1
|
Janjua D, Chaudhary A, Joshi U, Tripathi T, Bharti AC. Circulating tumor cells in solid malignancies: From advanced isolation technologies to biological understanding and clinical relevance in early diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 2025; 1880:189236. [PMID: 39662757 DOI: 10.1016/j.bbcan.2024.189236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Circulating tumor cells (CTCs) are shed from primary tumors and travel through the body via circulation, eventually settling to form micrometastases under favorable conditions. Numerous studies have identified CTCs as a negative prognostic indicator for survival across various cancer types. CTCs mirror the current heterogeneity and genetic and biological state of tumors, making their study invaluable for understanding tumor progression, cell senescence, and cancer dormancy. However, their isolation and characterization still poses a major challenge that limits their clinical translation. A wide array of methods, each with different levels of specificity, utility, cost, and sensitivity, have been developed to isolate and characterize CTCs. Moreover, innovative techniques are emerging to address the limitations of existing methods. In this review, we provide insights into CTC biology addressing spectra of markers employed for molecular analysis and functional characterization. It also emphasizes current label-dependent and label-independent isolation procedures, addressing their strengths and limitations. SIGNIFICANCE: A comprehensive overview of CTC biology, their molecular and functional characterization, along with their current clinical utility will help in understanding the present-day extent to which the clinical potential of CTCs is getting tapped in personalized medicine.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
2
|
Hassanzadeh-Barforoushi A, Tukova A, Nadalini A, Inglis DW, Chang-Hao Tsao S, Wang Y. Microfluidic-SERS Technologies for CTC: A Perspective on Clinical Translation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652011 DOI: 10.1021/acsami.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Enumeration and phenotypic profiling of circulating tumor cells (CTCs) provide critical information for clinical diagnosis and treatment monitoring in cancer. To achieve this goal, an integrated system is needed to efficiently isolate CTCs from patient samples and sensitively evaluate their phenotypes. Such integration would comprise a high-throughput single-cell processing unit for the isolation and manipulation of CTCs and a sensitive and multiplexed quantitation unit to detect clinically relevant signals from these cells. Surface-enhanced Raman scattering (SERS) has been used as an analytical method for molecular profiling and in vitro cancer diagnosis. More recently, its multiplexing capability and power to create distinct molecular signatures against their targets have garnered attention. Here, we share our insights into the combined power of microfluidics and SERS in realizing CTC isolation, enumeration, and detection from a clinical translation perspective. We highlight the key operational factors in CTC microfluidic processing and SERS detection from patient samples. We further discuss microfluidic-SERS integration and its clinical utility as a paradigm shift in clinical CTC-based cancer diagnosis and prognostication. Finally, we summarize the challenges and attempt to look forward to what lies ahead of us in potentially translating the technique into real clinical applications.
Collapse
Affiliation(s)
- Amin Hassanzadeh-Barforoushi
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Audrey Nadalini
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Simon Chang-Hao Tsao
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
3
|
Julius LAN, Akgül D, Krishnan G, Falk F, Korvink J, Badilita V. Portable dielectrophoresis for biology: ADEPT facilitates cell trapping, separation, and interactions. MICROSYSTEMS & NANOENGINEERING 2024; 10:29. [PMID: 38434587 PMCID: PMC10907756 DOI: 10.1038/s41378-024-00654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2023] [Accepted: 01/12/2024] [Indexed: 03/05/2024]
Abstract
Dielectrophoresis is a powerful and well-established technique that allows label-free, non-invasive manipulation of cells and particles by leveraging their electrical properties. The practical implementation of the associated electronics and user interface in a biology laboratory, however, requires an engineering background, thus hindering the broader adoption of the technique. In order to address these challenges and to bridge the gap between biologists and the engineering skills required for the implementation of DEP platforms, we report here a custom-built, compact, universal electronic platform termed ADEPT (adaptable dielectrophoresis embedded platform tool) for use with a simple microfluidic chip containing six microelectrodes. The versatility of the open-source platform is ensured by a custom-developed graphical user interface that permits simple reconfiguration of the control signals to address a wide-range of specific applications: (i) precision positioning of the single bacterium/cell/particle in the micrometer range; (ii) viability-based separation by achieving a 94% efficiency in separating live and dead yeast; (iii) phenotype-based separation by achieving a 96% efficiency in separating yeast and Bacillus subtilis; (iv) cell-cell interactions by steering a phagocytosis process where a granulocyte engulfs E. coli RGB-S bacterium. Together, the set of experiments and the platform form a complete basis for a wide range of possible applications addressing various biological questions exploiting the plug-and-play design and the intuitive GUI of ADEPT.
Collapse
Affiliation(s)
- Lourdes Albina Nirupa Julius
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| | - Dora Akgül
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| | - Gowri Krishnan
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| | - Fabian Falk
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| | - Jan Korvink
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| | - Vlad Badilita
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| |
Collapse
|
4
|
Capuozzo M, Ferrara F, Santorsola M, Zovi A, Ottaiano A. Circulating Tumor Cells as Predictive and Prognostic Biomarkers in Solid Tumors. Cells 2023; 12:2590. [PMID: 37998325 PMCID: PMC10670669 DOI: 10.3390/cells12222590] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Circulating tumor cells (CTCs) have emerged as pivotal biomarkers with significant predictive and prognostic implications in solid tumors. Their presence in peripheral blood offers a non-invasive window into the dynamic landscape of cancer progression and treatment response. This narrative literature review synthesizes the current state of knowledge surrounding the multifaceted role of CTCs in predicting clinical outcomes and informing prognosis across a spectrum of solid tumor malignancies. This review delves into the evolving landscape of CTC-based research, emphasizing their potential as early indicators of disease recurrence, metastatic potential, and therapeutic resistance. Moreover, we have underscored the dynamic nature of CTCs and their implications for personalized medicine. A descriptive and critical analysis of CTC detection methodologies, their clinical relevance, and their associated challenges is also presented, with a focus on recent advancements and emerging technologies. Furthermore, we examine the integration of CTC-based liquid biopsies into clinical practice, highlighting their role in guiding treatment decisions, monitoring treatment efficacy, and facilitating precision oncology. This review highlights the transformative impact of CTCs as predictive and prognostic biomarkers in the management of solid tumors by promoting a deeper understanding of the clinical relevance of CTCs and their role in advancing the field of oncology.
Collapse
Affiliation(s)
| | | | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy;
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| |
Collapse
|
5
|
Giesler J, Weirauch L, Rother A, Thöming J, Pesch GR, Baune M. Sorting Lithium-Ion Battery Electrode Materials Using Dielectrophoresis. ACS OMEGA 2023; 8:26635-26643. [PMID: 37521612 PMCID: PMC10373188 DOI: 10.1021/acsomega.3c04057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
Lithium-ion batteries (LIBs) are common in everyday life and the demand for their raw materials is increasing. Additionally, spent LIBs should be recycled to achieve a circular economy and supply resources for new LIBs or other products. Especially the recycling of the active material of the electrodes is the focus of current research. Existing approaches for recycling (e.g., pyro-, hydrometallurgy, or flotation) still have their drawbacks, such as the loss of materials, generation of waste, or lack of selectivity. In this study, we test the behavior of commercially available LiFePO4 and two types of graphite microparticles in a dielectrophoretic high-throughput filter. Dielectrophoresis is a volume-dependent electrokinetic force that is commonly used in microfluidics but recently also for applications that focus on enhanced throughput. In our study, graphite particles show significantly higher trapping than LiFePO4 particles. The results indicate that nearly pure fractions of LiFePO4 can be obtained with this technique from a mixture with graphite.
