1
|
Akam-Baxter E, Chen HH, Boukhalfa A, Yu A, Ling LA, Kung AH, Rodriguez SB, Yuan H, Josephson L, Sosnovik DE. Decoration of Autophagy Detecting Nanoparticle with an Anionic Fluorochrome Enhances Multispectral Characterization of Autophagosome Location and Flux. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407915. [PMID: 39723734 PMCID: PMC11821426 DOI: 10.1002/smll.202407915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Autophagy is a key biological process that has proven extremely difficult to detect noninvasively. To address this, an autophagy detecting nanoparticle (ADN) was recently developed, consisting of an iron oxide nanoparticle decorated with cathepsin-cleavable arginine-rich peptides bound to the near-infrared fluorochrome Cy5.5. Activation of the probe in autophagolysosomes results in the emission of Cy5.5 fluorescence and provides a measure of autophagosome flux. However, in the early autophagosome ADN fluorescence is silent due to fluorochrome stacking. Here, we introduce to ADN a second non-cleavable fluorophore that allows the probe to be tracked through all stages of autophagy. The nature of the secondary/tracking fluorophore has a profound effect on the activation of ADN and the emission of Cy5.5 fluorescence. The lead candidate, ADN2 (featuring AZDye546 as the secondary fluorophore) has the highest activation rate and change in Cy5.5 fluorescence. Absorbance and fluorescence spectrophotometry methods show that the negatively charged AZDye546 interacts with the positively charged polyarginine motifs of the Cy5.5-polyArg activatable fluorophore, resulting in enhanced baseline quenching of the Cy5.5 signal in the nanoprobe. Flow cytometry shows that the activation of ADN2 remains specific for autophagy and is strongly modulated by classical regulators of autophagy (starvation, bafilomycin) and genetic deletion of key autophagy proteins (ATG5, ATG7). ADN2 co-localized strongly with LC3-GFP positive autophagosomes and provided readouts of in vivo probe delivery and activation in the hearts of fed/starved mice. ADN2 enhances the ability to image autophagy without genetic transfection of cells/animals and underscores the possible effects for unanticipated interactions between fluorochromes and other moieties on the surface of decorated nanoparticles.
Collapse
Affiliation(s)
- Eman Akam-Baxter
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston MA, USA
| | - Howard H. Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Asma Boukhalfa
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Ada Yu
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Lauren A. Ling
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Andrew H. Kung
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Susana Bulnes Rodriguez
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hushan Yuan
- Center for Nuclear Medicine & Theranostic Sciences & PET Core, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David E. Sosnovik
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston MA, USA
| |
Collapse
|
2
|
Feng Y, Tang Q, Wang B, Yang Q, Zhang Y, Lei L, Li S. Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy. J Nanobiotechnology 2024; 22:737. [PMID: 39605063 PMCID: PMC11603847 DOI: 10.1186/s12951-024-03005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
The tumor microenvironment (TME) is a complex system characterized by low oxygen, low pH, high pressure, and numerous growth factors and protein hydrolases that regulate a wide range of biological behaviors in the tumor and have a profound impact on cancer progression. Immunotherapy is an innovative approach to cancer treatment that activates the immune system, resulting in the spontaneous killing of tumor cells. However, the therapeutic efficacy of these clinically approved cancer immunotherapies (e.g., immune checkpoint blocker (ICB) therapies and chimeric antigen receptor (CAR) T-cell therapies) is far from satisfactory due to the presence of immunosuppressive TMEs created in part by tumor hypoxia, acidity, high levels of reactive oxygen species (ROS), and a dense extracellular matrix (ECM). With continuous advances in materials science and drug-delivery technologies, biomaterials hold considerable potential for targeting the TME. This article reviews the advances in biomaterial-based targeting of the TME to advance our current understanding on the role of biomaterials in enhancing tumor immunity. In addition, the strategies for remodeling the TME offer enticing advantages; however, the represent a double-edged sword. In the process of reshaping the TME, the risk of tumor growth, infiltration, and distant metastasis may increase.
