1
|
Jiménez J, Sadras VO, Espaillat N, Moreno A, Fereres A. Interplay between drought and plant viruses co-infecting melon plants. Sci Rep 2024; 14:15833. [PMID: 38982112 PMCID: PMC11233556 DOI: 10.1038/s41598-024-66344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Drought affects crops directly, and indirectly by affecting the activity of insect pests and the transmitted pathogens. Here, we established an experiment with well-watered or water-stressed melon plants, later single infected with either cucumber mosaic virus (CMV: non-persistent), or cucurbit aphid-borne yellow virus (CABYV: persistent), or both CMV and CABYV, and mock-inoculated control. We tested whether i) the relation between CMV and CABYV is additive, and ii) the relationship between water stress and virus infection is antagonistic, i.e., water stress primes plants for enhanced tolerance to virus infection. Water stress increased leaf greenness and temperature, and reduced leaf water potential, shoot biomass, stem dimensions, rate of flowering, CABYV symptom severity, and marketable fruit yield. Virus infection reduced leaf water potential transiently in single infected plants and persistently until harvest in double-infected plants. Double-virus infection caused the largest and synergistic reduction of marketable fruit yield. The relationship between water regime and virus treatment was additive in 12 out of 15 traits at harvest, with interactions for leaf water content, leaf:stem ratio, and fruit set. We conclude that both virus-virus relations in double infection and virus-drought relations cannot be generalized because they vary with virus, trait, and plant ontogeny.
Collapse
Affiliation(s)
- J Jiménez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain.
| | - V O Sadras
- South Australian Research and Development Institute, School of Agriculture, Food and Wine, The University of Adelaide, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - N Espaillat
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - A Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - A Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| |
Collapse
|
2
|
Bailey ST, Kondragunta A, Choi HA, Han J, McInnes H, Rotenberg D, Ullman DE, Benoit JB. Dehydration and tomato spotted wilt virus infection combine to alter feeding and survival parameters for the western flower thrips, Frankliniella occidentalis. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100086. [PMID: 39193173 PMCID: PMC11345507 DOI: 10.1016/j.cris.2024.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 08/29/2024]
Abstract
Dehydration and tomato spotted wilt virus (TSWV) infection substantially impact the feeding of western flower thrips, Frankliniella occidentalis. Until now, the dynamics between these biotic and abiotic stresses have not been examined for thrips. Here, we report water balance characteristics and changes in other biological parameters during infection with TSWV for the western flower thrips. There were no apparent differences in water balance parameters during TSWV infection of male or female thrips. Our results show that, although water balance characteristics of western flower thrips are minimally impacted by TSWV infection, the increase in feeding and activity when dehydration and TSWV are combined suggests that virus transmission could be increased under periods of drought. Importantly, survival and progeny generation were impaired during TSWV infection and dehydration bouts. The negative impact on survival and reproduction suggests that the interactions between TSWV infection and dehydration will likely reduce thrips populations. The opposite effects of dehydration on feeding/activity and survival/reproduction for virus infected thrips suggest the impact of vectorial capacity will likely be minor for TSWV transmission. As water stress significantly impacts insect-plant-virus dynamics, these studies highlight that all interactions and effects need to be measured to understand thrips-TSWV interactions in their role as viral vector to plants.