Collapse
Affiliation(s)
- Jasper Giesler
- Chemical
Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen 28359, Germany
| | - Laura Weirauch
- Chemical
Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen 28359, Germany
| | - Alica Rother
- Center
for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen 28359, Germany
| | - Jorg Thöming
- Chemical
Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen 28359, Germany
- Center
for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen 28359, Germany
| | - Georg R. Pesch
- School
of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Michael Baune
- Chemical
Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen 28359, Germany
- Center
for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen 28359, Germany
| |
Collapse
|
6
|
Clack K, Soda N, Kasetsirikul S, Mahmudunnabi RG, Nguyen NT, Shiddiky MJA. Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205856. [PMID: 36631277 DOI: 10.1002/smll.202205856] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.
Collapse
Affiliation(s)
- Kimberley Clack
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Surasak Kasetsirikul
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Rabbee G Mahmudunnabi
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| |
Collapse
|
7
|
Jiang W, Han L, Li G, Yang Y, Shen Q, Fan B, Wang Y, Yu X, Sun Y, He S, Du H, Miao J, Wang Y, Jia L. Baits-trap chip for accurate and ultrasensitive capture of living circulating tumor cells. Acta Biomater 2023; 162:226-239. [PMID: 36940769 DOI: 10.1016/j.actbio.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023]
Abstract
Accurate analysis of living circulating tumor cells (CTCs) plays a crucial role in cancer diagnosis and prognosis evaluation. However, it is still challenging to develop a facile method for accurate, sensitive, and broad-spectrum isolation of living CTCs. Herein, inspired by the filopodia-extending behavior and clustered surface-biomarker of living CTCs, we present a unique baits-trap chip to achieve accurate and ultrasensitive capture of living CTCs from peripheral blood. The baits-trap chip is designed with the integration of nanocage (NCage) structure and branched aptamers. The NCage structure could "trap" the extended filopodia of living CTCs and resist the adhesion of filopodia-inhibited apoptotic cells, thus realizing the accurate capture (∼95% accuracy) of living CTCs independent of complex instruments. Using an in-situ rolling circle amplification (RCA) method, branched aptamers were easily modified onto the NCage structure, and served as "baits" to enhance the multi-interactions between CTC biomarker and chips, leading to ultrasensitive (99%) and reversible cell capture performance. The baits-trap chip successfully detects living CTCs in broad-spectrum cancer patients and achieves high diagnostic sensitivity (100%) and specificity (86%) of early prostate cancer. Therefore, our baits-trap chip provides a facile, accurate, and ultrasensitive strategy for living CTC isolation in clinical. STATEMENT OF SIGNIFICANCE: A unique baits-trap chip integrated with precise nanocage structure and branched aptamers was developed for the accurate and ultrasensitive capture of living CTCs. Compared with the current CTC isolation methods that are unable to distinguish CTC viability, the nanocage structure could not only "trap" the extended-filopodia of living CTCs, but also resist the adhesion of filopodia-inhibited apoptotic cells, thus realizing the accurate capture of living CTCs. Additionally, benefiting from the "baits-trap" synergistic effects generated by aptamer modification and nanocage structure, our chip achieved ultrasensitive, reversible capture of living CTCs. Moreover, this work provided a facile strategy for living CTC isolation from the blood of patients with early-stage and advanced cancer, exhibiting high consistency with the pathological diagnosis.
Collapse
Affiliation(s)
- Wenning Jiang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China.
| | - Guorui Li
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Ying Yang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Qidong Shen
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Bo Fan
- Department of Urology, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Yuchao Wang
- Department of Urology, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Xiaomin Yu
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Yan Sun
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Shengxiu He
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Huakun Du
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Jian Miao
- Hepatobiliary Pancreatic Surgery II, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Yuefeng Wang
- Hepatobiliary Pancreatic Surgery II, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China.
| |
Collapse
|
8
|
Lu N, Tay HM, Petchakup C, He L, Gong L, Maw KK, Leong SY, Lok WW, Ong HB, Guo R, Li KHH, Hou HW. Label-free microfluidic cell sorting and detection for rapid blood analysis. LAB ON A CHIP 2023; 23:1226-1257. [PMID: 36655549 DOI: 10.1039/d2lc00904h] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood tests are considered as standard clinical procedures to screen for markers of diseases and health conditions. However, the complex cellular background (>99.9% RBCs) and biomolecular composition often pose significant technical challenges for accurate blood analysis. An emerging approach for point-of-care blood diagnostics is utilizing "label-free" microfluidic technologies that rely on intrinsic cell properties for blood fractionation and disease detection without any antibody binding. A growing body of clinical evidence has also reported that cellular dysfunction and their biophysical phenotypes are complementary to standard hematoanalyzer analysis (complete blood count) and can provide a more comprehensive health profiling. In this review, we will summarize recent advances in microfluidic label-free separation of different blood cell components including circulating tumor cells, leukocytes, platelets and nanoscale extracellular vesicles. Label-free single cell analysis of intrinsic cell morphology, spectrochemical properties, dielectric parameters and biophysical characteristics as novel blood-based biomarkers will also be presented. Next, we will highlight research efforts that combine label-free microfluidics with machine learning approaches to enhance detection sensitivity and specificity in clinical studies, as well as innovative microfluidic solutions which are capable of fully integrated and label-free blood cell sorting and analysis. Lastly, we will envisage the current challenges and future outlook of label-free microfluidics platforms for high throughput multi-dimensional blood cell analysis to identify non-traditional circulating biomarkers for clinical diagnostics.
Collapse
Affiliation(s)
- Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Kay Khine Maw
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Sheng Yuan Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Wan Wei Lok
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Ruya Guo
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore
| |
Collapse
|
9
|
Deivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani AB, Mohamed MA, Buyong MR. A correlation of conductivity medium and bioparticle viability on dielectrophoresis-based biomedical applications. Electrophoresis 2023; 44:573-620. [PMID: 36604943 DOI: 10.1002/elps.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field. This review focuses on current research in the biomedical field that demonstrates a practical approach to DEP in terms of cell separation, trapping, discrimination, and enrichment under the influence of the conductive medium in correlation with bioparticle viability. The current review aims to provide readers with an in-depth knowledge of the fundamental theory and principles of the DEP technique, which is influenced by conductive medium and to identify and demonstrate the biomedical application areas. The high conductivity of physiological fluids presents obstacles and opportunities, followed by bioparticle viability in an electric field elaborated in detail. Finally, the drawbacks of DEP-based systems and the outlook for the future are addressed. This article will aid in advancing technology by bridging the gap between bioscience and engineering. We hope the insights presented in this review will improve cell suspension medium and promote DEP-viable bioparticle manipulation for health-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Revathy Deivasigamani
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Nasyifa Mohd Maidin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Shahira Abdul Nasir
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | - Aminuddin Bin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia.,ARC Research Hub for Connected Sensors for Health, RMIT University, Melbourne, Australia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
10
|
Vidlarova M, Rehulkova A, Stejskal P, Prokopova A, Slavik H, Hajduch M, Srovnal J. Recent Advances in Methods for Circulating Tumor Cell Detection. Int J Mol Sci 2023; 24:3902. [PMID: 36835311 PMCID: PMC9959336 DOI: 10.3390/ijms24043902] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Circulating tumor cells (CTCs) are released from primary tumors and transported through the body via blood or lymphatic vessels before settling to form micrometastases under suitable conditions. Accordingly, several studies have identified CTCs as a negative prognostic factor for survival in many types of cancer. CTCs also reflect the current heterogeneity and genetic and biological state of tumors; so, their study can provide valuable insights into tumor progression, cell senescence, and cancer dormancy. Diverse methods with differing specificity, utility, costs, and sensitivity have been developed for isolating and characterizing CTCs. Additionally, novel techniques with the potential to overcome the limitations of existing ones are being developed. This primary literature review describes the current and emerging methods for enriching, detecting, isolating, and characterizing CTCs.
