1
|
Horák P, Bulantová J, Mikeš L. Other Schistosomatoidea and Diplostomoidea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:107-155. [PMID: 39008265 DOI: 10.1007/978-3-031-60121-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.
Collapse
Affiliation(s)
- Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Teng ZW, Wu HZ, Ye XH, Fang Q, Zhou HX, Ye GY. An endoparasitoid uses its egg surface proteins to regulate its host immune response. INSECT SCIENCE 2022; 29:1030-1046. [PMID: 34687499 DOI: 10.1111/1744-7917.12978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
With proteomic analysis, we identified 379 egg surface proteins from an endoparasitoid, Cotesia chilonis. Proteins containing conserved enzymatic domains constitute a large proportion of egg surface components. Some proteins, such as superoxidase dismutase, homolog of C. rubecula 32-kDa protein, and immunoevasive protein-2A, are classical parasitism factors that have known functions in host immunity regulation. Melanization assays revealed that a novel egg surface protein, C. chilonis egg surface serpin domain-containing protein had the same function as a C. chilonis venom serpin, as both suppressed host melanization in a dose-dependent manner. C. chilonis egg surface serpin domain-containing protein is mainly transcribed in C. chilonis oocytes with follicular cells, and it is located on both the anterior and posterior sides of the mature egg surface. Additionally, we used LC-MS/MS to identify 586 binding proteins sourced from C. suppressalis plasma located on the eggshell surface of C. chilonis, which included some immunity-related proteins. These results not only indicate that C. chilonis uses its egg surface proteins to reduce the immune response of its host but also imply that endoparasitoid egg surface proteins might be a new parasitism factor involved in host immune regulation.
Collapse
Affiliation(s)
- Zi-Wen Teng
- China-Australia Cooperation Base of Crop Health and Invasive Species, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Zi Wu
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Hai Ye
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hong-Xu Zhou
- China-Australia Cooperation Base of Crop Health and Invasive Species, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Vondráček O, Mikeš L, Talacko P, Leontovyč R, Bulantová J, Horák P. Differential proteomic analysis of laser-microdissected penetration glands of avian schistosome cercariae with a focus on proteins involved in host invasion. Int J Parasitol 2022; 52:343-358. [PMID: 35218763 DOI: 10.1016/j.ijpara.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Schistosome invasive stages, cercariae, leave intermediate snail hosts, penetrate the skin of definitive hosts, and transform to schistosomula which migrate to the final location. During invasion, cercariae employ histolytic and other bioactive products of specialized holocrine secretory cells - postacetabular (PA) and circumacetabular (CA) penetration glands. Although several studies attempted to characterize protein composition of the in vitro-induced gland secretions in Schistosoma mansoni and Schistosoma japonicum, the results were somewhat inconsistent and dependent on the method of sample collection and processing. Products of both gland types mixed during their secretion did not allow localization of identified proteins to a particular gland. Here we compared proteomes of separately isolated cercarial gland cells of the avian schistosome Trichobilharzia szidati, employing laser-assisted microdissection and shotgun LC-MS/MS, thus obtaining the largest dataset so far of the representation and localization of cercarial penetration gland proteins. We optimized the methods of sample processing with cercarial bodies (heads) first. Alizarin-pre-stained, chemically non-fixed samples provided optimal results of MS analyses, and enabled us to distinguish PA and CA glands for microdissection. Using 7.5 x 106 μm3 sample volume per gland replicate, we identified 3347 peptides assigned to 792 proteins, from which 461 occurred in at least two of three replicates in either gland type (PA = 455, 40 exclusive; CA = 421, six exclusive; 60 proteins differed significantly in their abundance between the glands). Peptidases of five catalytic types accounted for ca. 8% and 6% of reliably identified proteins in PA and CA glands, respectively. Invadolysin, nardilysin, cathepsins B2 and L3, and elastase 2b orthologs were the major gland endopeptidases. Two cystatins and a serpin were highly abundant peptidase inhibitors in the glands. While PA glands generally had rich enzymatic equipment, CA glands were conspicuously abundant in venom allergen-like proteins.
