1
|
Maridueña-Zavala MG, AbdElgawad H, Okla MK, Cevallos JM, Beemster GTS, Noceda C. Babaco Mosaic Virus (BabMV) Induces Genome-Wide Transcriptomic Reprogramming in Carica papaya. PHYSIOLOGIA PLANTARUM 2025; 177:e70270. [PMID: 40425527 DOI: 10.1111/ppl.70270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025]
Abstract
The recent emergence of Babacco Mosaic Virus (BabMV), a potexvirus known to infect Vasconcellea heilbornii (babaco), has raised concerns about its potential to infect papaya cultivars. To assess the impact of BabMV on papaya plants, we conducted a comprehensive genome-wide transcriptome analysis to evaluate the effect of the virus on gene expression and defense responses in Papaya (Carica papaya). Leaves from papaya plants of 3-4-month-old plants were examined at 2, 10, 15, and 30 days post-infection (dpi) with BabMV and compared to uninfected controls. In mock and virus-infected plants at 2 and 10 dpi, more than 90% of the RNAseq reads were mapped with the papaya genome. In contrast, at 15 and 30 dpi, only 31% mapped to the papaya genome in BabMV-infected leaves, while the remaining 69% of the reads aligned to the virus genome, demonstrating a high viral load. Overall, 1585 papaya genes were differentially expressed between mock and BabMV-inoculated leaves. At 2-10 dpi, early responses included increased expression of genes related to sugar metabolism and cell wall modification, including lignin synthesis. At 30 dpi, late responses included the induction of genes involved in reactive oxygen species (ROS) production and antioxidants, potentially via cytochrome P450 enzyme activation. This explained the upregulation of Mitogen-Activated Protein Kinases (MAPK3,18) and transcription factors including WRKY40,60,70 and Ethylene Response Factor 1 (ERF1), known to induce the expression of genes encoding pathogenesis-related proteins (PR1) and activating the plant defense mechanisms. This research enhances our understanding of BabMV infections, enabling the development of effective strategies for disease control.
Collapse
Affiliation(s)
- Maria Gabriela Maridueña-Zavala
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Antwerp, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Antwerp, Belgium
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Juan Manuel Cevallos
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Antwerp, Belgium
| | - Carlos Noceda
- BIOCEMP/Biotecnología Industrial, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de Las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
- Facultad de Ingeniería, Universidad Estatal de Milagro (UNEMI), Milagro, Guayas, Ecuador
- Non-Institutional Competence Focus (NICFocus) "Functional Cell Reprogramming and Organism Plasticity" (FunCROP), Coordinated From Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
2
|
Mikaberidze A, McDonald BA, Kronenberg L. A Genome-Wide Association Study Identifies Markers and Candidate Genes Affecting Tolerance to the Wheat Pathogen Zymoseptoria tritici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:265-274. [PMID: 40062942 DOI: 10.1094/mpmi-08-24-0085-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Plants defend themselves against pathogens using either resistance, measured as the host's ability to limit pathogen multiplication, or tolerance, measured as the host's ability to reduce the negative effects of infection. Tolerance is a promising trait for crop breeding, but its genetic basis has rarely been studied and remains poorly understood. Here, we reveal the genetic basis of leaf tolerance to the fungal pathogen Zymoseptoria tritici that causes the globally important septoria tritici blotch (STB) disease on wheat. Leaf tolerance to Z. tritici is a quantitative trait that was recently discovered in wheat by using automated image analyses that quantified the symptomatic leaf area and counted the number of pycnidia found on the same leaf. A genome-wide association study identified four chromosome intervals associated with tolerance and a separate chromosome interval associated with resistance. Within these intervals, we identified candidate genes, including wall-associated kinases similar to Stb6, the first cloned STB resistance gene. Our analysis revealed a strong negative genetic correlation between tolerance and resistance to STB, indicative of a trade-off. Such a trade-off between tolerance and resistance would hinder breeding simultaneously for both traits, but our findings suggest a way forward using marker-assisted breeding. We expect that the methods described here can be used to characterize tolerance to other fungal diseases that produce visible fruiting bodies, such as speckled leaf blotch on barley, potentially unveiling conserved tolerance mechanisms shared among plant species. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Alexey Mikaberidze
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, United Kingdom
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lukas Kronenberg
- Crop Genetics, The John Innes Centre, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
3
|
Shang K, Wang C, Wang X, Wang Y, Xu K, Zhou S, Liu H, Zhu X, Zhu C. Non-Specific Lipid Transfer Protein StLTP6 Promotes Virus Infection by Inhibiting Jasmonic Acid Signalling Pathway in Response to PVS TGB1. PLANT, CELL & ENVIRONMENT 2025; 48:2343-2356. [PMID: 39601376 DOI: 10.1111/pce.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Plant viruses rely on host factors for successful infection. Non-specific lipid transfer proteins (nsLTPs) play critical roles in plant-pathogen interactions; however, their functions and underlying molecular mechanisms in viral infections remain largely unknown. Jasmonic acid (JA) is a crucial regulatory hormone in the process of plant resistance to viral infection. In this study, we screened and verified that StLTP6, a previously identified pro-viral factor, interacts with the silencing suppressor triple gene block1 (TGB1) of potato virus S (PVS). The PVS TGB1 induces the expression of StLTP6, and both co-localize in the cytoplasm. Furthermore, StLTP6 interacts with allene oxide cyclase and inhibits its accumulation, thereby suppressing JA synthesis and attenuating RNA silencing antiviral resistance. In summary, we elucidated the molecular mechanism by which PVS TGB1 interacts with StLTP6 to facilitate PVS infection. These findings broaden our understanding of the biological roles of nsLTPs and provide a new antiviral target for potato research.
Collapse
Affiliation(s)
- Kaijie Shang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chenchen Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xipan Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yubo Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Kaihao Xu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shumei Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongmei Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Changxiang Zhu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
4
|
Wei J, Li Y, Chen X, Tan P, Muhammad T, Liang Y. Advances in understanding the interaction between Solanaceae NLR resistance proteins and the viral effector Avr. PLANT SIGNALING & BEHAVIOR 2024; 19:2382497. [PMID: 39312190 PMCID: PMC11421380 DOI: 10.1080/15592324.2024.2382497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of Solanaceae crops and the overall safety of horticultural produce. According to the "gene-for-gene" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.
Collapse
Affiliation(s)
- Jianming Wei
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiangru Chen
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ping Tan
- Field management station, Guiyang Agricultural Test Center, Guiyang, China
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Liu H, Wang D, Wang Z, Zhao T, Zhang J, Wang Y, Qiao H, Han Y. Identification of MAPK Genes in Phaseolus vulgaris and Analysis of Their Expression Patterns in Response to Anthracnose. Int J Mol Sci 2024; 25:13101. [PMID: 39684810 DOI: 10.3390/ijms252313101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The oil bean is a high-quality, economically valuable variety of kidney bean (Phaseolus vulgaris L.) that is widely cultivated in Northeast China. However, the prevalence of anthracnose, caused by a combination of factors, including continuous cropping over many years, has led to significant declines in both yield and quality. The mitogen-activated protein kinase (MAPK) cascade is a highly conserved plant cell signaling pathway that plays a pivotal role in plant growth and development, as well as responses to biotic stress. However, its role in the response of P. vulgaris to anthracnose infection has not previously been reported. We identified and characterized thirteen MAPK genes (PvMAPK01-PvMAPK13) in the P. vulgaris genome. These genes were found on eight of the eleven chromosomes of P. vulgaris, and phylogenetic analyses classified them into four previously established subgroups (A-D). Analysis of the cis-acting elements in their promoter regions revealed the presence of multiple elements associated with light, hormone regulation, stress responses, and growth and development. An analysis of intraspecific collinearity revealed that whole-genome and/or segmental duplication, rather than tandem duplication, has been the primary driver of PvMAPK family expansion in P. vulgaris. Transcriptome data revealed that the PvMAPKs differed in their tissue-specific expression patterns, with PvMAPK05 showing particularly high expression in stems and stem tips and PvMAPK07 and PvMAPK11 showing relatively low expression across all tissues. In general, expression of the PvMAPKs was higher in stems, stem tips, and pods than in other tissues and organs, suggesting that they may be particularly important for regulating stem and pod development. Analysis of the expression of PvMAPKs in field-grown plants infected or uninfected with anthracnose revealed that the relative expression levels of PvMAPK05, PvMAPK07, PvMAPK09, and PvMAPK11 exhibited particularly significant changes in response to anthracnose infection across different varieties, suggesting their potential involvement in the anthracnose response of Phaseolus vulgaris. This study reports the fundamental characteristics of the thirteen MAPK genes in P. vulgaris, documents their expression patterns in diverse tissues, and offers preliminary insights into their responses to anthracnose infection, establishing a foundation for subsequent functional validation.
Collapse
Affiliation(s)
- Huiling Liu
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Da Wang
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Zhenyu Wang
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Tong Zhao
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Jingying Zhang
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Yan Wang
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Qiao
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Yuzhu Han
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Silva-Valencia S, Prol FV, Rodrigo I, Lisón P, Belda-Palazón B. TOR Inhibition Enhances Autophagic Flux and Immune Response in Tomato Plants Against PSTVd Infection. PHYSIOLOGIA PLANTARUM 2024; 176:e14606. [PMID: 39544013 DOI: 10.1111/ppl.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
Viroids are small, non-coding RNA pathogens known for their ability to cause severe plant diseases. Despite their simple structure, viroids like Potato Spindle Tuber Viroid (PSTVd) can interfere with plant cellular processes, including transcriptional and post-transcriptional mechanisms, impacting plant growth and yield. In this study, we have investigated the role of the Target Of Rapamycin (TOR) signaling pathway in modulating viroid pathogenesis in tomato plants infected with PSTVd. Our findings reveal that PSTVd infection induces the accumulation of the selective autophagy receptor NBR1, potentially inhibiting autophagic flux. Pharmacological inhibition of TOR with AZD8055 mitigated PSTVd symptomatology by reducing viroid accumulation. Furthermore, TOR inhibition promoted the recovery of autophagic flux through NBR1. It primed the plant defense response, as evidenced by enhanced expression of the defense-related gene PR1b and S5H, a gene involved in the salicylic acid catabolism. These results suggest a novel role for TOR in regulating viroid-induced pathogenesis and highlight the potential of TOR inhibitors as tools for enhancing plant resistance against viroid infections.