Collapse
Affiliation(s)
- Monika Vidlarova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Alona Rehulkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Andrea Prokopova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
| | - Hanus Slavik
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 67000 Strasbourg, France
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
11
|
Giesler J, Weirauch L, Thöming J, Baune M, Pesch GR. High-throughput dielectrophoretic separator based on printed circuit boards. Electrophoresis 2023; 44:72-81. [PMID: 35968886 DOI: 10.1002/elps.202200131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 02/01/2023]
Abstract
The separation of particles with respect to their intrinsic properties is an ongoing task in various fields such as biotechnology and recycling of electronic waste. Especially for small particles in the lower micrometer or nanometer range, separation techniques are a field of current research since many existing approaches lack either throughput or selectivity. Dielectrophoresis (DEP) is a technique that can address multiple particle properties, making it a potential candidate to solve challenging separation tasks. Currently, DEP is mostly used in microfluidic separators and thus limited in throughput. Additionally, DEP setups often require expensive components, such as electrode arrays fabricated in the clean room. Here, we present and characterize a separator based on two inexpensive custom-designed printed circuit boards (80 × 120 mm board size). The boards consist of interdigitated electrode arrays with 250 μ $250\ \umu$ m electrode width and spacing. We demonstrate the separation capabilities using polystyrene particles ranging from 500 nm to 6 μ $6\ \umu$ m in monodisperse experiments. Further, we demonstrate selective trapping at flow rates up to 240 ml/h in the presented device for a binary mixture. Our experiments demonstrate an affordable way to increase throughput in electrode-based DEP separators.
Collapse
Affiliation(s)
- Jasper Giesler
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
| | - Laura Weirauch
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
| | - Jorg Thöming
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359, Bremen, Germany
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
| | - Michael Baune
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
| | - Georg R Pesch
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
12
|
Comparative application of microfluidic systems in circulating tumor cells and extracellular vesicles isolation; a review. Biomed Microdevices 2022; 25:4. [PMID: 36574057 DOI: 10.1007/s10544-022-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/28/2022]
Abstract
Cancer is a prevalent cause of mortality globally, where early diagnosis leads to a reduced death rate. Many researchers' common strategies are based on personalized diagnostic methods with rapid response and high accuracy. This technology was developed by applying liquid biopsy instead of tissue biopsies in the case of tumor cell analysis that facilitates point-of-care testing for cancer diagnosis and treatment. In recent years, significant progress in microfluidic technology led to the successful isolation, analysis, and monitoring of cancer biomarkers in body liquid biopsy with merits like high sensitivity and flexibility, low sample usage, cost effective, and the ability of automation. The most critical and informative markers in body liquid refer to circulating tumor cells (CTCs) and extracellular vesicles derived from tumors (EVs) that carry various biomarkers in their structure (DNAs, proteins, and RNAs) as compared to ctDNA. The released ctDNA has a low half-life and decreased sensitivity due to large amounts of nucleic acid in serum. This review intends to highlight different cancer screening tests with a particular focus on the details regarding the only FDA-approved and awaiting technologies for FDA clearance to isolate CTCs and EVs based on microfluidics systems.
Collapse
|
13
|
Noubissi Nzeteu GA, Geismann C, Arlt A, Hoogwater FJH, Nijkamp MW, Meyer NH, Bockhorn M. Role of Epithelial-to-Mesenchymal Transition for the Generation of Circulating Tumors Cells and Cancer Cell Dissemination. Cancers (Basel) 2022; 14:5483. [PMID: 36428576 PMCID: PMC9688619 DOI: 10.3390/cancers14225483] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Tumor-related death is primarily caused by metastasis; consequently, understanding, preventing, and treating metastasis is essential to improving clinical outcomes. Metastasis is mainly governed by the dissemination of tumor cells in the systemic circulation: so-called circulating tumor cells (CTCs). CTCs typically arise from epithelial tumor cells that undergo epithelial-to-mesenchymal transition (EMT), resulting in the loss of cell-cell adhesions and polarity, and the reorganization of the cytoskeleton. Various oncogenic factors can induce EMT, among them the transforming growth factor (TGF)-β, as well as Wnt and Notch signaling pathways. This entails the activation of numerous transcription factors, including ZEB, TWIST, and Snail proteins, acting as transcriptional repressors of epithelial markers, such as E-cadherin and inducers of mesenchymal markers such as vimentin. These genetic and phenotypic changes ultimately facilitate cancer cell migration. However, to successfully form distant metastases, CTCs must primarily withstand the hostile environment of circulation. This includes adaption to shear stress, avoiding being trapped by coagulation and surviving attacks of the immune system. Several applications of CTCs, from cancer diagnosis and screening to monitoring and even guided therapy, seek their way into clinical practice. This review describes the process leading to tumor metastasis, from the generation of CTCs in primary tumors to their dissemination into distant organs, as well as the importance of subtyping CTCs to improve personalized and targeted cancer therapy.
Collapse
Affiliation(s)
- Gaetan Aime Noubissi Nzeteu
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| | - Claudia Geismann
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH-Campus Kiel, 24118 Kiel, Germany
| | - Alexander Arlt
- Department for Gastroenterology and Hepatology, University Hospital Oldenburg, Klinikum Oldenburg AöR, European Medical School (EMS), 26133 Oldenburg, Germany
| | - Frederik J. H. Hoogwater
- Section of HPB Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Maarten W. Nijkamp
- Section of HPB Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - N. Helge Meyer
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| | - Maximilian Bockhorn
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
14
|
Al-Ali A, Waheed W, Abu-Nada E, Alazzam A. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles. J Chromatogr A 2022; 1676:463268. [DOI: 10.1016/j.chroma.2022.463268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
|
15
|
Çağlayan Arslan Z, Demircan Yalçın Y, Külah H. Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis. Electrophoresis 2022; 43:1531-1544. [PMID: 35318696 DOI: 10.1002/elps.202100318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Abstract
Circulating tumor cells (CTCs) present in the bloodstream are strongly linked to the invasive behavior of cancer; therefore, their detection holds great significance for monitoring disease progression. Currently available CTC isolation tools are often based on tumor-specific antigen or cell size approaches. However, these techniques are limited due to the lack of a unique and universal marker for CTCs, and the overlapping size between CTCs and regular blood cells. Dielectrophoresis (DEP), governed by the intrinsic dielectric properties of the particles, is a promising marker-free, accurate, fast, and low-cost technique that enables the isolation of CTCs from blood cells. This study presents a continuous flow, antibody-free DEP-based microfluidic device to concentrate MCF7 breast cancer cells, a well-established CTC model, in the presence of leukocytes extracted from human blood samples. The enrichment strategy was determined according to the DEP responses of the corresponding cells, obtained in our previously reported DEP spectrum study. It was based on the positive-DEP integrated with hydrodynamic focusing under continuous flow. In the proposed device, the parylene microchannel with two inlets and outlets was built on top of rectangular and equally spaced isolated planar electrodes rotated certain degree relative to the main flow (13°). The recovery of MCF7 cells mixed with leukocytes was 74%-98% at a frequency of 1 MHz and a magnitude of 10-12 Vpp . Overall, the results revealed that the presented system successfully concentrates MCF7 cancer cells from leukocytes, ultimately verifying our DEP spectrum study, in which the enrichment frequency and separation strategy of the microfluidic system were determined.
Collapse
Affiliation(s)
- Zeynep Çağlayan Arslan
- Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara, Turkey.,METU MEMS Center, Ankara, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara, Turkey.,METU MEMS Center, Ankara, Turkey
| |
Collapse
|
16
|
Chang L, Li J, Zhang R. Liquid biopsy for early diagnosis of non-small cell lung carcinoma: recent research and detection technologies. Biochim Biophys Acta Rev Cancer 2022; 1877:188729. [DOI: 10.1016/j.bbcan.2022.188729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023]
|
17
|
A microfluidic device for label-free separation sensitivity enhancement of circulating tumor cells of various and similar size. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Descamps L, Le Roy D, Deman AL. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci 2022; 23:ijms23041981. [PMID: 35216097 PMCID: PMC8875744 DOI: 10.3390/ijms23041981] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The selection of circulating tumor cells (CTCs) directly from blood as a real-time liquid biopsy has received increasing attention over the past ten years, and further analysis of these cells may greatly aid in both research and clinical applications. CTC analysis could advance understandings of metastatic cascade, tumor evolution, and patient heterogeneity, as well as drug resistance. Until now, the rarity and heterogeneity of CTCs have been technical challenges to their wider use in clinical studies, but microfluidic-based isolation technologies have emerged as promising tools to address these limitations. This review provides a detailed overview of latest and leading microfluidic devices implemented for CTC isolation. In particular, this study details must-have device performances and highlights the tradeoff between recovery and purity. Finally, the review gives a report of CTC potential clinical applications that can be conducted after CTC isolation. Widespread microfluidic devices, which aim to support liquid-biopsy-based applications, will represent a paradigm shift for cancer clinical care in the near future.