Collapse
Affiliation(s)
- Samuel T. Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Alekhya Kondragunta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hyojin A. Choi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Holly McInnes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Diane E. Ullman
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
3
|
Gutiérrez-Sánchez Á, Cobos A, López-Herranz M, Canto T, Pagán I. Environmental Conditions Modulate Plant Virus Vertical Transmission and Survival of Infected Seeds. PHYTOPATHOLOGY 2023; 113:1773-1787. [PMID: 36880795 DOI: 10.1094/phyto-11-22-0448-v] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Seed transmission is a major mode for plant virus persistence and dispersal, as it allows for virus survival within the seed in unfavorable conditions and facilitates spread when they become more favorable. To access these benefits, viruses require infected seeds to remain viable and germinate in altered environmental conditions, which may also be advantageous for the plant. However, how environmental conditions and virus infection affect seed viability, and whether these effects modulate seed transmission rate and plant fitness, is unknown. To address these questions, we utilized turnip mosaic virus, cucumber mosaic virus, and Arabidopsis thaliana as model systems. Using seeds from plants infected by these viruses, we analyzed seed germination rates, as a proxy of seed viability, and virus seed transmission rate under standard and altered temperature, CO2, and light intensity. With these data, we developed and parameterized a mathematical epidemiological model to explore the consequences of the observed alterations on virus prevalence and persistence. Altered conditions generally reduced overall seed viability and increased virus transmission rate compared with standard conditions, which indicated that under environmental stress, infected seeds are more viable. Hence, virus presence may be beneficial for the host. Subsequent simulations predicted that enhanced viability of infected seeds and higher virus transmission rate may increase virus prevalence and persistence in the host population under altered conditions. This work provides novel information on the influence of the environment in plant virus epidemics. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Álvaro Gutiérrez-Sánchez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Alberto Cobos
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Marisa López-Herranz
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Tomás Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| |
Collapse
|
4
|
Gilles S, Meinzer M, Landgraf M, Kolek F, von Bargen S, Pack K, Charalampopoulos A, Ranpal S, Luschkova D, Traidl-Hoffmann C, Jochner-Oette S, Damialis A, Büttner C. Betula pendula trees infected by birch idaeovirus and cherry leaf roll virus: Impacts of urbanisation and NO 2 levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121526. [PMID: 37001600 DOI: 10.1016/j.envpol.2023.121526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Viruses are frequently a microbial biocontaminant of healthy plants. The occurrence of the infection can be also due to environmental stress, like urbanisation, air pollution and increased air temperature, especially under the ongoing climate change. The aim of the present study was to investigate the hypothesis that worsened air quality and fewer green areas may favour the higher frequency of common viral infections, particularly in a common tree in temperate and continental climates, Betula pendula ROTH. We examined 18 trees, during the years 2015-2017, the same always for each year, in the region of Augsburg, Germany. By specific PCR, the frequency of two viruses, Cherry leaf roll virus (CLRV, genus Nepovirus, family Secoviridae), which is frequent in birch trees, and a novel virus tentatively named birch idaeovirus (BIV), which has been only recently described, were determined in pollen samples. The occurrence of the viruses was examined against the variables of urban index, air pollution (O3 and NO2), air temperature, and tree morphometrics (trunk perimeter, tree height, crown height and diameter). Generalized Non-linear models (binomial logit with backward stepwise removal of independent variables) were employed. During the study period, both CLRV and BIV were distributed widely throughout the investigated birch individuals. CLRV seemed to be rather cosmopolitan and was present independent of any abiotic factor. BIV's occurrence was mostly determined by higher values of the urban index and of NO2. Urban birch trees, located next to high-traffic roads with higher NO2 levels, are more likely to be infected by BIV. Increased environmental stress may lead to more plant viral infections. Here we suggest that this is particularly true for urban spaces, near high-traffic roads, where plants may be more stressed, and we recommend taking mitigation measures for controlling negative human interventions.
Collapse
Affiliation(s)
- Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany
| | - Meike Meinzer
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Department of Phytomedicine, Humboldt University of Berlin, Berlin, Germany
| | - Maria Landgraf
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Department of Phytomedicine, Humboldt University of Berlin, Berlin, Germany
| | - Franziska Kolek
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Susanne von Bargen
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Department of Phytomedicine, Humboldt University of Berlin, Berlin, Germany
| | - Kaja Pack
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Department of Phytomedicine, Humboldt University of Berlin, Berlin, Germany
| | - Athanasios Charalampopoulos
- Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Surendra Ranpal
- Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-Ingolstadt, Eichstätt, Germany
| | - Daria Luschkova
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education (CK-Care), Davos, Switzerland
| | - Susanne Jochner-Oette
- Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-Ingolstadt, Eichstätt, Germany
| | - Athanasios Damialis
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Carmen Büttner
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Department of Phytomedicine, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
6
|
Mishra R, Shteinberg M, Shkolnik D, Anfoka G, Czosnek H, Gorovits R. Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. MOLECULAR PLANT PATHOLOGY 2022; 23:475-488. [PMID: 34970822 PMCID: PMC8916204 DOI: 10.1111/mpp.13172] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 05/08/2023]
Abstract
With climate warming, drought becomes a vital challenge for agriculture. Extended drought periods affect plant-pathogen interactions. We demonstrate an interplay in tomato between drought and infection with tomato yellow leaf curl virus (TYLCV). Infected plants became more tolerant to drought, showing plant readiness to water scarcity by reducing metabolic activity in leaves and increasing it in roots. Reallocation of osmolytes, such as carbohydrates and amino acids, from shoots to roots suggested a role of roots in protecting infected tomatoes against drought. To avoid an acute response possibly lethal for the host organism, TYLCV down-regulated the drought-induced activation of stress response proteins and metabolites. Simultaneously, TYLCV promoted the stabilization of osmoprotectants' patterns and water balance parameters, resulting in the development of buffering conditions in infected plants subjected to prolonged stress. Drought-dependent decline of TYLCV amounts was correlated with HSFA1-controlled activation of autophagy, mostly in the roots. The tomato response to combined drought and TYLCV infection points to a mutual interaction between the plant host and its viral pathogen.