Collapse
Affiliation(s)
- Oldřich Vondráček
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia.
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV Průmyslová 595, Vestec, Czechia
| | - Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| |
Collapse
|
4
|
Macháček T, Leontovyč R, Šmídová B, Majer M, Vondráček O, Vojtěchová I, Petrásek T, Horák P. Mechanisms of the host immune response and helminth-induced pathology during Trichobilharzia regenti (Schistosomatidae) neuroinvasion in mice. PLoS Pathog 2022; 18:e1010302. [PMID: 35120185 PMCID: PMC8849443 DOI: 10.1371/journal.ppat.1010302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/16/2022] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
Helminth neuroinfections represent serious medical conditions, but the diversity of the host-parasite interplay within the nervous tissue often remains poorly understood, partially due to the lack of laboratory models. Here, we investigated the neuroinvasion of the mouse spinal cord by Trichobilharzia regenti (Schistosomatidae). Active migration of T. regenti schistosomula through the mouse spinal cord induced motor deficits in hindlimbs but did not affect the general locomotion or working memory. Histological examination of the infected spinal cord revealed eosinophilic meningomyelitis with eosinophil-rich infiltrates entrapping the schistosomula. Flow cytometry and transcriptomic analysis of the spinal cord confirmed massive activation of the host immune response. Of note, we recorded striking upregulation of the major histocompatibility complex II pathway and M2-associated markers, such as arginase or chitinase-like 3. Arginase also dominated the proteins found in the microdissected tissue from the close vicinity of the migrating schistosomula, which unselectively fed on the host nervous tissue. Next, we evaluated the pathological sequelae of T. regenti neuroinvasion. While no demyelination or blood-brain barrier alterations were noticed, our transcriptomic data revealed a remarkable disruption of neurophysiological functions not yet recorded in helminth neuroinfections. We also detected DNA fragmentation at the host-schistosomulum interface, but schistosomula antigens did not affect the viability of neurons and glial cells in vitro. Collectively, altered locomotion, significant disruption of neurophysiological functions, and strong M2 polarization were the most prominent features of T. regenti neuroinvasion, making it a promising candidate for further neuroinfection research. Indeed, understanding the diversity of pathogen-related neuroinflammatory processes is a prerequisite for developing better protective measures, treatment strategies, and diagnostic tools.
Collapse
Affiliation(s)
- Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Barbora Šmídová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Oldřich Vondráček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Iveta Vojtěchová
- National Institute of Mental Health, Klecany, Czechia
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Petrásek
- National Institute of Mental Health, Klecany, Czechia
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
5
|
Dvořáková H, Leontovyč R, Macháček T, O'Donoghue AJ, Šedo O, Zdráhal Z, Craik CS, Caffrey CR, Horák P, Mikeš L. Isoforms of Cathepsin B1 in Neurotropic Schistosomula of Trichobilharzia regenti Differ in Substrate Preferences and a Highly Expressed Catalytically Inactive Paralog Binds Cystatin. Front Cell Infect Microbiol 2020; 10:66. [PMID: 32175287 PMCID: PMC7054455 DOI: 10.3389/fcimb.2020.00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/07/2020] [Indexed: 11/13/2022] Open
Abstract