Collapse
Affiliation(s)
- Lucie Descamps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
| | - Damien Le Roy
- Institut Lumière Matière ILM-UMR 5306, CNRS, Université Lyon 1, 69622 Villeurbanne, France;
| | - Anne-Laure Deman
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
- Correspondence:
| |
Collapse
|
19
|
Fabrication of a new all-in-one microfluidic dielectrophoresis integrated chip and living cell separation. iScience 2022; 25:103776. [PMID: 35146391 PMCID: PMC8819401 DOI: 10.1016/j.isci.2022.103776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022] Open
Abstract
Microfluidic dielectrophoresis (DEP) technology has been applied to many devices to perform label-free target cell separation. Cells separated by these devices are used in laboratories, mainly for medical research. The present study designed a microfluidic DEP device to fabricate a rapid and semiautomated cell separation system in conjunction with microscopy to enumerate the separated cells. With this device, we efficiently segregated bacterial cells from liquid products and enriched one cell type from two mixed eukaryotic cell types. The device eliminated sample pretreatment and established cell separation by all-in-one operation in a lab-on-chip, requiring only a small sample volume (0.5–1 mL) to enumerate the target cells and completing the entire separation process within 30 min. Such a rapid cell separation technique is in high demand by many researchers to promptly characterize the target cells. A new all-in-one microfluidic dielectrophoresis integrated chip is fabricated Simultaneous operation of buffer exchange and continuous cell separation on a chip Chip’s cell separation performance is evaluated with bacterial and eukaryotic cells
Collapse
|
20
|
Russo GI, Musso N, Romano A, Caruso G, Petralia S, Lanzanò L, Broggi G, Camarda M. The Role of Dielectrophoresis for Cancer Diagnosis and Prognosis. Cancers (Basel) 2021; 14:198. [PMID: 35008359 PMCID: PMC8750463 DOI: 10.3390/cancers14010198] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Liquid biopsy is emerging as a potential diagnostic tool for prostate cancer (PC) prognosis and diagnosis. Unfortunately, most circulating tumor cells (CTC) technologies, such as AdnaTest or Cellsearch®, critically rely on the epithelial cell adhesion molecule (EpCAM) marker, limiting the possibility of detecting cancer stem-like cells (CSCs) and mesenchymal-like cells (EMT-CTCs) that are present during PC progression. In this context, dielectrophoresis (DEP) is an epCAM independent, label-free enrichment system that separates rare cells simply on the basis of their specific electrical properties. As compared to other technologies, DEP may represent a superior technique in terms of running costs, cell yield and specificity. However, because of its higher complexity, it still requires further technical as well as clinical development. DEP can be improved by the use of microfluid, nanostructured materials and fluoro-imaging to increase its potential applications. In the context of cancer, the usefulness of DEP lies in its capacity to detect CTCs in the bloodstream in their epithelial, mesenchymal, or epithelial-mesenchymal phenotype forms, which should be taken into account when choosing CTC enrichment and analysis methods for PC prognosis and diagnosis.
Collapse
Affiliation(s)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Science (BIOMETEC), University of Catania, 95123 Catania, Italy
- STLab s.r.l., Via Anapo 53, 95126 Catania, Italy;
| | - Alessandra Romano
- Haematological Section, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (S.P.)
| | - Salvatore Petralia
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (S.P.)
| | - Luca Lanzanò
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy;
| | - Giuseppe Broggi
- Pathology Section, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | |
Collapse
|
21
|
Undvall Anand E, Magnusson C, Lenshof A, Ceder Y, Lilja H, Laurell T. Two-Step Acoustophoresis Separation of Live Tumor Cells from Whole Blood. Anal Chem 2021; 93:17076-17085. [PMID: 34913344 PMCID: PMC8717332 DOI: 10.1021/acs.analchem.1c04050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
There is an unmet
clinical need to extract living circulating tumor
cells (CTCs) for functional studies and in vitro expansion
to enable drug testing and predict responses to therapy in metastatic
cancer. Here, we present a novel two-step acoustophoresis (A2) method for isolation of unfixed, viable cancer cells from red blood
cell (RBC) lysed whole blood. The A2 method uses an initial
acoustofluidic preseparation step to separate cells based on their
acoustic mobility. This acoustofluidic step enriches viable cancer
cells in a central outlet, but a significant number of white blood
cells (WBCs) remain in the central outlet fraction due to overlapping
acoustophysical properties of these viable cells. A subsequent purging
step was employed to remove contaminating WBCs through negative selection
acoustophoresis with anti-CD45-functionalized negative acoustic contrast
particles. We processed 1 mL samples of 1:1 diluted RBC lysed whole
blood mixed with 10 000 DU145 cells through the A2 method. Additional experiments were performed using 1000 DU145 cells
spiked into 1.5 × 106 WBCs in 1 mL of buffer to further
elucidate the dynamic range of the method. Using samples with 10 000
DU145 cells, we obtained 459 ± 188-fold depletion of WBC and
42% recovery of viable cancer cells. Based on spiked samples with
1000 DU145 cells, our cancer cell recovery was 28% with 247 ±
156-fold WBC depletion corresponding to a depletion efficacy of ≥99.5%.
The novel A2 method provides extensive elimination of WBCs
combined with the gentle recovery of viable cancer cells suitable
for downstream functional analyses and in vitro culture.
Collapse
Affiliation(s)
- Eva Undvall Anand
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Cecilia Magnusson
- Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - Andreas Lenshof
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Yvonne Ceder
- Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Hans Lilja
- Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden.,Department of Laboratory Medicine, Surgery (Urology), and Medicine (GU Oncology), Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
22
|
Label-free enrichment of rare unconventional circulating neoplastic cells using a microfluidic dielectrophoretic sorting device. Commun Biol 2021; 4:1130. [PMID: 34561533 PMCID: PMC8463600 DOI: 10.1038/s42003-021-02651-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Cellular circulating biomarkers from the primary tumor such as circulating tumor cells (CTCs) and circulating hybrid cells (CHCs) have been described to harbor tumor-like phenotype and genotype. CHCs are present in higher numbers than CTCs supporting their translational potential. Methods for isolation of CHCs do not exist and are restricted to low-throughput, time consuming, and biased methodologies. We report the development of a label-free dielectrophoretic microfluidic platform facilitating enrichment of CHCs in a high-throughput and rapid fashion by depleting healthy peripheral blood mononuclear cells (PBMCs). We demonstrated up to 96.5% depletion of PBMCs resulting in 18.6-fold enrichment of cancer cells. In PBMCs from pancreatic adenocarcinoma patients, the platform enriched neoplastic cells identified by their KRAS mutant status using droplet digital PCR with one hour of processing. Enrichment was achieved in 75% of the clinical samples analyzed, establishing this approach as a promising way to non-invasively analyze tumor cells from patients.