Collapse
Affiliation(s)
- Yekai Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Chen HH, Khatun Z, Wei L, Mekkaoui C, Patel D, Kim SJW, Boukhalfa A, Enoma E, Meng L, Chen YI, Kaikkonen L, Li G, Capen DE, Sahu P, Kumar ATN, Blanton RM, Yuan H, Das S, Josephson L, Sosnovik DE. A nanoparticle probe for the imaging of autophagic flux in live mice via magnetic resonance and near-infrared fluorescence. Nat Biomed Eng 2022; 6:1045-1056. [PMID: 35817962 PMCID: PMC9492651 DOI: 10.1038/s41551-022-00904-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/23/2022] [Indexed: 01/18/2023]
Abstract
Autophagy-the lysosomal degradation of cytoplasmic components via their sequestration into double-membraned autophagosomes-has not been detected non-invasively. Here we show that the flux of autophagosomes can be measured via magnetic resonance imaging or serial near-infrared fluorescence imaging of intravenously injected iron oxide nanoparticles decorated with cathepsin-cleavable arginine-rich peptides functionalized with the near-infrared fluorochrome Cy5.5 (the peptides facilitate the uptake of the nanoparticles by early autophagosomes, and are then cleaved by cathepsins in lysosomes). In the heart tissue of live mice, the nanoparticles enabled quantitative measurements of changes in autophagic flux, upregulated genetically, by ischaemia-reperfusion injury or via starvation, or inhibited via the administration of a chemotherapeutic or the antibiotic bafilomycin. In mice receiving doxorubicin, pre-starvation improved cardiac function and overall survival, suggesting that bursts of increased autophagic flux may have cardioprotective effects during chemotherapy. Autophagy-detecting nanoparticle probes may facilitate the further understanding of the roles of autophagy in disease.
Collapse
Affiliation(s)
- Howard H Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zehedina Khatun
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Lan Wei
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Choukri Mekkaoui
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dakshesh Patel
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sally Ji Who Kim
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Asma Boukhalfa
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Efosa Enoma
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Lin Meng
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Yinching I Chen
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leena Kaikkonen
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guoping Li
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Diane E Capen
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Parul Sahu
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anand T N Kumar
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Hushan Yuan
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Sosnovik
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Taiariol L, Chaix C, Farre C, Moreau E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem Rev 2021; 122:340-384. [PMID: 34705429 DOI: 10.1021/acs.chemrev.1c00484] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the years, click and bioorthogonal reactions have been the subject of considerable research efforts. These high-performance chemical reactions have been developed to meet requirements not often provided by the chemical reactions commonly used today in the biological environment, such as selectivity, rapid reaction rate, and biocompatibility. Click and bioorthogonal reactions have been attracting increasing attention in the biomedical field for the engineering of nanomedicines. In this review, we study a compilation of articles from 2014 to the present, using the terms "click chemistry and nanoparticles (NPs)" to highlight the application of this type of chemistry for applications involving NPs intended for biomedical applications. This study identifies the main strategies offered by click and bioorthogonal chemistry, with respect to passive and active targeting, for NP functionalization with specific and multiple properties for imaging and cancer therapy. In the final part, a novel and promising approach for "two step" targeting of NPs, called pretargeting (PT), is also discussed; the principle of this strategy as well as all the studies listed from 2014 to the present are presented in more detail.
Collapse
Affiliation(s)
- Ludivine Taiariol
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Carole Chaix
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Carole Farre
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Emmanuel Moreau
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| |
Collapse
|
5
|
Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, Jones T, James M, Sutcliffe J, Ouyang J, Petibon Y, Ma C, El Fakhri G, Surti S, Karp JS, Badawi RD, Yamaya T, Akamatsu G, Schramm G, Rezaei A, Nuyts J, Fulton R, Kyme A, Lois C, Sari H, Price J, Boellaard R, Jeraj R, Bailey DL, Eslick E, Willowson KP, Dutta J. Quantitative PET in the 2020s: a roadmap. Phys Med Biol 2021; 66:06RM01. [PMID: 33339012 PMCID: PMC9358699 DOI: 10.1088/1361-6560/abd4f7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.
