteins related to epithelial-mesenchymal transformation (EMT) progression. Circ-ITCH was downregulated in PTC tissues as well as cells. Overexpression of circ-ITCH suppressed EMT, migration, invasion, facilitated apoptosis in PTC cells, while silencing circ-ITCH exhibited reversed effects. Additionally, miR-106a-5p was the target of circ-ITCH and negatively regulated through circ-ITCH. MiR-106a-5p mimic partly eliminated the influences of overexpressed circ-ITCH in PTC cells. Moreover, JAZF1 could interact with miR-106a-5p, then it was regulated via circ-ITCH. Silencing JAZF1 partially counteracted the role of circ-ITCH in PTC cells progress. This study uncovered that circ-ITCH suppressed the development of PTC cells at least partly by mediating miR-106a-5p/JAZF1 network.
Collapse
Affiliation(s)
- Yijun Chen
- First Department of Thyroid Surgery, The Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China.
| | - Zhiming Lian
- First Department of Thyroid Surgery, The Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Guolie Zhang
- First Department of Thyroid Surgery, The Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Yuanmei Lin
- First Department of Thyroid Surgery, The Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Guoliang Zhang
- First Department of Thyroid Surgery, The Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Wei Liu
- First Department of Thyroid Surgery, The Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Jian Gao
- First Department of Thyroid Surgery, The Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Zifang Zheng
- First Department of Thyroid Surgery, The Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China.
| |
Collapse
|
6
|
Sabi EM. The role of genetic and epigenetic modifications as potential biomarkers in the diagnosis and prognosis of thyroid cancer. Front Oncol 2024; 14:1474267. [PMID: 39558949 PMCID: PMC11570407 DOI: 10.3389/fonc.2024.1474267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Thyroid cancer (TC) is the most common endocrine cancer, which contributes to more than 43,600 deaths and 586,000 cases worldwide every year. Among the TC types, PTC and FTC comprise 90% of all TCs. Genetic modifications in genes are responsible for encoding proteins of mitogen-associated protein kinase cascade, which is closely related with numerous cellular mechanisms, including controlling programmed cell death, differentiation, proliferation, gene expression, as well as in genes encoding the PI3K (phosphatidylinositol 3-kinase)/protein kinase B (AKT) cascade, which has contribution in controlling cell motility, adhesion, survival, and glucose metabolism, have been associated with the TC pathogenesis. Various genetic modifications including BRAF mutations, RAS mutations, RET mutations, paired-box gene 8/peroxisome proliferator-activated receptor-gamma fusion oncogene, RET/PTC rearrangements, telomerase reverse transcriptase mutations, neurotrophic tyrosine receptor kinase fusion genes, TP53 mutations, and eukaryotic translation initiation factor 1A X-linked mutations can effectively serve as potential biomarkers in both diagnosis and prognosis of TC. On the other hand, epigenetic modifications can lead to aberrant functions or suppression of a range of signalling cascades, which can ultimately result in cancer. Various studies have observed the link between epigenetic modification and multiple cancers including TC. It has been reported that several epigenetic alterations including histone modifications, aberrant DNA methylation, and epigenetic modulations of non-coding RNAs can play significant roles as potential biomarkers in the diagnosis and prognosis of TC. Therefore, a good understanding regarding the genetic and epigenetic modifications is not only essential for the diagnosis and prognosis of TC, but also for the development of novel therapeutics. In this review, most of the major TC-related genetic and epigenetic modifications and their potential as biomarkers for TC diagnosis and prognosis have been extensively discussed.
Collapse
Affiliation(s)
- Essa M. Sabi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Zheng L, Tang T, Wang Z, Sun C, Chen X, Li W, Wang B. FUS-Mediated CircFGFR1 Accelerates the Development of Papillary Thyroid Carcinoma by Stabilizing FGFR1 Protein. Biochem Genet 2024; 62:3977-3995. [PMID: 38261157 DOI: 10.1007/s10528-023-10630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/09/2023] [Indexed: 01/24/2024]
Abstract
Papillary thyroid carcinoma (PTC) is the most prevalent type of thyroid cancer and its incidence is rising globally. The molecular mechanisms of PTC progression remain unclear, hindering the development of effective treatments. This study focuses on hsa_circ_0008016 (circFGFR1), a circular RNA significantly up-regulated in PTC cells. Silencing circFGFR1 inhibited PTC cell proliferation and increased cell apoptosis, suggesting its role in PTC progression. The RNA-binding protein FUS was identified as a promoter of circFGFR1 formation. While circFGFR1 does not influence FGFR1 mRNA translation, it inhibits ubiquitination and degradation of FGFR1 protein, prolonging its half-life. CircFGFR1 also interacts with protein CBL, inhibiting CBL-mediated ubiquitination of FGFR1 proteins. Rescue assays confirmed circFGFR1 promotes PTC cell growth through mediating FGFR1. This study highlights the potential of circFGFR1 as a therapeutic target, offering insights into PTC's molecular mechanisms, and paving the way for novel treatment strategies.
Collapse
MESH Headings
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Humans
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA-Binding Protein FUS/genetics
- RNA-Binding Protein FUS/metabolism
- Cell Proliferation
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Apoptosis
- Protein Stability
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-cbl/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Lu Zheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Tong Tang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Zhitao Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Chenyu Sun
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Xiao Chen
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Wanwan Li
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Benzhong Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
8
|
Wu M, Yuan H, Zou W, Xu S, Liu S, Gao Q, Guo Q, Han Y, An X. Circular RNAs: characteristics, functions, mechanisms, and potential applications in thyroid cancer. Clin Transl Oncol 2024; 26:808-824. [PMID: 37864677 DOI: 10.1007/s12094-023-03324-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/08/2023] [Indexed: 10/23/2023]
Abstract
Thyroid cancer (TC) is one of the most common endocrine malignancies, and its incidence has increased globally. Despite extensive research, the underlying molecular mechanisms of TC remain partially understood, warranting continued exploration of molecular markers for diagnostic and prognostic applications. Circular RNAs (circRNAs) have recently garnered significant attention owing to their distinct roles in cancers. This review article introduced the classification and biological functions of circRNAs and summarized their potential as diagnostic and prognostic markers in TC. Further, the interplay of circRNAs with PI3K/Akt/mTOR, Wnt/β-catenin, MAPK/ERK, Notch, JAK/STAT, and AMPK pathways is elaborated upon. The article culminates with an examination of circRNA's role in drug resistance of TC and highlights the challenges in circRNA research in TC.
Collapse
Affiliation(s)
- Mengmeng Wu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Haibin Yuan
- Department of Health Management, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Shujian Xu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Song Liu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Qiang Gao
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Qingqun Guo
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China.
| | - Xingguo An
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Tang S, Cai L, Wang Z, Pan D, Wang Q, Shen Y, Zhou Y, Chen Q. Emerging roles of circular RNAs in the invasion and metastasis of head and neck cancer: Possible functions and mechanisms. CANCER INNOVATION 2023; 2:463-487. [PMID: 38125767 PMCID: PMC10730008 DOI: 10.1002/cai2.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2023]
Abstract
Head and neck cancer (HNC) is the seventh most prevalent malignancy worldwide in 2020. Cancer metastasis is the main cause of poor prognosis in HNC patients. Recently, circular RNAs (circRNAs), initially thought to have no biological function, are attracting increasing attention, and their crucial roles in mediating HNC metastasis are being extensively investigated. Existing studies have shown that circRNAs primarily function through miRNA sponges, transcriptional regulation, interacting with RNA-binding proteins (RBPs) and as translation templates. Among these functions, the function of miRNA sponge is the most prominent. In this review, we summarized the reported circRNAs involved in HNC metastasis, aiming to elucidate the regulatory relationship between circRNAs and HNC metastasis. Furthermore, we summarized the latest advances in the epidemiological information of HNC metastasis and the tumor metastasis theories, the biogenesis, characterization and functional mechanisms of circRNAs, and their potential clinical applications. Although the research on circRNAs is still in its infancy, circRNAs are expected to serve as prognostic markers and effective therapeutic targets to inhibit HNC metastasis and significantly improve the prognosis of HNC patients.
Collapse
Affiliation(s)
- Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Luyao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Qing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yingqiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
- State Institute of Drug/Medical Device Clinical TrialWest China Hospital of StomatologyChengduChina
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
10
|
Guo R, Zhang R. Dual effects of circRNA in thyroid and breast cancer. Clin Transl Oncol 2023; 25:3321-3331. [PMID: 37058206 DOI: 10.1007/s12094-023-03173-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
CircRNA, the latest research hotspot in the field of RNA, is a special non-coding RNA molecule, which is unable to encode proteins and bind polyribosomes. As a regulatory molecule, circRNA participates in cancer cell generation and progression mainly through the mechanism of competitive endogenous RNA. In numerous regulated cancer organs, the thyroid and breast are both endocrine organs, and both are regulated by the hypothalamic pituitary gland axis. Thyroid cancer (TC) and breast cancer (BC) are both sexually prevalent in women and both are affected by hormones, thus they are intrinsically linked. In addition, recent epidemiological surveys have found that, early metastasis and recurrence of breast cancer remain the main cause of survival in breast cancer patients. Although at home and abroad, studies have shown that new targeted anti-tumor drugs with numerous tumor markers are gradually being used in the clinic, evidence for potential molecular mechanisms affecting its prognosis lacks clinical studies. Therefore, we search the relevant literature, and based on the latest domestic and international consensus, review the molecular mechanisms and regulation relevance of circRNA, compare the difference of the same circRNA in two tumors, to more deeply understand and lay the foundation for future clinical diagnostic, therapeutic and prognostic studies in large samples.
Collapse
Affiliation(s)
- Rina Guo
- Department of Thyroid Breast Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| | - Rui Zhang
- Department of Thyroid Breast Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| |
Collapse
|
11
|
Yao X, Liu H, Wang Z, Lu F, Chen W, Feng Q, Miao Y, Zhang J, Wang Y, Chen Y, Xue L, Liu Y, Chen L, Zhang Q. Circular RNA EIF3I promotes papillary thyroid cancer progression by interacting with AUF1 to increase Cyclin D1 production. Oncogene 2023; 42:3206-3218. [PMID: 37697064 DOI: 10.1038/s41388-023-02830-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Circular RNAs (circRNAs) play an important role in regulating the development of human cancers through diverse biological functions. However, the exact molecular mechanisms underlying the role of circRNAs in papillary thyroid cancer (PTC) remain largely unknown. Here, we found that hsa_circ_0011385, designated as circular eukaryotic translation initiation factor 3 subunit I (circEIF3I), preferentially localized in the cytoplasm of PTC cells and was more stable than its linear counterpart, EIF3I. Gain- and loss-of-function studies indicated that circEIF3I promoted PTC progression by facilitating cell proliferation, cell cycle, cell migration, and invasion in vitro, as well as PTC cell proliferation in vivo. Mechanistically, circEIF3I interacted with AU-rich element (ARE) RNA-binding factor 1 (AUF1) in the cytoplasm of PTC cells, thus reducing the degradation of Cyclin D1 mRNA and increasing Cyclin D1 protein production, ultimately resulting in PTC progression. Collectively, our results demonstrate the vital role of circEIF3I in PTC progression, supporting its significance as a potential therapeutic target.