Collapse
|
23
|
Li LS, Guo XY, Sun K. Recent advances in blood-based and artificial intelligence-enhanced approaches for gastrointestinal cancer diagnosis. World J Gastroenterol 2021; 27:5666-5681. [PMID: 34629793 PMCID: PMC8473600 DOI: 10.3748/wjg.v27.i34.5666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are among the most common cancer types and leading causes of cancer-related deaths worldwide. There is a tremendous clinical need for effective early diagnosis for better healthcare of GI cancer patients. In this article, we provide a short overview of the recent advances in GI cancer diagnosis. In the first part, we discuss the applications of blood-based biomarkers, such as plasma circulating cell-free DNA, circulating tumor cells, extracellular vesicles, and circulating cell-free RNA, for cancer liquid biopsies. In the second part, we review the current trends of artificial intelligence (AI) for pathology image and tissue biopsy analysis for GI cancer, as well as deep learning-based approaches for purity assessment of tissue biopsies. We further provide our opinions on the future directions in blood-based and AI-enhanced approaches for GI cancer diagnosis, and we think that these fields will have more intensive integrations with clinical needs in the near future.
Collapse
Affiliation(s)
- Li-Shi Li
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, Guangdong Province, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, Guangdong Province, China
| | - Xiang-Yu Guo
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, Guangdong Province, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, Guangdong Province, China
- BGI-Shenzhen, Shenzhen 518083, Guangdong Province, China
| |
Collapse
|
24
|
Kwizera EA, Sun M, White AM, Li J, He X. Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles. ACS Biomater Sci Eng 2021; 7:2043-2063. [PMID: 33871975 PMCID: PMC8205986 DOI: 10.1021/acsbiomaterials.1c00083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Manipulation of microscale bioparticles including living cells is of great significance to the broad bioengineering and biotechnology fields. Dielectrophoresis (DEP), which is defined as the interactions between dielectric particles and the electric field, is one of the most widely used techniques for the manipulation of bioparticles including cell separation, sorting, and trapping. Bioparticles experience a DEP force if they have a different polarization from the surrounding media in an electric field that is nonuniform in terms of the intensity and/or phase of the electric field. A comprehensive literature survey shows that the DEP-based microfluidic devices for manipulating bioparticles can be categorized according to the methods of creating the nonuniformity via patterned microchannels, electrodes, and media to generate the DEP force. These methods together with the theory of DEP force generation are described in this review, to provide a summary of the methods and materials that have been used to manipulate various bioparticles for various specific biological outcomes. Further developments of DEP-based technologies include identifying materials that better integrate with electrodes than current popular materials (silicone/glass) and improving the performance of DEP manipulation of bioparticles by combining it with other methods of handling bioparticles. Collectively, DEP-based microfluidic manipulation of bioparticles holds great potential for various biomedical applications.
Collapse
Affiliation(s)
- Elyahb A. Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Mingrui Sun
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alisa M. White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Agnoletto C, Caruso C, Garofalo C. Heterogeneous Circulating Tumor Cells in Sarcoma: Implication for Clinical Practice. Cancers (Basel) 2021; 13:cancers13092189. [PMID: 34063272 PMCID: PMC8124844 DOI: 10.3390/cancers13092189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The present review is aimed to discuss the relevance of assaying for the presence and isolation of circulating tumor cells (CTCs) in patients with sarcoma. Just a few studies have been performed to detect and enumerate viable CTCs in sarcoma and a majority of them still represent proof-of-concept studies, while more frequently tumor cells have been detected in the circulation by using the PCR-based method. Nevertheless, recent advances in technologies allowed detection of epithelial–mesenchymal transitioned CTCs from patients with mesenchymal malignancies, despite results being mostly preliminary. The possibility to identify CTCs holds a great promise for both applications of liquid biopsy in sarcoma for precision medicine, and for research purposes to pinpoint the mechanism of the metastatic process through the characterization of tumor mesenchymal cells. Coherently, clinical trials in sarcoma have been designed accordingly to detect CTCs, for diagnosis, identification of novel therapeutic targets and resistance mechanisms of systemic therapies, and patient stratification. Abstract Bone and soft tissue sarcomas (STSs) represent a group of heterogeneous rare malignant tumors of mesenchymal origin, with a poor prognosis. Due to their low incidence, only a few studies have been reported addressing circulating tumor cells (CTCs) in sarcoma, despite the well-documented relevance for applications of liquid biopsy in precision medicine. In the present review, the most recent data relative to the detection and isolation of viable and intact CTCs in these tumors will be reviewed, and the heterogeneity in CTCs will be discussed. The relevance of epithelial–mesenchymal plasticity and stemness in defining the phenotypic and functional properties of these rare cells in sarcoma will be highlighted. Of note, the existence of dynamic epithelial–mesenchymal transition (EMT)-related processes in sarcoma tumors has only recently been related to their clinical aggressiveness. Also, the presence of epithelial cell adhesion molecule (EpCAM)-positive CTC in sarcoma has been weakly correlated with poor outcome and disease progression, thus proving the existence of both epithelial and mesenchymal CTC in sarcoma. The advancement in technologies for capturing and enumerating all diverse CTCs phenotype originating from these mesenchymal tumors are presented, and results provide a promising basis for clinical application of CTC detection in sarcoma.
Collapse
|
26
|
Characterisation of circulating tumour cell phenotypes identifies a partial-EMT sub-population for clinical stratification of pancreatic cancer. Br J Cancer 2021; 124:1970-1977. [PMID: 33785875 DOI: 10.1038/s41416-021-01350-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Limited accessibility of the tumour precludes longitudinal characterisation for therapy guidance in pancreatic ductal adenocarcinoma (PDAC). METHODS We utilised dielectrophoresis-field flow fractionation (DEP-FFF) to isolate circulating tumour cells (CTCs) in 272 blood draws from 74 PDAC patients (41 localised, 33 metastatic) to non-invasively monitor disease progression. RESULTS Analysis using multiplex imaging flow cytometry revealed four distinct sub-populations of CTCs: epithelial (E-CTC), mesenchymal (M-CTC), partial epithelial-mesenchymal transition (pEMT-CTC) and stem cell-like (SC-CTC). Overall, CTC detection rate was 76.8% (209/272 draws) and total CTC counts did not correlate with any clinicopathological variables. However, the proportion of pEMT-CTCs (prop-pEMT) was correlated with advanced disease, worse progression-free and overall survival in all patients, and earlier recurrence after resection. CONCLUSION Our results underscore the importance of immunophenotyping and quantifying specific CTC sub-populations in PDAC.
Collapse
|
27
|
Rushton AJ, Nteliopoulos G, Shaw JA, Coombes RC. A Review of Circulating Tumour Cell Enrichment Technologies. Cancers (Basel) 2021; 13:cancers13050970. [PMID: 33652649 PMCID: PMC7956528 DOI: 10.3390/cancers13050970] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Circulating tumour cells (CTCs) are cancer cells shed into the bloodstream from tumours and their analysis can provide important insights into cancer detection and monitoring, with the potential to direct personalised therapies for the patient. These CTCs are rare in the blood, which makes their detection and enrichment challenging and to date, only one technology (the CellSearch) has gained FDA approval for determining the prognosis of patients with advanced breast, prostate and colorectal cancers. Here, we review the wide range of enrichment technologies available to isolate CTCs from other blood components and highlight the important characteristics that new technologies should possess for routine clinical use. Abstract Circulating tumour cells (CTCs) are the precursor cells for the formation of metastatic disease. With a simple blood draw, liquid biopsies enable the non-invasive sampling of CTCs from the blood, which have the potential to provide important insights into cancer detection and monitoring. Since gaining FDA approval in 2004, the CellSearch system has been used to determine the prognosis of patients with metastatic breast, prostate and colorectal cancers. This utilises the cell surface marker Epithelial Cell Adhesion Molecule (EpCAM), to enrich CTCs, and many other technologies have adopted this approach. More recently, the role of mesenchymal-like CTCs in metastasis formation has come to light. It has been suggested that these cells are more aggressive metastatic precursors than their epithelial counterparts; however, mesenchymal CTCs remain undetected by EpCAM-based enrichment methods. This has prompted the development of a variety of ‘label free’ enrichment technologies, which exploit the unique physical properties of CTCs (such as size and deformability) compared to other blood components. Here, we review a wide range of both immunocapture and label free CTC enrichment technologies, summarising the most significant advantages and disadvantages of each. We also highlight the important characteristics that technologies should possess for routine clinical use, since future developments could have important clinical implications, with the potential to direct personalised therapies for patients with cancer.
