1
|
Grönfors H, Mäkelä K, Himanen SL. Shear Wave Velocity of the Thenar Muscle Is Associated With the Neurophysiologic Severity of Carpal Tunnel Syndrome. J Clin Neurophysiol 2025:00004691-990000000-00213. [PMID: 40102207 DOI: 10.1097/wnp.0000000000001157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
PURPOSE Aim of the study was to examine the associations between abductor pollicis brevis (APB) muscle stiffness evaluated by shear wave elastography and electrodiagnostic study findings in patients with carpal tunnel syndrome. The association between shear wave elastography and APB muscle echogenicity was also examined. METHODS This prospective study included patients who were referred to electrodiagnostic studies because of upper limb symptoms. The electrodiagnostic studies consisted of nerve conduction studies and needle-electromyography. Abductor pollicis brevis muscle shear wave velocity was measured, and muscle echogenicity assessed using the Heckmatt grading scale. RESULTS In total, 97 hands were included in the nerve conduction studies. Of these, 53 APB muscles were further examined with needle-electromyography. Shear wave velocity correlated positively with the neurophysiologic severity of carpal tunnel syndrome (r = 0.449, P = 0.028, N = 26). Mean shear wave velocity was faster in the APB muscles with neurogenic findings (mean 2.72 m/second, ±SD 0.36) than muscles with normal findings (2.48 m/second, ±SD 0.34, P = 0.036). In receiver operating characteristic analysis, the best shear wave velocity cutoff value was 2.66 m/second. With this cutoff value, the sensitivity was 0.692, while the 1-specificity was 0.233. Only seven APB muscles showed increased echogenicity. CONCLUSIONS Shear wave velocity of APB muscle is positively associated with the neurophysiologic severity of carpal tunnel syndrome. Carpal tunnel syndrome-related axonal damage also seems to increase shear wave velocity in APB muscle; however, according to the receiver operating characteristic analysis, the method is not yet suitable for clinical use to define muscle denervation. The findings of this study show that shear wave elastography has potential as an additional clinical tool in the diagnostics of carpal tunnel syndrome.
Collapse
Affiliation(s)
- Henri Grönfors
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; and
| | - Katri Mäkelä
- Department of Clinical Neurophysiology, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Sari-Leena Himanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; and
- Department of Clinical Neurophysiology, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
| |
Collapse
|
2
|
Gutiérrez-Rojas C, Córdova-Casanova A, Faundez-Contreras J, Cruz-Soca M, Gallardo FS, Bock-Pereda A, Casar JC, Barton ER, Brandan E. Dysregulated ATX-LPA and YAP/TAZ signaling in dystrophic Sgcd -/- mice with early fibrosis and inflammation. Skelet Muscle 2025; 15:6. [PMID: 40050938 PMCID: PMC11884125 DOI: 10.1186/s13395-025-00375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/13/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Sarcoglycanopathies are muscle dystrophies caused by mutations in the genes encoding sarcoglycans (α, β, γ, and δ) that can destabilize the dystrophin-associated glycoprotein complex at the sarcolemma, leaving muscle fibers vulnerable to damage after contraction, followed by inflammatory and fibrotic responses and resulting in muscle weakness and atrophy. Two signaling pathways have been implicated in fibrosis and inflammation in various tissues: autotaxin/lysophosphatidic acid (ATX-LPA) and yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ). LPA, synthesized by ATX, can act as a pleiotropic molecule due to its multiple receptors. Two Hippo pathway effectors, YAP/TAZ, can be dephosphorylated by LPA and translocated to the nucleus. They induce several target genes, such as CCN2/CTGF, involved in fibrosis and inflammation. However, no detailed characterization of these processes or whether these pathways change early in the development of sarcoglycanopathy has been evaluated in skeletal muscle. METHODS Using the δ-sarcoglycan knockout mouse model (Sgcd-/-), we investigated components of these pathways, inflammatory and fibrotic markers, and contractile properties of different skeletal muscles (triceps-TR, gastrocnemius-GST, diaphragm-DFG, tibialis anterior-TA, and extensor digitorum longus-EDL) at one and two months of age. RESULTS We found that Sgcd-/- mice show early dystrophic features (fiber damage/necrosis, centrally nucleated fibers, inflammatory infiltrate, and regenerated fibers) followed by later fiber size reduction in TR, GST, and DFG. These changes are