Collapse
Affiliation(s)
- Samanta Silva-Valencia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
- Present address: Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
| | - Francisco Vázquez Prol
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
7
|
Gupta S, Kaur R, Upadhyay A, Chauhan A, Tripathi V. Unveiling the secrets of abiotic stress tolerance in plants through molecular and hormonal insights. 3 Biotech 2024; 14:252. [PMID: 39345964 PMCID: PMC11427653 DOI: 10.1007/s13205-024-04083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Phytohormones are signaling substances that control essential elements of growth, development, and reactions to environmental stress. Drought, salt, heat, cold, and floods are a few examples of abiotic factors that have a significant impact on plant development and survival. Complex sensing, signaling, and stress response systems are needed for adaptation and tolerance to such pressures. Abscisic acid (ABA) is a key phytohormone that regulates stress responses. It interacts with the jasmonic acid (JA) and salicylic acid (SA) signaling pathways to direct resources toward reducing the impacts of abiotic stressors rather than fighting against pathogens. Under exposure to nanoparticles, the plant growth hormones also function as molecules that regulate stress and are known to be involved in a variety of signaling cascades. Reactive oxygen species (ROS) are detected in excess while under stress, and nanoparticles can control their formation. Understanding the way these many signaling pathways interact in plants will tremendously help breeders create food crops that can survive in deteriorating environmental circumstances brought on by climate change and that can sustain or even improve crop production. Recent studies have demonstrated that phytohormones, such as the traditional auxins, cytokinins, ethylene, and gibberellins, as well as more recent members like brassinosteroids, jasmonates, and strigolactones, may prove to be significant metabolic engineering targets for creating crop plants that are resistant to abiotic stress. In this review, we address recent developments in current understanding regarding the way various plant hormones regulate plant responses to abiotic stress and highlight instances of hormonal communication between plants during abiotic stress signaling. We also discuss new insights into plant gene and growth regulation mechanisms during stress, phytohormone engineering, nanotechnological crosstalk of phytohormones, and Plant Growth-Promoting Rhizobacteria's Regulatory Powers (PGPR) via the involvement of phytohormones.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Anshu Upadhyay
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Arjun Chauhan
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand India
| |
Collapse
|
8
|
Li R, Tang Y, Wang Q, Zhao B, Su W, Wang B, Li Q. Inactivation of a Wheat Ribosomal Silencing Factor Gene TaRsfS Confers Resistance to Both Powdery Mildew and Stripe Rust. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39323023 DOI: 10.1111/pce.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Powdery mildew and stripe rust are major diseases on wheat worldwide that cause significant reductions in wheat production. The ribosomal silencing factor (RsfS) has been proven to regulate protein biosynthesis by inhibiting the translation process in bacterial response to stress. However, the role of RsfS in plant resistance to biotic stresses remains unclear. In this study, the RsfS homolog, TaRsfS was isolated from wheat. Overexpression of TaRsfS (TaRsfS-OE) reduces wheat resistance to powdery mildew and stripe rust and TaRsfS knockout (TaRsfS-KO) increases wheat resistance to both diseases without affecting key agronomic traits. The interaction protein of TaRsfS, 12-oxo-phytodienoic acid reductase 1 (TaOPR1), a key enzyme in the biosynthesis of jasmonic acid (JA), was screened and identified. Knocking-down and overexpression of TaOPR1 indicated that TaOPR1 positively regulates wheat resistance to powdery mildew and stripe rust. TaRsfS may regulate TaOPR1 at upstream, bind to the enzyme activity pocket of TaOPR1 and affect TaOPR1 enzyme activity, resulting in a reduced JA biosynthesis and wheat susceptible to powdery mildew and stripe rust. Collectively, TaRsfS is a susceptibility gene and negatively regulates wheat resistance to powdery mildew and stripe rust, and it has good potential for improving wheat resistance by genetic modifications.
Collapse
Affiliation(s)
- Ruobing Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaqi Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiao Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Bingjie Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenwen Su
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiang Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Wu KT, Spychalla P, Pereyra M, Liou M, Chen Y, Silva E, Gevens A. Impacts of a Commercially Available Horticultural Oil Biopesticide (EF-400) on the Tomato- Phytophthora infestans Pathosystem. PLANT DISEASE 2024; 108:1533-1543. [PMID: 38105459 DOI: 10.1094/pdis-12-22-2968-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biopesticide fungicides are naturally derived compounds that offer protection from plant diseases through various modes of action, including antimicrobial activity and upregulation of defense responses in host plants. These plant protectants provide a sustainable and safe alternative to conventional pesticides in integrated disease management programs and are especially salient in the management of high-risk and economically important diseases such as late blight of tomato and potato, for which host resistance options are limited. In this study, a commercially available biopesticide, EF400 comprised of clove (8.2%), rosemary (8.1%), and peppermint oils (6.7%) (Anjon AG, Corcoran, CA), was investigated for its effects on the Phytophthora infestans-tomato pathosystem. Specifically, we evaluated the impact of EF400 on P. infestans growth in culture, disease symptoms in planta, and activation of host defenses through monitoring transcript accumulation of defense-related genes. The application timing and use rate of EF400 were further investigated for managing tomato late blight. EF400 delayed the onset of tomato late blight symptoms, although not as effectively as the copper hydroxide fungicide Champ WG (Nufarm Americas Inc., Alsip, IL). Pathogen mycelial growth and sporangial quantity on late blight-susceptible tomato leaves were significantly reduced with EF400. The biopesticide also had an enhancing or suppressing effect on the transcript accumulation of three defense-related genes: Pin2, PR1a, and PR1b. Our work in exploring a commercially available horticultural oil biopesticide meaningfully contributed to the essential knowledge base for optimizing recommendations for the management of tomato late blight.
Collapse
Affiliation(s)
- Kuantin Tina Wu
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Pia Spychalla
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Matthew Pereyra
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Michael Liou
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706
| | - Yu Chen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Erin Silva
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Amanda Gevens
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
10
|
Roychowdhury R, Mishra S, Anand G, Dalal D, Gupta R, Kumar A, Gupta R. Decoding the molecular mechanism underlying salicylic acid (SA)-mediated plant immunity: an integrated overview from its biosynthesis to the mode of action. PHYSIOLOGIA PLANTARUM 2024; 176:e14399. [PMID: 38894599 DOI: 10.1111/ppl.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Salicylic acid (SA) is an important phytohormone, well-known for its regulatory role in shaping plant immune responses. In recent years, significant progress has been made in unravelling the molecular mechanisms underlying SA biosynthesis, perception, and downstream signalling cascades. Through the concerted efforts employing genetic, biochemical, and omics approaches, our understanding of SA-mediated defence responses has undergone remarkable expansion. In general, following SA biosynthesis through Avr effectors of the pathogens, newly synthesized SA undergoes various biochemical changes to achieve its active/inactive forms (e.g. methyl salicylate). The activated SA subsequently triggers signalling pathways associated with the perception of pathogen-derived signals, expression of defence genes, and induction of systemic acquired resistance (SAR) to tailor the intricate regulatory networks that coordinate plant immune responses. Nonetheless, the mechanistic understanding of SA-mediated plant immune regulation is currently limited because of its crosstalk with other signalling networks, which makes understanding this hormone signalling more challenging. This comprehensive review aims to provide an integrated overview of SA-mediated plant immunity, deriving current knowledge from diverse research outcomes. Through the integration of case studies, experimental evidence, and emerging trends, this review offers insights into the regulatory mechanisms governing SA-mediated immunity and signalling. Additionally, this review discusses the potential applications of SA-mediated defence strategies in crop improvement, disease management, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Sapna Mishra
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Debalika Dalal
- Department of Botany, Visva-Bharati Central University, Santiniketan, West Bengal, India
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, South Korea
| |
Collapse
|
11
|
Molitor C, Kurowski TJ, Fidalgo de Almeida PM, Kevei Z, Spindlow DJ, Chacko Kaitholil SR, Iheanyichi JU, Prasanna HC, Thompson AJ, Mohareb FR. A chromosome-level genome assembly of Solanum chilense, a tomato wild relative associated with resistance to salinity and drought. FRONTIERS IN PLANT SCIENCE 2024; 15:1342739. [PMID: 38525148 PMCID: PMC10957597 DOI: 10.3389/fpls.2024.1342739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 03/26/2024]
Abstract
Introduction Solanum chilense is a wild relative of tomato reported to exhibit resistance to biotic and abiotic stresses. There is potential to improve tomato cultivars via breeding with wild relatives, a process greatly accelerated by suitable genomic and genetic resources. Methods In this study we generated a high-quality, chromosome-level, de novo assembly for the S. chilense accession LA1972 using a hybrid assembly strategy with ~180 Gbp of Illumina short reads and ~50 Gbp long PacBio reads. Further scaffolding was performed using Bionano optical maps and 10x Chromium reads. Results The resulting sequences were arranged into 12 pseudomolecules using Hi-C sequencing. This resulted in a 901 Mbp assembly, with a completeness of 95%, as determined by Benchmarking with Universal Single-Copy Orthologs (BUSCO). Sequencing of RNA from multiple tissues resulting in ~219 Gbp of reads was used to annotate the genome assembly with an RNA-Seq guided gene prediction, and for a de novo transcriptome assembly. This chromosome-level, high-quality reference genome for S. chilense accession LA1972 will support future breeding efforts for more sustainable tomato production. Discussion Gene sequences related to drought and salt resistance were compared between S. chilense and S. lycopersicum to identify amino acid variations with high potential for functional impact. These variants were subsequently analysed in 84 resequenced tomato lines across 12 different related species to explore the variant distributions. We identified a set of 7 putative impactful amino acid variants some of which may also impact on fruit development for example the ethylene-responsive transcription factor WIN1 and ethylene-insensitive protein 2. These variants could be tested for their ability to confer functional phenotypes to cultivars that have lost these variants.