Schistosomula (the post-infective stages) of the neurotropic schistosome Trichobilharzia regenti possess multiple isoforms of cathepsin B1 peptidase (TrCB1.1-TrCB1.6) with involvement in nutrient digestion. The comparison of substrate preferences of TrCB1.1 and TrCB1.4 showed that TrCB1.4 had a very narrow substrate specificity and after processing it was less effective toward protein substrates when compared to TrCB1.1. Self-processing of both isoforms could be facilitated by sulfated polysaccharides due to a specific binding motif in the pro-sequence. Trans-activation by heterologous enzymes was also successfully employed. Expression profiling revealed a high level of transcription of genes encoding the enzymatically inactive paralogs TrCB1.5 and TrCB1.6. The transcription level of TrCB1.6 was comparable with that of TrCB1.1 and TrCB1.2, the most abundant active isoforms. Recombinant TrCB1.6wt, a wild type paralog with a Cys29-to-Gly substitution in the active site that renders the enzyme inactive, was processed by the active TrCB1 forms and by an asparaginyl endopeptidase. Although TrCB1.6wt lacked hydrolytic activity, endopeptidase, but not dipeptidase, activity could be restored by mutating Gly29 to Cys29. The lack of exopeptidase activity may be due to other mutations, such as His110-to-Asn in the occluding loop and Asp224-to-Gly in the main body of the mature TrCB1.6, which do not occur in the active isoforms TrCB1.1 and TrCB1.4 with exopeptidase activity. The catalytically active enzymes and the inactive TrCB1.6 paralog formed complexes with chicken cystatin, thus supporting experimentally the hypothesis that inactive paralogs could potentially regulate the activity of the active forms or protect them from being inhibited by host inhibitors. The effect on cell viability and nitric oxide production by selected immune cells observed for TrCB1.1 was not confirmed for TrCB1.6. We show here that the active isoforms of TrCB1 have different affinities for peptide substrates thereby facilitating diversity in protein-derived nutrition for the parasite. The inactive paralogs are unexpectedly highly expressed and one of them retains the ability to bind cystatins, likely due to specific mutations in the occluding loop and the enzyme body. This suggests a role in sequestration of inhibitors and protection of active cysteine peptidases.
Collapse
Affiliation(s)
- Hana Dvořáková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Anthony J. O'Donoghue
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Ondřej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Zhao Y, Yang Q, Jin C, Feng Y, Xie S, Xie H, Qi Y, Qiu H, Chen H, Tao A, Mu J, Qin W, Huang J. Changes of CD103-expressing pulmonary CD4 + and CD8 + T cells in S. japonicum infected C57BL/6 mice. BMC Infect Dis 2019; 19:999. [PMID: 31775660 PMCID: PMC6880605 DOI: 10.1186/s12879-019-4633-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recent studies have shown that CD103 is an important marker for tissue-resident memory T cells (TRM) which plays an important role in anti-infection. However, the role of CD103+ TRM was not elucidated in the progress of S. japonicum infection induced disease. METHODS 6-8 weeks old C57BL/6 mice were infected by S. japonicum. Mice were sacrificed and the lungs were removed 5-6 weeks after infection. Immunofluorescent staining and Q-PCR were performed to identify the expression of CD103 molecule. Single cellular populations were made, percentages of CD103 on both CD4+ and CD8+ T lymphocytes were dynamical observed by flow cytometry (FCM). Moreover, the expression of memory T cells related molecules CD69 and CD62L, T cell function associated molecules CD107a, IFN-γ, IL-4, IL-9, and IL-10 were compared between CD103+ CD4+ and CD8+ T cells by FCM. RESULTS CD103+ cells were emerged in the lung of both naive and S. japonicum infected mice. Both the percentage and the absolute numbers of pulmonary CD4+ and CD8+ cells were increased after S. japonicum infection (P < 0.05). The percentage of CD103+ cells in CD8+ T cells decreased significantly at the early stage of S. japonicum infection (P < 0.05). Increased CD69, decreased CD62L and CD107a expressions were detected on both CD4+ and CD8+ CD103+ T cells in the lungs of infected mice (P < 0.05). Compared to CD8+ CD103+ T cells, CD4+ CD103+ T cells from infected mice expressed higher level of CD69 and lower level CD62L molecules (P < 0.05). Moreover, higher percentage of IL-4+, IL-9+ and IL-10+ cells on CD4+ CD103+ pulmonary T cells was found in infected mice (P < 0.05). Significantly increased IL-4 and IL-9, and decreased IFN-γ expressing cells were detected in CD8+CD103+ cells of infected mice (P < 0.05). CONCLUSIONS CD103-expressing pulmonary CD4+ and CD8+ T cells play important roles in mediating S. japonicum infection induced granulomatous inflammation in the lung.