Collapse
Affiliation(s)
- Steven R Meikle
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Canada
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Richard Banati
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - David Mankoff
- Department of Radiology, University of Pennsylvania, United States of America
| | - Terry Jones
- Department of Radiology, University of California, Davis, United States of America
| | - Michelle James
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), CA, United States of America
- Department of Neurology and Neurological Sciences, Stanford University, CA, United States of America
| | - Julie Sutcliffe
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Internal Medicine, University of California, Davis, CA, United States of America
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, United States of America
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Taiga Yamaya
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Go Akamatsu
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Georg Schramm
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Ahmadreza Rezaei
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Roger Fulton
- Brain and Mind Centre, The University of Sydney, Australia
- Department of Medical Physics, Westmead Hospital, Sydney, Australia
| | - André Kyme
- Brain and Mind Centre, The University of Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Australia
| | - Cristina Lois
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Hasan Sari
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Julie Price
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, location VUMC, Netherlands
| | - Robert Jeraj
- Departments of Medical Physics, Human Oncology and Radiology, University of Wisconsin, United States of America
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
| | - Dale L Bailey
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Enid Eslick
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Kathy P Willowson
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Joyita Dutta
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, United States of America
| |
Collapse
|
6
|
Abstract
In the recent years, progress in nanotechnology has significantly contributed to the development of novel pharmaceutical formulations to overcome the drawbacks of conventional treatments and improve the therapeutic outcome in many diseases, especially cancer. Nanoparticle vectors have demonstrated the potential to concomitantly deliver diagnostic and therapeutic payloads to diseased tissue. Due to their special physical and chemical properties, the characteristics and function of nanoparticles are tunable based on biological molecular targets and specific desired features (e.g., surface chemistry and diagnostic radioisotope labeling). Within the past decade, several theranostic nanoparticles have been developed as a multifunctional nanosystems which combine the diagnostic and therapeutic functionalities into a single drug delivery platform. Theranostic nanosystems can provide useful information on a real-time systemic distribution of the developed nanosystem and simultaneously transport the therapeutic payload. In general, the diagnostic functionality of theranostic nanoparticles can be achieved through labeling gamma-emitted radioactive isotopes on the surface of nanoparticles which facilitates noninvasive detection using nuclear molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), meanwhile, the therapeutic effect arises from the potent drug released from the nanoparticle. Moreover, some radioisotopes can concurrently emit both gamma radiation and high-energy particles (e.g., alpha, beta, and Auger electrons), prompting the use either alone for radiotheranostics or synergistically with chemotherapy. This chapter provides an overview of the fundamentals of radiochemistry and relevant radiolabeling strategies for theranostic nanosystem development as well as the methods for the preclinical evaluation of radiolabeled nanoparticles. Furthermore, preclinical case studies of recently developed theranostic nanosystems will be highlighted.