concomitant with an early inflammatory and fibrotic response in these muscles. Sgcd-/- mice also have early impaired force generation in the TA and EDL, and resistance to mechanical damage in the EDL. In addition, an early dysregulation of the ATX-LPA axis and the YAP/TAZ signaling pathway in the TR, GST, and DFG was observed in these mice. CONCLUSIONS The ATX-LPA axis and the YAP/TAZ signaling pathway, which are involved in inflammation and fibrosis, are dysregulated in skeletal muscle from an early age in Sgcd-/- mice. These changes are concomitant with a fibrotic and inflammatory response in these mice. Unraveling the role of the LPA axis and YAP/TAZ in sarcoglycanopathy holds great promise for improving our understanding of disease pathogenesis and identifying novel therapeutic targets for this currently incurable group of muscle disorders.
Collapse
Affiliation(s)
- Cristian Gutiérrez-Rojas
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, 2340025, Valparaíso, Chile.
- Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile.
| | | | - Jennifer Faundez-Contreras
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510602, Santiago, Chile
| | - Meilyn Cruz-Soca
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
| | - Felipe S Gallardo
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
| | - Alexia Bock-Pereda
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Elisabeth R Barton
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510602, Santiago, Chile.
| |
Collapse
|
3
|
Kutvonen O, Himanen SL, Mäkelä K. Shear wave elastography as a marker of anisotropy in denervated muscle tissue. Clin Neurophysiol Pract 2025; 10:95-103. [PMID: 40160929 PMCID: PMC11951941 DOI: 10.1016/j.cnp.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Objectives To assess the capability of shear wave elastography (SWE) to detect muscle denervation. Methods 36 patients underwent electrodiagnostic studies (EDX) of the lower limbs and volunteered to undergo ultrasound examination of the Tibialis anterior (TA) and the Gastrocnemius medialis (GCM) muscles. A variable reflecting the level of anisotropy was created by calculating the difference between the longitudinal and transverse shear wave velocity (SWE-D). Results In the TA muscles, SWE-D correlated negatively with the quantity of fibrillation potentials (FP) and the degree of interference pattern (IP) reduction (p = 0.032, r = -0.185 and p = 0.006, r = -0.236, respectively). In the GCM muscles, SWE-D only correlated with the amount of IP reduction among patients of normal weight (p = 0.030, r = -0.285). There was also a significant difference in the overall SWE-D values in the GCM muscles between patients of normal weight and obese patients (p = 0.007). Conclusions Loss of anisotropy caused by denervation of muscle tissue may be measured quantitatively by calculating the differences between longitudinal and transverse shear wave velocities. However, obesity seems to hinder the SWE-based assessment of muscle denervation. Significance Being able to measure anisotropy caused by denervation acts as a base for further development of SWE methods to evaluate neurogenic injury.
Collapse
Affiliation(s)
- Olli Kutvonen
- Department of Clinical Neurophysiology, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sari-Leena Himanen
- Department of Clinical Neurophysiology, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katri Mäkelä
- Department of Clinical Neurophysiology, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
4
|
Kang X, Zhao K, Huang Z, Fukada SI, Qi XW, Miao H. Pdgfrα + stromal cells, a key regulator for tissue homeostasis and dysfunction in distinct organs. Genes Dis 2025; 12:101264. [PMID: 39759120 PMCID: PMC11696774 DOI: 10.1016/j.gendis.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 01/07/2025] Open
Abstract
Pdgfrα+ stromal cells are a group of cells specifically expressing Pdgfrα, which may be mentioned with distinct names in different tissues. Importantly, the findings from numerous studies suggest that these cells share exactly similar biomarkers and properties, show complex functions in regulating the microenvironment, and are critical to tissue regeneration, repair, and degeneration. Comparing the similarities and differences between distinct tissue-resident Pdgfrα+ stromal cells is helpful for us to more comprehensively and deeply understand the behaviors of these cells and to explore some common regulating mechanisms and therapeutical targets. In this review, we summarize previous and current findings on Pdgfrα+ stromal cells in various tissues and discuss the crosstalk between Pdgfrα+ stromal cells and microenvironment.