Collapse
Affiliation(s)
- Ritesh Mishra
- Institute of Plant Sciences and Genetics in AgricultureRobert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Moshik Shteinberg
- Institute of Plant Sciences and Genetics in AgricultureRobert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Doron Shkolnik
- Institute of Plant Sciences and Genetics in AgricultureRobert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Ghandi Anfoka
- Faculty of Agricultural TechnologyAl Balqa' UniversityAl‐SaltJordan
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in AgricultureRobert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in AgricultureRobert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
7
|
Bergès SE, Vile D, Yvon M, Masclef D, Dauzat M, van Munster M. Water deficit changes the relationships between epidemiological traits of Cauliflower mosaic virus across diverse Arabidopsis thaliana accessions. Sci Rep 2021; 11:24103. [PMID: 34916537 PMCID: PMC8677750 DOI: 10.1038/s41598-021-03462-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022] Open
Abstract
Changes in plant abiotic environments may alter plant virus epidemiological traits, but how such changes actually affect their quantitative relationships is poorly understood. Here, we investigated the effects of water deficit on Cauliflower mosaic virus (CaMV) traits (virulence, accumulation, and vectored-transmission rate) in 24 natural Arabidopsis thaliana accessions grown under strictly controlled environmental conditions. CaMV virulence increased significantly in response to water deficit during vegetative growth in all A. thaliana accessions, while viral transmission by aphids and within-host accumulation were significantly altered in only a few. Under well-watered conditions, CaMV accumulation was correlated positively with CaMV transmission by aphids, while under water deficit, this relationship was reversed. Hence, under water deficit, high CaMV accumulation did not predispose to increased horizontal transmission. No other significant relationship between viral traits could be detected. Across accessions, significant relationships between climate at collection sites and viral traits were detected but require further investigation. Interactions between epidemiological traits and their alteration under abiotic stresses must be accounted for when modelling plant virus epidemiology under scenarios of climate change.
Collapse
Affiliation(s)
- Sandy E Bergès
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | - Michel Yvon
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Diane Masclef
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
8
|
Shteinberg M, Mishra R, Anfoka G, Altaleb M, Brotman Y, Moshelion M, Gorovits R, Czosnek H. Tomato Yellow Leaf Curl Virus (TYLCV) Promotes Plant Tolerance to Drought. Cells 2021; 10:2875. [PMID: 34831098 PMCID: PMC8616339 DOI: 10.3390/cells10112875] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
A growing body of research points to a positive interplay between viruses and plants. Tomato yellow curl virus (TYLCV) is able to protect tomato host plants against extreme drought. To envisage the use of virus protective capacity in agriculture, TYLCV-resistant tomato lines have to be infected first with the virus before planting. Such virus-resistant tomato plants contain virus amounts that do not cause disease symptoms, growth inhibition, or yield loss, but are sufficient to modify the metabolism of the plant, resulting in improved tolerance to drought. This phenomenon is based on the TYLCV-dependent stabilization of amounts of key osmoprotectants induced by drought (soluble sugars, amino acids, and proteins). Although in infected TYLCV-susceptible tomatoes, stress markers also show an enhanced stability, in infected TYLCV-resistant plants, water balance and osmolyte homeostasis reach particularly high levels. These tomato plants survive long periods of time during water withholding. However, after recovery to normal irrigation, they produce fruits which are not exposed to drought, similarly to the control plants. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.
