1
|
Zhou S, Zhou X, Zhang P, Zhang W, Huang J, Jia X, He X, Sun X, Su H. The gut microbiota-inflammation-HFpEF axis: deciphering the role of gut microbiota dysregulation in the pathogenesis and management of HFpEF. Front Cell Infect Microbiol 2025; 15:1537576. [PMID: 40182777 PMCID: PMC11965942 DOI: 10.3389/fcimb.2025.1537576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Heart failure with preserved left ventricular ejection fraction (HFpEF) is a disease that affects multiple organs throughout the body, accounting for over 50% of heart failure cases. HFpEF has a significant impact on individuals' life expectancy and quality of life, but the exact pathogenesis remains unclear. Emerging evidence implicates low-grade systemic inflammation as a crucial role in the onset and progression of HFpEF. Gut microbiota dysregulation and associated metabolites alteration, including short-chain fatty acids, trimethylamine N-oxides, amino acids, and bile acids can exacerbate chronic systemic inflammatory responses and potentially contribute to HFpEF. In light of these findings, we propose the hypothesis of a "gut microbiota-inflammation-HFpEF axis", positing that the interplay within this axis could be a crucial factor in the development and progression of HFpEF. This review focuses on the role of gut microbiota dysregulation-induced inflammation in HFpEF's etiology. It explores the potential mechanisms linking dysregulation of the gut microbiota to cardiac dysfunction and evaluates the therapeutic potential of restoring gut microbiota balance in mitigating HFpEF severity. The objective is to offer novel insights and strategies for the management of HFpEF.
Collapse
Affiliation(s)
- Shenghua Zhou
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Xuan Zhou
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Panpan Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Wei Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Jinli Huang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Xuzhao Jia
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Xiaole He
- Department of General Practice, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Sugiura S, Yoshida H, Sugiura H, Uehara M, Sugiura Y, Maruo Y, Hayashi Y, Yamamoto T, Kato T, Fujimoto N, Udagawa J. Increased intracellular stress responses and decreased KLF2 in adult patients with atopic dermatitis. Cell Stress Chaperones 2025; 30:84-99. [PMID: 39938773 PMCID: PMC11891603 DOI: 10.1016/j.cstres.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Atopic dermatitis (AD) is prone to exacerbations in response to various triggering factors and flare-ups after remission. We searched for molecules associated with relapse/exacerbation of AD among molecules with altered gene expression in the skin of patients with AD. Microarray analyses were performed on lesional and nonlesional skin of adolescent or adult patients with recalcitrant AD and healthy controls. Five chaperones involved in intracellular stress responses, namely heat shock protein family A (Hsp70) member 9 (HSPA9), heat shock protein 90 beta family member 1 (HSP90B1), calnexin (CANX), malectin (MLEC; endoplasmic reticulum-associated degradation), and heat shock protein family D (Hsp60) member 1 (HSPD1), were consistently upregulated in involved and uninvolved skin of patients with AD. Damage-associated molecular patterns were upregulated in involved skin. KLF transcription factor 2 (KLF2) was decreased in involved skin and exhibited a decreasing trend in uninvolved skin of patients with AD. CD4(+)/CD8(+) double-positive cells (1.4% of T cells) were detected in lesions with declined KLF2 levels. WNT inhibitory factor 1 (WIF1) was downregulated in involved skin. Prolactin-induced protein was upregulated in only uninvolved skin of patients with AD. We found increased intracellular stress responses and decreased expression of KLF2 in the skin of patients with AD. Multifactorial genetic diseases, such as asthma, inflammatory bowel disease, type 2 diabetes, and rheumatoid arthritis, are associated with intracellular stress. Intracellular abnormalities may also be responsible for AD. Further research on AD may incorporate enhanced intracellular stress response and the decreased expression of KLF2 into the mechanism underlying AD.
Collapse
Affiliation(s)
- Shuji Sugiura
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan; Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan.
| | - Hiderou Yoshida
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, Ako, Japan
| | - Hisashi Sugiura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan; Department of Dermatology, Sugiura Dermatology Clinic, Kusatsu, Japan
| | - Masami Uehara
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| | - Yasuo Sugiura
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan; Department of Pediatrics, Navitas Clinic, Tokyo, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Yuji Hayashi
- Hospital Division of Diagnostic Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Takefumi Yamamoto
- Central Research Laboratory, Shiga University of Medical Science, Otsu, Japan
| | - Takeshi Kato
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
3
|
Fonseka O, Gare SR, Chen X, Zhang J, Alatawi NH, Ross C, Liu W. Molecular Mechanisms Underlying Heart Failure and Their Therapeutic Potential. Cells 2025; 14:324. [PMID: 40072053 PMCID: PMC11899429 DOI: 10.3390/cells14050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
Heart failure (HF) is a prominent fatal cardiovascular disorder afflicting 3.4% of the adult population despite the advancement of treatment options. Therefore, a better understanding of the pathogenesis of HF is essential for exploring novel therapeutic strategies. Hypertrophy and fibrosis are significant characteristics of pathological cardiac remodeling, contributing to HF. The mechanisms involved in the development of cardiac remodeling and consequent HF are multifactorial, and in this review, the key underlying mechanisms are discussed. These have been divided into the following categories thusly: (i) mitochondrial dysfunction, including defective dynamics, energy production, and oxidative stress; (ii) cardiac lipotoxicity; (iii) maladaptive endoplasmic reticulum (ER) stress; (iv) impaired autophagy; (v) cardiac inflammatory responses; (vi) programmed cell death, including apoptosis, pyroptosis, and ferroptosis; (vii) endothelial dysfunction; and (viii) defective cardiac contractility. Preclinical data suggest that there is merit in targeting the identified pathways; however, their clinical implications and outcomes regarding treating HF need further investigation in the future. Herein, we introduce the molecular mechanisms pivotal in the onset and progression of HF, as well as compounds targeting the related mechanisms and their therapeutic potential in preventing or rescuing HF. This, therefore, offers an avenue for the design and discovery of novel therapies for the treatment of HF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (O.F.); (S.R.G.); (X.C.); (J.Z.); (N.H.A.)
| |
Collapse
|
4
|
Yoon J, Liu Z, Alaba M, Bruggeman LA, Janmey PA, Arana CA, Ayenuyo O, Medeiros I, Eddy S, Kretzler M, Henderson JM, Nair V, Naik AS, Chang AN, Miller RT. Glomerular Elasticity and Gene Expression Patterns Define Two Phases of Alport Nephropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582201. [PMID: 38948788 PMCID: PMC11212921 DOI: 10.1101/2024.02.26.582201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objectives To understand the early stages if Alport nephropathy, we characterize the structural, functional, and biophysical properties of glomerular capillaries and podocytes in Col4α3 -/- mice, analyze kidney cortex transcriptional profiles at three time points, and investigate the effects of the ER stress mitigation by TUDCA on these parameters. We use human FSGS associated genes to identify molecular pathways rescued by TUDCA. Findings We define a disease progression timeline in Col4α3 -/- mice. Podocyte injury is evident by 3 months, with glomeruli reaching maximum deformability at 4 months, associated with 40% podocytes loss, followed by progressive capillary stiffening, increasing proteinuria, reduced renal function, inflammatory infiltrates, and fibrosis from months 4 to 7. RNA sequencing at 2, 4, and 7 months reveals increased cytokine and chemokine signaling, matrix and cell injury, and activation of the TNF pathway genes by 7 months, similar to NEPTUNE FSGS cohorts. These features are suppressed by TUDCA. Conclusions We define two phases of Col4α3 -/- nephropathy. The first is characterized by podocytopathy, increased glomerular capillary deformability and accelerated podocyte loss, and the second by increased capillary wall stiffening and renal inflammatory and profibrotic pathway activation. Disease suppression by TUDCA treatment identifies potential therapeutic targets for treating Alport and related nephropathies.
Collapse
|
5
|
Reilly-O’Donnell B, Ferraro E, Tikhomirov R, Nunez-Toldra R, Shchendrygina A, Patel L, Wu Y, Mitchell AL, Endo A, Adorini L, Chowdhury RA, Srivastava PK, Ng FS, Terracciano C, Williamson C, Gorelik J. Protective effect of UDCA against IL-11- induced cardiac fibrosis is mediated by TGR5 signalling. Front Cardiovasc Med 2024; 11:1430772. [PMID: 39691494 PMCID: PMC11650366 DOI: 10.3389/fcvm.2024.1430772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Cardiac fibrosis occurs in a wide range of cardiac diseases and is characterised by the transdifferentiation of cardiac fibroblasts into myofibroblasts these cells produce large quantities of extracellular matrix, resulting in myocardial scar. The profibrotic process is multi-factorial, meaning identification of effective treatments has been limited. The antifibrotic effect of the bile acid ursodeoxycholic acid (UDCA) is established in cases of liver fibrosis however its mechanism and role in cardiac fibrosis is less well understood. Methods In this study, we used cellular models of cardiac fibrosis and living myocardial slices to characterise the macroscopic and cellular responses of the myocardium to UDCA treatment. We complemented this approach by conducting RNA-seq on cardiac fibroblasts isolated from dilated cardiomyopathy patients. This allowed us to gain insights into the mechanism of action and explore whether the IL-11 and TGFβ/WWP2 profibrotic networks are influenced by UDCA. Finally, we used fibroblasts from a TGR5 KO mouse to confirm the mechanism of action. Results and discussion We found that UDCA reduced myofibroblast markers in rat and human fibroblasts and in living myocardial slices, indicating its antifibrotic action. Furthermore, we demonstrated that the treatment of UDCA successfully reversed the profibrotic IL-11 and TGFβ/WWP2 gene networks. We also show that TGR5 is the most highly expressed UDCA receptor in cardiac fibroblasts. Utilising cells isolated from a TGR5 knock-out mouse, we identified that the antifibrotic effect of UDCA is attenuated in the KO fibroblasts. This study combines cellular studies with RNA-seq and state-of-the-art living myocardial slices to offer new perspectives on cardiac fibrosis. Our data confirm that TGR5 agonists, such as UDCA, offer a unique pathway of action for the treatment of cardiac fibrosis. Medicines for cardiac fibrosis have been slow to clinic and have the potential to be used in the treatment of multiple cardiac diseases. UDCA is well tolerated in the treatment of other diseases, indicating it is an excellent candidate for further in-human trials.