Collapse
Affiliation(s)
- Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanyuan Liu
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhen Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Fangting Lu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wenying Chen
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qing Feng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yahu Miao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jie Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanlei Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ye Chen
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liping Xue
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
12
|
Kim JY, Lee Y, Dho SH, Park HJ, Kim DM, Lim JC, Kim SM, Kim LK. Integrative analysis of circular RNA regulatory network in papillary thyroid carcinoma. Am J Cancer Res 2023; 13:4446-4465. [PMID: 37818060 PMCID: PMC10560948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of endocrine cancer worldwide. Generally, PTC has an excellent prognosis; however, lymph node metastases and recurrences occur frequently. Over the last decade, circular RNAs (circRNAs), a large class of noncoding RNAs (ncRNAs), have emerged as key regulators of various tumor progression pathways. Here, we aimed to identify novel circRNAs as PTC biomarkers. Differentially expressed circRNAs and mRNAs were analyzed using public datasets from the Gene Expression Omnibus and Cancer Genome Atlas. In addition, we screened for target miRNAs using online prediction databases. Based on these results, we established a circRNA-miRNA-mRNA regulatory network associated with PTC, in which protein-protein interaction networks led to the identification of hub genes. Functional enrichment and survival analyses were performed to gain insights into the biological mechanisms of circRNA involvement. As a result, we found that two circRNAs (hsa_circ_0041829 and has_circ_0092299), four miRNAs (miR-369, miR-486, miR-574, and miR-665), and nine hub genes (BBC3, E2F1, FYN, MAG, SDC1, SDC3, SNAP25, TK1, and TYMS) play significant roles in PTC progression. This study provides a novel framework for understanding the roles of circRNA-miRNA-mediated gene regulation in PTC. It also introduces potential therapeutic targets and prognostic biomarkers, which may serve as a basis for developing targeted therapeutic interventions for PTC.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Yeongun Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of MedicineSeoul, Republic of Korea
| | - So Hee Dho
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Hyo Jin Park
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Da-Mi Kim
- Radioisotope Research Division, Korea Atomic Energy Research InstituteDaejeon, Republic of Korea
| | - Jae Cheong Lim
- Radioisotope Research Division, Korea Atomic Energy Research InstituteDaejeon, Republic of Korea
| | - Seok-Mo Kim
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Lark Kyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of MedicineSeoul, Republic of Korea
| |
Collapse
|
13
|
Guz M, Jeleniewicz W, Cybulski M. Interactions between circRNAs and miR-141 in Cancer: From Pathogenesis to Diagnosis and Therapy. Int J Mol Sci 2023; 24:11861. [PMID: 37511619 PMCID: PMC10380543 DOI: 10.3390/ijms241411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The function of non-coding RNAs (ncRNAs) in the pathogenesis and development of cancer is indisputable. Molecular mechanisms underlying carcinogenesis involve the aberrant expression of ncRNAs, including circular RNAs (circRNAs), and microRNAs (miRNAs). CircRNAs are a class of single-stranded, covalently closed RNAs responsible for maintaining cellular homeostasis through their diverse functions. As a part of the competing endogenous RNA (ceRNAs) network, they play a central role in the regulation of accessibility of miRNAs to their mRNA targets. The interplay between these molecular players is based on the primary role of circRNAs that act as miRNAs sponges, and the circRNA/miRNA imbalance plays a central role in different pathologies including cancer. Herein, we present the latest state of knowledge about interactions between circRNAs and miR-141, a well-known member of the miR-200 family, in malignant transformation, with emphasis on the biological role of circRNA/miR-141/mRNA networks as a future target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marek Cybulski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
14
|
Chen W, Xu J, Wu Y, Liang B, Yan M, Sun C, Wang D, Hu X, Liu L, Hu W, Shao Y, Xing D. The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int J Biol Sci 2023; 19:2879-2896. [PMID: 37324939 PMCID: PMC10266072 DOI: 10.7150/ijbs.84994] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Cholesterol levels are an initiating risk factor for atherosclerosis. Many genes play a central role in cholesterol synthesis, including HMGCR, SQLE, HMGCS1, FDFT1, LSS, MVK, PMK, MVD, FDPS, CYP51, TM7SF2, LBR, MSMO1, NSDHL, HSD17B7, DHCR24, EBP, SC5D, DHCR7, IDI1/2. Especially, HMGCR, SQLE, FDFT1, LSS, FDPS, CYP51, and EBP are promising therapeutic targets for drug development due to many drugs have been approved and entered into clinical research by targeting these genes. However, new targets and drugs still need to be discovered. Interestingly, many small nucleic acid drugs and vaccines were approved for the market, including Inclisiran, Patisiran, Inotersen, Givosiran, Lumasiran, Nusinersen, Volanesorsen, Eteplirsen, Golodirsen, Viltolarsen, Casimersen, Elasomeran, Tozinameran. However, these agents are all linear RNA agents. Circular RNAs (circRNAs) may have longer half-lives, higher stability, lower immunogenicity, lower production costs, and higher delivery efficiency than these agents due to their covalently closed structures. CircRNA agents are developed by several companies, including Orna Therapeutics, Laronde, and CirCode, Therorna. Many studies have shown that circRNAs regulate cholesterol synthesis by regulating HMGCR, SQLE, HMGCS1, ACS, YWHAG, PTEN, DHCR24, SREBP-2, and PMK expression. MiRNAs are essential for circRNA-mediated cholesterol biosynthesis. Notable, the phase II trial for inhibiting miR-122 with nucleic acid drugs has been completed. Suppressing HMGCR, SQLE, and miR-122 with circRNA_ABCA1, circ-PRKCH, circEZH2, circRNA-SCAP, and circFOXO3 are the promising therapeutic target for drug development, specifically the circFOXO3. This review focuses on the role and mechanism of the circRNA/miRNA axis in cholesterol synthesis in the hope of providing knowledge to identify new targets.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Mingzhe Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Chuandong Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Dong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaokun Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Interventional Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Li Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Community Health Promotion, Qingdao Municipal Center for Disease Control & Prevention, Qingdao Institute of Preventive Medicine, Qingdao, Shandong, 266033, China
| | - Wenchao Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266000, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Ye H, Sun X, Ding Q, Yang E, Zhao S, Fan X, Fang M, Ding X. The Emerging Roles of circRNAs in Papillary Thyroid Carcinoma: Molecular Mechanisms and Biomarker Potential. Protein Pept Lett 2023; 30:709-718. [PMID: 37537939 DOI: 10.2174/0929866530666230804104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/27/2023] [Accepted: 05/27/2023] [Indexed: 08/05/2023]
Abstract
Papillary thyroid carcinoma (PTC) is a common endocrine malignant tumor. The incidence of PTC has increased in the past decades and presents a younger trend. Accumulating evidence indicates that circular RNAs (circRNAs), featured with non-linear, closed-loop structures, play pivotal roles in tumorigenesis and regulate cell biological processes, such as proliferation, migration, and invasion, by acting as microRNA (miRNA) sponges. Additionally, due to their unique stability, circRNAs hold promising potential as diagnostic biomarkers and effective therapeutic targets for PTC treatment. In this review, we systematically arrange the expression level of circRNAs, related clinical characteristics, circRNA-miRNA-mRNA regulatory network, and molecular mechanisms. Furthermore, related signaling pathways and their potential ability of diagnostic biomarkers and therapeutic targets are discussed, which might provide a new strategy for PTC diagnosis, monitoring, and prognosis.
Collapse
Affiliation(s)
- Haihan Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310023, P.R. China
| | - Xiaoyang Sun
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, M5S2E8, Canada
| | - Qianyun Ding
- Department of 'A', The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310023, P.R. China
| | - Enyu Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310023, P.R. China
| | - Shuo Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310023, P.R. China
| | - Xiaowei Fan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310023, P.R. China
| | - Meiyu Fang
- Department of Rare and Head and Neck Oncology, Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310005, P.R. China
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310023, P.R. China
| |
Collapse
|
16
|
Abstract
Thyroid cancer is the most common malignancy of the endocrine system, and its incidence has been steadily increasing. Advances in sequencing have allowed analysis of the entire cancer genome, and has provided new information on the genetic lesions and modifications responsible for the onset, progression, dedifferentiation and metastasis of thyroid carcinomas. Moreover, integrated genomics has advanced our understanding of the development of cancer and its behavior, and has facilitated the identification of new genetic mutations and molecular pathways. The functional analysis of epigenetic modifications, such as DNA methylation, histone acetylation and non-coding RNAs, have contributed to define new regulatory mechanisms that control cell malignancy in thyroid cancer, especially aggressive forms. Here we review the most recent advances in genomics and epigenomics of thyroid cancer, which have resulted in a new classification and interpretation of the initiation and progression of thyroid tumors, providing new tools and opportunities for further investigation and for the clinical development of new treatment strategies.
Collapse
Affiliation(s)
- Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
17
|
Xiao X, Xi X, Xiao S, Ni J. Circ_0101622 governs the miR-1179/RAB23 pathway to promote the aggressive progression of thyroid cancer. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
A Review and In Silico Analysis of Tissue and Exosomal Circular RNAs: Opportunities and Challenges in Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14194728. [PMID: 36230649 PMCID: PMC9564022 DOI: 10.3390/cancers14194728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Thyroid cancer is the most common endocrine neoplasm. Recently, knowledge of the molecular genetic changes of thyroid cancer has dramatically improved. Understanding the roles of these molecular changes in thyroid cancer tumorigenesis and progression is essential in developing a successful treatment strategy and improving disease outcomes. As a family of non-coding RNAs, circular RNAs (circRNAs) have been involved in several aspects of the physiological and pathological processes of the cells. The roles of circRNAs in cancer development and progress are evident. In the current review, we aimed to explore the clinical potential of circRNAs as potential diagnostic, prognostic, and therapeutic targets in thyroid cancer. Furthermore, screening the genome-wide circRNAs and performing functional enrichment analyses for all associated dysregulated circRNAs in thyroid cancer have been done. Given the unique advantages circRNAs have, such as superior stability, higher abundance, and presence in different body fluids, this family of non-coding RNAs could be promising diagnostic and prognostic biomarkers and potential therapeutic targets for thyroid cancer. Abstract Thyroid cancer (TC) is the most common endocrine tumor. The genetic and epigenetic molecular alterations of TC have become more evident in recent years. However, a deeper understanding of the roles these molecular changes play in TC tumorigenesis and progression is essential in developing a successful treatment strategy and improving patients’ prognoses. Circular RNAs (circRNAs), a family of non-coding RNAs, have been implicated in several aspects of carcinogenesis in multiple cancers, including TC. In the current review, we aimed to explore the clinical potential of circRNAs as putative diagnostic, prognostic, and therapeutic targets in TC. The current analyses, including genome-wide circRNA screening and functional enrichment for all deregulated circRNA expression signatures, show that circRNAs display atypical contributions, such as sponging for microRNAs, regulating transcription and translation processes, and decoying for proteins. Given their exceptional clinical advantages, such as higher stability, wider abundance, and occurrence in several body fluids, circRNAs are promising prognostic and theranostic biomarkers for TC.