Collapse
|
7
|
Gholami YH, Yuan H, Wilks MQ, Maschmeyer R, Normandin MD, Josephson L, El Fakhri G, Kuncic Z. A Radio-Nano-Platform for T1/T2 Dual-Mode PET-MR Imaging. Int J Nanomedicine 2020; 15:1253-1266. [PMID: 32161456 PMCID: PMC7049573 DOI: 10.2147/ijn.s241971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/09/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose This study aimed to develop a chelate-free radiolabeled nanoparticle platform for simultaneous positron emission tomography (PET) and magnetic resonance (MR) imaging that provides contrast-enhanced diagnostic imaging and significant image quality gain by integrating the high spatial resolution of MR with the high sensitivity of PET. Methods A commercially available super-paramagnetic iron oxide nanoparticle (SPION) (Feraheme®, FH) was labeled with the [89Zr]Zr using a novel chelate-free radiolabeling technique, heat-induced radiolabeling (HIR). Radiochemical yield (RCY) and purity (RCP) were measured using size exclusion chromatography (SEC) and radio-thin layer chromatography (radio-TLC). Characterization of the non-radioactive isotope 90Zr-labeled FH was performed by transmission electron microscopy (TEM). Simultaneous PET-MR phantom imaging was performed with different 89Zr-FH concentrations. The MR quantitative image analysis determined the contrast-enhancing properties of FH. The signal-to-noise ratio (SNR) and full-width half-maximum (FWHM) of the line spread function (LSF) were calculated before and after co-registering the PET and MR image data. Results High RCY (92%) and RCP (98%) of the [89Zr]Zr-FH product was achieved. TEM analysis confirmed the 90Zr atoms adsorption onto the SPION surface (≈ 10% average radial increase). Simultaneous PET-MR scans confirmed the capability of the [89Zr]Zr-FH nano-platform for this multi-modal imaging technique. Relative contrast image analysis showed that [89Zr]Zr-FH can act as a dual-mode T1/T2 contrast agent. For co-registered PET-MR images, higher spatial resolution (FWHM enhancement ≈ 3) and SNR (enhancement ≈ 8) was achieved at a clinical dose of radio-isotope and Fe. Conclusion Our results demonstrate FH is a highly suitable SPION-based platform for chelate-free labeling of PET tracers for hybrid PET-MR. The high RCY and RCP confirmed the robustness of the chelate-free HIR technique. An overall image quality gain was achieved compared to PET- or MR-alone imaging with a relatively low dosage of [89Zr]Zr-FH. Additionally, FH is suitable as a dual-mode T1/T2 MR image contrast agent. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: http://youtu.be/Me_QBfX7I3s
Collapse
Affiliation(s)
- Yaser Hadi Gholami
- Faculty of Science, School of Physics, The University of Sydney, Sydney, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Hushan Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Maschmeyer
- Faculty of Science, School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zdenka Kuncic
- Faculty of Science, School of Physics, The University of Sydney, Sydney, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia.,The University of Sydney Nano Institute, Sydney, NSW, Australia
| |
Collapse
|
8
|
Gholami YH, Josephson L, Akam EA, Caravan P, Wilks MQ, Pan XZ, Maschmeyer R, Kolnick A, El Fakhri G, Normandin MD, Kuncic Z, Yuan H. A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Therapeutic Isotopes. Int J Nanomedicine 2020; 15:31-47. [PMID: 32021163 PMCID: PMC6954846 DOI: 10.2147/ijn.s227931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Using our chelate-free, heat-induced radiolabeling (HIR) method, we show that a wide range of metals, including those with radioactive isotopologues used for diagnostic imaging and radionuclide therapy, bind to the Feraheme (FH) nanoparticle (NP), a drug approved for the treatment of iron anemia. MATERIAL AND METHODS FH NPs were heated (120°C) with nonradioactive metals, the resulting metal-FH NPs were characterized by inductively coupled plasma mass spectrometry (ICP-MS), dynamic light scattering (DLS), and r1 and r2 relaxivities obtained by nuclear magnetic relaxation spectrometry (NMRS). In addition, the HIR method was performed with [90Y]Y3+, [177Lu]Lu3+, and [64Cu]Cu2+, the latter with an HIR technique optimized for this isotope. Optimization included modifying reaction time, temperature, and vortex technique. Radiochemical yield (RCY) and purity (RCP) were measured using size exclusion chromatography (SEC) and thin-layer chromatography (TLC). RESULTS With ICP-MS, metals incorporated into FH at high efficiency were bismuth, indium, yttrium, lutetium, samarium, terbium and europium (>75% @ 120 oC). Incorporation occurred with a small (less than 20%) but statistically significant increases in size and the r2 relaxivity. An improved HIR technique (faster heating rate and improved vortexing) was developed specifically for copper and used with the HIR technique and [64Cu]Cu2+. Using SEC and TLC analyses with [90Y]Y3+, [177Lu]Lu3+ and [64Cu]Cu2+, RCYs were greater than 85% and RCPs were greater than 95% in all cases. CONCLUSION The chelate-free HIR technique for binding metals to FH NPs has been extended to a range of metals with radioisotopes used in therapeutic and diagnostic applications. Cations with f-orbital electrons, more empty d-orbitals, larger radii, and higher positive charges achieved higher values of RCY and RCP in the HIR reaction. The ability to use a simple heating step to bind a wide range of metals to the FH NP, a widely available approved drug, may allow this NP to become a platform for obtaining radiolabeled nanoparticles in many settings.