Collapse
Affiliation(s)
- B. Reilly-O’Donnell
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - E. Ferraro
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - R. Tikhomirov
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - R. Nunez-Toldra
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - A. Shchendrygina
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - L. Patel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Y. Wu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - A. L. Mitchell
- Department of Women and Children’s Health, King’s College London, London, United Kingdom
| | - A. Endo
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - L. Adorini
- Intercept Pharmaceuticals Inc., New York, NY, United States
| | - R. A. Chowdhury
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - P. K. Srivastava
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - F. S. Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - C. Terracciano
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - C. Williamson
- Department of Women and Children’s Health, King’s College London, London, United Kingdom
| | - J. Gorelik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Wang X, Zhang Y, Du L, Jiang Z, Guo Y, Wang K, Zhou Y, Yin X, Guo X. TUDCA alleviates atherosclerosis by inhibiting AIM2 inflammasome and enhancing cholesterol efflux capacity in macrophage. iScience 2024; 27:109849. [PMID: 38784008 PMCID: PMC11112614 DOI: 10.1016/j.isci.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Cholesterol efflux capacity (CEC) dysfunction in macrophages is important in atherosclerosis. However, the mechanism underlying CEC dysfunction remains unclear. We described the characteristics of ATF4 and inflammasome activation in macrophages during atherosclerosis through scRNA sequencing analysis. Then model of hyperlipemia was established in ApoE-/- mice; some were treated with tauroursodeoxycholic acid (TUDCA). TUDCA decreased the ATF4, Hspa, and inflammasome activation, reduced plaque area of the artery, and promoted CEC in macrophages. Furthermore, TUDCA abolished oxLDL-induced foam cell formation by inhibiting activation of the PERK/eIF2α/ATF4 and AIM2 inflammasome in macrophages. Further assays revealed ATF4 binding to AIM2 promoter, promoting its transcriptional activity significantly. Then we discovered that ATF4 affected AIM2-mediated foam cell formation by targeting ABCA1, which could be blocked by TUDCA. Our study demonstrated that TUDCA alleviates atherosclerosis by inhibiting AIM2 inflammasome and enhancing CEC of macrophage, which provided possibilities for the development of therapies.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuesheng Zhang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Luping Du
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhengchen Jiang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yan Guo
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kai Wang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yijiang Zhou
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiang Yin
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
7
|
Shabnaz S, Nguyen TN, Williams R, Rubinstein SM, Garrett TJ, Tantawy M, Fradley MG, Alomar ME, Shain KH, Baz RC, Lenihan D, Cornell RF, Lu Q, Gong Y. Metabolomic signatures of carfilzomib-related cardiotoxicity in patients with multiple myeloma. Clin Transl Sci 2024; 17:e13828. [PMID: 38783568 PMCID: PMC11116757 DOI: 10.1111/cts.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
As a treatment for relapsed or refractory multiple myeloma (MM), carfilzomib has been associated with a significant risk of cardiovascular adverse events (CVAE). The goals of our study were to evaluate the metabolomic profile of MM patients to identify those at high risk prior to carfilzomib treatment and to explore the mechanisms of carfilzomib-CVAE to inform potential strategies to protect patients from this cardiotoxicity. Global metabolomic profiling was performed on the baseline and post-baseline plasma samples of 60 MM patients treated with carfilzomib-based therapy, including 31 who experienced CVAE, in a prospective cohort study. Baseline metabolites and post-baseline/baseline metabolite ratios that differ between the CVAE and no-CVAE patients were identified using unadjusted and adjusted methods. A baseline metabolomic risk score was created to stratify patients. We observed a lower abundance of tauroursodeoxycholic acid (T-UDCA) in CVAE patients at baseline (odds ratio [OR] = 0.47, 95% confidence interval [CI] = 0.21-0.94, p = 0.044) compared with the no-CVAE patients. A metabolite risk score was able to stratify patients into three risk groups. The area under the receiver-operating curve of the model with clinical predictors and metabolite risk score was 0.93. Glycochenodeoxycholic acid (OR = 0.56, 95% CI = 0.31-0.87, p = 0.023) was significantly lower in post-baseline/baseline ratios of CVAE patients compared with no-CVAE patients. Following metabolomic analysis, we created a baseline metabolite risk score that can stratify MM patients into different risk groups. The result also provided intriguing clues about the mechanism of carfilzomib-CVAE and potential cardioprotective strategies.
Collapse
Affiliation(s)
- Samia Shabnaz
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Trang N Nguyen
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Roy Williams
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Samuel M Rubinstein
- Department of Medicine, Division of Hematology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marwa Tantawy
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Michael G Fradley
- Cardio-Oncology Center of Excellence, Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohammed E Alomar
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kenneth H Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Rachid C Baz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Daniel Lenihan
- Cape Cardiology Group, Saint Francis Medical Center, Cape Girardeau, Missouri, USA
| | - Robert F Cornell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qing Lu
- Department of Biostatistics, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Cardio-Oncology Working Group, UF Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
8
|
Guerra J, Matta L, Bartelt A. Cardiac proteostasis in obesity and cardiovascular disease. Herz 2024; 49:118-123. [PMID: 38329532 PMCID: PMC10917825 DOI: 10.1007/s00059-024-05233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Cardiovascular diseases (CVD) are closely linked to protein homeostasis (proteostasis) and its failure. Beside genetic mutations that impair cardiac protein quality control, obesity is a strong risk factor for heart disease. In obesity, adipose tissue becomes dysfunctional and impacts heart function and CVD progression by releasing cytokines that contribute to systemic insulin resistance and cardiovascular dysfunction. In addition, chronic inflammation and lipotoxicity compromise endoplasmic reticulum (ER) function, eliciting stress responses that overwhelm protein quality control beyond its capacity. Impairment of proteostasis-including dysfunction of the ubiquitin-proteasome system (UPS), autophagy, and the depletion of chaperones-is intricately linked to cardiomyocyte dysfunction. Interventions targeting UPS and autophagy pathways are new potential strategies for re-establishing protein homeostasis and improving heart function. Additionally, lifestyle modifications such as dietary interventions and exercise have been shown to promote cardiac proteostasis and overall metabolic health. The pursuit of future research dedicated to proteostasis and protein quality control represents a pioneering approach for enhancing cardiac health and addressing the complexities of obesity-related cardiac dysfunction.
Collapse
Affiliation(s)
- Joel Guerra
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Max-Lebsche-Platz 30, 81377, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Leonardo Matta
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Max-Lebsche-Platz 30, 81377, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Max-Lebsche-Platz 30, 81377, Munich, Germany.
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| |
Collapse
|
9
|
Shreya S, Alam MJ, Anupriya, Jaiswal S, Rani V, Jain BP. Lipotoxicity, ER Stress, and Cardiovascular Disease: Current Understanding and Future Directions. Cardiovasc Hematol Agents Med Chem 2024; 22:319-335. [PMID: 37859305 DOI: 10.2174/0118715257262366230928051902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The endoplasmic reticulum (ER) is a sub-cellular organelle that is responsible for the correct folding of proteins, lipid biosynthesis, calcium storage, and various post-translational modifications. In the disturbance of ER functioning, unfolded or misfolded proteins accumulate inside the ER lumen and initiate downstream signaling called unfolded protein response (UPR). The UPR signaling pathway is involved in lipolysis, triacylglycerol synthesis, lipogenesis, the mevalonate pathway, and low-density lipoprotein receptor recycling. ER stress also affects lipid metabolism by changing the levels of enzymes that are involved in the synthesis or modifications of lipids and causing lipotoxicity. Lipid metabolism and cardiac diseases are in close association as the deregulation of lipid metabolism leads to the development of various cardiovascular diseases (CVDs). Several studies have suggested that lipotoxicity is one of the important factors for cardiovascular disorders. In this review, we will discuss how ER stress affects lipid metabolism and their interplay in the development of cardiovascular disorders. Further, the current therapeutics available to target ER stress and lipid metabolism in various CVDs will be summarized.
Collapse
Affiliation(s)
- Smriti Shreya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Md Jahangir Alam
- Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupriya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Saumya Jaiswal
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Buddhi Prakash Jain
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|
10
|
Tecos ME, Steinberger AE, Guo J, Rubin DC, Davidson NO, Warner BW. Roles for Bile Acid Signaling and Nonsense-Mediated Ribonucleic Acid Decay in Small Bowel Resection-Associated Liver Injury. J Surg Res 2024; 293:433-442. [PMID: 37812877 DOI: 10.1016/j.jss.2023.09.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 08/19/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Massive intestinal loss resulting in short bowel syndrome has been linked to intestinal failure associated liver disease. Efforts to elucidate the driving force behind the observed hepatic injury have identified inflammatory mediators, alterations in the microbiome, extent of structural and functional intestinal adaptation, and toxic shifts in the bile acid pool. In the present study, we posit that ileocecal resection interrupts the delivery of these hepatotoxic substances to the liver by physically disrupting the enterohepatic circulation, thereby shielding the liver from exposure to the aforementioned noxious stimuli. METHODS Mice underwent sham, 50% proximal, or 50% distal small bowel resection (SBR), with or without tauroursodeoxycolic acid supplementation. Enterohepatic signaling and nonsense-mediated ribonucleic acid (RNA) decay were evaluated and correlated with hepatic injury. RESULTS When compared to 50% proximal SBR, mice that underwent ileocecal resection exhibited reduced hepatic oxidative stress and exhibited a more physiological bile acid profile with increased de novo bile acid synthesis, enhanced colonic bile acid signaling, and reduced hepatic proliferation. Distal intestinal resection promoted an adaptive response including via the nonsense-mediated RNA decay pathway to satisfactorily process injurious messenger RNA and successfully maintain homeostasis. By contrast, this adaptive response was not observed in the proximal SBR group and hepatic injury persisted. CONCLUSIONS In summary, interruption of enterohepatic circulation via ileocecal resection abrogates the liver's exposure to toxic and inflammatory mediators while promoting physiological adaptations in bile acid metabolism and maintaining existing homeostatic pathways.