Collapse
Affiliation(s)
- Xia Kang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610000, China
| | - Kun Zhao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Zhu Huang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610000, China
| | - So-ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 564-0871, Japan
| | - Xiao-wei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
5
|
Sbarigia C, Rome S, Dini L, Tacconi S. New perspectives of the role of skeletal muscle derived extracellular vesicles in the pathogenesis of amyotrophic lateral sclerosis: the 'dying back' hypothesis. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70019. [PMID: 39534483 PMCID: PMC11555536 DOI: 10.1002/jex2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Amyotrophic lateral sclerosis (ALS), is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord, and is characterized by muscle weakness, paralysis and ultimately, respiratory failure. The exact causes of ALS are not understood, though it is believed to combine genetic and environmental factors. Until now, it was admitted that motor neurons (MN) in the brain and spinal cord degenerate, leading to muscle weakness and paralysis. However, as ALS symptoms typically begin with muscle weakness or stiffness, a new hypothesis has recently emerged to explain the development of the pathology, that is, the 'dying back hypothesis', suggesting that this degeneration starts at the connections between MN and muscles, resulting in the loss of muscle function. Over time, this damage extends along the length of the MN, ultimately affecting their cell bodies in the spinal cord and brain. While the dying back hypothesis provides a potential framework for understanding the progression of ALS, the exact mechanisms underlying the disease remain complex and not fully understood. In this review, we are positioning the role of extracellular vesicles as new actors in ALS development.
Collapse
Affiliation(s)
- Carolina Sbarigia
- Department of Biology and Biotechnology “C. Darwin”University of Rome SapienzaRomeItaly
| | - Sophie Rome
- CarMeN Laboratory, INSERM 1060‐INRAE 1397, Department of Human Nutrition, Lyon Sud HospitalUniversity of LyonLyonFrance
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin”University of Rome SapienzaRomeItaly
- Research Center for Nanotechnology for Engineering (CNIS)Sapienza University of RomeRomeItaly
| | - Stefano Tacconi
- Department of Biology and Biotechnology “C. Darwin”University of Rome SapienzaRomeItaly
- CarMeN Laboratory, INSERM 1060‐INRAE 1397, Department of Human Nutrition, Lyon Sud HospitalUniversity of LyonLyonFrance
| |
Collapse
|
6
|
Bock-Pereda A, Cruz-Soca M, Gallardo FS, Córdova-Casanova A, Gutierréz-Rojas C, Faundez-Contreras J, Chun J, Casar JC, Brandan E. Involvement of lysophosphatidic acid-LPA 1-YAP signaling in healthy and pathological FAPs migration. Matrix Biol 2024; 133:103-115. [PMID: 39153517 DOI: 10.1016/j.matbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Skeletal muscle fibrosis is defined as the excessive accumulation of extracellular matrix (ECM) components and is a hallmark of muscular dystrophies. Fibro-adipogenic progenitors (FAPs) are the main source of ECM, and thus have been strongly implicated in fibrogenesis. In skeletal muscle fibrotic models, including muscular dystrophies, FAPs undergo dysregulations in terms of proliferation, differentiation, and apoptosis, however few studies have explored the impact of FAPs migration. Here, we studied fibroblast and FAPs migration and identified lysophosphatidic acid (LPA), a signaling lipid central to skeletal muscle fibrogenesis, as a significant migration inductor. We identified LPA receptor 1 (LPA1) mediated signaling as crucial for this effect through a mechanism dependent on the Hippo pathway, another pathway implicated in fibrosis across diverse tissues. This cross-talk favors the activation of the Yes-associated protein 1 (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ), leading to increased expression of fibrosis-associated genes. This study reveals the role of YAP in LPA-mediated fibrotic responses as inhibition of YAP transcriptional coactivator activity hinders LPA-induced migration in fibroblasts and FAPs. Moreover, we found that FAPs derived from the mdx4cv mice, a murine model of Duchenne muscular dystrophy, display a heightened migratory phenotype due to enhanced LPA signaling compared to wild-type FAPs. Remarkably, we found that the inhibition of LPA1 or YAP transcriptional coactivator activity in mdx4cv FAPs reverts this phenotype. In summary, the identified LPA-LPA1-YAP pathway emerges as a critical driver of skeletal muscle FAPs migration and provides insights into potential novel targets to mitigate fibrosis in muscular dystrophies.