Collapse
Affiliation(s)
- Yaser H Gholami
- The University of Sydney, Faculty of Science, School of Physics, Sydney, NSW, Australia
- Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia
| | - Lee Josephson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eman A Akam
- The Institute for Innovation in Imaging and the A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Peter Caravan
- The Institute for Innovation in Imaging and the A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiang-Zuo Pan
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Bouve College of Health Sciences, CaNCURE Program, Northeastern University, Boston, MA, USA
| | - Richard Maschmeyer
- The University of Sydney, Faculty of Science, School of Physics, Sydney, NSW, Australia
| | - Aleksandra Kolnick
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Internal Medicine Residency Program, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zdenka Kuncic
- The University of Sydney, Faculty of Science, School of Physics, Sydney, NSW, Australia
- Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia
- The University of Sydney Nano Institute, Sydney, NSW, Australia
| | - Hushan Yuan
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Assessing the interactions between radiotherapy and antitumour immunity. Nat Rev Clin Oncol 2019; 16:729-745. [PMID: 31243334 DOI: 10.1038/s41571-019-0238-9] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
Abstract
Immunotherapy, specifically the introduction of immune checkpoint inhibitors, has transformed the treatment of cancer, enabling long-term tumour control even in individuals with advanced-stage disease. Unfortunately, only a small subset of patients show a response to currently available immunotherapies. Despite a growing consensus that combining immune checkpoint inhibitors with radiotherapy can increase response rates, this approach might be limited by the development of persistent radiation-induced immunosuppression. The ultimate goal of combining immunotherapy with radiotherapy is to induce a shift from an ineffective, pre-existing immune response to a long-lasting, therapy-induced immune response at all sites of disease. To achieve this goal and enable the adaptation and monitoring of individualized treatment approaches, assessment of the dynamic changes in the immune system at the patient level is essential. In this Review, we summarize the available clinical data, including forthcoming methods to assess the immune response to radiotherapy at the patient level, ranging from serum biomarkers to imaging techniques that enable investigation of immune cell dynamics in patients. Furthermore, we discuss modelling approaches that have been developed to predict the interaction of immunotherapy with radiotherapy, and highlight how they could be combined with biomarkers of antitumour immunity to optimize radiotherapy regimens and maximize their synergy with immunotherapy.
Collapse
|
10
|
Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals. Molecules 2019; 24:molecules24193567. [PMID: 31581645 PMCID: PMC6803924 DOI: 10.3390/molecules24193567] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
In recent years, several catalyst-free site-specific reactions have been investigated for the efficient conjugation of biomolecules, nanomaterials, and living cells. Representative functional group pairs for these reactions include the following: (1) azide and cyclooctyne for strain-promoted cycloaddition reaction, (2) tetrazine and trans-alkene for inverse-electron-demand-Diels–Alder reaction, and (3) electrophilic heterocycles and cysteine for rapid condensation/addition reaction. Due to their excellent specificities and high reaction rates, these conjugation methods have been utilized for the labeling of radioisotopes (e.g., radiohalogens, radiometals) to various target molecules. The radiolabeled products prepared by these methods have been applied to preclinical research, such as in vivo molecular imaging, pharmacokinetic studies, and radiation therapy of cancer cells. In this review, we explain the basics of these chemical reactions and introduce their recent applications in the field of radiopharmacy and chemical biology. In addition, we discuss the significance, current challenges, and prospects of using bioorthogonal conjugation reactions.