Collapse
Affiliation(s)
- Maria E Tecos
- Division of General Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Allie E Steinberger
- Department of Surgery, Barnes Jewish Hospital, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, Washington University, St. Louis, Missouri
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, Washington University, St. Louis, Missouri
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
11
|
Cao C, Qi YT, Wang AA, Wang ZY, Liu ZX, Meng HX, Li L, Liu JX. Huoxin Pill Reduces Myocardial Ischemia Reperfusion Injury in Rats via TLR4/NFκB/NLRP3 Signaling Pathway. Chin J Integr Med 2023; 29:1066-1076. [PMID: 37608040 DOI: 10.1007/s11655-023-3640-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE To explore the protective effect of Huoxin Pill (HXP) on acute myocardial ischemia-reperfusion (MIRI) injury in rats. METHODS Seventy-five adult SD rats were divided into the sham-operated group, model group, positive drug group (diltiazem hydrochloride, DH), high dose group (24 mg/kg, HXP-H) and low dose group (12 mg/kg, HXP-L) of Huoxin Pill (n=15 for every group) according to the complete randomization method. After 1 week of intragastric administration, the left anterior descending coronary artery of the rat's heart was ligated for 45 min and reperfused for 3 h. Serum was separated and the levels of creatine kinase (CK), creatine kinase isoenzyme (CK-MB) and lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), hypersensitive C-reactive protein (hs-CRP) and interleukin-1β (IL-1β) were measured. Myocardial ischemia rate, myocardial infarction rate and myocardial no-reflow rate were determined by staining with Evans blue and 2,3,5-triphenyltetrazolium chloride (TTC). Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN) databases were used to screen for possible active compounds of HXP and their potential therapeutic targets; the results of anti-inflammatory genes associated with MIRI were obtained from GeneCards, Drugbank, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Datebase (TTD) databases was performed; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were used to analyze the intersected targets; molecular docking was performed using AutoDock Tools. Western blot was used to detect the protein expression of Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NFκB)/NOD-like receptor protein 3 (NLRP3). RESULTS Compared with the model group, all doses of HXP significantly reduced the levels of LDH, CK and CK-MB (P<0.05, P<0.01); HXP significantly increased serum activity of SOD (P<0.05, P<0.01); all doses of HXP significantly reduced the levels of hs-CRP and IL-1β (P<0.05, P<0.01) and the myocardial infarction rate and myocardial no-reflow rate (P<0.01). GO enrichment analysis mainly involved positive regulation of gene expression, extracellular space and identical protein binding, KEGG pathway enrichment mainly involved PI3K-Akt signaling pathway and lipid and atherosclerosis. Molecular docking results showed that kaempferol and luteolin had a better affinity with TLR4, NFκB and NLRP3 molecules. The protein expressions of TLR4, NFκB and NLRP3 were reduced in the HXP group (P<0.01). CONCLUSIONS HXP has a significant protective effect on myocardial ischemia-reperfusion injury in rats, and its effect may be related to the inhibition of redox response and reduction of the inflammatory response by inhibiting the TLR4NFκB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Ce Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-Tong Qi
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Ao-Ao Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Zi-Yan Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Zi-Xin Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Hong-Xu Meng
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Lei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jian-Xun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China.
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Tang W, Cai D, Fu Y, Zheng Z, Huang X, Khouzam RN, Song Y, Lian J. 4-phenylbutyric acid re-trafficking hERG/G572R channel protein by modulating the endoplasmic reticulum stress-associated chaperones and endoplasmic reticulum-associated degradation gene. J Thorac Dis 2023; 15:4472-4485. [PMID: 37691654 PMCID: PMC10482650 DOI: 10.21037/jtd-23-1252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Long QT syndrome type 2 (LQT2) is caused by mutations in the KCNH2/human ether-à-go-go-related gene (hERG). Some hERG genetic mutation-associated diseases are alleviated by hERG-specific drug chaperones (glycerol, dimethyl sulfoxide, trimethylamine N-oxide, thapsigargin), delayed rectifier K+ current (IKr) blockers methanesulfonanilide E4031, the antihistamine astemizole, or the prokinetic drug cisapride, and the anti-arrhythmic drug quinidine. Meanwhile, many in vivo and in vitro studies have reported the efficacy of 4-phenylbutyric acid (4-PBA) in diseases with inherited genetic mutations. This study aims to explore potential therapeutic agents for hERG/G572R mutated ion channel. METHODS pcDNA3/hERG [wild type (WT)]-FLAG and pcDNA3/hERG (G572R)-FLAG plasmids were transfected into HEK293 cells. A western blot (WB) experiment was conducted to analyze protein expression. Quantitative real-time polymerase chain reaction (qPCR) was used to analyze the messenger RNA (mRNA) expression levels in the WT/G572R heterozygous HEK293 cell model treated with or without 4-PBA. The interaction between WT/G572R and BIP (GRP78), GRP94, and 3-hydroxy-3-methylglutaryl coenzyme A reductase degradation protein 1 (HRD1) was tested by co-immunoprecipitation (co-IP). To investigate the effect of 4-PBA on the WT/G572R channel current, we used electrophysiological assays (patch-clamp electrophysiological recordings). RESULTS The results showed that WT/G572R activated the ATF6 pathway in the endoplasmic reticulum stress (ERS), the ERS response markers GRP78, GRP94, and calreticulin (CRT)/calnexin (CNX), and HRD1, which decreased after application of the ERS inhibitor 4-PBA. The results of co-IP confirmed that the ability of hERG interacted with GRP78, GRP94, and HRD1. Moreover, 4-PBA increased the current of WT/G572R and reversed the gating kinetics of the WT/G572R channel. CONCLUSIONS 4-PBA corrects hERG channel transport defects by inhibiting excessive ERS and the endoplasmic reticulum-associated degradation (ERAD)-related gene E3 ubiquitin ligase HRD1. Additionally, 4-PBA improved WT/G572R channel current. 4-PBA is expected to be developed as a new treatment method for LQT2.
Collapse
Affiliation(s)
- Wen Tang
- Department of Cardiology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Dihui Cai
- Department of Cardiology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yin Fu
- Department of Cardiology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zequn Zheng
- Department of Cardiology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xiaoyan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Rami N. Khouzam
- Division of Cardiovascular Diseases, Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yongfei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| |
Collapse
|
13
|
Yeap JW, Ali IAH, Ibrahim B, Tan ML. Chronic obstructive pulmonary disease and emerging ER stress-related therapeutic targets. Pulm Pharmacol Ther 2023; 81:102218. [PMID: 37201652 DOI: 10.1016/j.pupt.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
COPD pathogenesis is frequently associated with endoplasmic reticulum stress (ER stress) progression. Targeting the major unfolded protein response (UPR) branches in the ER stress pathway may provide pharmacotherapeutic selection strategies for treating COPD and enable relief from its symptoms. In this study, we aimed to systematically review the potential role of the ER stress inhibitors of major UPR branches (IRE1, PERK, and ATF6) in COPD-related studies and determine the current stage of knowledge in this field. The systematic review was carried out adhering to the PRISMA checklist based on published studies obtained from specific keyword searches of three databases, namely PubMed, ScienceDirect and Springer Database. The search was limited to the year 2000-2022 which includes all in vitro studies, in vivo studies and clinical trials related to the application of ER stress inhibitors toward COPD-induced models and disease. The risk of bias was evaluated using the QUIN, SYRCLE, revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and NIH tool respectively. A total of 7828 articles were screened from three databases and a final total of 37 studies were included in the review. The ER stress and UPR pathways are potentially useful to prevent COPD progression and attenuate the exacerbation of COPD and related symptoms. Interestingly, the off-target effects from inhibition of the UPR pathway may be desirable or undesirable depending on context and therapeutic applications. Targeting the UPR pathway could have complex consequences as the production of ER molecules involved in folding may be impaired which could continuously provoke misfolding of proteins. Although several emerging compounds were noted to be potentially useful for targeted therapy against COPD, clinical studies have yet to be thoroughly explored.
Collapse
Affiliation(s)
- Jia Wen Yeap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Irfhan Ali Hyder Ali
- Respiratory Department, Penang General Hospital, Jalan Residensi, 10990, Pulau Pinang, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Centre For Global Sustainability Studies (CGSS), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
14
|
Tecos ME, Steinberger AE, Guo J, Rubin DC, Davidson NO, Warner BW. Disruption of Enterohepatic Circulation of Bile Acids Ameliorates Small Bowel Resection Associated Hepatic Injury. J Pediatr Surg 2023; 58:1074-1078. [PMID: 36914459 PMCID: PMC10355217 DOI: 10.1016/j.jpedsurg.2023.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Massive small bowel resection (SBR) is associated with liver injury and fibrosis. Efforts to elucidate the driving force behind hepatic injury have identified multiple factors, including the generation of toxic bile acid metabolites. METHODS Sham, 50% proximal, and 50% distal SBR were carried out in C57BL/6 mice to determine the effect of jejunal (proximal SBR) versus ileocecal resection (distal SBR) on bile acid metabolism and liver injury. Tissues were harvested at 2 and 10-week postoperative timepoints. RESULTS When compared with 50% proximal SBR, mice that underwent distal SBR exhibited less hepatic oxidative stress as verified by decreased mRNA expression of tumor necrosis factor-α (TNFα, p ≤ 0.0001), nicotinamide adenine dinucleotide phosphate oxidase (NOX, p ≤ 0.0001), and glutathione synthetase (GSS, p ≤ 0.05). Distal SBR mice also exhibited a more hydrophilic bile acid profile with reduced abundance of insoluble bile acids (cholic acid (CA), taurodeoxycholic acid (TCA), and taurolithocholic acid (TLCA)), and increased abundance of soluble bile acids (tauroursodeoxycholic acid (TUDCA)). In contrast with proximal SBR, ileocecal resection alters enterohepatic circulation leading to reduced oxidative stress and promotes physiological bile acid metabolism. CONCLUSION These findings challenge the notion that preservation of the ileocecal region is beneficial in patients with short bowel syndrome. Administration of selected bile acids may present potential therapy to mitigate resection-associated liver injury. LEVEL OF EVIDENCE III-Case-Control Study.
Collapse
Affiliation(s)
- Maria E Tecos
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110 St. Louis, MO, 63110, USA
| | - Allie E Steinberger
- Department of Surgery, Barnes Jewish Hospital, Washington University in St. Louis School of Medicine, 9901 Wohl Hospital, Campus Box 8109, St. Louis, MO, 63110, USA
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110 St. Louis, MO, 63110, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, Washington University, Campus Box 8124, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, Washington University, Campus Box 8124, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110 St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Vidak S, Serebryannyy LA, Pegoraro G, Misteli T. Activation of endoplasmic reticulum stress in premature aging via the inner nuclear membrane protein SUN2. Cell Rep 2023; 42:112534. [PMID: 37210724 DOI: 10.1016/j.celrep.2023.112534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
One of the major cellular mechanisms to ensure cellular protein homeostasis is the endoplasmic reticulum (ER) stress response. This pathway is triggered by accumulation of misfolded proteins in the ER lumen. The ER stress response is also activated in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here, we explore the mechanism of activation of the ER stress response in HGPS. We find that aggregation of the diseases-causing progerin protein at the nuclear envelope triggers ER stress. Induction of ER stress is dependent on the inner nuclear membrane protein SUN2 and its ability to cluster in the nuclear membrane. Our observations suggest that the presence of nucleoplasmic protein aggregates can be sensed, and signaled to the ER lumen, via clustering of SUN2. These results identify a mechanism of communication between the nucleus and the ER and provide insight into the molecular disease mechanisms of HGPS.