Collapse
Affiliation(s)
- Moshik Shteinberg
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (R.M.); (M.M.); (R.G.)
| | - Ritesh Mishra
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (R.M.); (M.M.); (R.G.)
| | - Ghandi Anfoka
- Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan; (G.A.); (M.A.)
| | - Miassar Altaleb
- Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan; (G.A.); (M.A.)
| | - Yariv Brotman
- Faculty of Life Sciences, Ben Gurion University of the Negev, POB 653, Beer-Sheva 8410501, Israel;
| | - Menachem Moshelion
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (R.M.); (M.M.); (R.G.)
| | - Rena Gorovits
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (R.M.); (M.M.); (R.G.)
| | - Henryk Czosnek
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (R.M.); (M.M.); (R.G.)
| |
Collapse
|
9
|
Kim JH, Hilleary R, Seroka A, He SY. Crops of the future: building a climate-resilient plant immune system. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:101997. [PMID: 33454653 PMCID: PMC8184583 DOI: 10.1016/j.pbi.2020.101997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 05/05/2023]
Abstract
A grand challenge facing plant scientists today is to find innovative solutions to increase global crop production in the context of an increasingly warming climate. A major roadblock to global food sufficiency is persistent loss of crops to plant diseases and insect infestations. The United Nations has declared 2020 as the International Year of Plant Health. For historical reasons, molecular studies of plant-biotic interactions in the past several decades have not paid enough attention to how variable climate conditions affect plant-biotic interactions. Here, we highlight a few recent studies that begin to reveal how major climatic drivers impact the plant immune system, particularly secondary messenger and defense hormone signaling, and discuss possible approaches toward engineering climate-resilient plant immunity as part of an ongoing global effort to design 'dream' crops of the future.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Richard Hilleary
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Adam Seroka
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Viruses in Extreme Environments, Current Overview, and Biotechnological Potential. Viruses 2021; 13:v13010081. [PMID: 33430116 PMCID: PMC7826561 DOI: 10.3390/v13010081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
Virus research has advanced significantly since the discovery of the tobacco mosaic virus (TMV), the characterization of its infection mechanisms and the factors that determine their pathogenicity. However, most viral research has focused on pathogenic viruses to humans, animals and plants, which represent only a small fraction in the virosphere. As a result, the role of most viral genes, and the mechanisms of coevolution between mutualistic viruses, their host and their environment, beyond pathogenicity, remain poorly understood. This review focuses on general aspects of viruses that interact with extremophile organisms, characteristics and examples of mechanisms of adaptation. Finally, this review provides an overview on how knowledge of extremophile viruses sheds light on the application of new tools of relevant use in modern molecular biology, discussing their value in a biotechnological context.
Collapse
|
11
|
Trebicki P. Climate change and plant virus epidemiology. Virus Res 2020; 286:198059. [PMID: 32561376 DOI: 10.1016/j.virusres.2020.198059] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Changes in global climate driven by anthropogenic activities, especially the burning of fossil fuels and deforestation, have been progressively increasing and are projected to intensify. Increasing concentrations of atmospheric carbon dioxide and temperature will have significant consequences for future food production, quality, distribution and security. The epidemiology of plant viruses will be altered in the future as a result of climate change. Elevated atmospheric carbon dioxide, increased temperature, changes to water availability and more frequent extreme weather events will have direct and indirect effects on plant viruses through changes in hosts and vectors. Predicted climatic changes will affect the distribution and survival of plant viruses and their vectors, which are expected to increase in many geographic regions. Furthermore, climate change can affect the virulence and pathogenicity of plant viruses, consequently increasing the frequency and scale of disease outbreaks. Thus, greater understanding of plant virus epidemiology is needed to better anticipate challenges ahead and to develop effective and robust control strategies that will aid in securing global food production for the future.
Collapse
Affiliation(s)
- Piotr Trebicki
- Agriculture Victoria, 110 Natimuk Rd, Horsham, Victoria, 3400, Australia.