Collapse
Affiliation(s)
- Corentin Molitor
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Tomasz J. Kurowski
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | | | - Zoltan Kevei
- Soil, Agrifood and Biosciences, Cranfield University, Wharley End, United Kingdom
| | - Daniel J. Spindlow
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Steffimol R. Chacko Kaitholil
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Justice U. Iheanyichi
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - H. C. Prasanna
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bangalore, India
| | - Andrew J. Thompson
- Soil, Agrifood and Biosciences, Cranfield University, Wharley End, United Kingdom
| | - Fady R. Mohareb
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| |
Collapse
|
12
|
Ferguson ME, Eyles RP, Garcia-Oliveira AL, Kapinga F, Masumba EA, Amuge T, Bredeson JV, Rokhsar DS, Lyons JB, Shah T, Rounsley S, Mkamilo G. Candidate genes for field resistance to cassava brown streak disease revealed through the analysis of multiple data sources. FRONTIERS IN PLANT SCIENCE 2023; 14:1270963. [PMID: 38023930 PMCID: PMC10655247 DOI: 10.3389/fpls.2023.1270963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a food and industrial storage root crop with substantial potential to contribute to managing risk associated with climate change due to its inherent resilience and in providing a biodegradable option in manufacturing. In Africa, cassava production is challenged by two viral diseases, cassava brown streak disease (CBSD) and cassava mosaic disease. Here we detect quantitative trait loci (QTL) associated with CBSD in a biparental mapping population of a Tanzanian landrace, Nachinyaya and AR37-80, phenotyped in two locations over three years. The purpose was to use the information to ultimately facilitate either marker-assisted selection or adjust weightings in genomic selection to increase the efficiency of breeding. Results from this study were considered in relation to those from four other biparental populations, of similar genetic backgrounds, that were phenotyped and genotyped simultaneously. Further, we investigated the co-localization of QTL for CBSD resistance across populations and the genetic relationships of parents based on whole genome sequence information. Two QTL on chromosome 4 for resistance to CBSD foliar symptoms and one on each of chromosomes 11 and 18 for root necrosis were of interest. Of significance within the candidate genes underlying the QTL on chromosome 4 are Phenylalanine ammonia-lyase (PAL) and Cinnamoyl-CoA reductase (CCR) genes and three PEPR1-related kinases associated with the lignin pathway. In addition, a CCR gene was also underlying the root necrosis-resistant QTL on chromosome 11. Upregulation of key genes in the cassava lignification pathway from an earlier transcriptome study, including PAL and CCR, in a CBSD-resistant landrace compared to a susceptible landrace suggests a higher level of basal lignin deposition in the CBSD-resistant landrace. Earlier RNAscope® in situ hybridisation imaging experiments demonstrate that cassava brown streak virus (CBSV) is restricted to phloem vessels in CBSV-resistant varieties, and phloem unloading for replication in mesophyll cells is prevented. The results provide evidence for the involvement of the lignin pathway. In addition, five eukaryotic initiation factor (eIF) genes associated with plant virus resistance were found within the priority QTL regions.
Collapse
Affiliation(s)
- Morag E. Ferguson
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Rodney P. Eyles
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | - Fortunus Kapinga
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Cassava Breeding, Naliendele Agricultural Research Institute, Mtwara, Tanzania
| | - Esther A. Masumba
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Cassava Breeding, Sugarcane Research Institute, Kibaha, Tanzania
| | - Teddy Amuge
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Cassava Breeding, National Crops Resources Research Institute (NaCRRI), Namulonge, Uganda
| | - Jessen V. Bredeson
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
| | - Daniel S. Rokhsar
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
| | - Jessica B. Lyons
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
| | - Trushar Shah
- Bioinformatics, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Steve Rounsley
- Seeds & Traits R&D, Dow AgroSciences, Indianapolis, IN, United States
| | - Geoffrey Mkamilo
- Cassava Breeding, Naliendele Agricultural Research Institute, Mtwara, Tanzania
| |
Collapse
|
13
|
Huang X, Wei JM, Feng WZ, Luo Q, Tan GF, Li YZ. Interaction between SlMAPK3 and SlASR4 regulates drought resistance in tomato ( Solanum lycopersicum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:73. [PMID: 37795156 PMCID: PMC10545654 DOI: 10.1007/s11032-023-01418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
Tomato is a leading vegetable in modern agriculture, and with global warming, drought has become an important factor threatening tomato production. Mitogen-activated protein kinase 3 (MAPK3) plays an important role in plant disease and stress resistance. To clarify the downstream target proteins of SlMAPK3 and the mechanism of stress resistance in tomato, this study was conducted with the SlMAPK3-overexpressing lines OE-1 and OE-2 and the CRISPR/Cas9-mediated mutant lines slmapk3-1 and slmapk3-2 under PEG 6000-simulated drought. The results of yeast two-hybrid (Y2H), pull-down, and coimmunoprecipitation (Co-IP) assays confirmed that SlASR4 (NP_001269248.1) interacted with SlMAPK3. Analyses of the SlASR4 protein structure and SlASR4 expression under PEG 6000 and BTH stress revealed that SlASR4 has a highly conserved protein structural domain involved in the drought stress response under PEG 6000 treatment. The function of the SlASR4 and SlMAPK3 downstream target protein, in drought resistance in tomato plants, was identified by virus-induced gene silencing (VIGS). This study clarified that SlMAPK3 interacts with SlASR4 to positively regulate drought resistance in tomato plants.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Jian-Ming Wei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Wen-Zhuo Feng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Qing Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou China
| | - Yun-Zhou Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| |
Collapse
|
14
|
Zhang J, Ma M, Liu Y, Ismayil A. Plant Defense and Viral Counter-Defense during Plant-Geminivirus Interactions. Viruses 2023; 15:v15020510. [PMID: 36851725 PMCID: PMC9964946 DOI: 10.3390/v15020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Geminiviruses are the largest family of plant viruses that cause severe diseases and devastating yield losses of economically important crops worldwide. In response to geminivirus infection, plants have evolved ingenious defense mechanisms to diminish or eliminate invading viral pathogens. However, increasing evidence shows that geminiviruses can interfere with plant defense response and create a suitable cell environment by hijacking host plant machinery to achieve successful infections. In this review, we discuss recent findings about plant defense and viral counter-defense during plant-geminivirus interactions.
Collapse
Affiliation(s)
- Jianhang Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Mengyuan Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Asigul Ismayil
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
- Correspondence:
| |
Collapse
|
15
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
16
|
Huang X, Wei J, Wu D, Mi N, Fang S, Xiao Y, Li Y. Silencing of SlDRB1 gene reduces resistance to tomato yellow leaf curl virus (TYLCV) in tomato ( Solanum lycopersicum). PLANT SIGNALING & BEHAVIOR 2022; 17:2149942. [PMID: 36453197 PMCID: PMC9718546 DOI: 10.1080/15592324.2022.2149942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Double-stranded RNA-binding proteins are small molecules in the RNA interference (RNAi) pathway that form the RNAi machinery together with the Dicer-like protein (DCL) as a cofactor. This machinery cuts double-stranded RNA (dsRNA) to form multiple small interfering RNAs (siRNAs). Our goal was to clarify the function of DRB in tomato resistant to TYLCV. In this experiment, the expression of the SlDRB1 and SlDRB4 genes was analyzed in tomato leaves by qPCR, and the function of SlDRB1 and SlDRB4 in resistance to TYLCV was investigated by virus-induced gene silencing (VIGS). Then, peroxidase activity was determined. The results showed that the expression of SlDRB1 gradually increased after inoculation of 'dwarf tomato' plants with tomato yellow leaf curl virus (TYLCV), but this gene was suppressed after 28 days. Resistance to TYLCV was significantly weakened after silencing of the SlDRB1 gene. However, there were no significant expression differences in SlDRB4 after TYLCV inoculation. Our study showed that silencing SlDRB1 attenuated the ability of tomato plants to resist virus infection; therefore, SlDRB1 may play a key role in the defense against TYLCV in tomato plants, whereas SlDRB4 is likely not involved in this defense response. Taken together, These results suggest that the DRB gene is involved in the mechanism of antiviral activity.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jianming Wei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Dan Wu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Na Mi
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Sili Fang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Yao Xiao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Sun K, Zhang X, Wei Z, Wang Z, Liu J, Liu J, Gao J, Guo J, Zhao X. Analysis of metabolic and transcription levels provides insights into the interactions of plant hormones and crosstalk with MAPKs in the early signaling response of cherry tomato fruit induced by the yeast cell wall. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 6:100160. [PMID: 36619895 PMCID: PMC9816665 DOI: 10.1016/j.fochms.2022.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Yeast cell walls (YCW) are promising bio-based elicitors for controlling post-harvest fruit decay. In this study, 1% YCW induction increased the resistance of cherry tomato fruits, reducing disease incidence by 66%. This study aimed to explore the interaction of hormones and crosstalk with MAPKs (mitogen-activated protein kinases) in the early response of resistance regulation in cherry tomato fruits treated with YCW and U0126. We analyzed the temporal changes in hormone content, the expression of critical genes involved in phytohormone biosynthesis, and signal transduction in cherry tomato fruits response to the induction. Results revealed that jasmonic acid (JA) and brassinosteroids (BR) significantly regulated early resistance response in fruit induced by 1% YCW. The salicylic acid (SA) pathway is inhibited by the activation of the JA pathway. JA and SA signaling pathway crosstalk with the MAPK3 pathway. BR plays an essential role in the regulation of fruit resistance. The BR pathway may function independently when JA/SA and MAPK3 pathways are inhibited.