Collapse
|
19
|
Yao X, Zhang Q. Function and Clinical Significance of Circular RNAs in Thyroid Cancer. Front Mol Biosci 2022; 9:925389. [PMID: 35936780 PMCID: PMC9353217 DOI: 10.3389/fmolb.2022.925389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/22/2022] [Indexed: 12/28/2022] Open
Abstract
Thyroid cancer (TC) is the leading cause and mortality of endocrine malignancies worldwide. Tumourigenesis involves multiple molecules including circular RNAs (circRNAs). circRNAs with covalently closed single-stranded structures have been identified as a type of regulatory RNA because of their high stability, abundance, and tissue/developmental stage-specific expression. Accumulating evidence has demonstrated that various circRNAs are aberrantly expressed in thyroid tissues, cells, exosomes, and body fluids in patients with TC. CircRNAs have been identified as either oncogenic or tumour suppressor roles in regulating tumourigenesis, tumour metabolism, metastasis, ferroptosis, and chemoradiation resistance in TC. Importantly, circRNAs exert pivotal effects on TC through various mechanisms, including acting as miRNA sponges or decoys, interacting with RNA-binding proteins, and translating functional peptides. Recent studies have suggested that many different circRNAs are associated with certain clinicopathological features, implying that the altered expression of circRNAs may be characteristic of TC. The purpose of this review is to provide an overview of recent advances on the dysregulation, functions, molecular mechanisms and potential clinical applications of circRNAs in TC. This review also aimes to improve our understanding of the functions of circRNAs in the initiation and progression of cancer, and to discuss the future perspectives on strategies targeting circRNAs in TC.
Collapse
|
20
|
Zhang C, Gu H, Liu D, Tong F, Wei H, Zhou D, Fang J, Dai X, Tian H. The circ_FAM53B-miR-183-5p-CCDC6 axis modulates the malignant behaviors of papillary thyroid carcinoma cells. Mol Cell Biochem 2022; 477:2627-2641. [DOI: 10.1007/s11010-022-04465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
|
21
|
CircNRIP1 Exerts Oncogenic Functions in Papillary Thyroid Carcinoma by Sponging miR-653-5p and Regulating PBX3 Expression. JOURNAL OF ONCOLOGY 2022; 2022:2081501. [PMID: 35646117 PMCID: PMC9135513 DOI: 10.1155/2022/2081501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022]
Abstract
Background Circular RNA circ_0004771 (termed circNRIP1) was identified by RNA-Seq previously and was elevated in papillary thyroid carcinoma (PTC) tissues. A series of studies also showed that circNRIP1 was upregulated in some tumors and could promote the malignant progression of tumors. This research intended to focus on the role of circNRIP1 in PTC progression and explore the mechanisms underlying circNRIP1 functions. Methods RT-PCR or western blot determined circNRIP1, miR-653-5p, and pre-B-cell leukemia homeobox 3 (PBX3) expression. EdU, CCK-8, Tunel, and transwell assays determined cell proliferation, apoptosis, invasion, and migration, respectively. Luciferase reporter assay, RNA immunoprecipitation (RIP), and RNA pull down assays clarified the target relation between miR-653-5p and circNRIP1 or PBX3. Xenograft models were applied to explore the role of circNRIP1 in vivo. Results circNRIP1 significantly increased in PTC tissues and PTC cell lines than that in normal ones. Higher circNRIP1 expression was associated with the TNM stage and poorer overall survival. circNRIP1 knockdown attenuated the malignant progression of PTC, specifically by inhibiting proliferation and invasion/migration and promoting apoptosis. circNRIP1 was a miR-653-5p sponge; miR-653-5p knockdown reversed the suppressive role of circNRIP1 silence in PTC progression. PBX3, a target of miR-653-5p, was positively medicated through circNRIP1 via competitively sponging miR-653-5p. Knockdown of circNRIP1 attenuated the PTC tumor progression via miR-653-5p/PBX3 axis. Conclusion Silencing of circNRIP1 suppressed PTC development via miR-653-5p elevation and PBX3 reduction, providing a novel perspective for understanding PTC pathogenesis.
Collapse
|
22
|
Circ_100395 impedes malignancy and glycolysis in papillary thyroid cancer: involvement of PI3K/AKT/mTOR signaling pathway. Immunol Lett 2022; 246:10-17. [DOI: 10.1016/j.imlet.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/02/2022] [Accepted: 04/16/2022] [Indexed: 11/23/2022]
|
23
|
Chen H, Li Q, Yi R, Li B, Xiong D, Peng H. CircRNA casein kinase 1 gamma 1 (circ-CSNK1G1) plays carcinogenic effects in thyroid cancer by acting as miR-149-5p sponge and relieving the suppression of miR-149-5p on mitogen-activated protein kinase 1 (MAPK1). J Clin Lab Anal 2022; 36:e24188. [PMID: 35023214 PMCID: PMC8841138 DOI: 10.1002/jcla.24188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The initiation and development of thyroid cancer may be associated with the deregulation of circular RNAs (circRNAs). The purpose of this work was to explore the role of circRNA casein kinase 1 gamma 1 (circ-CSNK1G1) in thyroid cancer. METHODS The expression of circ-CSNK1G1, miR-149-5p, and mitogen-activated protein kinase 1 (MAPK1) was concluded using quantitative real-time PCR (qPCR), and the expression of MAPK1 protein was detected by Western blot assay. Cell viability was monitored by CCK-8 assay. Cell proliferation was determined by colony formation assay and EdU assay. Cell apoptosis and cycle were checked by flow cytometry assay. Cell invasion was determined by transwell assay. The predicted binding relationship between miR-149-5p and circ-CSNK1G1 or MAPK1 was verified by dual-luciferase reporter assay. The role of circ-CSNK1G1 in vivo was determined by establishing animal models. RESULTS The present work discovered the upregulation of circ-CSNK1G1 in tumor tissues of thyroid cancer. In function, circ-CSNK1G1 knockdown inhibited proliferation, survival, and invasion in cancer cells, and tumor growth in mouse models. MiR-149-5p was a target of circ-CSNK1G1, and the anti-tumor effects of circ-CSNK1G1 knockdown were abolished by miR-149-5p downregulation. In addition, miR-149-5p directly targeted MAPK1, and miR-149-5p restoration-inhibited cell proliferation and invasion were recovered by MAPK1 overexpression. CONCLUSION Circ-CSNK1G1 acted as miR-149-5p to relieve the inhibition of miR-149-5p on MAPK1, thus promoting the malignant development of thyroid cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| | - Qin Li
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| | - Rong Yi
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| | - Baiyun Li
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| | - Dongling Xiong
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| | - Hui Peng
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| |
Collapse
|
24
|
Zhang Q, Wu L, Liu SZ, Chen QJ, Zeng LP, Chen XZ, Zhang Q. Hsa_circ_0023990 Promotes Tumor Growth and Glycolysis in Dedifferentiated TC via Targeting miR-485-5p/FOXM1 Axis. Endocrinology 2021; 162:6355332. [PMID: 34414414 DOI: 10.1210/endocr/bqab172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND During the transformation to dedifferentiated thyroid cancer (TC) types, the ability of papillary thyroid carcinomas (PTCs) to concentrate radioactive iodine might be lost, raising difficulty for the current therapy. circRNAs were proved to be implicated in the progression of various cancers. In this study, we aimed to investigate the functional role and mechanism of hsa_circ_0023990 in dedifferentiated TC. METHODS The expression pattern of genes were detected using quantitative PCR or western blot assays. Cell proliferation was determined by CCK8, colony formation, EdU, and cell-cycle assays. Glycolysis was assessed using glucose uptake and lactate production assays. Luciferase reporter assay was performed to examine the interactions between miR-485-5p and hsa_circ_0023990 or FOXM1. Xenograft assay was allowed for observation of tumor growth in vivo. RESULTS Hsa_circ_0023990 and FOXM1 were upregulated in dedifferentiated TC tissues and cell lines. The higher level of hsa_circ_0023900 could stimulate the proliferation and glycolysis of dedifferentiated TC cells via positively regulating FOXM1. Mechanistically, miR-485-5p was demonstrated to interact with hsa_circ_0023990 and FOXM1 and involved in the regulation of has_circ_0023990 and FOXM1 in TC biological processes. CONCLUSION Our results discovered the functional network of hsa_circ_0023990 in dedifferentiated TC development by facilitating cell proliferation and glycolysis via miR-485-5p/FOXM1 axis, implying that hsa_circ_0023990 might be a potential therapeutic target for the dedifferentiated TC treatment.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Lian Wu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Shao-Zheng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Qing-Jie Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Ling-Peng Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Xue-Zhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Qing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| |
Collapse
|
25
|
Lin Q, Qi Q, Hou S, Chen Z, Jiang N, Zhang L, Lin C. Exosomal circular RNA hsa_circ_007293 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of papillary thyroid carcinoma cells through regulation of the microRNA-653-5p/paired box 6 axis. Bioengineered 2021; 12:10136-10149. [PMID: 34866540 PMCID: PMC8809932 DOI: 10.1080/21655979.2021.2000745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) or exosomes have been reported to exert key regulatory and/or communication functions in human cancer. Nevertheless, current literature on the effects of exosomal circRNAs on tumor invasion and metastasis in thyroid cancer is incomplete. The role of tumor-derived exosomes in driving in vitro papillary thyroid carcinoma (PTC) progression and metastasis requires further investigation. In our study, Exosomes were harvested from PTC patient serum and PTC cell culture medium. Gene expression analysis in PTC cell lines and exosomes was performed with quantitative reverse-transcription polymerase chain reaction. Transwell, wound healing, Western blot assays, and the cell counting kit-8 were applied for functional analysis. Dual-luciferase reporter assay was used to examine the interaction between hsa_circ_007293 (circ007293), microRNA (miR)-653-5p, and paired box 6 (PAX6). Results showed that circ007293 was enriched in exosomes derived from PTC patient serum and cell culture media. Moreover, circ007293 could enter PTC cells through exosomes, and exosomal circ007293 promoted PTC cell epithelial-mesenchymal transition, invasion, migration, and proliferation. circ007293 knockdown reversed the malignant phenotype of PTC cells in vitro. Additionally, circ007293 could competitively bind with miR-653-5p to regulate PAX6 expression. Notably, miR-653-5p overexpression or PAX6 inhibition suppressed the malignant effects of exosomal circ007293. These results evidenced that exosomal circ007293 induced EMT and augmented the invasive and migratory abilities of PTC cells via the miR-653-5p/PAX6 axis, suggesting that it may serve as a promising biomarker for cancer progression.