Collapse
Affiliation(s)
- Sandra Vidak
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Gianluca Pegoraro
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Ren C, Zhao X, Liu K, Wang L, Chen Q, Jiang H, Gao X, Lv X, Zhi X, Wu X, Li Y. Research progress of natural medicine Astragalus mongholicus Bunge in treatment of myocardial fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116128. [PMID: 36623754 DOI: 10.1016/j.jep.2022.116128] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial fibrosis (MF) is a common pathological manifestation of many cardiovascular diseases at a certain stage, with excessive accumulation of collagen fibers, excessive increase in collagen content, and a significant increase in collagen volume as the main pathological changes. There are currently no effective drugs for the treatment of myocardial fibrosis. Traditional Chinese medicine (TCM), the main component of the medical practice used for more than 5000 years, especially in China, often exerts a wider action spectrum than previously attempted options in treating human diseases. In recent times, the great potential of TCM in the treatment of MF has received much attention. Especially many experimental studies on the treatment of MF by Astragalus mongholicus Bunge have been conducted, and the effect is remarkable, which may provide more comprehensive database and theoretical support for the application of Astragalus mongholicus Bunge in the treatment of MF and could be considered a promising candidate drug for preventing MF. AIM OF THE REVIEW This review summarizes the chemical components of Astragalus mongholicus Bunge, Astragalus mongholicus Bunge extract, Astragalus mongholicus Bunge single prescription, and Astragalus mongholicus Bunge compound preparation in the treatment of MF, and provides comprehensive information and a reliable basis for the exploration of new treatment strategies of botanical drugs in the therapy of MF. METHODS The literature information was obtained from the scientific databases on ethnobotany and ethnomedicines (up to August 2022), mainly from the PubMed, Web of Science, and CNKI databases. The experimental studies on the anti-myocardial fibrosis role of the effective active components of Astragalus mongholicus Bunge and the utility of its compound preparation and the involved mechanisms were identified. The search keywords for such work included: "myocardial fibrosis" or "Cardiac fibrosis ", and "Astragalus mongholicus Bunge", "extract," or "herb". RESULTS Several studies have shown that the effective active components of Astragalus mongholicus Bunge and its formulas, particularly Astragaloside IV, Astragalus polysaccharide, total saponins of Astragalus mongholicus Bunge, triterpenoid saponins of Astragalus mongholicus Bunge, and cycloastragenol, exhibit potential benefits against MF, the mechanisms of which appear to involve the regulation of inflammation, oxidant stress, and pro-fibrotic signaling pathways, etc. Conclusion: These research works have shown the therapeutic benefits of Astragalus mongholicus Bunge in the treatment of MF. However, further research should be undertaken to clarify the unconfirmed chemical composition and regulatory mechanisms, conduct standard clinical trials, and evaluate the possible side effects. The insights in the present review provided rich ideas for developing new anti-MF drugs. THESIS Myocardial fibrosis (MF) with excessive accumulation of collagen fibers, excessive increase in collagen content, and a significant increase in collagen volume as the main pathological changes is a common pathological manifestation of many cardiovascular diseases at a certain stage, which seriously affects cardiac function. At present, there is still a lack of effective drugs for the treatment of MF. Traditional Chinese medicine (TCM), the main component of the medical practice used for more than 5000 years especially in China, often exerts wider action spectrum than previously attempted options in treating human diseases. In recent times, the great potential of TCM in the treatment of MF has received much attention. Especially many experimental studies on the treatment of MF by Astragalus mongholicus Bunge have been conducted, and the effect is remarkable, which may provide more comprehensive data base and theoretical support for the application of Astragalus mongholicus Bunge in the treatment of MF and could be considered a promising candidate drug for preventing MF.
Collapse
Affiliation(s)
- Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Xinke Zhao
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China; Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Lirong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Qilin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Hugang Jiang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China; Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinfang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China; Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xiaodong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China; Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China; The second hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Guo Y, Cao Y, Jardin BD, Zhang X, Zhou P, Guatimosim S, Lin J, Chen Z, Zhang Y, Mazumdar N, Lu F, Ma Q, Lu YW, Zhao M, Wang DZ, Dong E, Pu WT. Ryanodine receptor 2 (RYR2) dysfunction activates the unfolded protein response and perturbs cardiomyocyte maturation. Cardiovasc Res 2023; 119:221-235. [PMID: 35576474 PMCID: PMC10233305 DOI: 10.1093/cvr/cvac077] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/03/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022] Open
Abstract
AIMS Calcium-handling capacity is a major gauge of cardiomyocyte maturity. Ryanodine receptor 2 (RYR2) is the pre-dominant calcium channel that releases calcium from the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) to activate cardiomyocyte contraction. Although RYR2 was previously implied as a key regulator of cardiomyocyte maturation, the mechanisms remain unclear. The aim of this study is to solve this problem. METHODS AND RESULTS We performed Cas9/AAV9-mediated somatic mutagenesis to knockout RYR2 specifically in cardiomyocytes in mice. We conducted a genetic mosaic analysis to dissect the cell-autonomous function of RYR2 during cardiomyocyte maturation. We found that RYR2 depletion triggered ultrastructural and transcriptomic defects relevant to cardiomyocyte maturation. These phenotypes were associated with the drastic activation of ER stress pathways. The ER stress alleviator tauroursodeoxycholic acid partially rescued the defects in RYR2-depleted cardiomyocytes. Overexpression of ATF4, a key ER stress transcription factor, recapitulated defects in RYR2-depleted cells. Integrative analysis of RNA-Seq and bioChIP-Seq data revealed that protein biosynthesis-related genes are the major direct downstream targets of ATF4. CONCLUSION RYR2-regulated ER homeostasis is essential for cardiomyocyte maturation. Severe ER stress perturbs cardiomyocyte maturation primarily through ATF4 activation. The major downstream effector genes of ATF4 are related to protein biosynthesis.
Collapse
Affiliation(s)
- Yuxuan Guo
- Peking University Health Science Center, School of Basic Medical Sciences, Beijing 100191, China
- Institute of Cardiovascular Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yangpo Cao
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Blake D Jardin
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte MG - CEP 31270-901, Brazil
| | - Junsen Lin
- Peking University Health Science Center, School of Basic Medical Sciences, Beijing 100191, China
- Institute of Cardiovascular Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Zhan Chen
- Peking University Health Science Center, School of Basic Medical Sciences, Beijing 100191, China
- Institute of Cardiovascular Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yueyang Zhang
- Peking University Health Science Center, School of Basic Medical Sciences, Beijing 100191, China
- Institute of Cardiovascular Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Neil Mazumdar
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Fujian Lu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Yao-Wei Lu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Mingming Zhao
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Erdan Dong
- Institute of Cardiovascular Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
| | - William T Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Zheng W, Liu A, Xia N, Chen N, Meurens F, Zhu J. How the Innate Immune DNA Sensing cGAS-STING Pathway Is Involved in Apoptosis. Int J Mol Sci 2023; 24:3029. [PMID: 36769349 PMCID: PMC9917431 DOI: 10.3390/ijms24033029] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The cGAS-STING signaling axis can be activated by cytosolic DNA, including both non-self DNA and self DNA. This axis is used by the innate immune system to monitor invading pathogens and/or damage. Increasing evidence has suggested that the cGAS-STING pathway not only facilitates inflammatory responses and the production of type I interferons (IFN), but also activates other cellular processes, such as apoptosis. Recently, many studies have focused on analyzing the mechanisms of apoptosis induced by the cGAS-STING pathway and their consequences. This review gives a detailed account of the interplay between the cGAS-STING pathway and apoptosis. The cGAS-STING pathway can induce apoptosis through ER stress, NLRP3, NF-κB, IRF3, and IFN signals. Conversely, apoptosis can feed back to regulate the cGAS-STING pathway, suppressing it via the activation of caspases or promoting it via mitochondrial DNA (mtDNA) release. Apoptosis mediated by the cGAS-STING pathway plays crucial roles in balancing innate immune responses, resisting infections, and limiting tumor growth.
Collapse
Affiliation(s)
- Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Anjing Liu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Nengwen Xia
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - François Meurens
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
19
|
Guo H, Huang B, Cui T, Chu X, Pu W, Huang G, Xing C, Zhang C. Cadmium exposure induces autophagy via PLC-IP 3 -IP 3 R signaling pathway in duck renal tubular epithelial cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2660-2672. [PMID: 35926093 DOI: 10.1002/tox.23626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is detrimental to animals, but nephrotoxic effects of Cd on duck have not been fully elucidated. To evaluate the impacts of Cd on Ca homeostasis and autophagy via PLC-IP3 -IP3 R pathway, primary duck renal tubular epithelial cells were exposed to 2.5 μM and 5.0 μM Cd, and combination of 5.0 μM Cd and 10.0 μM 2-APB or 0.125 μM U-73122 for 12 h (U-73122 pretreated for 1 h). These results evidenced that Cd induced [Ca2+ ]c overload mainly came from intracellular Ca store. Cd caused [Ca2+ ]mit and [Ca2+ ]c overload with [Ca2+ ]ER decrease, elevated Ca homeostasis related factors (GRP78, GRP94, CRT, CaN, CaMKII, and CaMKKβ) expression, PLC and IP3 activities and IP3 R expression, but subcellular Ca2+ redistribution was reversed by 2-APB. PLC inhibitor U-73122 dramatically relieved the changes of the above indicators induced by Cd. Additionally, U-73122 obviously reduced the number of autophagosomes and LC3 accumulation spots, Atg5, LC3A, LC3B mRNA levels and LC3II/LC3I, Beclin-1 protein levels induced by Cd, and markedly elevated p62 mRNA and protein levels. Overall, the results verified that Cd induced [Ca2+ ]c overload mainly originated from ER Ca2+ release mediated by PLC-IP3 -IP3 R pathway, then triggered autophagy in duck renal tubular epithelial cells.
Collapse
Affiliation(s)
- Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Pan Z, Hu Y, Huang Z, Han N, Li Y, Zhuang X, Yin J, Peng H, Gao Q, Zhang W, Huang Y, Cui Y, Bi Y, Xu ZZ, Yang R. Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2093-2113. [PMID: 35301705 DOI: 10.1007/s11427-021-2056-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota is involved in host responses to high altitude. However, the dynamics of intestinal microecology and their association with altitude-related illness are poorly understood. Here, we used a rat model of hypobaric hypoxia challenge to mimic plateau exposure and monitored the gut microbiome, short-chain fatty acids (SCFAs), and bile acids (BAs) over 28 d. We identified weight loss, polycythemia, and pathological cardiac hypertrophy in hypoxic rats, accompanied by a large compositional shift in the gut microbiota, which is mainly driven by the bacterial families of Prevotellaceae, Porphyromonadaceae, and Streptococcaceae. The aberrant gut microbiota was characterized by increased abundance of the Parabacteroides, Alistipes, and Lactococcus genera and a larger Bacteroides to Prevotella ratio. Trans-omics analyses showed that the gut microbiome was significantly correlated with the metabolic abnormalities of SCFAs and BAs in feces, suggesting an interaction network remodeling of the microbiome-metabolome after the hypobaric hypoxia challenge. Interestingly, the transplantation of fecal microbiota significantly increased the diversity of the gut microbiota, partially inhibited the increased abundance of the Bacteroides and Alistipes genera, restored the decrease of plasma propionate, and moderately ameliorated cardiac hypertrophy in hypoxic rats. Our results provide an insight into the longitudinal changes in intestinal microecology during the hypobaric hypoxia challenge. Abnormalities in the gut microbiota and microbial metabolites contribute to the development of high-altitude heart disease in rats.