| |
Collapse
|
12
|
van Munster M. Impact of Abiotic Stresses on Plant Virus Transmission by Aphids. Viruses 2020; 12:E216. [PMID: 32075208 PMCID: PMC7077179 DOI: 10.3390/v12020216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/05/2023] Open
Abstract
Plants regularly encounter abiotic constraints, and plant response to stress has been a focus of research for decades. Given increasing global temperatures and elevated atmospheric CO2 levels and the occurrence of water stress episodes driven by climate change, plant biochemistry, in particular, plant defence responses, may be altered significantly. Environmental factors also have a wider impact, shaping viral transmission processes that rely on a complex set of interactions between, at least, the pathogen, the vector, and the host plant. This review considers how abiotic stresses influence the transmission and spread of plant viruses by aphid vectors, mainly through changes in host physiology status, and summarizes the latest findings in this research field. The direct effects of climate change and severe weather events that impact the feeding behaviour of insect vectors as well as the major traits (e.g., within-host accumulation, disease severity and transmission) of viral plant pathogens are discussed. Finally, the intrinsic capacity of viruses to react to environmental cues in planta and how this may influence viral transmission efficiency is summarized. The clear interaction between biotic (virus) and abiotic stresses is a risk that must be accounted for when modelling virus epidemiology under scenarios of climate change.
Collapse
Affiliation(s)
- Manuella van Munster
- INRA, UMR385, CIRAD TA-A54K, Campus International de Baillarguet, CEDEX 05, 34398 Montpellier, France
| |
Collapse
|
13
|
Shopan J, Liu C, Hu Z, Zhang M, Yang J. Identification of eukaryotic translation initiation factors and the temperature-dependent nature of Turnip mosaic virus epidemics in allopolyploid Brassica juncea. 3 Biotech 2020; 10:75. [PMID: 32051808 PMCID: PMC6987279 DOI: 10.1007/s13205-020-2058-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/06/2020] [Indexed: 11/24/2022] Open
Abstract
Eukaryotic translation initiation factors (eIFs) are essential protein complexes involved in the translation of mRNA into proteins. These initiation factors are generally used as targets in the control of plant RNA virus infections. In the present study, we identified a total 190 eIFs, clustered phylogenetically into 40 distinct subfamilies in the allopolyploid Brassica juncea. Extensive evolutionary duplications of the eIFs in B. juncea suggest their increased genetic diversity and wide adaptability. The induction of expressions in some of the eIFs after inoculation against Turnip mosaic virus (TuMV) provided candidate targets to be used in the control of viral infections. In addition, the expression profiles of eIFs under different temperatures suggested that the TuMV epidemic was temperature dependent. The eIFs expressions suggested that the systemic viral infections were more acute in plants grown between 20 °C and 28 °C. In addition, our results revealed that new subgroups of eIFs, eIF2β, eIF2α, eIF2Bβ, EF1A, and PABP could be represented as targets for antiviral strategies in B. juncea. In summary, our findings would be helpful in studying the complex mechanisms of eIF-mediated, temperature-dependent RNA virus control in B. juncea.
Collapse
Affiliation(s)
- Jannat Shopan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Chang Liu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058 China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058 China
| |
Collapse
|
14
|
González R, Butković A, Elena SF. From foes to friends: Viral infections expand the limits of host phenotypic plasticity. Adv Virus Res 2020; 106:85-121. [PMID: 32327149 DOI: 10.1016/bs.aivir.2020.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phenotypic plasticity enables organisms to survive in the face of unpredictable environmental stress. Intimately related to the notion of phenotypic plasticity is the concept of the reaction norm that places phenotypic plasticity in the context of a genotype-specific response to environmental gradients. Whether reaction norms themselves evolve and which factors might affect their shape has been the object of intense debates among evolutionary biologists along the years. Since their discovery, viruses have been considered as pathogens. However, new viromic techniques and a shift in conceptual paradigms are showing that viruses are mostly non-pathogenic ubiquitous entities. Recent studies have shown how viral infections can even be beneficial for their hosts. This may happen especially in the context of stressed hosts, where the virus infection can induce beneficial changes in the host's physiological homeostasis, hence changing the shape of the reaction norm. Despite the fact that underlying physiological mechanisms and evolutionary dynamics are still not well understood, such beneficial interactions are being discovered in a growing number of plant-virus systems. Here, we aim to review these disperse studies and place them into the context of phenotypic plasticity and the evolution of reaction norms. This is an emerging field that is posing many questions that still need to be properly answered. The answers would clearly interest virologists, plant pathologists and evolutionary biologists and likely they will suggest possible future biotechnological applications, including the development of crops with higher survival rates and yield under adverse environmental situations.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain.