Collapse
Affiliation(s)
- Qiuyu Lin
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, China
| | - Qianle Qi
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, China
| | - Sen Hou
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, China
| | - Zhen Chen
- Chengdu Xinke Pharmaceutical Co., LTD, Chengdu, China
| | - Nan Jiang
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, China
| | - Laney Zhang
- College of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Chenghe Lin
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Zheng H, Fu Q, Ma K, Shi S, Fu Y. Circ_0079558 promotes papillary thyroid cancer progression by binding to miR-26b-5p to activate MET/AKT signaling. Endocr J 2021; 68:1247-1266. [PMID: 34565758 DOI: 10.1507/endocrj.ej20-0498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of non-coding RNAs featured by covalently closed circular structure. CircRNA_0079558 (circ_0079558) is derived from RAPGEF5 gene, and it has been found to be significantly up-regulated in papillary thyroid carcinoma (PTC). However, the role and working mechanism of circ_0079558 in PTC progression have never been illustrated. The levels of circ_0079558 and MET proto-oncogene, receptor tyrosine kinase (MET) were up-regulated in PTC tissues and cell lines, as evidenced by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. The silencing of circ_0079558 or MET restrained cell proliferation, migration and invasion whereas triggered cell apoptosis in PTC cells, as verified by Cell Counting Kit-8 (CCK8) assay, plate colony formation assay, transwell invasion assay, wound healing assay and flow cytometry. Through using MET specific inhibitor PHA665752, we found that circ_0079558 overexpression enhanced the malignant behaviors of PTC cells through activating MET/AKT pathway. Through dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay, microRNA-26b-5p (miR-26b-5p) was identified to be the intermediary molecular between circ_0079558 and MET, and circ_0079558 knockdown reduced the expression of MET partly through elevating miR-26b-5p in PTC cells. The miR-198/FGFR1 pathway was identified as another signal axis downstream of circ_0079558, and the co-overexpression of FGFR1 and MET largely rescued the proliferation ability of circ_0079558-silenced PTC cells. Through xenograft tumor model, we found that circ_0079558 silencing restrained xenograft tumor growth in vivo. In conclusion, circ_0079558 facilitated the proliferation and motility whereas inhibited the apoptosis of PTC cells largely through mediating miR-26b-5p/MET/AKT signaling.
Collapse
Affiliation(s)
- Haibo Zheng
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfeng Fu
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Kaili Ma
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Shuai Shi
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Yantao Fu
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| |
Collapse
|
27
|
Li C, Zhu L, Fu L, Han M, Li Y, Meng Z, Qiu X. CircRNA NRIP1 promotes papillary thyroid carcinoma progression by sponging mir-195-5p and modulating the P38 MAPK and JAK/STAT pathways. Diagn Pathol 2021; 16:93. [PMID: 34689819 PMCID: PMC8543861 DOI: 10.1186/s13000-021-01153-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have become a hot topic in the area of tumor biology due to its closed structure and the post-transcriptional regulatory effect. This study aims to clarify the roles of circRNA nuclear receptor-interacting protein 1 (NRIP1; circNRIP1) and the possible mechanisms in papillary thyroid carcinoma (PTC). METHODS The real-time PCR was used to detect the expression level of CircRNA NRIP1 in PTC specimens and cell lines. The effects of CircRNA NRIP1 and miR-195-5p on the PTC cell functions were detected by MTT, transwell, and flow cytometry assays. Dual-luciferase reporter assays and pull down assays were used to verify the association between circRNA NRIP1 and miR-195-5p. The murine xenograft models were constructed to detect the roles of CircRNA NRIP1 and miR-195-5p. Western blot was applied to detect the effects of CircRNA NRIP1 and miR-195-5p on the P38 MAPK and JAK/STAT singling pathways. RESULTS CircRNA NRIP1 was over-expressed in PTC tissues and cells and the high levels of CircRNA NRIP1 were correlated with advanced PTC stage. Depletion of CircRNA NRIP1 inhibited PTC cell proliferation, invasion, while accelerated apoptosis. miR-195-5p upregulation repressed proliferation and invasion capabilities, and accelerated apoptosis of PTC cell lines and restraining the growth of tumor xenografts, while the functions were reversed following CircRNA NRIP1 overexpression in PTC cells and tumor xenografts. Besides, the protein levels of p-p38, p-JAK2 and p-STAT1 were remarkably down-regulated in miR-195-5p overexpressed PTC cells and tumor xenografts, whereas CircRNA NRIP1 up-regulation overturned the impacts. CONCLUSIONS In conclusion, CircRNA NRIP1 promoted PTC progression by accelerating PTC cells proliferation, invasion and tumor growth, while impeding apoptosis by way of sponging miR-195-5p and regulating the P38 MAPK and JAK/STAT pathways.
Collapse
Affiliation(s)
- Chuang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China
- Department of Thyroid and Neck, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Lijuan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lijun Fu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ya Li
- Institute for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450000, Zhengzhou, China
| | - Zhaozhong Meng
- Department of Thyroid and Neck, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China.
| |
Collapse
|
28
|
Li Y, Sun R, Li R, Chen Y, Du H. Prognostic Nomogram Based on Circular RNA-Associated Competing Endogenous RNA Network for Patients with Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9978206. [PMID: 34497684 PMCID: PMC8421160 DOI: 10.1155/2021/9978206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/14/2021] [Indexed: 11/29/2022]
Abstract
Evidence is increasingly indicating that circular RNAs (circRNAs) are closely involved in tumorigenesis and cancer progression. However, the function and application of circRNAs in lung adenocarcinoma (LUAD) are still unknown. In this study, we constructed a circRNA-associated competitive endogenous RNA (ceRNA) network to investigate the regulatory mechanism of LUAD procession and further constructed a prognostic signature to predict overall survival for LUAD patients. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were selected to construct the ceRNA network. Based on the TargetScan prediction tool and Pearson correlation coefficient, we constructed a circRNA-associated ceRNA network including 11 DEcircRNAs, 8 DEmiRNAs, and 49 DEmRNAs. GO and KEGG enrichment indicated that the ceRNA network might be involved in the regulation of GTPase activity and endothelial cell differentiation. After removing the discrete points, a PPI network containing 12 DEmRNAs was constructed. Univariate Cox regression analysis showed that three DEmRNAs were significantly associated with overall survival. Therefore, we constructed a three-gene prognostic signature for LUAD patients using the LASSO method in the TCGA-LUAD training cohort. By applying the signature, patients could be categorized into the high-risk or low-risk subgroups with significant survival differences (HR: 1.62, 95% CI: 1.12-2.35, log-rank p = 0.009). The prognostic performance was confirmed in an independent GEO cohort (GSE42127, HR: 2.59, 95% CI: 1.32-5.10, log-rank p = 0.004). Multivariate Cox regression analysis proved that the three-gene signature was an independent prognostic factor. Combining the three-gene signature with clinical characters, a nomogram was constructed. The primary and external verification C-indexes were 0.717 and 0.716, respectively. The calibration curves for the probability of 3- and 5-year OS showed significant agreement between nomogram predictions and actual observations. Our findings provided a deeper understanding of the circRNA-associated ceRNA regulatory mechanism in LUAD pathogenesis and further constructed a useful prognostic signature to guide personalized treatment of LUAD patients.
Collapse
Affiliation(s)
- Yang Li
- Department of Central Laboratory, Affiliated Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - Rongrong Sun
- Department of Medical Oncology, Affiliated Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - Rui Li
- Department of Central Laboratory, Affiliated Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - Yonggang Chen
- Department of Clinical Pharmacy, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - He Du
- Department of Medical Oncology, Affiliated Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| |
Collapse
|
29
|
Li X, Yang S, Zhao C, Yang J, Li C, Shen W, Hu H, Zhang W, Yang S. CircHACE1 functions as a competitive endogenous RNA to curb differentiated thyroid cancer progression by upregulating Tfcp2L1 through adsorbing miR-346. Endocr J 2021; 68:1011-1025. [PMID: 34092745 DOI: 10.1507/endocrj.ej20-0806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Circular RNAs (circRNAs) are correlated with the occurrence and progression of differentiated thyroid cancer (THCA). However, the regulatory mechanism of circRNAs in differentiated THCA is unclear. In the present study, we analyzed the circRNA microarray dataset (GSE93522) of thyroid tumors and discovered that circRNA HACE1 (circHACE1) was downregulated in differentiated THCA. We detected circHACE1 expression by quantitative real-time polymerase chain reaction (qRT-PCR). Gain-of-function experiments were performed to analyze the biological function of circHACE1 in differentiated THCA cells in vitro. The regulatory mechanism of circHACE1 in differentiated THCA was explored through bioinformatics analysis, dual-luciferase reporter, RIP (RNA immunoprecipitation), and/or RNA pull-down assays. The biological function of circHACE1 in THCA was confirmed by xenograft assay. We verified that circHACE1 was downregulated in differentiated THCA. Also, differentiated THCA patients with low circHACE1 expression were associated with TNM grade, lymphoid node metastasis, tumor size, and poor prognosis. CircHACE1 overexpression decreased xenograft tumor growth in vivo and induced cell cycle arrest, apoptosis, impeded proliferation, migration, and invasion in differentiated THCA cells in vitro. CircHACE1 could function as a microRNA (miR)-346 sponge and regulated Tfcp2L1 (transcription factor CP2 like 1) expression. MiR-346 overexpression offset circHACE1 elevation-mediated effects on malignant behaviors of differentiated THCA cells. Furthermore, Tfcp2L1 silencing counteracted the suppressive impact of miR-346 inhibitor on the malignancy of differentiated THCA cells. In conclusion, circHACE1 adsorbed miR-346 and elevated Tfcp2L1 expression, thus curbing cell malignancy in differentiated THCA, manifesting that circHACE1 might be a target for differentiated THCA treatment.