Collapse
Affiliation(s)
- Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yichen Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Zongyu Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ni Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jiye Yin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Hui Peng
- Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050, China
| | - Quansheng Gao
- Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China. .,Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
21
|
Steinberger AE, Tecos ME, Phelps HM, Rubin DC, Davidson NO, Guo J, Warner BW. A novel maladaptive unfolded protein response as a mechanism for small bowel resection-induced liver injury. Am J Physiol Gastrointest Liver Physiol 2022; 323:G165-G176. [PMID: 35727920 PMCID: PMC9377788 DOI: 10.1152/ajpgi.00302.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/31/2023]
Abstract
The unfolded protein response (UPR) is a complex adaptive signaling pathway activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). ER stress (ERS) triggers a cascade of responses that converge upon C/EBP homologous protein (CHOP) to drive inflammation and apoptosis. Herein, we sought to determine whether liver injury and fibrosis after small bowel resection (SBR) were mediated by a maladaptive hepatic ERS/UPR. C57BL/6 mice underwent 50% proximal SBR or sham operation. Markers of liver injury and UPR/ERS pathways were analyzed. These were compared with experimental groups including dietary fat manipulation, tauroursodeoxycholic acid (TUDCA) treatment, distal SBR, and global CHOP knockout (KO). At 10 wk, proximal SBR had elevated alanine aminotransferase/aspartate aminotransferase (ALT/AST) (P < 0.005) and greater hepatic tumor necrosis factor-α (TNFα) (P = 0.001) and collagen type 1 α1 (COL1A1) (P = 0.02) than shams. SBR livers had increased CHOP and p-eIF2α, but were absent in activating transcription factor 4 (ATF4) protein expression. Low-fat diet (LFD), TUDCA, and distal SBR groups had decreased liver enzymes, inflammation, and fibrosis (P < 0.05). Importantly, they demonstrated reversal of hepatic UPR with diminished CHOP and robust ATF4 signal. CHOP KO-SBR had decreased ALT but not AST compared with wild-type (WT)-SBR (P = 0.01, P = 0.12). There were no differences in TNFα and COL1A1 (P = 0.09, P = 0.50). SBR-induced liver injury, fibrosis is associated with a novel hepatic UPR/ERS response characterized by increased CHOP and decreased ATF4. LFD, TUDCA, and ileocecal resection rescued the hepatic phenotype and reversed the UPR pattern. Global CHOP KO only partially attenuated liver injury. This underscores the significance of disruptions to the gut/liver axis after SBR and potentiates targets to mitigate the progression of intestinal failure-associated liver disease.NEW & NOTEWORTHY The unfolded protein response (UPR) is a complex signaling cascade that converges upon C/EBP-homologous protein (CHOP). Under conditions of chronic cellular stress, the UPR shifts from homeostatic to proapoptotic leading to inflammation and cell death. Here, we provide evidence that small bowel resection-induced liver injury and fibrosis are mediated by a maladaptive hepatic UPR. Low-fat diet, TUDCA treatment, and ileocecal resection rescued the hepatic phenotype and reversed the UPR pattern.
Collapse
Affiliation(s)
- Allie E Steinberger
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Maria E Tecos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hannah M Phelps
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University, St. Louis, Missouri
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University, St. Louis, Missouri
| | - Jun Guo
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
| |
Collapse
|
22
|
Azam T, Zhang H, Zhou F, Wang X. Recent Advances on Drug Development and Emerging Therapeutic Agents Through Targeting Cellular Homeostasis for Ageing and Cardiovascular Disease. FRONTIERS IN AGING 2022; 3:888190. [PMID: 35821839 PMCID: PMC9261412 DOI: 10.3389/fragi.2022.888190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Ageing is a progressive physiological process mediated by changes in biological pathways, resulting in a decline in tissue and cellular function. It is a driving factor in numerous age-related diseases including cardiovascular diseases (CVDs). Cardiomyopathies, hypertension, ischaemic heart disease, and heart failure are some of the age-related CVDs that are the leading causes of death worldwide. Although individual CVDs have distinct clinical and pathophysiological manifestations, a disturbance in cellular homeostasis underlies the majority of diseases which is further compounded with aging. Three key evolutionary conserved signalling pathways, namely, autophagy, mitophagy and the unfolded protein response (UPR) are involved in eliminating damaged and dysfunctional organelle, misfolded proteins, lipids and nucleic acids, together these molecular processes protect and preserve cellular homeostasis. However, amongst the numerous molecular changes during ageing, a decline in the signalling of these key molecular processes occurs. This decline also increases the susceptibility of damage following a stressful insult, promoting the development and pathogenesis of CVDs. In this review, we discuss the role of autophagy, mitophagy and UPR signalling with respect to ageing and cardiac disease. We also highlight potential therapeutic strategies aimed at restoring/rebalancing autophagy and UPR signalling to maintain cellular homeostasis, thus mitigating the pathological effects of ageing and CVDs. Finally, we highlight some limitations that are likely hindering scientific drug research in this field.
Collapse
Affiliation(s)
- Tayyiba Azam
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hongyuan Zhang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Fangchao Zhou
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Wang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Groenendyk J, Wang WA, Robinson A, Michalak M. Calreticulin and the Heart. Cells 2022; 11:cells11111722. [PMID: 35681417 PMCID: PMC9179554 DOI: 10.3390/cells11111722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Calreticulin is an endoplasmic Ca2+ binding protein and molecular chaperone. As a cardiac embryonic gene, calreticulin is essential for heart development. The protein supports Ca2+-dependent signaling events that are critical to cardiomyocyte differentiation and cardiogenesis. The increased expression of calreticulin and endoplasmic reticulum/sarcoplasmic reticulum Ca2+ capacity produces cardiomyocytes with enhanced efficiency, and detrimental mechanical stretching of cardiac fibroblasts, leading to cardiac pathology. Deletion of the calreticulin gene in adult cardiomyocytes results in left ventricle dilation, an impaired electrocardiogram, and heart failure. These observations indicate that a well-adjusted endoplasmic reticulum and calreticulin-dependent Ca2+ pool in cardiomyocytes are critical for the maintenance of proper cardiac function.
Collapse
Affiliation(s)
- Jody Groenendyk
- Correspondence: (J.G.); (M.M.); Tel.: +1-780-492-2256 (M.M.)
| | | | | | - Marek Michalak
- Correspondence: (J.G.); (M.M.); Tel.: +1-780-492-2256 (M.M.)
| |
Collapse
|
24
|
Ajoolabady A, Wang S, Kroemer G, Klionsky DJ, Uversky VN, Sowers JR, Aslkhodapasandhokmabad H, Bi Y, Ge J, Ren J. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocr Rev 2021; 42:839-871. [PMID: 33693711 DOI: 10.1210/endrev/bnab006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death. Although a wide array of cellular processes such as persistent autophagy, dysregulated mitophagy, and secretion of proinflammatory cytokines may contribute to the onset and progression of cardiometabolic diseases, it is well perceived that ER stress also evokes the onset and development of cardiometabolic diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and chronic kidney disease (CKD). Meanwhile, these pathological conditions further aggravate ER stress, creating a rather vicious cycle. Here in this review, we aimed at summarizing and updating the available information on ER stress in CVDs, diabetes mellitus, obesity, and CKD, hoping to offer novel insights for the management of these cardiometabolic comorbidities through regulation of ER stress.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - James R Sowers
- Dalton and Diabetes and Cardiovascular Center, University of Missouri Columbia, Columbia, Missouri 65212, USA
| | | | - Yaguang Bi
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
25
|
Fu J, Aung MH, Prunty MC, Hanif AM, Hutson LM, Boatright JH, Pardue MT. Tauroursodeoxycholic Acid Protects Retinal and Visual Function in a Mouse Model of Type 1 Diabetes. Pharmaceutics 2021; 13:1154. [PMID: 34452115 PMCID: PMC8400977 DOI: 10.3390/pharmaceutics13081154] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Previous studies demonstrated that systemic treatment with tauroursodeoxycholic acid (TUDCA) is protective in in vivo mouse models of retinal degeneration and in culture models of hyperglycemia. This study tested the hypothesis that TUDCA will preserve visual and retinal function in a mouse model of early diabetic retinopathy (DR). METHODS Adult C57BL/6J mice were treated with streptozotocin (STZ) and made diabetic at 8-10 weeks of age. Control and diabetic mice were treated with vehicle or TUDCA starting 1 or 3 weeks after induction of diabetes, and were assessed bimonthly for visual function via an optomotor response and monthly for retinal function via scotopic electroretinograms. RESULTS Diabetic mice showed significantly reduced spatial frequency and contrast sensitivity thresholds compared to control mice, while diabetic mice treated early with TUDCA showed preservation at all timepoints. A-wave, b-wave, and oscillatory potential 2 (OP2) amplitudes decreased in diabetic mice. Diabetic mice also exhibited delays in a-wave and OP2-implicit times. Early TUDCA treatment ameliorated a-wave, b-wave, and OP2 deficits. Late TUDCA treatment showed reduced preservation effects compared to early treatment. CONCLUSIONS Early TUDCA treatment preserved visual function in an STZ-mouse model of Type I diabetes. These data add to a growing body of preclinical research that may support testing whether TUDCA may be an effective early clinical intervention against declining visual function caused by diabetic retinopathy.
Collapse
Affiliation(s)
- Jieming Fu
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22904, USA
| | - Moe H. Aung
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Neuroscience, Emory University, Atlanta, GA 30322, USA
- Department of Ophthalmology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Megan C. Prunty
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Case Western Reserve University School of Medicine, Urology Institute of University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adam M. Hanif
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Lauren M. Hutson
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jeffrey H. Boatright
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Neuroscience, Emory University, Atlanta, GA 30322, USA
- Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - Machelle T. Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Neuroscience, Emory University, Atlanta, GA 30322, USA
- Ophthalmology, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| |
Collapse
|
26
|
Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 2021; 476:4061-4080. [PMID: 34259975 DOI: 10.1007/s11010-021-04223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that orchestrates the production and proper assembly of an extensive types of secretory and membrane proteins. Endoplasmic reticulum stress is conventionally related to prolonged disruption in the protein folding machinery resulting in the accumulation of unfolded proteins in the ER. This disruption is often manifested due to oxidative stress, Ca2+ leakage, iron imbalance, disease conditions which in turn hampers the cellular homeostasis and induces cellular apoptosis. A mild ER stress is often reverted back to normal. However, cells retaliate to acute ER stress by activating the unfolded protein response (UPR) which comprises three signaling pathways, Activating transcription factor 6 (ATF6), inositol requiring enzyme 1 alpha (IRE1α), and protein kinase RNA-activated-like ER kinase (PERK). The UPR response participates in both protective and pro-apoptotic responses and not much is known about the mechanistic aspects of the switch from pro-survival to pro-apoptosis. When ER stress outpaces UPR response then cell apoptosis prevails which often leads to the development of various diseases including cardiomyopathies. Therefore, it is important to identify molecules that modulate the UPR that may serve as promising tools towards effective treatment of cardiovascular diseases. In this review, we elucidated the latest advances in construing the contribution imparted by the three arms of UPR to combat the adverse environment in the ER to restore cellular homeostasis during cardiomyopathies. We also summarized the various therapeutic agents that plays crucial role in tilting the UPR response towards pro-survival.