Collapse
Affiliation(s)
- Keyu Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xue Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ze Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ziwuzhen Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jian Liu
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China,Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi, Xinjiang 830011, China
| | - Jianhua Gao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Jun Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China,Corresponding authors.
| | - Xin Zhao
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China,Corresponding authors.
| |
Collapse
|
18
|
H. El-Sappah A, Qi S, A. Soaud S, Huang Q, M. Saleh A, A. S. Abourehab M, Wan L, Cheng GT, Liu J, Ihtisham M, Noor Z, Rouf Mir R, Zhao X, Yan K, Abbas M, Li J. Natural resistance of tomato plants to Tomato yellow leaf curl virus. FRONTIERS IN PLANT SCIENCE 2022; 13:1081549. [PMID: 36600922 PMCID: PMC9807178 DOI: 10.3389/fpls.2022.1081549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most harmful afflictions in the world that affects tomato growth and production. Six regular antagonistic genes (Ty-1, Ty-2, Ty-3, Ty-4, ty-5, and Ty-6) have been transferred from wild germplasms to commercial cultivars as TYLCV protections. With Ty-1 serving as an appropriate source of TYLCV resistance, only Ty-1, Ty-2, and Ty-3 displayed substantial levels of opposition in a few strains. It has been possible to clone three TYLCV opposition genes (Ty-1/Ty-3, Ty-2, and ty-5) that target three antiviral safety mechanisms. However, it significantly impacts obtaining permanent resistance to TYLCV, trying to maintain opposition whenever possible, and spreading opposition globally. Utilizing novel methods, such as using resistance genes and identifying new resistance resources, protects against TYLCV in tomato production. To facilitate the breeders make an informed decision and testing methods for TYLCV blockage, this study highlights the portrayal of typical obstruction genes, common opposition sources, and subatomic indicators. The main goal is to provide a fictitious starting point for the identification and application of resistance genes as well as the maturation of tomato varieties that are TYLCV-resistant.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shiming Qi
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, China
| | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Alaa M. Saleh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lingyun Wan
- Key Laboratory of Guangxi for High-quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guo-ting Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Jingyi Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Muhammad Ihtisham
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Zarqa Noor
- School of Chemical Engineering Beijing Institute of Technology, Beijing, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Xin Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
19
|
Wang P, Sun S, Liu K, Peng R, Li N, Hu B, Wang L, Wang H, Afzal AJ, Geng X. Physiological and transcriptomic analyses revealed gene networks involved in heightened resistance against tomato yellow leaf curl virus infection in salicylic acid and jasmonic acid treated tomato plants. Front Microbiol 2022; 13:970139. [PMID: 36187991 PMCID: PMC9515787 DOI: 10.3389/fmicb.2022.970139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus of the Geminiviridae family, causes leaf curl disease of tomato that significantly affects tomato production worldwide. SA (salicylic acid), JA (jasmonic acid) or the JA mimetic, COR (coronatine) applied exogenously resulted in improved tomato resistance against TYLCV infection. When compared to mock treated tomato leaves, pretreatment with the three compounds followed by TYCLV stem infiltration also caused a greater accumulation of H2O2. We employed RNA-Seq (RNA sequencing) to identify DEGs (differentially expressed genes) induced by SA, JA, COR pre-treatments after Agro-inoculation of TYLCV in tomato. To obtain functional information on these DEGs, we annotated genes using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. Based on our comparative analysis, differentially expressed genes related to cell wall metabolism, hormone signaling and secondary metabolism pathways were analyzed in compound treated samples. We also found that TYLCV levels were affected in SlNPR1 and SlCOI1 silenced plants. Interestingly, compared to the mock treated samples, SA signaling was hyper-activated in SlCOI1 silenced plants which resulted in a significant reduction in viral titer, whereas in SINPR1 silencing tomato plants, there was a 19-fold increase in viral load. Our results indicated that SA, JA, and COR had multiple impacts on defense modulation at the early stage of TYLCV infection. These results will help us better understand SA and JA induced defenses against viral invasion and provide a theoretical basis for breeding viral resistance into commercial tomato accessions.
Collapse
Affiliation(s)
- Peng Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- *Correspondence: Sheng Sun,
| | - Kerang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Peng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Na Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Bo Hu
- Institute of Quality and Safety Testing Center for Agro-Products, Xining, Qinghai, China
| | - Lumei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hehe Wang
- Edisto Research and Education Center, Clemson University, Blackville, SC, United States
| | - Ahmed Jawaad Afzal
- Division of Science, New York University, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Xueqing Geng,
| |
Collapse
|
20
|
Que Y, Huang D, Gong S, Zhang X, Yuan B, Xue M, Shi W, Zeng F, Liu M, Chen T, Yu D, Yan X, Wang Z, Yang L, Xiang L. Indole-3-Carboxylic Acid From the Endophytic Fungus Lasiodiplodia pseudotheobromae LPS-1 as a Synergist Enhancing the Antagonism of Jasmonic Acid Against Blumeria graminis on Wheat. Front Cell Infect Microbiol 2022; 12:898500. [PMID: 35860382 PMCID: PMC9289256 DOI: 10.3389/fcimb.2022.898500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of natural bioactive compounds from endophytes or medicinal plants against plant diseases is an attractive option for reducing the use of chemical fungicides. In this study, three compounds, indole-3-carbaldehyde, indole-3-carboxylic acid (3-ICA), and jasmonic acid (JA), were isolated from the EtOAc extract of the culture filtrate of the endophytic fungus Lasiodiplodia pseudotheobromae LPS-1, which was previously isolated from the medicinal plant, Ilex cornuta. Some experiments were conducted to further determine the antifungal activity of these compounds on wheat powdery mildew. The results showed that JA was much more bioactive than indole-3-carbaldehyde and 3-ICA against Blumeria graminis, and the disease severity caused by B. graminis decreased significantly with the concentration increase of JA treatment. The assay of the interaction of 3-ICA and JA indicated that there was a significant synergistic effect between the two compounds on B. graminis in each of the ratios of 3-ICA to JA (3-ICA:JA) ranging from 1:9 to 9:1. When the compound ratio of 3-ICA to JA was 2:8, the synergistic coefficient was the highest as 22.95. Meanwhile, a histological investigation indicated that, under the treatment of JA at 500 μg/ml or 3-ICA:JA (2:8) at 40 μg/ml, the appressorium development and haustorium formation of B. graminis were significantly inhibited. Taken together, we concluded that JA plays an important role in the infection process of B. graminis and that 3-ICA as a synergist of JA enhances the antagonism against wheat powdery mildew.
Collapse
Affiliation(s)
- Yawei Que
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Donghai Huang
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Shuangjun Gong
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xuejiang Zhang
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bin Yuan
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Minfeng Xue
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenqi Shi
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fansong Zeng
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Meilin Liu
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tingting Chen
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dazhao Yu
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xia Yan
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Zhengyi Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lijun Yang
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Libo Xiang, ; Lijun Yang,
| | - Libo Xiang
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Libo Xiang, ; Lijun Yang,
| |
Collapse
|
21
|
Marash I, Leibman‐Markus M, Gupta R, Avni A, Bar M. TOR inhibition primes immunity and pathogen resistance in tomato in a salicylic acid-dependent manner. MOLECULAR PLANT PATHOLOGY 2022; 23:1035-1047. [PMID: 35441436 PMCID: PMC9190978 DOI: 10.1111/mpp.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
All organisms need to sense and process information about the availability of nutrients, energy status, and environmental cues to determine the best time for growth and development. The conserved target of rapamycin (TOR) protein kinase has a central role in sensing and perceiving nutritional information. TOR connects environmental information about nutrient availability to developmental and metabolic processes to maintain cellular homeostasis. Under favourable energy conditions, TOR is activated and promotes anabolic processes such as cell division, while suppressing catabolic processes. Conversely, when nutrients are limited or environmental stresses are present, TOR is inactivated, and catabolic processes are promoted. Given the central role of TOR in regulating metabolism, several previous works have examined whether TOR is wired to plant defence. To date, the mechanisms by which TOR influences plant defence are not entirely clear. Here, we addressed this question by testing the effect of inhibiting TOR on immunity and pathogen resistance in tomato. Examining which hormonal defence pathways are influenced by TOR, we show that tomato immune responses and disease resistance to several pathogens increase on TOR inhibition, and that TOR inhibition-mediated resistance probably requires a functional salicylic acid, but not jasmonic acid, pathway. Our results support the notion that TOR is a master regulator of the development-defence switch in plants.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
- School of Plant Science and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Meirav Leibman‐Markus
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| | - Rupali Gupta
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| | - Adi Avni
- School of Plant Science and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Maya Bar
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| |
Collapse
|
22
|
Chaudhuri A, Halder K, Datta A. Classification of CRISPR/Cas system and its application in tomato breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:367-387. [PMID: 34973111 PMCID: PMC8866350 DOI: 10.1007/s00122-021-03984-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/21/2021] [Indexed: 05/03/2023]
Abstract
Remarkable diversity in the domain of genome loci architecture, structure of effector complex, array of protein composition, mechanisms of adaptation along with difference in pre-crRNA processing and interference have led to a vast scope of detailed classification in bacterial and archaeal CRISPR/Cas systems, their intrinsic weapon of adaptive immunity. Two classes: Class 1 and Class 2, several types and subtypes have been identified so far. While the evolution of the effector complexes of Class 2 is assigned solely to mobile genetic elements, the origin of Class 1 effector molecules is still in a haze. Majority of the types target DNA except type VI, which have been found to target RNA exclusively. Cas9, the single effector protein, has been the primary focus of CRISPR-mediated genome editing revolution and is an integral part of Class 2 (type II) system. The present review focuses on the different CRISPR types in depth and the application of CRISPR/Cas9 for epigenome modification, targeted base editing and improving traits such as abiotic and biotic stress tolerance, yield and nutritional aspects of tomato breeding.