Collapse
Affiliation(s)
- Xiangyi Li
- Department of Endocrinology, Taizhou People's Hospital, Taizhou City, Jiangsu Province, China
| | - Song Yang
- Department of Oncology, Taizhou People's Hospital, Taizhou City, Jiangsu Province, China
| | - Chengyuan Zhao
- Department of Endocrinology, Taizhou People's Hospital, Taizhou City, Jiangsu Province, China
| | - Jie Yang
- Department of Endocrinology, Taizhou People's Hospital, Taizhou City, Jiangsu Province, China
| | - Chen Li
- Department of Stomatology, Taizhou People's Hospital, Taizhou City, Jiangsu Province, China
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital, Taizhou City, Jiangsu Province, China
| | - Haitao Hu
- Clinical Laboratory, Taizhou People's Hospital, Taizhou City, Jiangsu Province, China
| | - Wei Zhang
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou City, Jiangsu Province, China
| | - Shufang Yang
- Department of Endocrinology, Taizhou People's Hospital, Taizhou City, Jiangsu Province, China
| |
Collapse
|
30
|
Wu H, Liu Y, Duan H, Fan X, Wang Y, Song J, Han J, Yang M, Lu L, Nie G. Identification of differentially expressed circular RNAs in human nasopharyngeal carcinoma. Cancer Biomark 2021; 29:483-492. [PMID: 32865182 DOI: 10.3233/cbm-201731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are endogenous RNAs that have a covalent closed cycle configuration. circRNAs have been found to be differentially expressed in many human cancers. Therefore, circRNAs may be ideal biomarkers for the diagnosis and treatment of cancer. However, we know very little about the function of circRNAs in nasopharyngeal carcinoma (NPC). The purpose of this study was to evaluate the circRNA expression profiles in NPC. METHODS We utilized high-throughput RNA sequencing (RNA-Seq) to evaluate the circRNA expression profile in NPC A total of 13,561 unique circRNA candidates were detected. Selection of aberrantly expressed circRNAs was carried out using a q-value of < 0.001 with a fold change of > 2.0 or < 0.5. We carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses to identify the biological functions of differentially expressed circRNAs. Moreover, bioinformatics analyses were implemented to predict the effects between circRNAs and cancer-related microRNAs (miRNAs), and we used Cytoscape to build a cancer-related circRNA-miRNA target gene map. Finally, to verify dysregulated circRNAs, quantitative real-time PCR was utilized. RESULTS In NPC tissues, we found that 73 circRNAs were downregulated and 59 were upregulated. The top 12 candidate circRNAs were selected from several vital NPC pathways such as the human papillomavirus and Epstein-Barr virus infection signaling pathways (hsa05165 and hsa05169, respectively), Hepatitis B (hsa05161), and the Ras signaling pathway (hsa04014). A network map of circRNA-miRNA interactions of 12 differentially expressed circRNAs was built. Hsa_circ_0007637 expression distinguished NPC tissues from paired healthy tissues and NPC cell lines (HNE1 6-10B, 5-8F, CNE-2, and so on) from a normal epithelial (NP460) cell line. CONCLUSIONS In this study, we investigated the profiles of differentially expressed circRNAs in NPC, and our results show that hsa_circ_0007637 may be a biomarker for NPC and play a role in its development. This observation-based research identified dysregulated circRNAs in NPC, which may assist in the development of biomarkers for this disease. Further studies on the mechanisms and functions of these circRNAs may promote our understanding of NPC tumorigenesis.
Collapse
Affiliation(s)
- Hanwei Wu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China.,Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China.,Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China.,Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China.,Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China
| | - Hongfang Duan
- Department of Otolaryngology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.,Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China
| | - Xiaoqin Fan
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China.,Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China
| | - Yujie Wang
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China.,Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China
| | - Jian Song
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China.,Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China
| | - Jinghong Han
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China.,Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China
| | - Ming Yang
- Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Lu Lu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China
| | - Guohui Nie
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China.,Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
31
|
Shu L, Zhou C, Yuan X, Zhang J, Deng L. MSCFS: inferring circRNA functional similarity based on multiple data sources. BMC Bioinformatics 2021; 22:371. [PMID: 34271851 PMCID: PMC8285884 DOI: 10.1186/s12859-021-04287-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background More and more evidence shows that circRNA plays an important role in various biological processes and human health. Therefore, inferring the circRNA’s potential functions and obtaining circRNA functional similarity has become more and more significant. However, there is no effective approach to explore the functional similarity of circRNAs. Methods In this paper, we propose a new approach, called MSCFS, to calculate the functional similarity of circRNA by integrating multiple data sources. We combine circRNA-disease association, circRNA-gene-Gene Ontology association, and circRNA sequence information to explore the functional similarity of circRNA. Firstly, we employ different learning representation methods from three data sources to establish three circRNA functional similarity networks. Then we integrate the three networks to obtain the final circRNA functional similarity. Results We utilize circRNA–miRNA association similarity and circRNA co-expression similarity to evaluate the performance of MSCFS. The results show a positive correlation with miRNA association (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R=0.213$$\end{document}R=0.213) and circRNA co-expression similarity (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R=0.8991$$\end{document}R=0.8991). Finally, we construct a circRNA functional similarity network and perform case analysis. The result shows our method can be applied to infer new potential functions of circRNA and other associations. Conclusions MSCFS combines multiple data sources related to circRNA functions. Correlation analysis and case analyses prove that MSCFS is a useful method to explore circRNA functional similarity.
Collapse
Affiliation(s)
- Liang Shu
- School of Computer Science and Engineering, Central South University, Lushangnan Road, Changsha, China
| | - Cheng Zhou
- School of Computer Science and Engineering, Central South University, Lushangnan Road, Changsha, China
| | - Xinxu Yuan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jingpu Zhang
- School of Computer and Data Science, Henan University of Urban Construction, Longxiang Road, Pingdingshan, 467000, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Lushangnan Road, Changsha, China.
| |
Collapse
|
32
|
Liu Y, Chen G, Wang B, Wu H, Zhang Y, Ye H. Silencing circRNA protein kinase C iota (circ-PRKCI) suppresses cell progression and glycolysis of human papillary thyroid cancer through circ-PRKCI/miR-335/E2F3 ceRNA axis. Endocr J 2021; 68:713-727. [PMID: 33716239 DOI: 10.1507/endocrj.ej20-0726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The circular RNA PRKCI (circ-PRKCI; ID: hsa_circ_0122683) is highly expressed in human papillary thyroid cancer (PTC) tumors according to GSE93522 dataset. However, its role in PTC tumorigenesis remains to be documented. Here, quantitative real-time PCR showed that expression of circ-PRKCI was abnormally upregulated in human PTC patients' tumors and cells, and higher circ-PRKCI might predict lymph node metastasis and recurrence. Functionally, cell behaviors were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, colony formation assay, fluorescence-activated cell sorting method, scratch wound assay, transwell assay, western blotting, and assay kits for glucose and lactate. As a result, circ-PRKCI knockdown could suppress cell cycle progression of PTC cells and restrain the abilities of cell proliferation, colony formation, wound closure, invasion, glucose consumption and lactate production, accompanied with decreased levels of matrix metalloproteinase-2 (MMP2), MMP9 and Snail. Moreover, above-mentioned inhibition could be imitated by overexpressing microRNA-335-5p (miR-335). Molecularly, circ-PRKCI functioned as a sponge for miR-335 and miR-335 could further targeted E2F transcription factor-3 (E2F3), according to dual-luciferase reporter assay and RNA immunoprecipitation. However, downregulating miR-335 diminished the effects of circ-PRKCI role on cell growth, metastasis and glycolysis in PTC cells; besides, there was a counteractive effect between miR-335 upregulation and E2F3 upregulation in PTC cells as well. Furthermore, xenograft experiment revealed that silencing circ-PRKCI could retard tumor growth of PTC cells in vivo. Collectively, circ-PRKCI exerted oncogenic role in PTC by antagonizing cell progression and glycolysis via regulating miR-335/E2F3 axis, suggesting circ-PRKCI was a potential biomarker and target for PTC.
Collapse
Affiliation(s)
- Yan Liu
- Department of General Surgery, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Gen Chen
- Department of General Surgery, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Bo Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Hanjin Wu
- Department of General Surgery, The Affiliated Hospital Of Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Yi Zhang
- Department of General Surgery, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Hui Ye
- Department of General Surgery, The Affiliated Hospital Of Guizhou Medical University, Guiyang City, Guizhou Province, China
| |
Collapse
|
33
|
Guo M, Sun Y, Ding J, Li Y, Yang S, Zhao Y, Jin X, Li SS. Circular RNA profiling reveals a potential role of hsa_circ_IPCEF1 in papillary thyroid carcinoma. Mol Med Rep 2021; 24:603. [PMID: 34165176 PMCID: PMC8240180 DOI: 10.3892/mmr.2021.12241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/28/2021] [Indexed: 01/14/2023] Open
Abstract
Circular RNAs (circRNAs) are a novel type of non‑coding RNAs that are expressed across species and are implicated in cellular biological processes, displaying dysregulated expression in various tumorigeneses. Therefore, circRNA deregulation could be a crucial event in thyroid carcinoma. The present study identified circRNA signatures in several patients with papillary thyroid carcinoma (PTC) to complement the understanding of PTC pathogenesis. Using microarray technology, the circRNA profiles in three pairs of PTC tumors and matching adjacent normal tissues were screened. Differentially expressed circRNAs were further validated by reverse transcription‑quantitative PCR in whole blood from 57 pairs of subjects. Bioinformatics data analyses including miRNA response element prediction, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway, competing endogenous RNA and KEGG Orthology‑Based Annotation System analyses were performed to predict circRNA associations with cancer‑related putative downstream miRNAs and target genes. Receiver operating characteristic curves and the area under the curve (AUC) values were acquired to assess the performance of validated circRNAs in predicting potential associations with PTC. In total, 158 dysregulated circRNAs were identified in PTC tumors relative to adjacent normal tissues. Notably, one downregulated circRNA (hsa_circ_IPCEF1) showed the preferable predictive power (AUC=0.8010, P<0.0001) and interactions with four cancer‑related genes (CASR, CDC25B, NFκB1 and SHOC2). From these analyses, one PTC‑related miRNA (hsa‑miR‑3619‑5p) was identified as a potential target for hsa_circ_IPCEF1 sponging, indicating the hsa_circ_IPCEF1/hsa‑miR‑3619‑5p axis in pathogenesis.