Collapse
|
27
|
Efentakis P, Molitor M, Kossmann S, Bochenek ML, Wild J, Lagrange J, Finger S, Jung R, Karbach S, Schäfer K, Schulz A, Wild P, Münzel T, Wenzel P. Tubulin-folding cofactor E deficiency promotes vascular dysfunction by increased endoplasmic reticulum stress. Eur Heart J 2021; 43:488-500. [PMID: 34132336 PMCID: PMC8830526 DOI: 10.1093/eurheartj/ehab222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/29/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Assessment of endothelial function in humans by measuring flow-mediated dilation (FMD) risk-stratifies individuals with established cardiovascular disease, whereas its predictive value is limited in primary prevention. We therefore aimed to establish and evaluate novel markers of FMD at the population level. METHODS AND RESULTS In order to identify novel targets that were negatively correlated with FMD and investigate their contribution to vascular function, we performed a genome-wide association study (GWAS) of 4175 participants of the population based Gutenberg Health Study. Subsequently, conditional knockout mouse models deleting the gene of interest were generated and characterized. GWAS analysis revealed that single-nucleotide polymorphisms (SNPs) in the tubulin-folding cofactor E (TBCE) gene were negatively correlated with endothelial function and TBCE expression. Vascular smooth muscle cell (VSMC)-targeted TBCE deficiency was associated with endothelial dysfunction, aortic wall hypertrophy, and endoplasmic reticulum (ER) stress-mediated VSMC hyperproliferation in mice, paralleled by calnexin up-regulation and exacerbated by the blood pressure hormone angiotensin II. Treating SMMHC-ERT2-Cre+/-TBCEfl/fl mice with the ER stress modulator tauroursodeoxycholic acid amplified Raptor/Beclin-1-dependent autophagy and reversed vascular dysfunction. CONCLUSION TBCE and tubulin homeostasis seem to be novel predictors of vascular function and offer a new drug target to ameliorate ER stress-dependent vascular dysfunction.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Michael Molitor
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sabine Kossmann
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Johannes Wild
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jeremy Lagrange
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rebecca Jung
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Susanne Karbach
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Andreas Schulz
- Department of Cardiology-Preventive Cardiology and Medical Prevention, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Philipp Wild
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Department of Cardiology-Preventive Cardiology and Medical Prevention, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
28
|
Tong B, Fu L, Hu B, Zhang ZC, Tan ZX, Li SR, Chen YH, Zhang C, Wang H, Xu DX, Zhao H. Tauroursodeoxycholic acid alleviates pulmonary endoplasmic reticulum stress and epithelial-mesenchymal transition in bleomycin-induced lung fibrosis. BMC Pulm Med 2021; 21:149. [PMID: 33952237 PMCID: PMC8097922 DOI: 10.1186/s12890-021-01514-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background Several studies demonstrate that endoplasmic reticulum (ER) stress-mediated epithelial-mesenchymal transition (EMT) is involved in the process of bleomycin (BLM)-induced pulmonary fibrosis. Tauroursodeoxycholic acid (TUDCA), a bile acid with chaperone properties, is an inhibitor of ER stress. This study aimed to investigate the preventive effects of TUDCA on BLM-induced EMT and lung fibrosis. Methods The model of lung fibrosis was established by intratracheal injection with a single dose of BLM (3.0 mg/kg). In TUDCA + BLM group, mice were intraperitoneally injected with TUDCA (250 mg/kg) daily. Results BLM-induced alveolar septal destruction and inflammatory cell infiltration were alleviated by TUDCA. BLM-induced interstitial collagen deposition, as determined by Sirius Red staining, was attenuated by TUDCA. BLM-induced elevation of pulmonary α-smooth muscle actin (α-SMA) and reduction of pulmonary E-cadherin were attenuated by TUDCA. BLM-induced pulmonary Smad2/3 phosphorylation was suppressed by TUDCA. BLM-induced elevation of Ki67 and PCNA was inhibited by TUDCA in mice lungs. In addition, BLM-induced elevation of HO-1 (heme oxygenase-1) and 3-NT (3-nitrotyrosine) was alleviated by TUDCA. Finally, BLM-induced upregulation of pulmonary GRP78 and CHOP was attenuated by TUDCA. Conclusions These results provide evidence that TUDCA pretreatment inhibits Smad2/3-medited EMT and subsequent lung fibrosis partially through suppressing BLM-induced ER stress and oxidative stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01514-6.
Collapse
Affiliation(s)
- Bin Tong
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.,Tong Ling People's Hospital, Tongling, 244000, China
| | - Lin Fu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.,Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Biao Hu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.,Tong Ling People's Hospital, Tongling, 244000, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Se-Ruo Li
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
29
|
Diteepeng T, Del Monte F, Luciani M. The long and winding road to target protein misfolding in cardiovascular diseases. Eur J Clin Invest 2021; 51:e13504. [PMID: 33527342 DOI: 10.1111/eci.13504] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the last decades, cardiovascular diseases (CVD) have remained the first leading cause of mortality and morbidity in the world. Although several therapeutic approaches have been introduced in the past, the development of novel treatments remains an important research goal, which is hampered by the lack of understanding of key mechanisms and targets. Emerging evidences in recent years indicate the involvement of misfolded proteins aggregation and the derailment of protein quality control in the pathogenesis of cardiovascular diseases. Several potential interventions targeting protein quality control have been translated from the bench to the bedside to effectively employ the misfolded proteins as promising therapeutic targets for cardiac diseases, but with trivial results. DESIGN In this review, we describe the recent progresses in preclinical and clinical studies of protein misfolding and compromised protein quality control by selecting and reporting studies focusing on cardiovascular diseases including cardiomyopathies, cardiac amyloidosis, atherosclerosis, atrial fibrillation and thrombosis. RESULTS In preclinical models, modulators of several molecular targets (eg heat shock proteins, unfolded protein response, ubiquitin protein system, autophagy and histone deacetylases) have been tested in various conditions with promising results although lacking an adequate transition towards clinical setting. CONCLUSIONS At present, no therapeutic strategies have been reported to attenuate proteotoxicity in patients with CVD due to a lack of specific biomarkers for pinpointing upstream events in protein folding defects at a subclinical stage of the diseases requiring an intensive collaboration between basic scientists and clinicians.
Collapse
Affiliation(s)
- Thamonwan Diteepeng
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Federica Del Monte
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Alma Mater, Bologna, Italy
| | - Marco Luciani
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| |
Collapse
|
30
|
Possible roles of AMPK and macropinocytosis in the defense responses against Δ 9-THC toxicity on HL-1 cardiomyocytes. Toxicol Rep 2021; 8:980-987. [PMID: 34026562 PMCID: PMC8131391 DOI: 10.1016/j.toxrep.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids are some of the most popular recreationally used illicit drugs, and are frequently consumed along with alcoholic beverages. Although the whole body effects of cannabinoids depend largely on their effects on the central nerve system, cannabinoids could harm the heart directly, due to the presence of the endocannabinoid system including cannabinoid receptor1 and 2 (CB-R1 and CB-R2) in the heart. The aim of this study is to examine the mechanism of direct cardiotoxicity of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient of cannabis. For this purpose, HL-1 murine atrial cardiac muscle cells were treated with 10 or 30 μM Δ9-THC, along with 100 mM ethanol to examine the possible synergistic effects of Δ9-THC and ethanol. Transcriptome analysis showed upregulation of the genes involved in the unfolded protein response (UPR), including Bip, CHOP, ATF4 and ATF6, in cells treated with Δ9-THC. Immunoblot analysis showed caspase3 activation, indicating apoptosis caused by ER stress in Δ9-THC-treated cells. Microscopic analysis showed that Δ9-THC enhances macropinocytosis, a process involved in the uptake of extracellular fluids including nutrients. Moreover Δ9-THC seemed to activate AMPK, a sensor of intracellular energy status and an activator of macropinocytosis. Finally, we found that compound C (AMPK inhibitor) aggravated cell death by Δ9-THC while AICAR (AMPK activator) ameliorated it. Collectively, these results indicate that the activation of AMPK is necessary for the survival of HL-1 cells against Δ9-THC toxicity. Macropinocytosis might serve as one of the survival pathways downstream of AMPK.
Collapse
|
31
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
32
|
Oxidative Stress and Endoplasmic Reticulum Stress in Rare Respiratory Diseases. J Clin Med 2021; 10:jcm10061268. [PMID: 33803835 PMCID: PMC8003245 DOI: 10.3390/jcm10061268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have shown that some rare respiratory diseases, such as alpha-1 antitrypsin deficiency (AATD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), and primary ciliary dyskinesia (PCD) present oxidative stress (OS) and endoplasmic reticulum (ER) stress. Their involvement in these pathologies and the use of antioxidants as therapeutic agents to minimize the effects of OS are discussed in this review.
Collapse
|
33
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 421] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
34
|
Huoxin Pill () Attenuates Cardiac Fibrosis by Suppressing TGF-β1/Smad2/3 Pathway in Isoproterenol-Induced Heart Failure Rats. Chin J Integr Med 2020; 27:424-431. [PMID: 33368018 DOI: 10.1007/s11655-020-2862-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the effects of Huoxin Pill (, HXP) on cardiac fibrosis and heart failure (HF) in isoproterenol (ISO)-induced HF rats. METHODS Thirty Wistar rats were randomly divided into 5 groups including control, HF, isosorbide mononitrate (ISMN), HXP low (HXP-L), and HXP high (HXP-H) groups (n=6 for each group) according to the complete randomization method. Rats were pretreated with ISMN (5 mg/kg daily), low concentration of HXP (10 mg/kg daily) or high concentration of HXP (30 mg/kg daily) or equal volume of saline by intragastric administration for 1 week, followed by intraperitoneal injection of ISO (10 mg/kg, 14 days), and continually intragastric administrated with above medicines or saline for additional 6 weeks. The effects of HXP treatment on the cardiac function, heart weight index (HWI), pathological changes, and collagen content were further assessed. Moreover, the role of HXP on activation of transforming growth factor- β 1 (TGF-β 1)/Smads pathway was further explored using immunohistochemistry (IHC) and Western-blot assay. RESULTS HXP treatment significantly alleviated the decrease of ejection fraction (EF) and fractional shortening (FS), while decreased the elevation of left ventricular end-systolic volume (LVESV) in ISO-induced HF rats (P<0.05). Moreover, HXP treatment obviously attenuated the increase of HWI and serum level of creatine kinase MB (CK-MB, P<0.05), as well as pathological changes in ISO-induced HF rats. Further determination indicated that HXP treatment alleviated the elevation of collagen I and collagen III protein expression in cardiac tissues of ISO-induced HF rats. Furthermore, HXP treatment significantly down-regulated the increase of TGF-β 1 and p-Smad2/3 protein expression in cardiac tissues of HF rats (P<0.05), while did not affect the expression of total Smad2/3. CONCLUSIONS HXP attenuated heart failure and cardiac fibrosis in ISO-induced HF rats by suppression of TGF-β 1/Smad2/3 pathway.