Collapse
Affiliation(s)
- Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067 India
| | - Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067 India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067 India
| |
Collapse
|
23
|
Gupta K, Rishishwar R, Dasgupta I. The interplay of plant hormonal pathways and geminiviral proteins: partners in disease development. Virus Genes 2022; 58:1-14. [PMID: 35034268 DOI: 10.1007/s11262-021-01881-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Viruses belonging to the family Geminiviridae infect plants and are responsible for a number of diseases of crops in the tropical and sub-tropical regions of the World. The innate immune response of the plant assists in its defense against such viral pathogens by the recognition of pathogen/microbe-associated molecular patterns through pattern-recognition receptors. Phytohormone signalling pathways play a vital role in plant defense responses against these devastating viruses. Geminiviruses, however, have developed counter-defense strategies that prevail over the above defense pathways. The proteins encoded by geminiviruses act as suppressors of plant immunity by interacting with the signalling components of several hormones. In this review we focus on the molecular interplay of phytohormone pathways and geminiviral infection and try to find interesting parallels with similar mechanisms known in other plant-infecting viruses and strengthen the argument that this interplay is necessary for disease development.
Collapse
Affiliation(s)
- Kanika Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, -110021, India
| | - Rashmi Rishishwar
- Department of Botany, Bhagat Singh Government P.G. College, Jaora, Ratlam, Madhya Pradesh, 457226, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, -110021, India.
| |
Collapse
|
24
|
Zhang Q, Feng YX, Tian P, Lin YJ, Yu XZ. Proline-mediated regulation on jasmonate signals repressed anthocyanin accumulation through the MYB-bHLH-WDR complex in rice under chromium exposure. FRONTIERS IN PLANT SCIENCE 2022; 13:953398. [PMID: 35982692 PMCID: PMC9379311 DOI: 10.3389/fpls.2022.953398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/04/2022] [Indexed: 05/04/2023]
Abstract
Toxic metal-induced overaccumulation of anthocyanin (ATH) in plants can oxidize proteins and break DNA. Herein, the role of exogenous proline (Pro) on the repression of ATH accumulation in rice seedlings during hexavalent chromium [Cr(VI)] exposure was studied. Results indicated that exogenous Pro-mediated regulation of jasmonate signals activated the MYB-bHLH-WDR complex to repress ATH accumulation in rice tissues under Cr(VI) stress. Biochemical and transcript analysis indicated that exogenous Pro promoted the synthesis of jasmonic acid (JA) and its molecularly active metabolite jasmonic acid isoleucine (JA-Ile) in rice tissues under Cr(VI) stress. Increment in the endogenous level of jasmonates positively triggered the expression of genes responsible for the JA signaling pathway and activated the MYB-bHLH-WDR complex, eventually repressing the glycosylation of anthocyanidin to form ATH in rice tissues. In conclusion, exogenous proline-mediated regulation on jasmonate signals was tissue-specific under Cr(VI) stress and a more positive effect was detected in shoots rather than roots.
Collapse
|
25
|
Singh AK, Yadav BK, Krishna R, Kumar RV, Mishra GP, Karkute SG, Krishnan N, Seth T, Kumari S, Singh B, Singh PM, Singh J. Bhendi Yellow Vein Mosaic Virus and Bhendi Yellow Vein Mosaic Betasatellite Cause Enation Leaf Curl Disease and Alter Host Phytochemical Contents in Okra. PLANT DISEASE 2021; 105:2595-2600. [PMID: 33393356 DOI: 10.1094/pdis-12-20-2655-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Whitefly (Bemisia tabaci)-transmitted begomoviruses cause severe diseases in numerous economically important dicotyledonous plants. Okra enation leaf curl disease (OELCuD) has emerged as a serious threat to okra (Abelmoschus esculentus L. Moench) cultivation in the Indian subcontinent. This study reports the association of a monopartite begomovirus (bhendi yellow vein mosaic virus; BYVMV) and betasatellite (bhendi yellow vein mosaic betasatellite; BYVB) with OELCuD in the Mau region of Uttar Pradesh, India. The BYVMV alone inoculated Nicotiana benthamiana and A. esculentus cv. Pusa Sawani plants developed mild symptoms. Co-inoculation of BYVMV and BYVB resulted in a reduced incubation period, an increased symptom severity, and an enhanced BYVMV accumulation by Southern hybridization and quantitative real-time PCR. This is the first study that satisfies Koch's postulates for OELCuD in its natural host. Activities of various antioxidative enzymes were significantly increased in the virus-inoculated okra plants. Differential responses in various biochemical components (such as photosynthetic pigments, phenol, proline, and sugar) in diseased okra plants were observed. This change in phytochemical responses is significant in understanding its impact on virus pathogenesis and disease development.
Collapse
Affiliation(s)
- Achuit K Singh
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Brijesh K Yadav
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Ram Krishna
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - R Vinoth Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, Delhi, India
| | - Gyan P Mishra
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Suhas G Karkute
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Nagendran Krishnan
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Tania Seth
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Shweta Kumari
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Bijendra Singh
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Prabhakar M Singh
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Jagdish Singh
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| |
Collapse
|
26
|
Gupta N, Reddy K, Bhattacharyya D, Chakraborty✉ S. Plant responses to geminivirus infection: guardians of the plant immunity. Virol J 2021; 18:143. [PMID: 34243802 PMCID: PMC8268416 DOI: 10.1186/s12985-021-01612-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Geminiviruses are circular, single-stranded viruses responsible for enormous crop loss worldwide. Rapid expansion of geminivirus diversity outweighs the continuous effort to control its spread. Geminiviruses channelize the host cell machinery in their favour by manipulating the gene expression, cell signalling, protein turnover, and metabolic reprogramming of plants. As a response to viral infection, plants have evolved to deploy various strategies to subvert the virus invasion and reinstate cellular homeostasis. MAIN BODY Numerous reports exploring various aspects of plant-geminivirus interaction portray the subtlety and flexibility of the host-pathogen dynamics. To leverage this pool of knowledge towards raising antiviral resistance in host plants, a comprehensive account of plant's defence response against geminiviruses is required. This review discusses the current knowledge of plant's antiviral responses exerted to geminivirus in the light of resistance mechanisms and the innate genetic factors contributing to the defence. We have revisited the defence pathways involving transcriptional and post-transcriptional gene silencing, ubiquitin-proteasomal degradation pathway, protein kinase signalling cascades, autophagy, and hypersensitive responses. In addition, geminivirus-induced phytohormonal fluctuations, the subsequent alterations in primary and secondary metabolites, and their impact on pathogenesis along with the recent advancements of CRISPR-Cas9 technique in generating the geminivirus resistance in plants have been discussed. CONCLUSIONS Considering the rapid development in the field of plant-virus interaction, this review provides a timely and comprehensive account of molecular nuances that define the course of geminivirus infection and can be exploited in generating virus-resistant plants to control global agricultural damage.
Collapse
Affiliation(s)
- Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kishorekumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty✉
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
27
|
Gupta R, Leibman-Markus M, Marash I, Kovetz N, Rav-David D, Elad Y, Bar M. Root zone warming represses foliar diseases in tomato by inducing systemic immunity. PLANT, CELL & ENVIRONMENT 2021; 44:2277-2289. [PMID: 33506959 DOI: 10.1111/pce.14006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Plants employ systemic-induced resistance as part of their defence arsenal against pathogens. In recent years, the application of mild heating has been found to induce resistance against several pathogens. In the present study, we investigated the effect of root zone warming (RZW) in promoting tomato's resistance against the necrotrophic fungus Botrytis cinerea (Bc), the hemibiotrophic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) and the biotrophic fungus Oidium neolycopersici (On). We demonstrate that RZW enhances tomato's resistance to Bc, On and Xcv through a process that is dependent on salicylic acid and ethylene. RZW induced tomato immunity, resulting in increased defence gene expression, reactive oxygen species (ROS) and ethylene output when plants were challenged, even in the absence of pathogens. Overall, the results provide novel insights into the underlying mechanisms of warming-induced immune responses against phytopathogens with different lifestyles in tomato.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Iftah Marash
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Neta Kovetz
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
28
|
Abstract
Phytohormones mediate plant development and responses to stresses caused by biotic agents or abiotic factors. The functions of phytohormones in responses to viral infection have been intensively studied, and the emerging picture of complex mechanisms provides insights into the roles that phytohormones play in defense regulation as a whole. These hormone signaling pathways are not simple linear or isolated cascades, but exhibit crosstalk with each other. Here, we summarized the current understanding of recent advances for the classical defense hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) and also the roles of abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinins (CKs), and brassinosteroids (BRs) in modulating plant–virus interactions.