Collapse
Affiliation(s)
- Min Guo
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yushuang Sun
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Junzhu Ding
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yong Li
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Sihan Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanna Zhao
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
34
|
Ding W, Shi Y, Zhang H. Circular RNA circNEURL4 inhibits cell proliferation and invasion of papillary thyroid carcinoma by sponging miR-1278 and regulating LATS1 expression. Am J Transl Res 2021; 13:5911-5927. [PMID: 34306334 PMCID: PMC8290797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 06/13/2023]
Abstract
Circular RNAs (circRNA) are found to be closely associated with cancers as their possibility as "sponges" to miRNAs, thus liberating the downstream target mRNA. However, deep research is still needed to study the function of circRNA in papillary thyroid carcinoma (PTC). Here, we sought to explore new circRNA which could play an important role in the development of PTC. We filtered candidate circRNAs based on microarray data from public database and verified the result using qRT-PCR. We performed CCK8 assay, colony formation assay, apoptosis assay, transwell assays, and xenograft experiments to explore the function of selected circRNA on PTC. We predicted the miRNA targets of the circRNA and the target gene of miRNA through bioinformatic analysis and validated the target by mutant experiments. And by the use of overexpression experiments, knockdown experiments, and the functional assays mentioned above, we figured out the pathway behind the selected circRNA. Based on our data, we found that circNEURL4 was significantly decreased in the PTC samples and lower expression of circNEURL4 was closely associated with a poor prognosis of patients with PTC. Then, we proved that circNEURL4 could inhibit cell proliferation and invasion of PTC in vivo and in vitro. Furthermore, we demonstrated that circNEURL4 may binding to miR-1278 and thus indirectly improving the expression of LATS1. Our findings revealed that circNEURL4 may probably serve as a diagnostic marker to predict PTC patients' prognosis and a possible therapeutic target to PTC via miR-1278/LATS1 axis.
Collapse
Affiliation(s)
- Wei Ding
- Department of Thyroid Surgery, The Second Hospital of Jilin University Changchun, Jilin Province, China
| | - Ying Shi
- Department of Thyroid Surgery, The Second Hospital of Jilin University Changchun, Jilin Province, China
| | - Hong Zhang
- Department of Thyroid Surgery, The Second Hospital of Jilin University Changchun, Jilin Province, China
| |
Collapse
|
35
|
Ma J, Kan Z. Circular RNA circ_0008274 enhances the malignant progression of papillary thyroid carcinoma via modulating solute carrier family 7 member 11 by sponging miR-154-3p. Endocr J 2021; 68:543-552. [PMID: 33473055 DOI: 10.1507/endocrj.ej20-0453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
CircRNAs have been implicated in the progression of human cancers, including papillary thyroid carcinoma (PTC). Although circ_0008274 has been demonstrated as a potential oncogenic circRNA in PTC, our understanding of its molecular determinants is limited. The levels of circ_0008274, miR-154-3p and solute carrier family 7 member 11 (SLC7A11) mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR). SLC7A11 protein level was assessed by western blot. Cell apoptosis, migration, and adhesion capacities were examined by flow cytometry, transwell and cell adhesion assays, respectively. The targeted correlations among circ_0008274, miR-154-3p and SLC7A11 were confirmed by a dual-luciferase reporter assay. Animal studies were performed to observe the role of circ_0008274 in tumor growth in vivo. Our data showed that the high levels of circ_0008274 and SLC7A11 were associated with poor prognosis of PTC patients. The knockdown of circ_0008274 or SLC7A11 enhanced PTC cell apoptosis and repressed cell migration and adhesion in vitro. Circ_0008274 knockdown suppressed tumor growth in vivo. Mechanistically, circ_0008274 modulated SLC7A11 expression by acting as a sponge of miR-154-3p. SLC7A11 was a functional mediator of circ_0008274 in regulating PTC cell apoptosis, migration and adhesion in vitro, and miR-154-3p overexpression repressed PTC progression in vitro by targeting SLC7A11. Our findings identified that the knockdown of circ_0008274 repressed PTC malignant progression at least in part through regulating the miR-154-3p/SLC7A11 axis, providing a promising therapeutic opportunity for PTC treatment.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Endocrinology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Zhenghua Kan
- Department of Rehabilitation Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| |
Collapse
|
36
|
Li X, Jiang W, Zhong Y, Wu L, Sun G, Wang H, Tao J, Li Z. Advances of circular RNAs in thyroid cancer: An overview. Biomed Pharmacother 2021; 140:111706. [PMID: 34004512 DOI: 10.1016/j.biopha.2021.111706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Circular RNA (circRNA) is a general term for a type of single-stranded RNAs, they are primarily generated via exon back-splice process in precursor mRNAs (pre-mRNAs). circRNAs refer to an emerging type of endogeneity-correlated closed molecules of RNA in a covalent manner. They mainly function as microRNA sponges, protein brackets, and regulatory element in transcription and splicing process. Recently, it has also starting been noticed that they serve as extraordinary models involved in polypeptides producing process. Although circRNAs have been extensively studied, their function in thyroid carcinoma is still lacking. Thus, we present the latest advances in circRNA research and summarize their fundamental rules of regulating process as well as the mechanism. More importantly, We mainly review the role and mechanism of circRNA in thyroid cancer, which provides an emerging perspective and theoretically supports the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Jiang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Zhong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jing Tao
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Pettenkoferstraße 8a, 80336, Munich, Germany.
| |
Collapse
|
37
|
Ding H, Wang X, Liu H, Na L. Higher circular RNA_0015278 correlates with absence of extrathyroidal invasion, lower pathological tumor stages, and prolonged disease-free survival in papillary thyroid carcinoma patients. J Clin Lab Anal 2021; 35:e23819. [PMID: 33969549 PMCID: PMC8275007 DOI: 10.1002/jcla.23819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 02/03/2023] Open
Abstract
Background Circular RNA_0015278 (circ_0015278) inhibits the progression of several cancers and is greatly reduced in papillary thyroid carcinoma (PTC) tissues compared with benign thyroid lesions by microarray profiling. This study aimed to further investigate the correlation of circ_0015278 with tumor characteristics and prognosis in PTC patients. Methods Totally, 206 PTC patients who underwent tumor resection were retrospectively enrolled; subsequently, circ_0015278 expression in their tumor and adjacent tissues was detected by reverse transcriptional‐quantitative polymerase chain reaction. Besides, disease‐free survival (DFS) and overall survival (OS) were calculated. Results Circ_0015278 was reduced in tumor tissues compared with adjacent tissues (p < 0.001), and receiver operating characteristic analysis showed that it well discriminated tumor tissues from adjacent tissues (area under curve: 0.903, 95% confidence interval: 0.874–0.932). Besides, higher tumor circ_0015278 expression was correlated with absence of extrathyroidal invasion (p = 0.036), lower pathological tumor (pT) stage (p = 0.05), pathological node (pN) stage (p = 0.002), and pathological tumor‐node‐metastasis (pTNM) stage (p = 0.001). Moreover, higher tumor circ_0015278 expression was associated with a reduced relapse rate (p = 0.011), but not mortality rate (p = 0.110); meanwhile, it was also correlated with prolonged DFS (p = 0.017), but not OS (p = 0.136). Additionally, multivariate Cox's regression analyses showed that higher tumor circ_0015278 expression independently associated with favorable DFS (p = 0.026, hazard ratio = 0.529). Conclusion Circ_0015278 is reduced in tumor tissues, while its’ higher expression in tumor correlates with absence of extrathyroidal invasion, lower pT, pN, and pTNM stage, as well as prolonged DFS in PTC patients.
Collapse
Affiliation(s)
- Huajie Ding
- Department of Ultrasound, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Xiaojie Wang
- Department of Laboratory, Cheng De Medical College, Chengde, China
| | - Huiling Liu
- Department of Ultrasound, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Lei Na
- Department of Emergency, Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
38
|
Xia F, Zhang Z, Li X. Emerging Roles of Circular RNAs in Thyroid Cancer. Front Cell Dev Biol 2021; 9:636838. [PMID: 33981702 PMCID: PMC8107370 DOI: 10.3389/fcell.2021.636838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
Thyroid cancer (TC) has the highest incidence among endocrine malignancies. Thus, it is essential to achieve a deep understanding of various mechanisms of development and progression of TC. circRNAs are recognized by multiple studies as being dysregulated in TC. Accumulating evidences have revealed that circRNAs serve as regulatory molecules involved in various biological processes in TC, including cell proliferation, apoptosis, invasion/migration, metabolism, and chemoresistance. Furthermore, circRNA can also serve as an effective tool in TC researches of diagnosis, prognosis, and treatments. Thus, this review is to outline the characteristics of circRNAs, generalize their categories and functions, and highlight the expression of circRNAs in TC. Meanwhile, we are expecting to achieve a comprehensive understanding of new therapies based on circRNAs in treating or preventing TC.
Collapse
Affiliation(s)
- Fada Xia
- Department of Thyroid Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Zhang
- Department of Thyroid Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of Thyroid Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Zhang Y, Jia DD, Zhang YF, Cheng MD, Zhu WX, Li PF, Zhang YF. The emerging function and clinical significance of circRNAs in Thyroid Cancer and Autoimmune Thyroid Diseases. Int J Biol Sci 2021; 17:1731-1741. [PMID: 33994857 PMCID: PMC8120456 DOI: 10.7150/ijbs.55381] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer (TC) is one of the most common malignant tumors, with high morbidity and mortality rates worldwide. The incidence of TC, especially that of papillary thyroid carcinoma (PTC); has increased rapidly in recent decades. Autoimmune thyroid disease (AITD) is closely related to TC and has an estimated prevalence of 5%. Thus, it is becoming increasingly important to identify potential diagnostic biomarkers and therapeutic targets for TC and AITD. Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently bonded circular structures that lack 5'-3' polarity and polyadenylated tails. Several circRNAs play crucial roles in the development of various diseases, including TC and AITD, and could be important new biomarkers and/or targets for the diagnosis and therapy of such disorders. Although there are four subtypes of TC, research on circRNA has largely focused on its connection to PTC. Therefore, this review mainly summarizes the relationships between circRNAs and PTC and AITD, including the molecular mechanisms underlying these relationships. In particular, the functions of “miRNA sponges” and their interactions with proteins and RNA are discussed. The possible targeting of circRNAs for the prevention, diagnosis, and treatment of TC and AITD is also described. CircRNAs could be potential biomarkers of TC and AITD, although validation will be required before they can be implemented in clinical practice.