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain; The Santa Fe Institute, Santa Fe, NM, United States.
| |
Collapse
|
15
|
Domingo-Calap ML, Moreno AB, Díaz Pendón JA, Moreno A, Fereres A, López-Moya JJ. Assessing the Impact on Virus Transmission and Insect Vector Behavior of a Viral Mixed Infection in Melon. PHYTOPATHOLOGY 2020; 110:174-186. [PMID: 31502517 DOI: 10.1094/phyto-04-19-0126-fi] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed viral infections in plants are common, and can result in synergistic or antagonistic interactions. Except in complex diseases with severe symptoms, mixed infections frequently remain unnoticed, and their impact on insect vector transmission is largely unknown. In this study, we considered mixed infections of two unrelated viruses commonly found in melon plants, the crinivirus cucurbit yellow stunting disorder virus (CYSDV) and the potyvirus watermelon mosaic virus (WMV), and evaluated their vector transmission by whiteflies and aphids, respectively. Their dynamics of accumulation was analyzed until 60 days postinoculation (dpi) in mixed-infected plants, documenting reduced titers of WMV and much higher titers of CYSDV compared with single infections. At 24 dpi, corresponding to the peak of CYSDV accumulation, similar whitefly transmission rates were obtained when comparing either individual or mixed-infected plants as CYSDV sources, although its secondary dissemination was slightly biased toward plants previously infected with WMV, regardless of the source plant. However, at later time points, mixed-infected plants partially recovered from the initially severe symptoms, and CYSDV transmission became significantly higher. Interestingly, aphid transmission rates both at early and late time points were unaltered when WMV was acquired from mixed-infected plants despite its reduced accumulation. This lack of correlation between WMV accumulation and transmission could result from compensatory effects observed in the analysis of the aphid feeding behavior by electrical penetration graphs. Thus, our results showed that mixed-infected plants could provide advantages for both viruses, directly favoring CYSDV dissemination while maintaining WMV transmission.
Collapse
Affiliation(s)
- Maria Luisa Domingo-Calap
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan Antonio Díaz Pendón
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | - Aranzazu Moreno
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Alberto Fereres
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Barcelona, Spain
| |
Collapse
|
16
|
Montes N, Pagán I. Light Intensity Modulates the Efficiency of Virus Seed Transmission through Modifications of Plant Tolerance. PLANTS (BASEL, SWITZERLAND) 2019; 8:E304. [PMID: 31461899 PMCID: PMC6783938 DOI: 10.3390/plants8090304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Increased light intensity has been predicted as a major consequence of climate change. Light intensity is a critical resource involved in many plant processes, including the interaction with viruses. A central question to plant-virus interactions is understanding the determinants of virus dispersal among plants. However, very little is known on the effect of environmental factors on virus transmission, particularly through seeds. The fitness of seed-transmitted viruses is highly dependent on host reproductive potential, and requires higher virus multiplication in reproductive organs. Thus, environmental conditions that favor reduced virus virulence without controlling its level of within-plant multiplication (i.e., tolerance) may enhance seed transmission. We tested the hypothesis that light intensity conditions that enhance plant tolerance promote virus seed transmission. To do so, we challenged 18 Arabidopsis thaliana accessions with Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV) under high and low light intensity. Results indicated that higher light intensity increased TuMV multiplication and/or plant tolerance, which was associated with more efficient seed transmission. Conversely, higher light intensity reduced plant tolerance and CMV multiplication, and had no effect on seed transmission. This work provides novel insights on how environmental factors modulate plant virus transmission and contributes to understand the underlying processes.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, 28668, Boadilla del Monte (Madrid), Spain and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), 28006 Madrid, Spain.
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| |
Collapse
|
17
|
Szczepaniec A, Finke D. Plant-Vector-Pathogen Interactions in the Context of Drought Stress. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00262] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
18
|
Del Toro FJ, Choi KS, Rakhshandehroo F, Aguilar E, Tenllado F, Canto T. Ambient conditions of elevated temperature and CO 2 levels are detrimental to the probabilities of transmission by insects of a Potato virus Y isolate and to its simulated prevalence in the environment. Virology 2019; 530:1-10. [PMID: 30753975 DOI: 10.1016/j.virol.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 12/17/2022]
Abstract
Conditions of elevated temperature and CO2 levels [30 °C and 970 parts-per-million (ppm), respectively] reduced the systemic titers of a potato virus Y (PVY) isolate in Nicotiana benthamiana plants, relative to standard conditions (25 °C, ~405 ppm CO2). Under controlled conditions we studied how these growing environments affected the transmission of infection by aphids. Probabilities of transmission of infection by insects that fed on infected donor plants kept at either standard conditions, or at 30 °C and 970 ppm CO2 were both determined and found to positively correlate with titers in donor leaves, independently of the ambient conditions in which recipient plantlets would grow. With these data, viral prevalence was simulated under conditions of elevated temperature and CO2 levels and found that for it to remain comparable to that simulated under standard conditions, insect arrivals to recipient plants in the former scenario would have to increase several-fold in their frequency.