Collapse
Affiliation(s)
- Alexia Bock-Pereda
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Meilyn Cruz-Soca
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Felipe S Gallardo
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | | | - Cristian Gutierréz-Rojas
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile; Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile; Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Jennifer Faundez-Contreras
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile; Facultad de Medicina y Ciencia, Fundación Ciencia y Vida, Universidad San Sebastián, Avenida del Valle Norte 725 Huechuraba, Santiago 7510602, Chile
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Juan Carlos Casar
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile; Facultad de Medicina y Ciencia, Fundación Ciencia y Vida, Universidad San Sebastián, Avenida del Valle Norte 725 Huechuraba, Santiago 7510602, Chile.
| |
Collapse
|
7
|
Yoo K, Jo YW, Yoo T, Hann SH, Park I, Kim YE, Kim YL, Rhee J, Song IW, Kim JH, Baek D, Kong YY. Muscle-resident mesenchymal progenitors sense and repair peripheral nerve injury via the GDNF-BDNF axis. eLife 2024; 13:RP97662. [PMID: 39324575 PMCID: PMC11426970 DOI: 10.7554/elife.97662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Fibro-adipogenic progenitors (FAPs) are muscle-resident mesenchymal progenitors that can contribute to muscle tissue homeostasis and regeneration, as well as postnatal maturation and lifelong maintenance of the neuromuscular system. Recently, traumatic injury to the peripheral nerve was shown to activate FAPs, suggesting that FAPs can respond to nerve injury. However, questions of how FAPs can sense the anatomically distant peripheral nerve injury and whether FAPs can directly contribute to nerve regeneration remained unanswered. Here, utilizing single-cell transcriptomics and mouse models, we discovered that a subset of FAPs expressing GDNF receptors Ret and Gfra1 can respond to peripheral nerve injury by sensing GDNF secreted by Schwann cells. Upon GDNF sensing, this subset becomes activated and expresses Bdnf. FAP-specific inactivation of Bdnf (Prrx1Cre; Bdnffl/fl) resulted in delayed nerve regeneration owing to defective remyelination, indicating that GDNF-sensing FAPs play an important role in the remyelination process during peripheral nerve regeneration. In aged mice, significantly reduced Bdnf expression in FAPs was observed upon nerve injury, suggesting the clinical relevance of FAP-derived BDNF in the age-related delays in nerve regeneration. Collectively, our study revealed the previously unidentified role of FAPs in peripheral nerve regeneration, and the molecular mechanism behind FAPs' response to peripheral nerve injury.