Collapse
|
29
|
Pramanik D, Shelake RM, Park J, Kim MJ, Hwang I, Park Y, Kim JY. CRISPR/Cas9-Mediated Generation of Pathogen-Resistant Tomato against Tomato Yellow Leaf Curl Virus and Powdery Mildew. Int J Mol Sci 2021; 22:1878. [PMID: 33668636 PMCID: PMC7917697 DOI: 10.3390/ijms22041878] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022] Open
Abstract
Tomato is one of the major vegetable crops consumed worldwide. Tomato yellow leaf curl virus (TYLCV) and fungal Oidium sp. are devastating pathogens causing yellow leaf curl disease and powdery mildew. Such viral and fungal pathogens reduce tomato crop yields and cause substantial economic losses every year. Several commercial tomato varieties include Ty-5 (SlPelo) and Mildew resistance locus o 1 (SlMlo1) locus that carries the susceptibility (S-gene) factors for TYLCV and powdery mildew, respectively. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a valuable genome editing tool to develop disease-resistant crop varieties. In this regard, targeting susceptibility factors encoded by the host plant genome instead of the viral genome is a promising approach to achieve pathogen resistance without the need for stable inheritance of CRISPR components. In this study, the CRISPR/Cas9 system was employed to target the SlPelo and SlMlo1 for trait introgression in elite tomato cultivar BN-86 to confer host-mediated immunity against pathogens. SlPelo-knockout lines were successfully generated, carrying the biallelic indel mutations. The pathogen resistance assays in SlPelo mutant lines confirmed the suppressed accumulation of TYLCV and restricted the spread to non-inoculated plant parts. Generated knockout lines for the SlMlo1 showed complete resistance to powdery mildew fungus. Overall, our results demonstrate the efficiency of the CRISPR/Cas9 system to introduce targeted mutagenesis for the rapid development of pathogen-resistant varieties in tomato.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (D.P.); (M.J.K.)
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (D.P.); (M.J.K.)
| | - Jiyeon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea;
| | - Mi Jung Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (D.P.); (M.J.K.)
| | - Indeok Hwang
- R&D Center, Bunongseed Co., Ltd., Gimje 54324, Korea;
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (D.P.); (M.J.K.)
| |
Collapse
|
30
|
Genome-Wide Analysis of Ribosomal Protein GhRPS6 and Its Role in Cotton Verticillium Wilt Resistance. Int J Mol Sci 2021; 22:ijms22041795. [PMID: 33670294 PMCID: PMC7918698 DOI: 10.3390/ijms22041795] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Verticillium wilt is threatening the world’s cotton production. The pathogenic fungus Verticillium dahliae can survive in the soil in the form of microsclerotia for a long time, colonize through the root of cotton, and invade into vascular bundles, causing yellowing and wilting of cotton leaves, and in serious cases, leading to plant death. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. In previous studies, proteomic analysis was carried out on different cotton varieties inoculated with V. dahliae strain Vd080. It was found that GhRPS6 was phosphorylated after inoculation, and the phosphorylation level in resistant cultivars was 1.5 times than that in susceptible cultivars. In this study, knockdown of GhRPS6 expression results in the reduction of SA and JA content, and suppresses a series of defensive response, enhancing cotton plants susceptibility to V. dahliae. Overexpression in Arabidopsis thaliana transgenic plants was found to be more resistant to V. dahliae. Further, serines at 237 and 240 were mutated to phenylalanine, respectively and jointly. The transgenic Arabidopsis plants demonstrated that seri-237 compromised the plant resistance to V. dahliae. Subcellular localization in Nicotiana benthamiana showed that GhRPS6 was localized in the nucleus. Additionally, the pathogen inoculation and phosphorylation site mutation did not change its localization. These results indicate that GhRPS6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.
Collapse
|
31
|
Lin L, Wu J, Jiang M, Wang Y. Plant Mitogen-Activated Protein Kinase Cascades in Environmental Stresses. Int J Mol Sci 2021; 22:ijms22041543. [PMID: 33546499 PMCID: PMC7913722 DOI: 10.3390/ijms22041543] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Due to global warming and population growth, plants need to rescue themselves, especially in unfavorable environments, to fulfill food requirements because they are sessile organisms. Stress signal sensing is a crucial step that determines the appropriate response which, ultimately, determines the survival of plants. As important signaling modules in eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades play a key role in regulating responses to the following four major environmental stresses: high salinity, drought, extreme temperature and insect and pathogen infections. MAPK cascades are involved in responses to these environmental stresses by regulating the expression of related genes, plant hormone production and crosstalk with other environmental stresses. In this review, we describe recent major studies investigating MAPK-mediated environmental stress responses. We also highlight the diverse function of MAPK cascades in environmental stress. These findings help us understand the regulatory network of MAPKs under environmental stress and provide another strategy to improve stress resistance in crops to ensure food security.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| | - Mingyi Jiang
- College of Life Sciences and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China;
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| |
Collapse
|
32
|
Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Int J Mol Sci 2021; 22:E682. [PMID: 33445555 PMCID: PMC7827871 DOI: 10.3390/ijms22020682] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.
Collapse
Affiliation(s)
- Hymavathi Salava
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| | - Vijee Mohan
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
33
|
Sáez C, Flores-León A, Montero-Pau J, Sifres A, Dhillon NPS, López C, Picó B. RNA-Seq Transcriptome Analysis Provides Candidate Genes for Resistance to Tomato Leaf Curl New Delhi Virus in Melon. FRONTIERS IN PLANT SCIENCE 2021; 12:798858. [PMID: 35116050 PMCID: PMC8805612 DOI: 10.3389/fpls.2021.798858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) emerged in the Mediterranean Basin in 2012 as the first DNA bipartite begomovirus (Geminiviridae family), causing severe yield and economic losses in cucurbit crops. A major resistance locus was identified in the wild melon accession WM-7 (Cucumis melo kachri group), but the mechanisms involved in the resistant response remained unknown. In this work, we used RNA-sequencing to identify disease-associated genes that are differentially expressed in the course of ToLCNDV infection and could contribute to resistance. Transcriptomes of the resistant WM-7 genotype and the susceptible cultivar Piñonet Piel de Sapo (PS) (C. melo ibericus group) in ToLCNDV and mock inoculated plants were compared at four time points during infection (0, 3, 6, and 12 days post inoculation). Different gene expression patterns were observed over time in the resistant and susceptible genotypes in comparison to their respective controls. Differentially expressed genes (DEGs) in ToLCNDV-infected plants were classified using gene ontology (GO) terms, and genes of the categories transcription, DNA replication, and helicase activity were downregulated in WM-7 but upregulated in PS, suggesting that reduced activity of these functions reduces ToLCNDV replication and intercellular spread and thereby contributes to resistance. DEGs involved in the jasmonic acid signaling pathway, photosynthesis, RNA silencing, transmembrane, and sugar transporters entail adverse consequences for systemic infection in the resistant genotype, and lead to susceptibility in PS. The expression levels of selected candidate genes were validated by qRT-PCR to corroborate their differential expression upon ToLCNDV infection in resistant and susceptible melon. Furthermore, single nucleotide polymorphism (SNPs) with an effect on structural functionality of DEGs linked to the main QTLs for ToLCNDV resistance have been identified. The obtained results pinpoint cellular functions and candidate genes that are differentially expressed in a resistant and susceptible melon line in response to ToLCNDV, an information of great relevance for breeding ToLCNDV-resistant melon cultivars.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Cristina Sáez,
| | - Alejandro Flores-León
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Narinder P. S. Dhillon
- World Vegetable Center, East and Southeast Asia, Research and Training Station, Kasetsart University, Nakhon Pathom, Thailand
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Carmelo López,
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Belén Picó,
| |
Collapse
|
34
|
Gupta R, Pizarro L, Leibman‐Markus M, Marash I, Bar M. Cytokinin response induces immunity and fungal pathogen resistance, and modulates trafficking of the PRR LeEIX2 in tomato. MOLECULAR PLANT PATHOLOGY 2020; 21:1287-1306. [PMID: 32841497 PMCID: PMC7488468 DOI: 10.1111/mpp.12978] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 05/26/2023]
Abstract
Plant immunity is often defined by the immunity hormones: salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). These hormones are well known for differentially regulating defence responses against pathogens. In recent years, the involvement of other plant growth hormones such as auxin, gibberellic acid, abscisic acid, and cytokinins (CKs) in biotic stresses has been recognized. Previous reports have indicated that endogenous and exogenous CK treatment can result in pathogen resistance. We show here that CK induces systemic immunity in tomato (Solanum lycopersicum), modulating cellular trafficking of the pattern recognition receptor (PRR) LeEIX2, which mediates immune responses to Xyn11 family xylanases, and promoting resistance to Botrytis cinerea and Oidium neolycopersici in an SA- and ET-dependent mechanism. CK perception within the host underlies its protective effect. Our results support the notion that CK promotes pathogen resistance by inducing immunity in the host.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
| | - Lorena Pizarro
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
- School of Plant Sciences and Food SecurityTel Aviv UniversityTel AvivIsrael
- Present address:
Institute of Agri‐food, Animal and Environmental SciencesUniversidad de O'HigginsChile
| | - Meirav Leibman‐Markus
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
| | - Iftah Marash
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
- School of Plant Sciences and Food SecurityTel Aviv UniversityTel AvivIsrael
| | - Maya Bar
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
35
|
Abstract
Increasing evidence indicates that tolerance is a host defense strategy against pathogens as widespread and successful as resistance. Since the concept of tolerance was proposed more than a century ago, it has been in continuous evolution. In parallel, our understanding of its mechanistic bases and its consequences for host and pathogen interactions, ecology, and evolution has grown. This review aims at summarizing the conceptual changes in the meaning of tolerance inside and outside the field of phytopathology, emphasizing difficulties in demonstrating and quantifying this trait. We also discuss evidence of tolerance and current knowledge on its genetic regulation, mechanisms, and role in host-pathogen coevolution, highlighting common patterns across hosts and pathogens. We hope that this comprehensive review attracts more plant pathologists to the study of this key plant defense response.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| |
Collapse
|
36
|
A gain of function mutation in SlNRC4a enhances basal immunity resulting in broad-spectrum disease resistance. Commun Biol 2020; 3:404. [PMID: 32732974 PMCID: PMC7393091 DOI: 10.1038/s42003-020-01130-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022] Open
Abstract
Plants rely on innate immunity to perceive and ward off microbes and pests, and are able to overcome the majority of invading microorganisms. Even so, specialized pathogens overcome plant defenses, posing a persistent threat to crop and food security worldwide, raising the need for agricultural products with broad, efficient resistance. Here we report a specific mutation in a tomato (S. lycopersicum) helper nucleotide-binding domain leucine-rich repeat H-NLR, SlNRC4a, which results in gain of function constitutive basal defense activation, in absence of PRR activation. Knockout of the entire NRC4 clade in tomato was reported to compromise Rpi-blb2 mediated immunity. The SlNRC4a mutant reported here possesses enhanced immunity and disease resistance to a broad-spectrum of pathogenic fungi, bacteria and pests, while lacking auto-activated HR or negative effects on plant growth and crop yield, providing promising prospects for agricultural adaptation in the war against plant pathogens that decrease productivity. Lorena Pizarro, Meirav Leibman-Markus et al. explore the genetic mechanisms for plant innate immunity. They functionally characterize a gain of function mutation in SlNRC4a in tomato. They characterize the structure of the mutant protein and functionally demonstrate that it confers broad-spectrum resistance without triggering a hypersensitive response or negatively impacting plant growth and crop yield.