Collapse
Affiliation(s)
- Amelia J. Rushton
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
- Correspondence:
| | - Georgios Nteliopoulos
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
| | - Jacqueline A. Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester LE2 7LX, UK;
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
| |
Collapse
|
28
|
Kim J, Cho H, Kim J, Park JS, Han KH. A disposable smart microfluidic platform integrated with on-chip flow sensors. Biosens Bioelectron 2020; 176:112897. [PMID: 33342692 DOI: 10.1016/j.bios.2020.112897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/27/2023]
Abstract
Microfluidic devices are powerful tools for biological, biomedical, chemical, and pharmaceutical applications, but their commercialization is still hindered by the lack of methods to automatically control fluid flow in a low-cost, simple, accurate, and safe manner. This study introduces a disposable smart microfluidic platform (DIS-μChip), which can be fully automated and utilized for a wide range of applications. On-chip microfluidic flow sensors are integrated with the platform and placed at all inlet and outlet channels, thereby allowing the DIS-μChip to be fully automated with a pressure control system. Furthermore, these confer a self-diagnosis function through monitoring of all the input and output flow rates. The DIS-μChip consists of a disposable polymeric microchannel superstrate and a permanent multifunctional substrate, which could be assembled and disassembled using only vacuum pressure. The superstrate was fabricated by combining a polydimethylsiloxane microchannel structure with a polyethylene terephthalate (PET) thin film. The substrate contains sense electrodes for the on-chip-integrated flow sensors and functional components for creating an energy field, which can penetrate the PET thin film and manipulate the fluid in the microchannels of the superstrate. Owing to the film-chip technique, the superstrate was disposable and could prevent biological cross-contamination, which cannot be realized with conventional flow sensors. The usefulness of the DIS-μChip was demonstrated by using it to isolate circulating tumor cells from the blood of patients with pancreatic cancer and to obtain cancer-specific genetic information from them with droplet digital PCR.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae-si, 50834, South Korea
| | - Hyungseok Cho
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae-si, 50834, South Korea
| | - Junhyeong Kim
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae-si, 50834, South Korea
| | - Joon Seong Park
- Pancreatobiliary Cancer Clinic, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, South Korea
| | - Ki-Ho Han
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae-si, 50834, South Korea.
| |
Collapse
|
29
|
Nasiri R, Shamloo A, Ahadian S, Amirifar L, Akbari J, Goudie MJ, Lee K, Ashammakhi N, Dokmeci MR, Di Carlo D, Khademhosseini A. Microfluidic-Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000171. [PMID: 32529791 DOI: 10.1002/smll.202000171] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Cell separation is a key step in many biomedical research areas including biotechnology, cancer research, regenerative medicine, and drug discovery. While conventional cell sorting approaches have led to high-efficiency sorting by exploiting the cell's specific properties, microfluidics has shown great promise in cell separation by exploiting different physical principles and using different properties of the cells. In particular, label-free cell separation techniques are highly recommended to minimize cell damage and avoid costly and labor-intensive steps of labeling molecular signatures of cells. In general, microfluidic-based cell sorting approaches can separate cells using "intrinsic" (e.g., fluid dynamic forces) versus "extrinsic" external forces (e.g., magnetic, electric field, etc.) and by using different properties of cells including size, density, deformability, shape, as well as electrical, magnetic, and compressibility/acoustic properties to select target cells from a heterogeneous cell population. In this work, principles and applications of the most commonly used label-free microfluidic-based cell separation methods are described. In particular, applications of microfluidic methods for the separation of circulating tumor cells, blood cells, immune cells, stem cells, and other biological cells are summarized. Computational approaches complementing such microfluidic methods are also explained. Finally, challenges and perspectives to further develop microfluidic-based cell separation methods are discussed.
Collapse
Affiliation(s)
- Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Leyla Amirifar
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Javad Akbari
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Marcus J Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - KangJu Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
30
|
Wu C, Zhang J, Li H, Xu W, Zhang X. The potential of liquid biopsies in gastrointestinal cancer. Clin Biochem 2020; 84:1-12. [PMID: 32540214 DOI: 10.1016/j.clinbiochem.2020.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/09/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liquid biopsy is a novel approach for cancer diagnosis, the value of which in human gastrointestinal (GI) cancer has been confirmed by the previous studies. This article summarized the recent advances in liquid biopsy with a focus on novel technologies and the use of it in the screening, monitoring, and treatment of human GI cancer. CONTENT The concept of liquid biopsy was first used to define the detection of circulating tumor cells (CTCs) in cancer patients, and has been expanded to other biomarkers in blood and body fluids, such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs) and circulating tumor RNA. If analyzed with proper and advanced techniques like next generation sequencing (NGS) or proteomics, liquid biopsies can open an enormous array of potential biomarkers. The amount changes of target biomarkers and the mutation of genetic materials provide quantitative and qualitative information, which can be utilized clinically for cancer diagnosis and disease monitoring. SUMMARY As a highly efficient, minimally invasive, and cost-effective approach to diagnose and evaluate prognosis of GI cancer, liquid biopsy has lots of advantages over traditional biopsy and is promising in future clinical utility. If the challenges are overcome in the near future, liquid biopsy will become a widely available and dependable option.
Collapse
Affiliation(s)
- Chenxi Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haibo Li
- Department of Clinical Laboratory, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu 226000, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
31
|
Lei KF. A Review on Microdevices for Isolating Circulating Tumor Cells. MICROMACHINES 2020; 11:E531. [PMID: 32456042 PMCID: PMC7281722 DOI: 10.3390/mi11050531] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
Cancer metastasis is the primary cause of high mortality of cancer patients. Enumeration of circulating tumor cells (CTCs) in the bloodstream is a very important indicator to estimate the therapeutic outcome in various metastatic cancers. The aim of this article is to review recent developments on the CTC isolation technologies in microdevices. Based on the categories of biochemical and biophysical isolation approaches, a literature review and in-depth discussion will be included to provide an overview of this challenging topic. The current excellent developments suggest promising CTC isolation methods in order to establish a precise indicator of the therapeutic outcome of cancer patients.
Collapse
Affiliation(s)
- Kin Fong Lei
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan; ; Tel.: +886-3-2118800 (ext. 5345)
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| |
Collapse
|
32
|
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910402. [PMID: 34093104 PMCID: PMC8174103 DOI: 10.1002/adfm.201910402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 05/04/2023]
Abstract
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.