Collapse
Affiliation(s)
- Yi Zhao
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Quan Yang
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chenxi Jin
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuanfa Feng
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shihao Xie
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyan Xie
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanwei Qi
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Huaina Qiu
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyuan Chen
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ailin Tao
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wenjuan Qin
- Department of Radiation Oncology, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Jun Huang
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
7
|
Buddenborg SK, Kamel B, Hanelt B, Bu L, Zhang SM, Mkoji GM, Loker ES. The in vivo transcriptome of Schistosoma mansoni in the prominent vector species Biomphalaria pfeifferi with supporting observations from Biomphalaria glabrata. PLoS Negl Trop Dis 2019; 13:e0007013. [PMID: 31568484 PMCID: PMC6797213 DOI: 10.1371/journal.pntd.0007013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 10/17/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The full scope of the genes expressed by schistosomes during intramolluscan development has yet to be characterized. Understanding the gene products deployed by larval schistosomes in their snail hosts will provide insights into their establishment, maintenance, asexual reproduction, ability to castrate their hosts, and their prolific production of human-infective cercariae. Using the Illumina platform, the intramolluscan transcriptome of Schistosoma mansoni was investigated in field-derived specimens of the prominent vector species Biomphalaria pfeifferi at 1 and 3 days post infection (d) and from snails shedding cercariae. These S. mansoni samples were derived from the same snails used in our complementary B. pfeifferi transcriptomic study. We supplemented this view with microarray analyses of S. mansoni from B. glabrata at 2d, 4d, 8d, 16d, and 32d to highlight robust features of S. mansoni transcription, even when a different technique and vector species was used. PRINCIPAL FINDINGS Transcripts representing at least 7,740 (66%) of known S. mansoni genes were expressed during intramolluscan development, with the greatest number expressed in snails shedding cercariae. Many transcripts were constitutively expressed throughout development featuring membrane transporters, and metabolic enzymes involved in protein and nucleic acid synthesis and cell division. Several proteases and protease inhibitors were expressed at all stages, including some proteases usually associated with cercariae. Transcripts associated with G-protein coupled receptors, germ cell perpetuation, and stress responses and defense were well represented. We noted transcripts homologous to planarian anti-bacterial factors, several neural development or neuropeptide transcripts including neuropeptide Y, and receptors that may be associated with schistosome germinal cell maintenance that could also impact host reproduction. In at least one snail the presence of larvae of another digenean species (an amphistome) was associated with repressed S. mansoni transcriptional activity. CONCLUSIONS/SIGNIFICANCE This in vivo study, emphasizing field-derived snails and schistosomes, but supplemented with observations from a lab model, provides a distinct view from previous studies of development of cultured intramolluscan stages from lab-maintained organisms. We found many highly represented transcripts with suspected or unknown functions, with connection to intramolluscan development yet to be elucidated.
Collapse
Affiliation(s)
- Sarah K. Buddenborg
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- * E-mail:
| | - Bishoy Kamel
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Ben Hanelt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairob,i Kenya
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
8
|
Horák P, Bulantová J, Mikeš L. Schistosomatoidea and Diplostomoidea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:217-254. [PMID: 31297764 DOI: 10.1007/978-3-030-18616-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis affecting more than 200 million people in tropical and subtropical countries, infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The Aporocotylidae are pathogenic in fish, Spirorchiidae in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in molluscs and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive, but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.
Collapse
Affiliation(s)
- Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague 2, Czechia.