Collapse
|
11
|
Reichel D, Tripathi M, Perez JM. Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment. Nanotheranostics 2019; 3:66-88. [PMID: 30662824 PMCID: PMC6328304 DOI: 10.7150/ntno.30052] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022] Open
Abstract
Biological interactions between tumor-associated macrophages (TAMs), cancer cells and other cells within the tumor microenvironment contribute to tumorigenesis, tumor growth, metastasis and therapeutic resistance. TAMs can remodel the tumor microenvironment to reduce growth barriers such as the dense extracellular matrix and shift tumors towards an immunosuppressive microenvironment that protects cancer cells from targeted immune responses. Nanoparticles can interrupt these biological interactions within tumors by altering TAM phenotypes through a process called polarization. Macrophage polarization within tumors can shift TAMs from a growth-promoting phenotype towards a cancer cell-killing phenotype that predicts treatment efficacy. Because many types of nanoparticles have been shown to preferentially accumulate within macrophages following systemic administration, there is considerable interest in identifying nanoparticle effects on TAM polarization, evaluating nanoparticle-induced TAM polarization effects on cancer treatment using drug-loaded nanoparticles and identifying beneficial types of nanoparticles for effective cancer treatment. In this review, the macrophage polarization effects of nanoparticles will be described based on their primary chemical composition. Because of their strong macrophage-polarizing and antitumor effects compared to other types of nanoparticles, the effects of iron oxide nanoparticles on macrophages will be discussed in detail. By comparing the macrophage polarization effects of various nanoparticle treatments reported in the literature, this review aims to both elucidate nanoparticle material effects on macrophage polarization and to provide insight into engineering nanoparticles with more beneficial immunological responses for cancer treatment.
Collapse
Affiliation(s)
- Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Manisha Tripathi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Current Address: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
12
|
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Eng DNC, Halldin C, Gulyás B. PET-MR and SPECT-MR multimodality probes: Development and challenges. Theranostics 2018; 8:6210-6232. [PMID: 30613293 PMCID: PMC6299694 DOI: 10.7150/thno.26610] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET)-magnetic resonance (MR) or single photon emission computed tomography (SPECT)-MR hybrid imaging is being used in daily clinical practice. Due to its advantages over stand-alone PET, SPECT or MR imaging, in many areas such as oncology, the demand for hybrid imaging techniques is increasing dramatically. The use of multimodal imaging probes or biomarkers in a single molecule or particle to characterize the imaging subjects such as disease tissues certainly provides us with more accurate diagnosis and promotes therapeutic accuracy. A limited number of multimodal imaging probes are being used in preclinical and potential clinical investigations. The further development of multimodal PET-MR and SPECT-MR imaging probes includes several key elements: novel synthetic strategies, high sensitivity for accurate quantification and high anatomic resolution, favourable pharmacokinetic profile and target-specific binding of a new probe. This review thoroughly summarizes all recently available and noteworthy PET-MR and SPECT-MR multimodal imaging probes including small molecule bimodal probes, nano-sized bimodal probes, small molecular trimodal probes and nano-sized trimodal probes. To the best of our knowledge, this is the first comprehensive overview of all PET-MR and SPECT-MR multimodal probes. Since the development of multimodal PET-MR and SPECT-MR imaging probes is an emerging research field, a selection of 139 papers were recognized following the literature review. The challenges for designing multimodal probes have also been addressed in order to offer some future research directions for this novel interdisciplinary research field.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology and Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P.R. China, 315201
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
| | - Krishna K. Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
| | - Oliver Langer
- Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, A-1090, Vienna, Austria
- Center for Health and Bioresources, Biomedical Systems, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jiang Liu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology and Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P.R. China, 315201
| | - David Ng Chee Eng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
- Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Christer Halldin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| |
Collapse
|
13
|
Yuan H, Wilks MQ, Normandin MD, El Fakhri G, Kaittanis C, Josephson L. Heat-induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry. Nat Protoc 2018; 13:392-412. [PMID: 29370158 DOI: 10.1038/nprot.2017.133] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Feraheme (FH) nanoparticles (NPs) have been used extensively for treatment of iron anemia (due to their slow release of ionic iron in acidic environments). In addition, injected FH NPs are internalized by monocytes and function as MRI biomarkers for the pathological accumulation of monocytes in disease. We have recently expanded these applications by radiolabeling FH NPs for positron emission tomography (PET) or single-photon emission computed tomography (SPECT) imaging using a heat-induced radiolabeling (HIR) strategy. Imaging FH NPs using PET/SPECT has important advantages over MRI due to lower iron doses and improved quantitation of tissue NP concentrations. HIR of FH NPs leaves the physical and biological properties of the NPs unchanged and allows researchers to build on the extensive knowledge obtained about the pharmacokinetic and safety aspects of FH NPs. In this protocol, we present the step-by-step procedures for heat (120 °C)-induced bonding of three widely employed radiocations (89Zr4+ or 64Cu2+ for PET, and 111In3+ for SPECT) to FH NPs using a chelateless radiocation surface adsorption (RSA) approach. In addition, we describe the conversion of FH carboxyl groups into amines and their reaction with an N-hydroxysuccinimide (NHS) of a Cy5.5 fluorophore. This yields Cy5.5-FH, a fluorescent FH that enables the cells internalizing Cy5.5-FH to be examined using flow cytometry. Finally, we describe procedures for in vivo and ex vivo uptake of Cy5.5-FH by monocytes and for in vivo microPET/CT imaging of HIR-FH NPs. Synthesis of HIR-FH requires experience with working with radioactive cations and can be completed within <4 h. Synthesis of Cy5.5-FH NPs takes ∼17 h.
Collapse
Affiliation(s)
- Hushan Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Charalambos Kaittanis
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Lee Josephson
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
14
|
Kaittanis C, Bolaender A, Yoo B, Shah N, Ouerfelli O, Grimm J. Targetable Clinical Nanoparticles for Precision Cancer Therapy Based on Disease-Specific Molecular Inflection Points. NANO LETTERS 2017; 17:7160-7168. [PMID: 29035540 PMCID: PMC5677550 DOI: 10.1021/acs.nanolett.7b04209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Novel translational approaches based on clinical modular nanoplatforms are needed in order to treat solid cancers according to their discrete molecular features. In the present study, we show that the clinical nanopharmaceutical Ferumoxytol, which consists of a glucose-based coat surrounding an iron oxide core, could identify molecular characteristics of prostate cancer, corresponding to unique phases of the disease continuum. By affixing a targeting probe for the prostate-specific membrane antigen on its surface, the nanopharmaceutical was able to assess the functional state of the androgen receptor pathway via MRI, guiding therapy and delivering it with the same clinical nanoparticle. In order to simultaneously inhibit signaling from key oncogenic pathways of more advanced forms of prostate cancer, a single-agent therapy for early stage disease to inhibit DNA replication, as well as combination therapy with two drugs co-retained within the nanopharmaceutical's polymeric coating, were tested and resulted in complete tumor ablation. Recalcitrant and terminal forms of the disease were effectively treated with a nanopharmaceutical delivering a combination that upregulates endoplasmic reticulum stress and inhibits metastasis, thereby showing that this multifunctional nanoplatform can be used in the clinic for patient stratification, as well as precision treatment based on the individual's unique disease features.