Collapse
Affiliation(s)
- F J Del Toro
- Department of Microbial and Plant Biotechnology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| | - K S Choi
- Research Institute for Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA, Jeju 690-150, Republic of Korea
| | - F Rakhshandehroo
- Department of Plant Protection, College of Agricultural Sciences and Food Technologies, Science and Research Branch, Islamic Azad University, P. O. Box 14515-775, Tehran, Iran
| | - E Aguilar
- Department of Microbial and Plant Biotechnology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - F Tenllado
- Department of Microbial and Plant Biotechnology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - T Canto
- Department of Microbial and Plant Biotechnology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
19
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
20
|
Zhou JS, Drucker M, Ng JC. Direct and indirect influences of virus-insect vector-plant interactions on non-circulative, semi-persistent virus transmission. Curr Opin Virol 2018; 33:129-136. [PMID: 30212752 DOI: 10.1016/j.coviro.2018.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/28/2023]
Abstract
Plant viruses that are transmitted in a non-circulative, semi-persistent (NCSP) manner have determinants on, and/or accessories to, their capsids that facilitate virion binding to specific retention sites in their insect vectors. Bilateral interactions and interactions occurring at the nexus of all three partners (virus, vector and plant) also contribute to transmission by influencing virus acquisition and inoculation. Vector feeding behavior lies at the core of this trio of virus transmission processes (retention-acquisition-inoculation), but transmission may also be mediated by virus infection-triggered and/or vector feeding-triggered plant cues that influence behavioral responses such as vector attraction, deterrence and dispersal. Insights into the multiphasic interactions and coordinated processes will lead to a better understanding of the mechanisms of NCSP transmission.
Collapse
Affiliation(s)
- Jaclyn S Zhou
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; Center for Infectious Diseases and Vector Research, University of California, Riverside, CA 92521, USA
| | - Martin Drucker
- Virus Vector Interactions, SVQV, INRA, Université de Strasbourg, Colmar, France
| | - James Ck Ng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; Center for Infectious Diseases and Vector Research, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
21
|
Bergès SE, Vile D, Vazquez-Rovere C, Blanc S, Yvon M, Bédiée A, Rolland G, Dauzat M, van Munster M. Interactions Between Drought and Plant Genotype Change Epidemiological Traits of Cauliflower mosaic virus. FRONTIERS IN PLANT SCIENCE 2018; 9:703. [PMID: 29881396 PMCID: PMC5976794 DOI: 10.3389/fpls.2018.00703] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/08/2018] [Indexed: 05/05/2023]
Abstract
Plants suffer from a broad range of abiotic and biotic stresses that do not occur in isolation but often simultaneously. Productivity of natural and agricultural systems is frequently constrained by water limitation, and the frequency and duration of drought periods will likely increase due to global climate change. In addition, phytoviruses represent highly prevalent biotic threat in wild and cultivated plant species. Several hints support a modification of epidemiological parameters of plant viruses in response to environmental changes but a clear quantification of plant-virus interactions under abiotic stresses is still lacking. Here we report the effects of a water deficit on epidemiological parameters of Cauliflower mosaic virus (CaMV), a non-circulative virus transmitted by aphid vectors, in nine natural accessions of Arabidopsis thaliana with known contrasted responses to water deficit. Plant growth-related traits and virus epidemiological parameters were evaluated in PHENOPSIS, an automated high throughput phenotyping platform. Water deficit had contrasted effects on CaMV transmission rate and viral load among A. thaliana accessions. Under well-watered conditions, transmission rate tended to increase with viral load and with CaMV virulence across accessions. Under water deficit, transmission rate and virulence were negatively correlated. Changes in the rate of transmission under water deficit were not related to changes in viral load. Our results support the idea that optimal virulence of a given virus, as hypothesized under the transmission-virulence trade-off, is highly dependent on the environment and growth traits of the host.