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Prague 2, Czechia
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague 2, Czechia
| |
Collapse
|
9
|
Ashrafi K, Nouroosta A, Sharifdini M, Mahmoudi MR, Rahmati B, Brant SV. Genetic diversity of an avian nasal schistosome causing cercarial dermatitis in the Black Sea-Mediterranean migratory route. Parasitol Res 2018; 117:3821-3833. [PMID: 30343420 DOI: 10.1007/s00436-018-6087-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022]
Abstract
This study is part of an effort to document the diversity of avian schistosomes in ducks and snails in Northern Iran, a major flyway (Black Sea/Mediterranean) for migratory birds and where cercarial dermatitis (CD) is prevalent in rice growing areas. CD is an allergic skin reaction from schistosome trematodes that emerge from aquatic snails. Most CD cases are reported from recreational swimmers or aquaculture farmers. Much of the work on the epidemiology of CD has focused in recreational waters in the Americas and Europe, with fewer studies in aquaculture, particularly in Iran. The artificial environment at aquaculture sites support dense populations of snails that are hosts to schistosomes, as well as domestic ducks. Thus, are domestic ducks reservoir hosts of species of Trichobilharzia, one of the main etiological agents of CD in Northern Iran? This study focused on a survey of domestic ducks for the presence of the nasal schistosome, T. regenti, that has been reported widely in Europe. Trichobilharzia regenti were found in domestic ducks in the Guilan Province of Iran based on morphological and molecular analyses. The presence of this species in Northern Iran indicates that the domestic duck can serve as a reservoir host for this species and that one of the local snail species is likely the intermediate host. The continued study and surveillance of this species is important because it is a neuropathic schistosome that can use a diversity of bird definitive hosts and Radix snails that are widespread across Eurasia.
Collapse
Affiliation(s)
- Keyhan Ashrafi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Nouroosta
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Reza Mahmoudi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Behnaz Rahmati
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara V Brant
- Museum of Southwestern Biology, Division of Parasites, Department of Biology, University of New Mexico, 1 University of New Mexico MSC03 2020, Albuquerque, New Mexico, 87131, USA.
| |
Collapse
|
10
|
Macháček T, Turjanicová L, Bulantová J, Hrdý J, Horák P, Mikeš L. Cercarial dermatitis: a systematic follow-up study of human cases with implications for diagnostics. Parasitol Res 2018; 117:3881-3895. [PMID: 30302587 DOI: 10.1007/s00436-018-6095-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
Cercarial dermatitis (CD) is an allergic skin disease that rises in consequence of infection by invasive stages (cercariae) of trematodes of the family Schistosomatidae. CD has been considered a re-emerging disease, human cases have been reported from all continents, and tourism-threatening outbreaks occur even in frequented recreational areas. Although the symptoms of CD are generally known, the data on immune response in human patients are sporadic and incomprehensive. In the present study, we attempted to correlate the symptoms, personal history, and time course of CD in human patients with differential cell counts, dynamics of selected cytokines, and dynamics and quality of antibody response. By a systematic follow-up, we obtained a uniquely complex dataset from ten persons accidentally and concurrently infected by the same parasite species in the same locality. The onset of CD was significantly faster, and the symptoms were heavier in participants with a history of CD if compared to naive ones, who, however, also developed some of the symptoms. The repeatedly infected persons had elevated proportion of eosinophils 1 week post exposure (p.e.) and a stronger specific IgG but not IgM response, whereas specific IgE response was not observed. Increased serum levels of IL-4 occurred 1 and 3 week(s) p.e. in all participants. There was high variability in individual immunoblot patterns of IgG response, and no antigen with a universal diagnostic potential was confirmed. The presented analyses suggested that a complex approach can improve the accuracy of the diagnosis of CD, but component data should be interpreted carefully.
Collapse
Affiliation(s)
- Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Libuše Turjanicová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 12800, Prague 2, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|