Collapse
Affiliation(s)
- Mehdi Azizi
- Proteomics Research Centre, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665621, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | - Masoud Farshbaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 6581151656, Iran
| | - Disha Iyengar
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hadi Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
33
|
Dianat-Moghadam H, Azizi M, Eslami-S Z, Cortés-Hernández LE, Heidarifard M, Nouri M, Alix-Panabières C. The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel) 2020; 12:E867. [PMID: 32260071 PMCID: PMC7225923 DOI: 10.3390/cancers12040867] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Metastases and cancer recurrence are the main causes of cancer death. Circulating Tumor Cells (CTCs) and disseminated tumor cells are the drivers of cancer cell dissemination. The assessment of CTCs' clinical role in early metastasis prediction, diagnosis, and treatment requires more information about their biology, their roles in cancer dormancy, and immune evasion as well as in therapy resistance. Indeed, CTC functional and biochemical phenotypes have been only partially characterized using murine metastasis models and liquid biopsy in human patients. CTC detection, characterization, and enumeration represent a promising tool for tailoring the management of each patient with cancer. The comprehensive understanding of CTCs will provide more opportunities to determine their clinical utility. This review provides much-needed insights into this dynamic field of translational cancer research.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Mehdi Azizi
- Proteomics Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Luis Enrique Cortés-Hernández
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Maryam Heidarifard
- Drug Applied Research Center, Tabriz University of Medical Sciences, 51368 Tabriz, Iran;
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| |
Collapse
|
34
|
EpCAM-independent isolation of circulating tumor cells with epithelial-to-mesenchymal transition and cancer stem cell phenotypes using ApoStream® in patients with breast cancer treated with primary systemic therapy. PLoS One 2020; 15:e0229903. [PMID: 32214335 PMCID: PMC7098555 DOI: 10.1371/journal.pone.0229903] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tumor cells with a mesenchymal phenotype and/or cancer stem-like cells (CSCs) are known to contribute to metastasis and drug resistance. Circulating tumor cells (CTCs) undergoing epithelial-mesenchymal transition (EMT) and CTCs reflecting a dedifferentiated CSC phenotype may not be detected using only an anti-EpCAM antibody to capture them. We used an antibody-independent CTC enrichment platform, ApoStream®, which does not rely on any antibody, including anti-EpCAM, to capture EMT- and CSC-CTCs in breast cancer patients who received neoadjuvant chemotherapy and correlated them to pathological complete response (pCR). METHODS Blood samples from newly diagnosed breast cancer patients were prospectively collected before neoadjuvant chemotherapy (T0), after chemotherapy but before surgery (T1), and after surgery (T2) and processed using ApoStream. CTCs detected were stained with additional markers to define 3 CTC subsets with the following phenotypes: epithelial CTCs (CK+, EpCAM+ or E-cadherin+), EMT-CTCs (β-catenin+ or vimentin+), and CSC-CTCs (CD44+ and CD24low). RESULTS We enrolled 55 patients, 47 of which had data for analysis. EMT-CTCs were detected in 57%, 62%, and 72% and CSC-CTCs in 9%, 22%, and 19% at the T0, T1, and T2 time points, respectively. Counts of epithelial (P = 0.225) and EMT (P = 0.522) phenotypes of CTCs at T0 did not significantly predict pCR. Moreover, no correlation between CTC count change and pCR was demonstrated. CONCLUSIONS ApoStream was successful in detecting EMT-CTCs among patients after neoadjuvant chemotherapy. However, EMT-/CSC-CTC counts did not correlate with pCR. Due to the small sample size and heterogeneity of this patient population, further study in a larger cohort of molecularly homogeneous patients is warranted.
Collapse
|
35
|
Shkolnikov V, Xin D, Chen CH. Continuous dielectrophoretic particle separation via isomotive dielectrophoresis with bifurcating stagnation flow. Electrophoresis 2019; 40:2988-2995. [PMID: 31538669 DOI: 10.1002/elps.201900267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
We present a novel technique for continuous label-free separation of particles based on their dielectrophoretic crossover frequencies. Our technique relies on our unique microfluidic geometry which performs hydrodynamic focusing, generates a stagnation flow with two outlets, and simultaneously produces an isomotive dielectrophoretic field via wall-situated electrodes. To perform particle separation, we hydrodynamically focus particles onto stagnation streamlines and use isomotive dielectrophoretic force to nudge the particles off these streamlines and direct them into appropriate outlets. Focusing particles onto stagnation streamlines obviates the need for large forces to be applied to the particles and therefore increases system throughput. The use of isomotive (spatially uniform) dielectrophoretic force increases system reliability. To guide designers, we develop and describe a simple scaling model for the particle separation dynamics of our technique. The model predicts the range of particle sizes that can be separated as well as the processing rate that can be achieved as a function of system design parameters: channel size, flow rate, and applied potential. Finally, as a proof-of-principle, we use this technique to separate polystyrene bead and cell mixtures of the same diameters as well as mixtures of both particles with varying diameters.
Collapse
|
36
|
|
37
|
Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P, Volinia S. Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset. Cancers (Basel) 2019; 11:cancers11040483. [PMID: 30959764 PMCID: PMC6521045 DOI: 10.3390/cancers11040483] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/16/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022] Open
Abstract
The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process. The analysis of CTCs in patients has recently received widespread attention because of its clinical implications, particularly for precision medicine. Accumulated evidence documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity. Indeed, the existence of a meta-stable or partial epithelial–mesenchymal transition (EMT) cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits, with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and generate metastases after xenotransplantation in immunodeficient mice. In the present review, we discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms underlying tumorigenicity.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Gianpiero Di Leva
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK.
| | - Adamo Pio d'Adamo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
38
|
Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst 2019; 143:2936-2970. [PMID: 29796523 DOI: 10.1039/c7an01979c] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metastasis is the main cause of tumor-related death, and the dispersal of tumor cells through the circulatory system is a critical step in the metastatic process. Early detection and analysis of circulating tumor cells (CTCs) is therefore important for early diagnosis, prognosis, and effective treatment of cancer, enabling favorable clinical outcomes in cancer patients. Accurate and reliable methods for isolating and detecting CTCs are necessary to obtain this clinical information. Over the past two decades, microfluidic technologies have demonstrated great potential for isolating and detecting CTCs from blood. The present paper reviews current advanced microfluidic technologies for isolating CTCs based on various biological and physical principles, and discusses their fundamental advantages and drawbacks for subsequent cellular and molecular assays. Owing to significant genetic heterogeneity among CTCs, microfluidic technologies for isolating individual CTCs have recently been developed. We discuss these single-cell isolation methods, as well as approaches to overcoming the limitations of current microfluidic CTC isolation technologies. Finally, we provide an overview of future innovative microfluidic platforms.
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
39
|
Chen Y, Tyagi D, Lyu M, Carrier AJ, Nganou C, Youden B, Wang W, Cui S, Servos M, Oakes K, He S, Zhang X. Regenerative NanoOctopus Based on Multivalent-Aptamer-Functionalized Magnetic Microparticles for Effective Cell Capture in Whole Blood. Anal Chem 2019; 91:4017-4022. [PMID: 30649851 DOI: 10.1021/acs.analchem.8b05432] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Isolation of specific rare cell subtypes from whole blood is critical in cellular analysis and important in basic and clinical research. Traditional immunomagnetic cell capture suffers from suboptimal sensitivity, specificity, and time- and cost-effectiveness. Mimicking the features of octopuses, a device termed a "NanoOctopus" was developed for cancer cell isolation in whole blood. The device consists of long multimerized aptamer DNA strands, or tentacle DNA, immobilized on magnetic microparticle surfaces. Their ultrahigh sensitivity and specificity are attributed to multivalent binding of the tentacle DNA to cell receptors without steric hindrance. The simple, quick, and noninvasive capture and release of the target cells allows for extensive downstream cellular and molecular analysis, and the time- and cost-effectiveness of fabrication and regeneration of the devices makes them attractive for industrial manufacture.
Collapse
Affiliation(s)
| | | | - Mingsheng Lyu
- Marine School , Huaihai Institute of Technology , Lianungang , 222005 , China
| | | | | | - Brian Youden
- Department of Biology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Wei Wang
- Institute of Translational Medicine , Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen , 518055 , China
| | | | - Mark Servos
- Department of Biology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | | | - Shengnan He
- Institute of Translational Medicine , Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen , 518055 , China
| | | |
Collapse
|
40
|
Tellez-Gabriel M, Cochonneau D, Cadé M, Jubellin C, Heymann MF, Heymann D. Circulating Tumor Cell-Derived Pre-Clinical Models for Personalized Medicine. Cancers (Basel) 2018; 11:cancers11010019. [PMID: 30586936 PMCID: PMC6356998 DOI: 10.3390/cancers11010019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
The main cause of death from cancer is associated with the development of metastases, resulting from the inability of current therapies to cure patients at metastatic stages. Generating preclinical models to better characterize the evolution of the disease is thus of utmost importance, in order to implement effective new cancer biomarkers and therapies. Circulating Tumor Cells (CTCs) are good candidates for generating preclinical models, making it possible to follow up the spatial and temporal heterogeneity of tumor tissues. This method is a non-invasive liquid biopsy that can be obtained at any stage of the disease. It partially summarizes the molecular heterogeneity of the corresponding tumors at a given time. Here, we discuss the CTC-derived models that have been generated so far, from simplified 2D cultures to the most complex CTC-derived explants (CDX models). We highlight the challenges and strengths of these preclinical tools, as well as some of the recent studies published using these models.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- RNA and Molecular Pathology Research Group, Department of Medical Biology, The Artic University of Norway, N-9037 Tromsø, Norway.
| | - Denis Cochonneau
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
| | - Marie Cadé
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
| | - Camille Jubellin
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
| | - Marie-Françoise Heymann
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
| | - Dominique Heymann
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
- Department of Oncology & Metabolism, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| |
Collapse
|
41
|
Abstract
Circulating tumor cells (CTCs) are rare tumor cells found in the blood of patients with cancer that can be reliably detected by CTC technologies to provide prognostic, predictive, and diagnostic information. CTC sampling reflects intratumoral and intertumoral heterogeneity better than targeted biopsy. CTC samples are minimally invasive and amenable to repeated sampling, allowing real-time evaluation of tumor in response to therapy-related pressures and possibly early detection. Cytology is the most natural arena for integration of CTC testing. CTC technology may also be deployed to enhance and facilitate the practice of cytology and surgical pathology.