Collapse
Affiliation(s)
- Sandy E. Bergès
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Denis Vile
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Denis Vile, Manuella van Munster,
| | - Cecilia Vazquez-Rovere
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- LABINTEX Europe, Instituto Nacional de Tecnología Agropecuária, Montpellier, France
| | - Stéphane Blanc
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michel Yvon
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Alexis Bédiée
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Gaëlle Rolland
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Myriam Dauzat
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Manuella van Munster
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Denis Vile, Manuella van Munster,
| |
Collapse
|
22
|
Jiménez J, Webster CG, Moreno A, Almeida RPP, Blanc S, Fereres A, Uzest M. Fasting alters aphid probing behaviour but does not universally increase the transmission rate of non-circulative viruses. J Gen Virol 2017; 98:3111-3121. [PMID: 29134940 DOI: 10.1099/jgv.0.000971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fasting period prior to non-circulative virus acquisition has been shown to increase the rate of transmission by aphids. However, this effect has only been studied for a few virus-vector combinations, and there are contradictory results in the literature as to the role of fasting on virus acquisition. We analysed the influence of fasting on the transmission of three non-circulative viruses, Cucumber mosaic virus, Zucchini yellow mosaic virus and Cauliflower mosaic virus, by two aphid vector species: Myzus persicae Sulzer (Hemiptera: Aphididae) and Aphis gossypii Glover (Hemiptera: Aphididae). All variables tested, including the virus species and isolate, and the species of aphid, influenced the effect of a fasting period on virus transmission efficiency. Furthermore, when aphids were subjected to an overnight feeding period on a sucrose solution, the fasting effect disappeared and the probing behaviour of these aphids was markedly different to plant-reared aphids. The electrical penetration graph (EPG) technique revealed that fasting altered the probing behaviour of M. persicae and A. gossypii, with fasted aphids beginning to feed sooner and having a significantly longer first intracellular puncture, measured as a potential drop. Significantly longer sub-phase II-3 of the potential drop and more archlets during this sub-phase were also observed for fasted aphids of both species. However, these behavioural changes were not predictive of increasing virus transmission following a fasting period. The impacts of pre-acquisition fasting on aphid probing behaviour and on the mechanisms of non-circulative virus transmission are discussed.
Collapse
Affiliation(s)
- Jaime Jiménez
- Instituto de Ciencias Agrarias - Consejo Superior de Investigaciones Científicas, C/ Serrano 115 dpdo, Madrid 28006, Spain
| | - Craig G Webster
- INRA, UMR 0385 BGPI, CIRAD-INRA-Montpellier SupAgro, TA-A54/K, Campus International de Baillarguet, 34394 Montpellier Cedex 05, France
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias - Consejo Superior de Investigaciones Científicas, C/ Serrano 115 dpdo, Madrid 28006, Spain
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Stéphane Blanc
- INRA, UMR 0385 BGPI, CIRAD-INRA-Montpellier SupAgro, TA-A54/K, Campus International de Baillarguet, 34394 Montpellier Cedex 05, France
| | - Alberto Fereres
- Instituto de Ciencias Agrarias - Consejo Superior de Investigaciones Científicas, C/ Serrano 115 dpdo, Madrid 28006, Spain
| | - Marilyne Uzest
- INRA, UMR 0385 BGPI, CIRAD-INRA-Montpellier SupAgro, TA-A54/K, Campus International de Baillarguet, 34394 Montpellier Cedex 05, France
| |
Collapse
|
23
|
Drought reduces transmission of Turnip yellows virus, an insect-vectored circulative virus. Virus Res 2017; 241:131-136. [PMID: 28756104 DOI: 10.1016/j.virusres.2017.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/04/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022]
Abstract
Application of a severe water deficit to Arabidopsis thaliana plants infected with a mutant of Turnip yellows virus (TuYV, Family Luteoviridae) triggers a significant alteration of several plant phenology traits and strongly reduces the transmission efficiency of the virus by aphids. Although virus accumulation in water-stressed plants was similar to that in plants grown under well-watered conditions, virus accumulation was reduced in aphids fed on plants under water deficit. These results suggest alteration of the aphid feeding behavior on plants under water deficit.
Collapse
|