Collapse
Affiliation(s)
- Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Takwon Yoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yea-Eun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - In-Wook Song
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Zhao C, Ikeya M. Novel insights from human induced pluripotent stem cells on origins and roles of fibro/adipogenic progenitors as heterotopic ossification precursors. Front Cell Dev Biol 2024; 12:1457344. [PMID: 39286484 PMCID: PMC11402712 DOI: 10.3389/fcell.2024.1457344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Fibro/adipogenic progenitors (FAPs) that reside in muscle tissue are crucial for muscular homeostasis and regeneration as they secrete signaling molecules and components of the extracellular matrix. During injury or disease, FAPs differentiate into different cell types and significantly modulate muscular function. Recent advances in lineage tracing and single-cell transcriptomics have proven that FAPs are heterogeneous both in resting and post-injury or disease states. Their heterogeneity may be owing to the varied tissue microenvironments and their diverse developmental origins. Therefore, understanding FAPs' developmental origins can help predict their characteristics and behaviors under different conditions. FAPs are thought to be the major cell populations in the muscle connective tissue (MCT). During embryogenesis, the MCT directs muscular development throughout the body and serves as a prepattern for muscular morphogenesis. The developmental origins of FAPs as stromal cells in the MCT were studied previously. In adult tissues, FAPs are important precursors for heterotopic ossification, especially in the context of the rare genetic disorder fibrodysplasia ossificans progressiva. A new developmental origin for FAPs have been suggested that differs from conventional developmental perspectives. In this review, we summarize the developmental origins and functions of FAPs as stromal cells of the MCT and present novel insights obtained by using patient-derived induced pluripotent stem cells and mouse models of heterotopic ossification. This review broadens the current understanding of FAPs and suggests potential avenues for further investigation.
Collapse
Affiliation(s)
- Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Sinha U, Sinha S. Magnetic Resonance Imaging Biomarkers of Muscle. Tomography 2024; 10:1411-1438. [PMID: 39330752 PMCID: PMC11436019 DOI: 10.3390/tomography10090106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
This review is focused on the current status of quantitative MRI (qMRI) of skeletal muscle. The first section covers the techniques of qMRI in muscle with the focus on each quantitative parameter, the corresponding imaging sequence, discussion of the relation of the measured parameter to underlying physiology/pathophysiology, the image processing and analysis approaches, and studies on normal subjects. We cover the more established parametric mapping from T1-weighted imaging for morphometrics including image segmentation, proton density fat fraction, T2 mapping, and diffusion tensor imaging to emerging qMRI features such as magnetization transfer including ultralow TE imaging for macromolecular fraction, and strain mapping. The second section is a summary of current clinical applications of qMRI of muscle; the intent is to demonstrate the utility of qMRI in different disease states of the muscle rather than a complete comprehensive survey.
Collapse
Affiliation(s)
- Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab., Department of Radiology, University of California at San Diego, San Diego, CA 92037, USA
| |
Collapse
|
10
|
Lee DY, Kwon YN, Lee K, Kim SJ, Sung JJ. Dual effects of TGF-β inhibitor in ALS - inhibit contracture and neurodegeneration. J Neurochem 2024; 168:2495-2514. [PMID: 38515326 DOI: 10.1111/jnc.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
As persistent elevation of transforming growth factor-β (TGF-β) promotes fibrosis of muscles and joints and accelerates disease progression in amyotrophic lateral sclerosis (ALS), we investigated whether inhibition of TGF-β would be effective against both exacerbations. The effects of TGF-β and its inhibitor on myoblasts and fibroblasts were tested in vitro and confirmed in vivo, and the dual action of a TGF-β inhibitor in ameliorating the pathogenic role of TGF-β in ALS mice was identified. In the peripheral neuromuscular system, fibrosis in the muscles and joint cavities induced by excessive TGF-β causes joint contracture and muscular degeneration, which leads to motor dysfunction. In an ALS mouse model, an increase in TGF-β in the central nervous system (CNS), consistent with astrocyte activity, was associated with M1 microglial activity and pro-inflammatory conditions, as well as with neuronal cell death. Treatment with the TGF-β inhibitor halofuginone could prevent musculoskeletal fibrosis, resulting in the alleviation of joint contracture and delay of motor deterioration in ALS mice. Halofuginone could also reduce glial cell-induced neuroinflammation and neuronal apoptosis. These dual therapeutic effects on both the neuromuscular system and the CNS were observed from the beginning to the end stages of ALS; as a result, treatment with a TGF-β inhibitor from the early stage of disease delayed the time of symptom exacerbation in ALS mice, which led to prolonged survival.