Collapse
Affiliation(s)
- Alarice C Lowe
- Cytology, Brigham and Women's Hospital, 75 Francis Street, MRB 308, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Molecular Landscape in Alveolar Soft Part Sarcoma: Implications for Molecular Targeted Therapy. Biomed Pharmacother 2018; 103:889-896. [DOI: 10.1016/j.biopha.2018.04.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
|
43
|
Nevel KS, Wilcox JA, Robell LJ, Umemura Y. The Utility of Liquid Biopsy in Central Nervous System Malignancies. Curr Oncol Rep 2018; 20:60. [PMID: 29876874 DOI: 10.1007/s11912-018-0706-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Liquid biopsy is a sampling of tumor cells or tumor nucleotides from biofluids. This review explores the roles of liquid biopsy for evaluation and management of patients with primary and metastatic CNS malignancies. RECENT FINDINGS Circulating tumor cell (CTC) detection has emerged as a relatively sensitive and specific tool for diagnosing leptomeningeal metastases. Circulating tumor DNA (ctDNA) detection can effectively demonstrate genetic markup of CNS tumors in the cerebrospinal fluid, though its role in managing CNS malignancies is less well-defined. The value of micro RNA (miRNA) detection in CNS malignancies is unclear at this time. Current standard clinical tools for the diagnosis and monitoring of CNS malignancies have limitations, and liquid biopsy may help address clinical practice and knowledge gaps. Liquid biopsy offers exciting potential for the diagnosis, prognosis, and treatment of CNS malignancies, but each modality needs to be studied in large prospective trials to better define their use.
Collapse
Affiliation(s)
- Kathryn S Nevel
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jessica A Wilcox
- Department of Neurology, NewYork-Presbyterian Hospital, Weill Cornell Medical Center, 520 E 70th St, Starr Pavilion 607, New York, NY, 10021, USA
| | - Lindsay J Robell
- Department of Neurology, University of Michigan, 1914 Taubman Center, 1500 E. Medical Center Dr., SPC 5316, Ann Arbor, MI, 48109-5316, USA
| | - Yoshie Umemura
- Department of Neurology, University of Michigan, 1914 Taubman Center, 1500 E. Medical Center Dr., SPC 5316, Ann Arbor, MI, 48109-5316, USA.
| |
Collapse
|
44
|
Kitz J, Lowes LE, Goodale D, Allan AL. Circulating Tumor Cell Analysis in Preclinical Mouse Models of Metastasis. Diagnostics (Basel) 2018; 8:E30. [PMID: 29710776 PMCID: PMC6023422 DOI: 10.3390/diagnostics8020030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/24/2023] Open
Abstract
The majority of cancer deaths occur because of metastasis since current therapies are largely non-curative in the metastatic setting. The use of in vivo preclinical mouse models for assessing metastasis is, therefore, critical for developing effective new cancer biomarkers and therapies. Although a number of quantitative tools have been previously developed to study in vivo metastasis, the detection and quantification of rare metastatic events has remained challenging. This review will discuss the use of circulating tumor cell (CTC) analysis as an effective means of tracking and characterizing metastatic disease progression in preclinical mouse models of breast and prostate cancer and the resulting lessons learned about CTC and metastasis biology. We will also discuss how the use of clinically-relevant CTC technologies such as the CellSearch® and Parsortix™ platforms for preclinical CTC studies can serve to enhance the study of cancer biology, new biomarkers, and novel therapies from the bench to the bedside.
Collapse
Affiliation(s)
- Jenna Kitz
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada.
| | - Lori E Lowes
- Flow Cytometry and Special Hematology, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, Departments of Anatomy & Cell Biology and Oncology, Lawson Health Research Institute, Western University, London, ON N6A 5W9, Canada.
| |
Collapse
|
45
|
Rugo HS, Cortes J, Awada A, O'Shaughnessy J, Twelves C, Im SA, Hannah A, Lu L, Sy S, Caygill K, Zajchowski DA, Davis DW, Tagliaferri M, Hoch U, Perez EA. Change in Topoisomerase 1-Positive Circulating Tumor Cells Affects Overall Survival in Patients with Advanced Breast Cancer after Treatment with Etirinotecan Pegol. Clin Cancer Res 2018; 24:3348-3357. [PMID: 29618616 DOI: 10.1158/1078-0432.ccr-17-3059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/10/2018] [Accepted: 03/26/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Preplanned exploratory analyses were performed to identify biomarkers in circulating tumor cells (CTC) predictive of response to the topoisomerase 1 inhibitor etirinotecan pegol (EP).Experimental Design: The BEACON trial treated patients with metastatic breast cancer (MBC) with EP or treatment of physician's choice (TPC). Blood from 656 of 852 patients (77%) was processed with ApoStream to enrich for CTCs. A multiplex immunofluorescence assay measured expression of candidate response biomarkers [topoisomerase 1 (Top1), topoisomerase 2 (Top2), Ki67, RAD51, ABCG2, γH2AX, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)] in CTCs. Patients were classified as Top1 low (Top1Lo) or Top1 high (Top1Hi) based on median CTC Top1 expression. Correlation of CTC biomarker expression at baseline, cycle 2 day 1 (C2D1), and cycle 4 day 1 with overall survival (OS) was investigated using Cox regression and Kaplan-Meier analyses.Results: Overall, 98% of samples were successfully processed, of which 97% had detectable CTCs (median, 47-63 CTCs/mL; range, 0-2,020 CTCs/mL). Top1, Top2, and TUNEL expression was detected in 52% to 90% of samples; no significant associations with OS were observed in pretreatment samples for either group. EP-treated patients with low C2D1Top1+ CTCs had improved OS compared with those with higher positivity (14.1 months vs. 11.0 months, respectively; HR, 0.7; P = 0.02); this difference was not seen in TPC-treated patients (HR, 1.12; P = 0.48). Patients whose CTCs decreased from Top1Hi to Top1Lo at C2D1 had the greatest OS benefit from EP (HR, 0.57; P = 0.01).Conclusions: CTC Top1 expression following EP treatment may identify patients with MBC most likely to have an OS benefit. Clin Cancer Res; 24(14); 3348-57. ©2018 AACR.
Collapse
Affiliation(s)
- Hope S Rugo
- University of California, San Francisco, San Francisco, California
| | - Javier Cortes
- Ramon y Cajal University Hospital, Madrid, and Vall D'Hebron Institute of Oncology, Barcelona, Spain
| | - Ahmad Awada
- Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas
| | - Chris Twelves
- University of Leeds and Leeds Teaching Hospital Trust, Leeds, United Kingdom
| | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | - Lin Lu
- Nektar Therapeutics, San Francisco, California
| | - Sherwin Sy
- Nektar Therapeutics, San Francisco, California
| | | | | | | | | | - Ute Hoch
- Nektar Therapeutics, San Francisco, California.
| | | |
Collapse
|