Collapse
Affiliation(s)
- Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Meng-Die Cheng
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China. Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Wen-Xiu Zhu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China. Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| |
Collapse
|
40
|
Zhu J, Wang Y, Yang C, Feng Z, Huang Y, Liu P, Chen F, Deng Z. circ-PSD3 promoted proliferation and invasion of papillary thyroid cancer cells via regulating the miR-7-5p/METTL7B axis. J Recept Signal Transduct Res 2021; 42:251-260. [PMID: 33858297 DOI: 10.1080/10799893.2021.1910706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Papillary thyroid cancer (PTC) is a common tumor malignancy of the endocrine system worldwide. Recently, circular RNAs (circRNAs) have been reported to participate in diverse pathological processes, especially in tumorigenesis. However, the functional role and mechanism of circRNA pleckstrin and Sec7 domain containing 3 (circ-PSD3) in PTC are still unclear. In this study, qRT-PCR results showed that circ-PSD3 was significantly upregulated in PTC tissues and cell lines. Meanwhile, circ-PSD3 overexpression was positively associated with larger tumor size, TNM stage, and lymph node metastasis. Knockdown of circ-PSD3 suppressed the proliferation and invasion of PTC cells. Besides, circ-PSD3 interacted with miR-7-5p to reduce its expression, and methyltransferase like 7B (METTL7B) was verified as a target gene of miR-7-5p. Functionally, inhibition of circ-PSD3 impeded PTC cell proliferation and invasion via targeting miR-7-5p to downregulate METTL7B expression. Taken together, silencing of circ-PSD3 hampered the proliferation and invasion of PTC cells via upregulating the inhibitory effect of miR-7-5p on METTL7B expression. Therefore, circ-PSD3 could be a potential diagnostic biomarker or molecular treatment target for PTC.
Collapse
Affiliation(s)
- Jialun Zhu
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, People's Republic of China
| | - Yongbin Wang
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, People's Republic of China
| | - Chuanzhou Yang
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, People's Republic of China
| | - Zhiping Feng
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, People's Republic of China
| | - Yanni Huang
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, People's Republic of China
| | - Pengjie Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, People's Republic of China
| | - Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, People's Republic of China
| | - Zhiyong Deng
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, People's Republic of China
| |
Collapse
|
41
|
Testicular orphan receptor 4 (TR4) promotes papillary thyroid cancer invasion via activating circ-FNLA/miR-149-5p/MMP9 signaling. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:755-767. [PMID: 33996257 PMCID: PMC8094593 DOI: 10.1016/j.omtn.2021.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The incidence and mortality of papillary thyroid cancer (PTC) have steadily increased. Although conventional therapies are very effective toward differentiated PTC patients, very limited therapeutic options are applicable to those patients with distant metastases. Therefore, better understanding of the molecular biology of metastatic PTC helps identify novel targets and facilitates the development of new therapies. In this study, we first found that testicular orphan receptor 4 (TR4) was significantly increased in PTC tumors spreading to lymph nodes compared to the paired primary tumors. Experimental evidence suggested that TR4 drove PTC progression via promoting its cell invasion and cell migration. Mechanistically, TR4 transcriptionally regulated the expression level of circ-filamin A (FLNA), which competed with matrix metalloproteinase 9 (MMP9) for microRNA (miR)-149-5p binding and led to an increased protein level of MMP9. Interruption assays with various gene manipulations verified that the TR4/circ-FLNA/miR-149-5p/MMP9 signaling axis played a central role in cell invasion and cell migration of PTC cells. Moreover, a xenografted mouse model also confirmed that the TR4/circ-FLNA signal promoted PTC tumor growth. Overall, our study pinpoints the oncogenic role of TR4 in PTC development, and the targeting of TR4/circ-FLNA/miR-149-5p/MMP9 signaling may be an alternative option for metastatic PTC patients.
Collapse
|
42
|
Cheng Z, Liu G, Huang C, Zhao X. Upregulation of circRNA_100395 sponges miR-142-3p to inhibit gastric cancer progression by targeting the PI3K/AKT axis. Oncol Lett 2021; 21:419. [PMID: 33841580 PMCID: PMC8020390 DOI: 10.3892/ol.2021.12680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) has a high morbidity and mortality, hence it is very important to elucidate the molecular pathogenesis mechanism of GC progression in order to find new treatment strategies. The present study aimed to explore the biological function of circular RNA_100395 (circRNA_100395) in GC. The expression level of circRNA_100395 in GC tissues, as well as normal epithelial cells and various gastric cancer cell lines, was detected using reverse transcription-quantitative PCR. Cell Counting Kit-8, EdU assay, flow cytometry and Transwell assays were performed to investigate cell proliferation, apoptosis, migration and invasion, respectively. A dual-luciferase reporter assay was performed to detect the correlation between circRNA_100395 and micro (mi)RNA-142-3p. Western blotting was performed to elucidate the potential regulatory mechanism. circRNA_100395 expression was found to be increased in GC tissues and cell lines. However, miR-142-3p expression was significantly reduced. Besides, low expression levels of circRNA_100395 were associated with poor tumor differentiation, advanced Tumor-Node-Metastasis stage, lymph node metastasis and shorter overall survival time. Moreover, overexpression of circRNA_100395 suppressed cell proliferation, increased the apoptosis rate and suppressed cell invasion and migration by inhibiting the PI3K/AKT signaling pathway. These findings also showed that miRNA-142-3p rescued the antitumor effects induced by circRNA_100395-overexpression. cirRNA_100395-overexpression had antitumor effects via regulating the miR-142-3p signaling pathway, which might be a promising treatment target for GC.
Collapse
Affiliation(s)
- Zhiyi Cheng
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Guiyuan Liu
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Chuanjiang Huang
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaojun Zhao
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
43
|
Chen F, Yin S, Feng Z, Liu C, Lv J, Chen Y, Shen R, Wang J, Deng Z. Knockdown of circ_NEK6 Decreased 131I Resistance of Differentiated Thyroid Carcinoma via Regulating miR-370-3p/MYH9 Axis. Technol Cancer Res Treat 2021; 20:15330338211004950. [PMID: 33759638 PMCID: PMC8093613 DOI: 10.1177/15330338211004950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Radioresistance is a crucial factor for the failure of iodine 131
(131I)-based radiotherapy for differentiated thyroid carcinoma (DTC).
This study aimed to explore the effect of circ_NEK6 on the development of
131I resistance in DTC and its potential mechanism. In this
study, we demonstrated that circ_NEK6 expression was significantly elevated in
131I-resistant DTC tissues and cell lines. Knockdown of circ_NEK6
significantly repressed 131I resistance via inhibiting cell
proliferation, migration, invasion abilities, and inducing cell apoptosis and
DNA damage in 131I-resistant DTC cells. Mechanistically, knockdown of
circ_NEK6 suppressed 131I resistance in DTC by upregulating the
inhibitory effect of miR-370-3p on the expression of myosin heavy chain 9
(MYH9). In vivo experiments showed that circ_NEK6 inhibition
aggravated 131I radiation-induced inhibition of xenograft tumor
growth. Taken together, knockdown of circ_NEK6 repressed 131I
resistance in DTC cells by regulating the miR-370-3p/MYH9 axis, indicating that
circ_NEK6 may act as a potential biomarker and therapeutic target for DTC
patients with 131I resistance.
Collapse
Affiliation(s)
- Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Shuting Yin
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhiping Feng
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Chao Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Juan Lv
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yuanjiao Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Ruoxia Shen
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Jiaping Wang
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhiyong Deng
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| |
Collapse
|
44
|
Qi Y, He J, Zhang Y, Wang L, Yu Y, Yao B, Tian Z. Circular RNA hsa_circ_0001666 sponges miR‑330‑5p, miR‑193a‑5p and miR‑326, and promotes papillary thyroid carcinoma progression via upregulation of ETV4. Oncol Rep 2021; 45:50. [PMID: 33760216 PMCID: PMC7934216 DOI: 10.3892/or.2021.8001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of regulators that affect the aggressive behaviors of several types of cancer. Hsa_circ_0001666 (also referred to as hsa_circ_000742) is a newly discovered circRNA that is upregulated in human papillary thyroid carcinoma (PTC) based on microarray analysis. However, the role of hsa_circ_0001666 in PTC progression remains unknown. Thus, the aim of the present study was to determine the potential function and underlying mechanism of hsa_circ_0001666 in PTC. The results demonstrated that hsa_circ_0001666 was upregulated in both PTC clinical samples and cell lines. Its expression was associated with lymph node metastasis of patients with PTC. Knocking down hsa_circ_0001666 expression inhibited cell proliferation, as evidenced by decreased cell viability, arrest of cell cycle progression at the G1 phase and an increase in cell cycle-associated proteins. Apoptosis rates and expression levels of pro-apoptotic proteins were also increased by silencing hsa_circ_0001666. In xenograft experiments, the oncogenic effect of hsa_circ_0001666 on tumor growth was verified. Additionally, luciferase reporter assays showed that hsa_circ_0001666 and ETS variant transcription factor 4 (ETV4) shared common binding sites with three microRNAs [(miRNA/miR)-330-5p, miR-193a-5p and miR-326]. Knockdown of these miRNAs separately reversed the inhibitory effect of hsa_circ_0001666 small interfering RNAs on PTC tumor aggressiveness, and ETV4 overexpression also induced a similar effect to that of miRNA inhibitors. Thus, hsa_circ_0001666 may function as an oncogene, promoting PTC tumorigenesis via the miR-330-5p/miR-193a-5p/miR-326/ETV4 pathway. This provides a basis for identifying potential novel therapeutic targets for PTC.
Collapse
Affiliation(s)
- Ying Qi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Ying Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Yifan Yu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Baiyu Yao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Zhong Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|
45
|
Du G, Ma R, Li H, He J, Feng K, Niu D, Yin D. Increased Expression of hsa_circ_0002111 and Its Clinical Significance in Papillary Thyroid Cancer. Front Oncol 2021; 11:644011. [PMID: 33718243 PMCID: PMC7952861 DOI: 10.3389/fonc.2021.644011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/21/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNA (circRNA) is a newly discovered non-coding RNA. Recent reports suggest that circRNAs are key regulators of tumorigenesis because of their special structure. In order to investigate the role of hsa_circ_0002111 in papillary thyroid cancer (PTC), we use quantitative real-time polymerase chain reaction (qRT-PCR) to determine the expression pattern of hsa_circ_0002111 in 82 paired PTC and adjacent non-cancerous thyroid tissues. Cell counting kit-8, colony formation, and transwell assays were conducted to assess the effect of hsa_circ_0002111 on PTC cell proliferation, migration, and invasion. We found that the expression of hsa_circ_0002111 was significantly up-regulated in PTC tissues compared with adjacent non-cancerous tissues (P < 0.0001). Expression of hsa_circ_0002111 was also associated with advanced TNM stage and lymph-node metastasis of patients with PTC. The area under the receiver operating characteristic curve was 0.833. Further, cell function assays showed that hsa_circ_0002111 inhibition significantly suppressed the proliferation and invasion abilities of PTC cells in vitro. In conclusions, the study findings show that the over-expression of hsa_circ_0002111 promotes PTC, and thus hsa_circ_0002111 may be a potential diagnostic biomarker and therapeutic target for PTC.