Collapse
|
37
|
Ogden AJ, Bhatt JJ, Brewer HM, Kintigh J, Kariuki SM, Rudrabhatla S, Adkins JN, Curtis WR. Phloem Exudate Protein Profiles during Drought and Recovery Reveal Abiotic Stress Responses in Tomato Vasculature. Int J Mol Sci 2020; 21:E4461. [PMID: 32586033 PMCID: PMC7352395 DOI: 10.3390/ijms21124461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Drought is the leading cause of agricultural yield loss among all abiotic stresses, and the link between water deficit and phloem protein contents is relatively unexplored. Here we collected phloem exudates from Solanum lycopersicum leaves during periods of drought stress and recovery. Our analysis identified 2558 proteins, the most abundant of which were previously localized to the phloem. Independent of drought, enrichment analysis of the total phloem exudate protein profiles from all samples suggests that the protein content of phloem sap is complex, and includes proteins that function in chaperone systems, branched-chain amino acid synthesis, trehalose metabolism, and RNA silencing. We observed 169 proteins whose abundance changed significantly within the phloem sap, either during drought or recovery. Proteins that became significantly more abundant during drought include members of lipid metabolism, chaperone-mediated protein folding, carboxylic acid metabolism, abscisic acid signaling, cytokinin biosynthesis, and amino acid metabolism. Conversely, proteins involved in lipid signaling, sphingolipid metabolism, cell wall organization, carbohydrate metabolism, and a mitogen-activated protein kinase are decreased during drought. Our experiment has achieved an in-depth profiling of phloem sap protein contents during drought stress and recovery that supports previous findings and provides new evidence that multiple biological processes are involved in drought adaptation.
Collapse
Affiliation(s)
- Aaron J. Ogden
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Jishnu J. Bhatt
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Heather M. Brewer
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Jack Kintigh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| | - Samwel M. Kariuki
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| | - Sairam Rudrabhatla
- School of Science, Engineering, and Technology, The Pennsylvania State University, Harrisburg Campus, 777 W Harrisburg Pike, Middletown, PA 17057, USA;
| | - Joshua N. Adkins
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Wayne R. Curtis
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| |
Collapse
|
38
|
Kumar G, Dasgupta I. Comprehensive molecular insights into the stress response dynamics of rice (Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. J Biosci 2020. [DOI: 10.1007/s12038-020-9996-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. Int J Mol Sci 2020; 21:ijms21020621. [PMID: 31963549 PMCID: PMC7013817 DOI: 10.3390/ijms21020621] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Plants as immovable organisms sense the stressors in their environment and respond to them by means of dedicated stress response pathways. In response to stress, jasmonates (jasmonic acid, its precursors and derivatives), a class of polyunsaturated fatty acid-derived phytohormones, play crucial roles in several biotic and abiotic stresses. As the major immunity hormone, jasmonates participate in numerous signal transduction pathways, including those of gene networks, regulatory proteins, signaling intermediates, and proteins, enzymes, and molecules that act to protect cells from the toxic effects of abiotic stresses. As cellular hubs for integrating informational cues from the environment, jasmonates play significant roles in alleviating salt stress, drought stress, heavy metal toxicity, micronutrient toxicity, freezing stress, ozone stress, CO2 stress, and light stress. Besides these, jasmonates are involved in several developmental and physiological processes throughout the plant life. In this review, we discuss the biosynthesis and signal transduction pathways of the JAs and the roles of these molecules in the plant responses to abiotic stresses.
Collapse
|
40
|
Kumar G, Dasgupta I. Comprehensive molecular insights into the stress response dynamics of rice ( Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. J Biosci 2020; 45:27. [PMID: 32020909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice tungro is a serious viral disease of rice resulting from infection by two viruses, Rice tungro bacilliform virus and Rice tungro spherical virus. To gain molecular insights into the global gene expression changes in rice during tungro, a comparative whole genome transcriptome study was performed on healthy and tungroaffected rice plants using Illumina Hiseq 2500. About 10 GB of sequenced data comprising about 50 million paired end reads per sample were then aligned on to the rice genome. Gene expression analysis revealed around 959 transcripts, related to various cellular pathways concerning stress response and hormonal homeostasis to be differentially expressed. The data was validated through qRT-PCR. Gene ontology and pathway analyses revealed enrichment of transcripts and processes similar to the differentially expressed genes categories. In short, the present study is a comprehensive coverage of the differential gene expression landscape and provides molecular insights into the infection dynamics of the rice-tungro virus system.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110 021, India
| | | |
Collapse
|
41
|
Tsai WA, Weng SH, Chen MC, Lin JS, Tsai WS. Priming of Plant Resistance to Heat Stress and Tomato Yellow Leaf Curl Thailand Virus With Plant-Derived Materials. FRONTIERS IN PLANT SCIENCE 2019; 10:906. [PMID: 31354773 PMCID: PMC6640737 DOI: 10.3389/fpls.2019.00906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/26/2019] [Indexed: 05/21/2023]
Abstract
Plants are often simultaneously exposed to diverse environmental stresses, and can tune suitable responses to them through hormones. Salicylic acid (SA) and jasmonic acid (JA) signaling pathways are known to enhance resistance against heat stress and tomato yellow leaf curl Thailand virus (TYLCTHV) infection. However, there is limited information regarding alternative natural priming agents against heat stress and viruses. In this study, two plant-derived priming agents, eugenol and anise oil, were tested for their roles in conferring thermotolerance and virus resistance in tomato plants. Under heat stress, the survival rates and average fresh weight were higher in plants treated with eugenol or anise oil than in control plants. These two priming agents were further tested for antiviral activities. After TYLCTHV infection, the disease incidence and relative abundance of TYLCTHV were lower in anise oil- and eugenol-treated plants than in control plants. Further analyses revealed that a few SA, JA, and RNA silencing genes were enhanced in the former. Moreover, SA, JA, and H2O2 contents increased considerably after eugenol and anise oil treatments. Our findings imply that anise oil and eugenol initiated SA- and JA-mediated defenses to promote thermotolerance and antiviral responses of tomato plants.
Collapse
Affiliation(s)
- Wei-An Tsai
- Hualien District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Hualien City, Taiwan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Sung-Hsia Weng
- Hualien District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Hualien City, Taiwan
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ming-Cheng Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Shih Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
42
|
Gnanasekaran P, KishoreKumar R, Bhattacharyya D, Vinoth Kumar R, Chakraborty S. Multifaceted role of geminivirus associated betasatellite in pathogenesis. MOLECULAR PLANT PATHOLOGY 2019; 20:1019-1033. [PMID: 31210029 PMCID: PMC6589721 DOI: 10.1111/mpp.12800] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Begomoviruses have emerged as a group of plant pathogens that cause devastating diseases in a wide range of crops in tropical and subtropical regions of the world. Betasatellites, the circular single-stranded DNA molecules with the size of almost half of that of the associated helper begomoviruses, are often essential for the production of typical disease symptoms in several virus-host systems. Association of betasatellites with begomoviruses results in more severe symptoms in the plants and affects the yield of numerous crops leading to huge agroeconomic losses. βC1, the only protein encoded by betasatellites, plays a multifaceted role in the successful establishment of infection. This protein counteracts the innate defence mechanisms of the host, like RNA silencing, ubiquitin-proteasome system and defence responsive hormones. In the last two decades, the molecular aspect of betasatellite pathogenesis has attracted much attention from the researchers worldwide, and reports have shown that βC1 protein aggravates the helper begomovirus disease complex by modulating specific host factors. This review discusses the molecular aspects of the pathogenesis of betasatellites, including various βC1-host factor interactions and their effects on the suppression of defence responses of the plants.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Reddy KishoreKumar
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - R. Vinoth Kumar
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
43
|
Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K. Jasmonic Acid Signaling Pathway in Plants. Int J Mol Sci 2019; 20:ijms20102479. [PMID: 31137463 PMCID: PMC6566436 DOI: 10.3390/ijms20102479] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
Jasmonic acid (JA) and its precursors and dervatives, referred as jasmonates (JAs) are important molecules in the regulation of many physiological processes in plant growth and development, and especially the mediation of plant responses to biotic and abiotic stresses. JAs biosynthesis, perception, transport, signal transduction and action have been extensively investigated. In this review, we will discuss the initiation of JA signaling with a focus on environmental signal perception and transduction, JA biosynthesis and metabolism, transport of signaling molecules (local transmission, vascular bundle transmission, and airborne transportation), and biological function (JA signal receptors, regulated transcription factors, and biological processes involved).