Collapse
Affiliation(s)
- Do-Yeon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Nam Kwon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwangkook Lee
- Research Department, Curamys Co., Ltd., Seoul, South Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-do, South Korea
| |
Collapse
|
11
|
Zhang H, Gu W, Wu G, Yu Y. Aging and Autophagy: Roles in Musculoskeletal System Injury. Aging Dis 2024:AD.2024.0362. [PMID: 38913046 DOI: 10.14336/ad.2024.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Aging is a multifactorial process that ultimately leads to a decline in physiological function and a consequent reduction in the health span, and quality of life in elderly population. In musculoskeletal diseases, aging is often associated with a gradual loss of skeletal muscle mass and strength, resulting in reduced functional capacity and an increased risk of chronic metabolic diseases, leading to impaired function and increased mortality. Autophagy is a highly conserved physiological process by which cells, under the regulation of autophagy-related genes, degrade their own organelles and large molecules by lysosomal degradation. This process is unique to eukaryotic cells and is a strict regulator of homeostasis, the maintenance of energy and substance balance. Autophagy plays an important role in a wide range of physiological and pathological processes such as cell homeostasis, aging, immunity, tumorigenesis and neurodegenerative diseases. On the one hand, under mild stress conditions, autophagy mediates the restoration of homeostasis and proliferation, reduction of the rate of aging and delay of the aging process. On the other hand, under more intense stress conditions, an inadequate suppression of autophagy can lead to cellular aging. Conversely, autophagy activity decreases during aging. Due to the interrelationship between aging and autophagy, limited literature exists on this topic. Therefore, the objective of this review is to summarize the current concepts on aging and autophagy in the musculoskeletal system. The aim is to better understand the mechanisms of age-related changes in bone, joint and muscle, as well as the interaction relationship between autophagy and aging. Its goal is to provide a comprehensive perspective for the improvement of diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Gu
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Genbin Wu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinxian Yu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
13
|
Bonavina G, Mamillapalli R, Krikun G, Zhou Y, Gawde N, Taylor HS. Bone marrow mesenchymal stem cell-derived exosomes shuttle microRNAs to endometrial stromal fibroblasts that promote tissue proliferation /regeneration/ and inhibit differentiation. Stem Cell Res Ther 2024; 15:129. [PMID: 38693588 PMCID: PMC11064399 DOI: 10.1186/s13287-024-03716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/04/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Human bone marrow-derived stem cells (hBMDSCs) are well characterized mediators of tissue repair and regeneration. An increasing body of evidence indicates that these cells exert their therapeutic effects largely through their paracrine actions rather than clonal expansion and differentiation. Here we studied the role of microRNAs (miRNAs) present in extracellular vesicles (EVs) from hBMDSCs in tissue regeneration and cell differentiation targeting endometrial stromal fibroblasts (eSF). METHODS Extracellular vesicles (EVs) are isolated from hBMDSCs, characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) techniques. Extracted total RNA from EVs was subjected to RNA seq analysis. Transfection and decidualization studies were carried out in endometrial stromal fibroblasts (eSF). Gene expression was analyzed by qRTPCR. Unpaired t-test with Welch's correction was used for data analysis between two groups. RESULTS We identified several microRNAs (miRNAs) that were highly expressed, including miR-21-5p, miR-100-5p, miR-143-3p and let7. MiR-21 is associated with several signaling pathways involved in tissue regeneration, quiescence, cellular senescence, and fibrosis. Both miR-100-5p and miR-143-3p promoted cell proliferation. MiR-100-5p specifically promoted regenerative processes by upregulating TGF-ß3, VEGFA, MMP7, and HGF. MiR-100-5p blocked differentiation or decidualization as evidenced by morphologic changes and downregulation of decidualization mediators including HOXA10, IGFBP1, PRL, PR-B, and PR. CONCLUSION EVs delivered to tissues by hBMDSCs contain specific miRNAs that prevent terminal differentiation and drive repair and regeneration. Delivery of microRNAs is a novel treatment paradigm with the potential to replace BMDSCs in cell-free regenerative therapies.