Collapse
Affiliation(s)
- Gongbo Du
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Runsheng Ma
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongqiang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, China
| | - Jiao He
- Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, China
| | - Kaixiang Feng
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongpeng Niu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, China
| |
Collapse
|
46
|
Luo Q, Guo F, Fu Q, Sui G. hsa_circ_0001018 promotes papillary thyroid cancer by facilitating cell survival, invasion, G 1/S cell cycle progression, and repressing cell apoptosis via crosstalk with miR-338-3p and SOX4. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:591-609. [PMID: 33898108 PMCID: PMC8054110 DOI: 10.1016/j.omtn.2021.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/19/2021] [Indexed: 11/26/2022]
Abstract
We identified a novel interactome, circ_0001018/miR-338-3p/SOX4, in papillary thyroid cancer (PTC), and we intended to confirm the regulatory relationship between the three and to study the effects of the three in PTC. The bioinformatics method was used to screen out the circular RNA and mRNA of interest. A cellular fractionation assay and fluorescence in situ hybridization (FISH) assay were conducted to prove that circ_0001018 and CCT4 (the host gene of circ_0001018) mRNA primarily localized in the cytoplasm of PTC cell lines. By qRT-PCR analysis, the expression of circ_0001018 and SOX4 mRNA was found upregulated while the expression of miR-338-3p was found downregulated in PTC tissues and cells. circ_0001018 silence significantly inhibited the tumor growth in xenografted nude mice. A series of cytological experiments such as a Cell Counting Kit-8 (CCK-8) assay, a 5-ethynyl-2′-deoxyuridine (EdU) assay, cell cycle profiling, wound healing, a transwell assay, and cell apoptosis were conducted and showed that circ_0001018 and SOX4 promoted cell proliferation, migration, and invasion, inhibited cell apoptosis, and reduced the cell cycle arrest at the G1 phase in PTC cells. Compared with circ_0001018 and SOX4, miR-338-3p held the opposite function. The regulatory relationship between circ_0001018 and miR-338-3p, and between miR-338-3p and SOX4 mRNA, was validated using a luciferase reporter gene assay and/or RNA immunoprecipitation (RIP assay). Our findings showed that circ_0001018 acted as the tumor promoter via sponging miR-338-3p to elevate SOX4 expression level in PTC. Importantly, this novel circ_0001018/miR-338-3p/SOX4 axis has the potential to be considered as a therapy target for PTC.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| | - Feng Guo
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| | - Qingfeng Fu
- Jilin Provincial Key Laboratory of Surgical Translational Medicine, Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| | - Guoqing Sui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| |
Collapse
|
47
|
Wu M, Li S, Han J, Liu R, Yuan H, Xu X, Li X, Liu Z. Progression Risk Assessment of Post-surgical Papillary Thyroid Carcinoma Based on Circular RNA-Associated Competing Endogenous RNA Mechanisms. Front Cell Dev Biol 2021; 8:606327. [PMID: 33553144 PMCID: PMC7859334 DOI: 10.3389/fcell.2020.606327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Accurate risk assessment of post-surgical progression in papillary thyroid carcinoma (PTC) patients is critical. Exploring key differentially expressed mRNAs (DE-mRNAs) regulated by differentially expressed circular RNAs (circRNAs) via the ceRNA mechanism could help establish a novel assessment tool. Methods: ceRNA network was established based on differentially expressed RNAs and correlation analysis. DE-mRNAs within the ceRNA network associated with progression-free interval (PFI) of PTC were identified to construct a prognostic ceRNA regulatory subnetwork. least absolute shrinkage and selection operator (LASSO)-Cox regression was applied to identify hub DE-mRNAs and establish a novel DE-mRNA signature in predicting PFI of PTC. Results: Six hub DE-mRNAs, namely, CLCNKB, FXBO27, FXYD6, RIMS2, SPC24, and CDKN2A, were identified to be most significantly related to the PFI of PTC, and a prognostic DE-mRNA signature was proposed. A nomogram incorporating the DE-mRNA signature and clinical parameters was established to improve the progression risk assessment in post-surgical PTC, which was superior to the American Thyroid Association risk stratification system and distant Metastasis, patient Age, Completeness of resection, local Invasion, and tumor Size (MACIS) score American Joint Committee on Cancer staging system. Conclusions: Based on the circRNA-associated ceRNA RNA mechanism, a DE-mRNA signature and prognostic nomogram was established, which may improve the progression risk assessment in post-surgical PTC.
Collapse
Affiliation(s)
- Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuo Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashu Han
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MD Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongwei Yuan
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiequn Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobin Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
MALAT1 sponges miR-26a and miR-26b to regulate endothelial cell angiogenesis via PFKFB3-driven glycolysis in early-onset preeclampsia. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:897-907. [PMID: 33614238 PMCID: PMC7868745 DOI: 10.1016/j.omtn.2021.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022]
Abstract
6-phosphofructo-2-kinase (PFKFB3) is a crucial regulator of glycolysis that has been implicated in angiogenesis and the development of diverse diseases. However, the functional role and regulatory mechanism of PFKFB3 in early-onset preeclampsia (EOPE) remain to be elucidated. According to previous studies, noncoding RNAs play crucial roles in EOPE pathogenesis. The goal of this study was to investigate the functional roles and co-regulatory mechanisms of the metastasis-associated lung adenocarcinoma transcript-1 (MALAT1)/microRNA (miR)-26/PFKFB3 axis in EOPE. In our study, decreased MALAT1 and PFKFB3 expression in EOPE tissues correlates with endothelial cell (EC) dysfunction. The results of in vitro assays revealed that PFKFB3 regulates the proliferation, migration, and tube formation of ECs by modulating glycolysis. Furthermore, MALAT1 regulates PFKFB3 expression by sponging miR-26a/26b. Finally, MALAT1 knockout reduces EC angiogenesis by inhibiting PFKFB3-mediated glycolysis flux, which is ameliorated by PFKFB3 overexpression. In conclusion, decreased MALAT1 expression in EOPE tissues reduces the glycolysis of ECs in a PFKFB3-dependent manner by sponging miR-26a/26b and inhibits EC proliferation, migration, and tube formation, which may contribute to abnormal angiogenesis in EOPE. Thus, strategies targeting PFKFB3-driven glycolysis may be a promising approach for the treatment of EOPE.
Collapse
|
49
|
Deng L, Lin W, Wang J, Zhang J. DeepciRGO: functional prediction of circular RNAs through hierarchical deep neural networks using heterogeneous network features. BMC Bioinformatics 2020; 21:519. [PMID: 33183227 PMCID: PMC7659092 DOI: 10.1186/s12859-020-03748-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/11/2020] [Indexed: 12/28/2022] Open
Abstract
Background Circular RNAs (circRNAs) are special noncoding RNA molecules with closed loop structures. Compared with the traditional linear RNA, circRNA is more stable and not easily degraded. Many studies have shown that circRNAs are involved in the regulation of various diseases and cancers. Determining the functions of circRNAs in mammalian cells is of great significance for revealing their mechanism of action in physiological and pathological processes, diagnosis and treatment of diseases. However, determining the functions of circRNAs on a large scale is a challenging task because of the high experimental costs. Results In this paper, we present a hierarchical deep learning model, DeepciRGO, which can effectively predict gene ontology functions of circRNAs. We build a heterogeneous network containing circRNA co-expressions, protein–protein interactions and protein–circRNA interactions. The topology features of proteins and circRNAs are calculated using a novel representation learning approach HIN2Vec across the heterogeneous network. Then, a deep multi-label hierarchical classification model is trained with the topology features to predict the biological process function in the gene ontology for each circRNA. In particular, we manually curated a benchmark dataset containing 185 GO annotations for 62 circRNAs, namely, circRNA2GO-62. The DeepciRGO achieves promising performance on the circRNA2GO-62 dataset with a maximum F-measure of 0.412, a recall score of 0.400, and an accuracy of 0.425, which are significantly better than other state-of-the-art RNA function prediction methods. In addition, we demonstrate the considerable potential of integrating multiple interactions and association networks. Conclusions DeepciRGO will be a useful tool for accurately annotating circRNAs. The experimental results show that integrating multi-source data can help to improve the predictive performance of DeepciRGO. Moreover, The model also can combine RNA structure and sequence information to further optimize predictive performance.
Collapse
Affiliation(s)
- Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, 410075, China
| | - Wei Lin
- School of Computer Science and Engineering, Central South University, Changsha, 410075, China
| | - Jiacheng Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410075, China
| | - Jingpu Zhang
- School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan, 467000, China.
| |
Collapse
|
50
|
Li Z, Huang X, Liu A, Xu J, Lai J, Guan H, Ma J. Circ_PSD3 promotes the progression of papillary thyroid carcinoma via the miR-637/HEMGN axis. Life Sci 2020; 264:118622. [PMID: 33203523 DOI: 10.1016/j.lfs.2020.118622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
AIMS In the present study, we aimed to uncover the potential functions of circular RNA (circRNA) pleckstrin and Sec7 domain containing 3 (circ_PSD3) in papillary thyroid carcinoma (PTC) development. MAIN METHODS The abundance of circ_PSD3, PSD3 messenger RNA (mRNA), microRNA-637 (miR-637) and hemogen (HEMGN; EDAG-1) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Flow cytometry was employed to measure cell cycle progression and cell apoptosis. Western blot assay was used to examine protein expression. The proliferation ability and motility of PTC cells were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays, respectively. The interaction between miR-637 and circ_PSD3 or HEMGN was tested by dual-luciferase reporter assay. Animal experiments were used to explore the role of circ_PSD3 in PTC progression in vivo. KEY FINDINGS Circ_PSD3 was aberrantly up-regulated in PTC tumor tissues compared with adjacent normal tissues. Circ_PSD3 and HEMGN promoted the cell cycle progression, proliferation and metastasis and impeded the apoptosis of PTC cells. MiR-637 was a direct target of circ_PSD3, and miR-637 directly interacted with HEMGN mRNA in PTC cells. Circ_PSD3 silencing-induced effects in PTC cells were partly attenuated by the addition of anti-miR-637 or HEMGN overexpression plasmid. Circ_PSD3/miR-637/HEMGN regulated the activity of PI3K/Akt signal pathway in PTC cells. Circ_PSD3 silencing inhibited the tumor growth in vivo. SIGNIFICANCE Circ_PSD3 promoted the progression of PTC through regulating miR-637/HEMGN axis and activating PI3K/Akt signaling. Circ_PSD3/miR-637/HEMGN signaling axis might be a potential target for PTC therapy.
Collapse
Affiliation(s)
- Zongyu Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Huang
- Department of General Surgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Aru Liu
- Department of Respiratory Medicine, Xi'an Union Hospital, Xi'an, China
| | - Jinkai Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyue Lai
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Guan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|