Collapse
|
35
|
Montesi SB, Fisher JH, Martinez FJ, Selman M, Pardo A, Johannson KA. Update in Interstitial Lung Disease 2019. Am J Respir Crit Care Med 2020; 202:500-507. [PMID: 32412784 DOI: 10.1164/rccm.202002-0360up] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jolene H Fisher
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Kerri A Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Lin TT, Qu J, Wang CY, Yang X, Hu F, Hu L, Wu XF, Jiang CY, Liu WT, Han Y. Rescue of HSP70 in Spinal Neurons Alleviates Opioids-Induced Hyperalgesia via the Suppression of Endoplasmic Reticulum Stress in Rodents. Front Cell Dev Biol 2020; 8:269. [PMID: 32500072 PMCID: PMC7243285 DOI: 10.3389/fcell.2020.00269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
A major unresolved issue in treating pain is the paradoxical hyperalgesia produced by the gold-standard analgesic morphine and other opioids. Endoplasmic reticulum (ER) stress has been shown to contribute to neuropathic or inflammatory pain, but its roles in opioids-induced hyperalgesia (OIH) are elusive. Here, we provide the first direct evidence that ER stress is a significant driver of OIH. GRP78, the ER stress marker, is markedly upregulated in neurons in the spinal cord after chronic morphine treatment. At the same time, morphine induces the activation of three arms of unfolded protein response (UPR): inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1), protein kinase RNA-like ER kinase/eukaryotic initiation factor 2 subunit alpha (PERK/eIF2α), and activating transcription factor 6 (ATF6). Notably, we found that inhibition on either IRE1α/XBP1 or ATF6, but not on PERK/eIF2α could attenuate the development of OIH. Consequently, ER stress induced by morphine enhances PKA-mediated phosphorylation of NMDA receptor subunit 1(NR1) and leads to OIH. We further showed that heat shock protein 70 (HSP70), a molecular chaperone involved in protein folding in ER, is heavily released from spinal neurons after morphine treatment upon the control of KATP channel. Glibenclamide, a classic KATP channel blocker that inhibits the efflux of HSP70 from cytoplasm to extracellular environment, or HSP70 overexpression in neurons, could markedly suppress morphine-induced ER stress and hyperalgesia. Taken together, our findings uncover the induction process and the central role of ER stress in the development of OIH and support a novel strategy for anti-OIH treatment.
Collapse
Affiliation(s)
- Tong-Tong Lin
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jie Qu
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Chao-Yu Wang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Xing Yang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Fan Hu
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Xue-Feng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Chun-Yi Jiang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wen-Tao Liu
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Institute of Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
37
|
Hamczyk MR, Villa-Bellosta R, Quesada V, Gonzalo P, Vidak S, Nevado RM, Andrés-Manzano MJ, Misteli T, López-Otín C, Andrés V. Progerin accelerates atherosclerosis by inducing endoplasmic reticulum stress in vascular smooth muscle cells. EMBO Mol Med 2020; 11:emmm.201809736. [PMID: 30862662 PMCID: PMC6460349 DOI: 10.15252/emmm.201809736] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by progerin, a mutant lamin A variant. HGPS patients display accelerated aging and die prematurely, typically from atherosclerosis complications. Recently, we demonstrated that progerin‐driven vascular smooth muscle cell (VSMC) loss accelerates atherosclerosis leading to premature death in apolipoprotein E‐deficient mice. However, the molecular mechanism underlying this process remains unknown. Using a transcriptomic approach, we identify here endoplasmic reticulum stress (ER) and the unfolded protein responses as drivers of VSMC death in two mouse models of HGPS exhibiting ubiquitous and VSMC‐specific progerin expression. This stress pathway was also activated in HGPS patient‐derived cells. Targeting ER stress response with a chemical chaperone delayed medial VSMC loss and inhibited atherosclerosis in both progeria models, and extended lifespan in the VSMC‐specific model. Our results identify a mechanism underlying cardiovascular disease in HGPS that could be targeted in patients. Moreover, these findings may help to understand other vascular diseases associated with VSMC death, and provide insight into aging‐dependent vascular damage related to accumulation of unprocessed toxic forms of lamin A.
Collapse
Affiliation(s)
- Magda R Hamczyk
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Ricardo Villa-Bellosta
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Fundación Instituto de Investigación Sanitaria Fundación Jiménez Díaz (FIIS-FJD), Madrid, Spain
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Sandra Vidak
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
38
|
Radwan E, Bakr MH, Taha S, Sayed SA, Farrag AA, Ali M. Inhibition of endoplasmic reticulum stress ameliorates cardiovascular injury in a rat model of metabolic syndrome. J Mol Cell Cardiol 2020; 143:15-25. [PMID: 32311415 DOI: 10.1016/j.yjmcc.2020.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Metabolic (Met) syndrome is characterized by hypertension, insulin resistance and dyslipidaemia with high risk of cardiovascular disease. Endoplasmic reticulum (ER) stress is a key contributor in the pathogenesis of Met syndrome. The current study investigates the effect of Tauroursodeoxycholate (TUDCA), an ER stress inhibitor, on Met syndrome-induced cardiovascular complications and the possible underlying signalling mechanisms. Met syndrome was induced in rats, which were then treated with TUDCA. Body weight, blood pressure, glucose tolerance and insulin tolerance tests were performed. ER stress, survival and oxidative stress markers were measured in heart and aorta tissue. The results showed that TUDCA improved metabolic parameters in rats with Met syndrome. Treatment mitigated the Met syndrome-induced cardiovascular complications through upregulating survival markers and downregulating ER and oxidative stress markers. These results highlight the protective effect of ER stress inhibition as a potential target in the management of cardiovascular complications associated with Met syndrome.
Collapse
Affiliation(s)
- Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa H Bakr
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Salma Taha
- Department of Cardiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sally A Sayed
- Department of Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alshaimaa A Farrag
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Maha Ali
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
39
|
Devarakonda T, Mauro AG, Guzman G, Hovsepian S, Cain C, Das A, Praveen P, Hossain MA, Salloum FN. B7-33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction-Related Adverse Cardiac Remodeling in Mice. J Am Heart Assoc 2020; 9:e015748. [PMID: 32295457 PMCID: PMC7428518 DOI: 10.1161/jaha.119.015748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Human relaxin‐2 is a peptide hormone capable of pleiotropic effects in several organ systems. Its recombinant formulation (serelaxin) has been demonstrated to reduce infarct size and prevent excessive scar formation in animal models of cardiac ischemia‐reperfusion injury. B7‐33, a synthetically designed peptide analogous to B‐chain of relaxin‐2, invokes signaling at relaxin family peptide receptor 1 (cognate receptor for relaxin‐2) by preferentially phosphorylating the mitogen‐activated protein kinase extracellular signal‐regulated kinase 1/2. We sought to investigate the effects of B7‐33 treatment post ischemia‐reperfusion injury in mice. Methods and Results Adult male CD1 mice were subjected to ischemia‐reperfusion via ligation of left anterior descending artery for 30 minutes, followed by 24 hours or 7 days of reperfusion. Echocardiography was performed to assess cardiac function, and cardiac tissue was stained to determine infarct size at 24 hours. B7‐33 significantly reduced infarct size (21.99% versus 45.32%; P=0.02) and preserved fractional shortening (29% versus 23%; P=0.02) compared with vehicle. The difference in fractional shortening further increased at 7 days post myocardial infarction (29% versus 20% for B7‐33 and vehicle groups, respectively). In vitro, primary cardiomyocytes were isolated from adult hearts and subjected to simulated ischemia‐reperfusion injury (simulated ischemia reoxygenation). B7‐33 (50 and 100 nmol/L) improved cell survival and reduced the expression of GRP78 (glucose regulated protein), an endoplasmic reticulum stress marker. Subsequently, B7‐33 (100 nmol/L) reduced tunicamycin (2.5 μg/mL) induced upregulation of GRP78 in an extracellular signal‐regulated kinase 1/2–dependent manner. Conclusions B7‐33 confers acute cardioprotection and limits myocardial infarction–related adverse remodeling in mice by attenuating cardiomyocyte death and endoplasmic reticulum stress as well as preserving cardiac function.
Collapse
Affiliation(s)
- Teja Devarakonda
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Adolfo G Mauro
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Geronimo Guzman
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Sahak Hovsepian
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Chad Cain
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Anindita Das
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Praveen Praveen
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Australia
| | - Fadi N Salloum
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| |
Collapse
|
40
|
Miao K, Zhang L, Pan T, Wang Y. Update on the role of endoplasmic reticulum stress in asthma. Am J Transl Res 2020; 12:1168-1183. [PMID: 32355534 PMCID: PMC7191165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Asthma has long attracted extensive attention because of its recurring symptoms of reversible airflow obstruction, airway hyperresponsiveness (AHR) and airway inflammation. Although accumulating evidence has enabled gradual increases in understanding of the pathogenesis of asthma, many questions regarding the mechanisms underlying asthma onset and progression remain unanswered. Recent advances delineating the potential functions of endoplasmic reticulum (ER) stress in meeting the need for an airway hypersensitivity response have revealed critical roles of unfolded protein response (UPR) pathways in asthma. In this review, we highlight the roles of ER stress and UPR activation in the etiology, pathogenesis and treatment of asthma and discuss whether the related mechanisms could be targets for therapeutic strategies.