Collapse
Affiliation(s)
| | | | | | | | | | - Jan Grimm
- Departments of Pharmacology and Radiology, Weill Cornell Medical College , New York, New York 10065, United States
| |
Collapse
|
15
|
Sîrbulescu RF, Boehm CK, Soon E, Wilks MQ, Ilieş I, Yuan H, Maxner B, Chronos N, Kaittanis C, Normandin MD, El Fakhri G, Orgill DP, Sluder AE, Poznansky MC. Mature B cells accelerate wound healing after acute and chronic diabetic skin lesions. Wound Repair Regen 2017; 25:774-791. [PMID: 28922523 DOI: 10.1111/wrr.12584] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022]
Abstract
Chronic wounds affect 12-15% of patients with diabetes and are associated with a drastic decrease in their quality of life. Here, we demonstrate that purified mature naive B220+ /CD19+ /IgM+ /IgD+ B cells improve healing of acute and diabetic murine wounds after a single topical application. B cell treatment significantly accelerated acute wound closure by 2-3 days in wild-type mice and 5-6 days in obese diabetic mice. The treatment led to full closure in 43% of chronic diabetic wounds, as compared to only 5% in saline-treated controls. Applying equivalent numbers of T cells or disrupted B cells failed to reproduce these effects, indicating that live B cells mediated pro-healing responses. Topically applied B cell treatment was associated with significantly reduced scar size, increased collagen deposition and maturation, enhanced angiogenesis, and increased nerve growth into and under the healing wound. β-III tubulin+ nerve endings in scars of wounds treated acutely with B cells showed increased relative expression of growth-associated protein 43. The improved healing associated with B cell treatment was supported by significantly increased fibroblast proliferation and decreased apoptosis in the wound bed and edges, altered kinetics of neutrophil infiltration, as well as an increase in TGF-β and a significant reduction in MMP2 expression in wound granulation tissue. Our findings indicate that the timeline and efficacy of wound healing can be experimentally manipulated through the direct application of mature, naive B cells, which effectively modify the balance of mature immune cell populations within the wound microenvironment and accelerate the healing process.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chloe K Boehm
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Erin Soon
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Iulian Ilieş
- Healthcare Systems Engineering Institute, Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, Massachusetts
| | - Hushan Yuan
- Gordon Center for Medical Imaging, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ben Maxner
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicolas Chronos
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charalambos Kaittanis
- Gordon Center for Medical Imaging, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Miller MA, Arlauckas S, Weissleder R. Prediction of Anti-cancer Nanotherapy Efficacy by Imaging. Nanotheranostics 2017; 1:296-312. [PMID: 29071194 PMCID: PMC5646731 DOI: 10.7150/ntno.20564] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/27/2017] [Indexed: 12/17/2022] Open
Abstract
Anticancer nanotherapeutics have shown mixed results in clinical trials, raising the questions of whether imaging should be used to i) identify patients with a higher likelihood of nanoparticle accumulation, ii) assess nanotherapeutic efficacy before traditional measures show response, and iii) guide adjuvant treatments to enhance therapeutic nanoparticle (TNP) delivery. Here we review the use of a clinically approved MRI nanoparticle (ferumoxytol, FMX) to predict TNP delivery and efficacy. It is becoming increasingly apparent that nanoparticles used for imaging, despite clearly distinct physicochemical properties, often co-localize with TNP in tumors. This evidence offers the possibility of using FMX as a generic “companion diagnostic” nanoparticle for multiple TNP formulations, thus potentially allowing many of the complex regulatory and cost challenges of other approaches to be avoided.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, USA.,Department of Radiology, Massachusetts General Hospital, USA
| | - Sean Arlauckas
- Center for Systems Biology, Massachusetts General Hospital, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, USA.,Department of Radiology, Massachusetts General Hospital, USA.,Department of Systems Biology, Harvard Medical School, USA
| |
Collapse
|