Collapse
Affiliation(s)
- Giulia Bonavina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA.
| | - Graciela Krikun
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Yuping Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Nimisha Gawde
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| |
Collapse
|
14
|
Kristensen MA, Rich KK, Mogensen TC, Damsgaard Jensen AM, Fex Svenningsen Å, Zhang M. Focal Traumatic Brain Injury Impairs the Integrity of the Basement Membrane of Hindlimb Muscle Fibers Revealed by Extracellular Matrix Immunoreactivity. Life (Basel) 2024; 14:543. [PMID: 38792565 PMCID: PMC11121831 DOI: 10.3390/life14050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Traumatic brain injury (TBI) stands as a prominent global cause of disability, with motor deficits being a common consequence. Despite its widespread impact, the precise pathological mechanisms underlying motor deficits after TBI remain elusive. In this study, hindlimb postural asymmetry (HL-PA) development in rats subjected to focal TBI was investigated to explore the potential roles of collagen IV and laminin within the extracellular matrix (ECM) of selected hindlimb muscles in the emergence of motor deficits following TBI. A focal TBI was induced by ablating the left sensorimotor cortex in rats and motor deficits were assessed by measuring HL-PA. The expression of laminin and collagen IV in eight selected muscles on each side of the hindlimbs from both TBI- and sham-operated rats were studied using immunohistochemistry and semi-quantitatively analyzed. The results indicated that the TBI rats exhibited HL-PA, characterized by flexion of the contralateral (right) hindlimb. In the sham-operated rats, the immunoreactive components of laminin and collagen IV were evenly and smoothly distributed along the border of the muscle fibers in all the investigated muscles. In contrast, in the TBI rats, the pattern was broken into aggregated, granule-like, immunoreactive components. Such a labeling pattern was detected in all the investigated muscles both from the contra- and ipsilateral sides of the TBI rats. However, in TBI rats, most of the muscles from the contralateral hindlimb showed a significantly increased expression of these two proteins in comparison with those from the ipsilateral hindlimb. In comparison to sham-operated rats, there was a significant increase in laminin and collagen IV expression in various contralateral hindlimb muscles in the TBI rats. These findings suggest potential implications of laminin and collagen IV in the development of motor deficits following a focal TBI.
Collapse
Affiliation(s)
- Mette Albæk Kristensen
- Department of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark; (M.A.K.); (K.K.R.); (T.C.M.); (Å.F.S.)
| | - Karen Kalhøj Rich
- Department of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark; (M.A.K.); (K.K.R.); (T.C.M.); (Å.F.S.)
| | - Tobias Christian Mogensen
- Department of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark; (M.A.K.); (K.K.R.); (T.C.M.); (Å.F.S.)
| | | | - Åsa Fex Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark; (M.A.K.); (K.K.R.); (T.C.M.); (Å.F.S.)
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, DK-5230 Odense, Denmark
| | - Mengliang Zhang
- Department of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark; (M.A.K.); (K.K.R.); (T.C.M.); (Å.F.S.)