Collapse
Affiliation(s)
- Kang Miao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Ting Pan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| |
Collapse
|
41
|
Bal NB, Han S, Kiremitci S, Sadi G, Uludag O, Demirel-Yilmaz E. Hypertension-induced cardiac impairment is reversed by the inhibition of endoplasmic reticulum stress. ACTA ACUST UNITED AC 2019; 71:1809-1821. [PMID: 31579948 DOI: 10.1111/jphp.13169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/09/2019] [Accepted: 09/01/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Endoplasmic reticulum stress (ERS) has been shown to play a crucial role in the pathogenesis of hypertension. However, the role and mechanisms of ERS on hypertension-induced cardiac functional and morphological changes remain unclear. In this study, the effect of ERS inhibition with tauroursodeoxycholic acid (TUDCA) on hypertension-induced cardiac remodelling was examined. METHODS Hypertension was induced by deoxycorticosterone-acetate (DOCA) and salt administration in uni-nephrectomized rats for 12 weeks. TUDCA was administered for the last four weeks. Rhythmic activity and contractions of the right atrium and left papillary muscle (LPM) were recorded. In the left ventricle, the expression of various proteins was examined and histopathological evaluation was performed. KEY FINDINGS Hypertension-induced increments in systolic blood pressure and ventricular contractions were reversed by TUDCA. In the hypertensive heart, while expressions of glucose-regulated protein-78 (GRP78), phospho-dsRNA-activated protein kinase-like ER kinase (p-PERK), sarcoplasmic reticulum Ca-ATPase-2 (SERCA2), matrix metalloproteinase-2 (MMP-2) and nuclear NF-κB p65 increased; Bcl-2 (B-cell lymphoma-2) expression decreased and the altered levels of all these markers were restored by TUDCA. In the microscopic examination, TUDCA treatment attenuated hypertension-stimulated cardiac inflammation and fibrosis. CONCLUSIONS These results suggest that ERS inhibition may ameliorate cardiac contractility through improving ERS-associated calcium mishandling, apoptosis, inflammation and fibrosis, thereby offering therapeutic potential in hypertension-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Nur Banu Bal
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Sevtap Han
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Saba Kiremitci
- Department of Pathology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Gökhan Sadi
- Department of Biology, K.Ö. Faculty of Science, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Orhan Uludag
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
42
|
TUDCA attenuates intestinal injury and inhibits endoplasmic reticulum stress-mediated intestinal cell apoptosis in necrotizing enterocolitis. Int Immunopharmacol 2019; 74:105665. [DOI: 10.1016/j.intimp.2019.05.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 01/06/2023]
|
43
|
|
44
|
Belmadani S, Matrougui K. Broken heart: A matter of the endoplasmic reticulum stress bad management? World J Cardiol 2019; 11:159-170. [PMID: 31367278 PMCID: PMC6658386 DOI: 10.4330/wjc.v11.i6.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/29/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the number one cause of morbidity and mortality in the United States and worldwide. The induction of the endoplasmic reticulum (ER) stress, a result of a disruption in the ER homeostasis, was found to be highly associated with cardiovascular diseases such as hypertension, diabetes, ischemic heart diseases and heart failure. This review will discuss the latest literature on the different aspects of the involvement of the ER stress in cardiovascular complications and the potential of targeting the ER stress pathways as a new therapeutic approach for cardiovascular complications.
Collapse
Affiliation(s)
- Souad Belmadani
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| | - Khalid Matrougui
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| |
Collapse
|
45
|
Ito T, Murakami S, Schaffer SW. Taurine-Conjugated Metabolites in Hearts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:523-529. [PMID: 31468428 DOI: 10.1007/978-981-13-8023-5_48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mammalian tissues, especially the heart, contain high concentrations of taurine, a beta-amino acid that possesses a variety of physiological functions. While it is well known that taurine reacts with several metabolites, such as bile acids and fatty acids, taurine-conjugated metabolites in the heart have not been specifically studied. Recently, we performed Liquid chromatography-mass spectrometry- (LC-MS-) based metabolome analysis, comparing metabolome profiles of hearts from taurine transporter knockout (TauTKO) mice and wild-type mice to identify differences in taurine-conjugated metabolite content of the two phenotypes. Comparison of the metabolite profiles revealed taurine-containing dipeptides, such as glutamyltaurine, which are present in wild-type but not in TauTKO hearts. These data suggest that taurine functions not only as a free osmolyte but also as a conjugated metabolite within the heart.
Collapse
Affiliation(s)
- Takashi Ito
- College of Bioscience, Fukui Prefectural University, Eiheiji, Japan.
| | - Shigeru Murakami
- College of Bioscience, Fukui Prefectural University, Eiheiji, Japan
| | - Stephen W Schaffer
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
46
|
Chang P, Zhang M, Zhang X, Li G, Hu H, Wu J, Wang X, Yang Z, Zhang J, Chen W, Ren M, Li X, Zhu M, Chen B, Yu J. B-type natriuretic peptide attenuates endoplasmic reticulum stress in H9c2 cardiomyocytes underwent hypoxia/reoxygenation injury under high glucose/high fat conditions. Peptides 2019; 111:103-111. [PMID: 29689346 DOI: 10.1016/j.peptides.2018.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
Exogenously administered B-type natriuretic peptide (BNP) has been shown to provide cardioprotection against various heart diseases. However, the underlying mechanisms remain elusive. This study explores whether BNP exerts its cardioprotection against hypoxia/reoxygenation (H/R) injury under high glucose/high fat (HG/HF) conditions in cardiac H9c2 cells and uncovers the underlying mechanisms. Our data revealed that BNP significantly increased the cell viability and decreased the release of lactate dehydrogenase (LDH) and creatine kinase (CK), with a maximal effect at the BNP concentration of 10-7 mol/L. In addition, by analyzing the activation of cleaved caspase-3 and by Annexin V-FITC/PI staining, we showed that BNP attenuated H/R-induced cell apoptosis in HG/HF conditions. Western blot analysis showed enhanced phosphorylation of protein kinase RNA (PKR)-like endoplastmic reticulum (ER) kinase (PERK) and eukaryotic initiation factor 2α (eIF2α)(one of the three main signaling pathways in endoplastmic reticulum (ER) stress), and increased expression of GRP78 and CHOP proteins (ER stress-related proteins) in H9c2 cells which underwent H/R in HG/HF conditions. Treatment with BNP or 8-Br-cGMP (an analog of cGMP) reversed this activation. However, this effect was significantly weakened by KT-5823, a selective cGMP-dependent protein kinase G (PKG) inhibitor. In addition, similar to BNP, treatment with a specific inhibitor of ER stress tauroursodeoxycholic acid (TUDCA) protected the cells against H/R injury exposed to HG/HF conditions. In conclusion, these findings demonstrated that BNP effectively protected cells against H/R injury under HG/HF conditions by inhibiting the ER stress via activation of the cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Pan Chang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China; Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China; Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guohua Li
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Haiyan Hu
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Juan Wu
- Department of General Practitioner, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Xihui Wang
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Zihua Yang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Jing Zhang
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Weiguo Chen
- Department of General Practitioner, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Minggang Ren
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Xin Li
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Miaozhang Zhu
- Department of Physiology, Fourth Military Medical University, Xi'an, China.
| | - Baoying Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jun Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China; Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
47
|
Michalak M, Agellon LB. Stress Coping Strategies in the Heart: An Integrated View. Front Cardiovasc Med 2018; 5:168. [PMID: 30519562 PMCID: PMC6258784 DOI: 10.3389/fcvm.2018.00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
The heart is made up of an ordered amalgam of cardiac cell types that work together to coordinate four major processes, namely energy production, electrical conductance, mechanical work, and tissue remodeling. Over the last decade, a large body of information has been amassed regarding how different cardiac cell types respond to cellular stress that affect the functionality of their elaborate intracellular membrane networks, the cellular reticular network. In the context of the heart, the manifestations of stress coping strategies likely differ depending on the coping strategy outcomes of the different cardiac cell types, and thus may underlie the development of distinct cardiac disorders. It is not clear whether all cardiac cell types have similar sensitivity to cellular stress, how specific coping response strategies modify their unique roles, and how their metabolic status is communicated to other cells within the heart. Here we discuss our understanding of the roles of specialized cardiac cells that together make the heart function as an organ with the ability to pump blood continuously and follow a regular rhythm.
Collapse
Affiliation(s)
- Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada
| |
Collapse
|
48
|
Affiliation(s)
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
| |
Collapse
|
49
|
Xu X, Wang M, Li JZ, Wei SD, Wu H, Lai X, Cao D, Ou ZB, Gong J. Tauroursodeoxycholic acid alleviates hepatic ischemia reperfusion injury by suppressing the function of Kupffer cells in mice. Biomed Pharmacother 2018; 106:1271-1281. [DOI: 10.1016/j.biopha.2018.06.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
|
50
|
Krupkova O, Sadowska A, Kameda T, Hitzl W, Hausmann ON, Klasen J, Wuertz-Kozak K. p38 MAPK Facilitates Crosstalk Between Endoplasmic Reticulum Stress and IL-6 Release in the Intervertebral Disc. Front Immunol 2018; 9:1706. [PMID: 30174670 PMCID: PMC6107791 DOI: 10.3389/fimmu.2018.01706] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
Degenerative disc disease is associated with increased expression of pro-inflammatory cytokines in the intervertebral disc (IVD). However, it is not completely clear how inflammation arises in the IVD and which cellular compartments are involved in this process. Recently, the endoplasmic reticulum (ER) has emerged as a possible modulator of inflammation in age-related disorders. In addition, ER stress has been associated with the microenvironment of degenerated IVDs. Therefore, the aim of this study was to analyze the effects of ER stress on inflammatory responses in degenerated human IVDs and associated molecular mechanisms. Gene expression of ER stress marker GRP78 and pro-inflammatory cytokines IL-6, IL-8, IL-1β, and TNF-α was analyzed in human surgical IVD samples (n = 51, Pfirrmann grade 2-5). The expression of GRP78 positively correlated with the degeneration grade in lumbar IVDs and IL-6, but not with IL-1β and TNF-α. Another set of human surgical IVD samples (n = 25) was used to prepare primary cell cultures. ER stress inducer thapsigargin (Tg, 100 and 500 nM) activated gene and protein expression of IL-6 and induced phosphorylation of p38 MAPK. Both inhibition of p38 MAPK by SB203580 (10 µM) and knockdown of ER stress effector CCAAT-enhancer-binding protein homologous protein (CHOP) reduced gene and protein expression of IL-6 in Tg-treated cells. Furthermore, the effects of an inflammatory microenvironment on ER stress were tested. TNF-α (5 and 10 ng/mL) did not activate ER stress, while IL-1β (5 and 10 ng/mL) activated gene and protein expression of GRP78, but did not influence [Ca2+]i flux and expression of CHOP, indicating that pro-inflammatory cytokines alone may not induce ER stress in vivo. This study showed that IL-6 release in the IVD can be initiated following ER stress and that ER stress mediates IL-6 release through p38 MAPK and CHOP. Therapeutic targeting of ER stress response may reduce the consequences of the harsh microenvironment in degenerated IVD.
Collapse
Affiliation(s)
- Olga Krupkova
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Takuya Kameda
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Fukushima Medical University, Fukushima, Japan
| | - Wolfgang Hitzl
- Biostatistics, Research Office, Paracelsus Medical University, Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
| | | | | | - Karin Wuertz-Kozak
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Academic Teaching Hospital, Spine Research Institute, Paracelsus Medical University, Salzburg, Austria
- Spine Center, Schön Klinic Munich Harlaching, Munich, Germany
- Department of Health Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|