Collapse
Affiliation(s)
- Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang 550025, China.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yuexia Zhou
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jun Yan
- Schools of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Muhammad Khurshid
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan.
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
44
|
Muhammad T, Zhang J, Ma Y, Li Y, Zhang F, Zhang Y, Liang Y. Overexpression of a Mitogen-Activated Protein Kinase SlMAPK3 Positively Regulates Tomato Tolerance to Cadmium and Drought Stress. Molecules 2019; 24:molecules24030556. [PMID: 30717451 PMCID: PMC6385007 DOI: 10.3390/molecules24030556] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) activation is a common defense response of plants to a range of abiotic stressors. SlMPK3, a serine-threonine protein kinase, has been reported as an important member of protein kinase cascade that also functions on plant stress tolerance. In this study, we cloned SlMPK3 from tomato and studied its role in cadmium (Cd2+) and drought tolerance. The results showed that transcripts of SlMAPK3 differentially accumulated in various plant tissues and were remarkably induced by different abiotic stressors and exogenous hormone treatments. Overexpression of SlMAPK3 increased tolerance to Cd2+ and drought as reflected by an increased germination rate and improved seedling growth. Furthermore, transgenic plants overexpressing SlMAPK3 showed an increased leaf chlorophyll content, root biomass accumulation and root activity under Cd2+ stress. Chlorophyll fluorescence analysis revealed that transgenic plants demonstrated an increased photosynthetic activity as well as contents of chlorophyll, proline, and sugar under drought stress. Notably, cadmium- and drought-induced oxidative stress was substantially attenuated in SlMAPK3 overexpressing plants as evidenced by lower malondialdehyde and hydrogen peroxide accumulation, and increased activity and transcript abundance of enzymatic antioxidants under stress conditions compared to that of wild-type. Our findings provide solid evidence that overexpression of SlMAPK3 gene in tomato positively regulates tolerance to Cd2+ and drought stress, which may have strengthen the molecular understanding of SlMAPK3 gene to improve abiotic stress tolerance.
Collapse
Affiliation(s)
- Tayeb Muhammad
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Jie Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Yalin Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Yushun Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
45
|
Chandan RK, Singh AK, Patel S, Swain DM, Tuteja N, Jha G. Silencing of tomato CTR1 provides enhanced tolerance against Tomato leaf curl virus infection. PLANT SIGNALING & BEHAVIOR 2019; 14:e1565595. [PMID: 30661468 PMCID: PMC6422369 DOI: 10.1080/15592324.2019.1565595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 05/27/2023]
Abstract
Tomato leaf curl virus (ToLCV) belonging to Begomovirus family of Geminivirus is known to cause one of the most destructive diseases in tomato. Amongst various ToLCVs, a monopartite Tomato leaf curl Joydebpur virus (ToLCJoV) is most prevalent in eastern part of India. In the present study, we observed induced expression of one of the negative regulators of ethylene signaling pathway gene (LeCTR1) in ToLCJoV infected plants. The Tobacco rattle virus (TRV) induced silencing of the LeCTR1 gene provided enhanced tolerance to ToLCJoV infections. The leaf curling as well as ROS accumulation was significantly reduced in the viral infected LeCTR1 silenced plants. Induction of several defense marker genes (NPR1, PR1, PR5, AOS2, EIN2, EIN3 and ERF5) reinforced enhanced tolerance against ToLCJoV infection in the LeCTR1 silenced tomato. Overall, the present study provides evidence that silencing of LeCTR1 can be deployed to protect tomato from ToLCJoV infections.
Collapse
Affiliation(s)
- Ravindra K. Chandan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Achuit K. Singh
- Division of Crop Improvement, Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Durga Madhab Swain
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Narendra Tuteja
- Plant Molecular Biology group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
46
|
RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells 2019; 8:cells8010038. [PMID: 30634662 PMCID: PMC6356646 DOI: 10.3390/cells8010038] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
During plant-pathogen interactions, plants have to defend the living transposable elements from pathogens. In response to such elements, plants activate a variety of defense mechanisms to counteract the aggressiveness of biotic stressors. RNA interference (RNAi) is a key biological process in plants to inhibit gene expression both transcriptionally and post-transcriptionally, using three different groups of proteins to resist the virulence of pathogens. However, pathogens trigger an anti-silencing mechanism through the expression of suppressors to block host RNAi. The disruption of the silencing mechanism is a virulence strategy of pathogens to promote infection in the invaded hosts. In this review, we summarize the RNA silencing pathway, anti-silencing suppressors, and counter-defenses of plants to viral, fungal, and bacterial pathogens.
Collapse
|
47
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
48
|
Zhang S, Wang L, Zhao R, Yu W, Li R, Li Y, Sheng J, Shen L. Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8949-8956. [PMID: 30092129 DOI: 10.1021/acs.jafc.8b02191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play an important role in defense responses to biotic and abiotic stresses. In order to investigate the role of SlMAPK3 in tomato plant resistance to Botrytis cinerea, two lines of slmapk3 mutants and wild-type (WT) tomato plants were used. The results showed that slmapk3 mutants were more susceptible to B. cinerea and that knockout of SlMAPK3 reduced the activities of defense enzymes and enhanced the accumulation of reactive oxygen species (ROS). Furthermore, we detected the expressions of salicylic acid (SA) and jasmonic acid (JA) signaling-related genes and found that knockout of SlMAPK3 enhanced the expressions of SlPR1, SlPAD4 and SlEDS1, whereas reduced the expressions of SlLoxC, SlPI I and SlPI II and enhanced the expressions of SlJAZ1 and SlMYC2. We postulate that SlMAPK3 plays a positive role in tomato plant resistance to B. cinerea through regulating ROS accumulation and SA and JA defense signaling pathways.
Collapse
Affiliation(s)
- Shujuan Zhang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Liu Wang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Ruirui Zhao
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Wenqing Yu
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Rui Li
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Yujing Li
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development , Renmin University of China , Beijing 100872 , China
| | - Lin Shen
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| |
Collapse
|
49
|
Silva Ferreira D, Kevei Z, Kurowski T, de Noronha Fonseca ME, Mohareb F, Boiteux LS, Thompson AJ. BIFURCATE FLOWER TRUSS: a novel locus controlling inflorescence branching in tomato contains a defective MAP kinase gene. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2581-2593. [PMID: 29509915 PMCID: PMC5920302 DOI: 10.1093/jxb/ery076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
A mutant line, bifurcate flower truss (bif), was recovered from a tomato genetics programme. Plants from the control line produced a mean of 0.16 branches per truss, whereas the value for bif plants was 4.1. This increase in branching was accompanied by a 3.3-fold increase in flower number and showed a significant interaction with exposure to low temperature during truss development. The control line and bif genomes were resequenced and the bif gene was mapped to a 2.01 Mbp interval on chromosome 12; all coding region polymorphisms in the interval were surveyed, and five candidate genes displaying altered protein sequences were detected. One of these genes, SlMAPK1, encoding a mitogen-activated protein (MAP) kinase, contained a leucine to stop codon mutation predicted to disrupt kinase function. SlMAPK1 is an excellent candidate for bif because knock-out mutations of an Arabidopsis orthologue MPK6 were reported to have increased flower number. An introgression browser was used to demonstrate that the origin of the bif genomic DNA at the BIF locus was Solanum galapagense and that the SlMAPK1 null mutant is a naturally occurring allele widespread only on the Galápagos Islands. This work strongly implicates SlMAPK1 as part of the network of genes controlling inflorescence branching in tomato.
Collapse
Affiliation(s)
| | - Zoltan Kevei
- Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
| | - Tomasz Kurowski
- Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
| | | | - Fady Mohareb
- Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
| | - Leonardo S Boiteux
- National Center for Vegetable Crops Research, CNPH—Embrapa Hortaliças, Brasília-DF, Brazil
| | - Andrew J Thompson
- Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
| |
Collapse
|
50
|
Abstract
The two major mechanisms of plant defense against pathogens are resistance (the host's ability to limit pathogen multiplication) and tolerance (the host's ability to reduce the effect of infection on its fitness regardless of the level of pathogen multiplication). There is abundant literature on virtually every aspect of plant resistance to pathogens. Although tolerance to plant pathogens is comparatively less understood, studies on this plant defense strategy have led to major insights into its evolution, mechanistic basis and genetic determinants. This review aims at summarizing current theories and experimental evidence on the evolutionary causes and consequences of plant tolerance to pathogens, as well as the existing knowledge on the genetic determinants and mechanisms of tolerance. Our review reveals that (i) in plant-pathogen systems, resistance and tolerance generally coexist, i.e., are not mutually exclusive; (ii) evidence of tolerance polymorphisms is abundant regardless of the pathogen considered; (iii) tolerance is an efficient strategy to reduce the damage on the infected host; and (iv) there is no evidence that tolerance results in increased pathogen multiplication. Taken together, the work discussed in this review indicates that tolerance may be as important as resistance in determining the dynamics of plant-pathogen interactions. Several aspects of plant tolerance to pathogens that still remain unclear and which should be explored in the future, are also outlined.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| |
Collapse
|