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
15
|
Mei T, Hu Y, Zhang Y, Li Y. Hypoxia treatment and resistance training alters microRNA profiling in rats skeletal muscle. Sci Rep 2024; 14:8388. [PMID: 38600177 PMCID: PMC11006875 DOI: 10.1038/s41598-024-58996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
MicroRNAs (miRNAs) may play a crucial regulatory role in the process of muscle atrophy induced by high-altitude hypoxia and its amelioration through resistance training. However, research in this aspect is still lacking. Therefore, this study aimed to employ miRNA microarray analysis to investigate the expression profile of miRNAs in skeletal muscle from an animal model of hypoxia-induced muscle atrophy and resistance training aimed at mitigating muscle atrophy. The study utilized a simulated hypoxic environment (oxygen concentration at 11.2%) to induce muscle atrophy and established a rat model of resistance training using ladder climbing, with a total intervention period of 4 weeks. The miRNA expression profile revealed 9 differentially expressed miRNAs influenced by hypoxia (e.g., miR-341, miR-32-5p, miR-465-5p) and 14 differentially expressed miRNAs influenced by resistance training under hypoxic conditions (e.g., miR-338-5p, miR-203a-3p, miR-92b-3p) (∣log2(FC)∣ ≥ 1.5, p < 0.05). The differentially expressed miRNAs were found to target genes involved in muscle protein synthesis and degradation (such as Utrn, mdm2, eIF4E), biological processes (such as negative regulation of transcription from RNA polymerase II promoter, regulation of transcription, DNA-dependent), and signaling pathways (such as Wnt signaling pathway, MAPK signaling pathway, ubiquitin-mediated proteolysis, mTOR signaling pathway). This study provides a foundation for understanding and further exploring the molecular mechanisms underlying hypoxia-induced rats muscle atrophy and the mitigation of atrophy through resistance training.
Collapse
Affiliation(s)
- Tao Mei
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yang Hu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Ying Zhang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.
| |
Collapse
|
16
|
Gonzalez D, Cuenca X, Allende ML. Knockdown of tgfb1a partially improves ALS phenotype in a transient zebrafish model. Front Cell Neurosci 2024; 18:1384085. [PMID: 38644973 PMCID: PMC11032012 DOI: 10.3389/fncel.2024.1384085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) corresponds to a neurodegenerative disorder marked by the progressive degeneration of both upper and lower motor neurons located in the brain, brainstem, and spinal cord. ALS can be broadly categorized into two main types: sporadic ALS (sALS), which constitutes approximately 90% of all cases, and familial ALS (fALS), which represents the remaining 10% of cases. Transforming growth factor type-β (TGF-β) is a cytokine involved in various cellular processes and pathological contexts, including inflammation and fibrosis. Elevated levels of TGF-β have been observed in the plasma and cerebrospinal fluid (CSF) of both ALS patients and mouse models. In this perspective, we explore the impact of the TGF-β signaling pathway using a transient zebrafish model for ALS. Our findings reveal that the knockdown of tgfb1a lead to a partial prevention of motor axon abnormalities and locomotor deficits in a transient ALS zebrafish model at 48 h post-fertilization (hpf). In this context, we delve into the proposed distinct roles of TGF-β in the progression of ALS. Indeed, some evidence suggests a dual role for TGF-β in ALS progression. Initially, it seems to exert a neuroprotective effect in the early stages, but paradoxically, it may contribute to disease progression in later stages. Consequently, we suggest that the TGF-β signaling pathway emerges as an attractive therapeutic target for treating ALS. Nevertheless, further research is crucial to comprehensively understand the nuanced role of TGF-β in the pathological context.
Collapse
Affiliation(s)
- David Gonzalez
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
- Escuela de Terapia Ocupacional, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Xiomara Cuenca
- Escuela de Terapia Ocupacional, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Miguel L. Allende
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
King PH. Skeletal muscle as a molecular and cellular biomarker of disease progression in amyotrophic lateral sclerosis: a narrative review. Neural Regen Res 2024; 19:747-753. [PMID: 37843208 PMCID: PMC10664124 DOI: 10.4103/1673-5374.382226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target. Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis, there is considerable heterogeneity, including clinical presentation, progression, and the underlying triggers for disease initiation. Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations, it has become apparent that overt disease is preceded by a prodromal phase, possibly in years, where compensatory mechanisms delay symptom onset. Since 85-90% of amyotrophic lateral sclerosis is sporadic, there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration. Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease. Skeletal muscle, including the neuromuscular junction, manifests abnormalities at the earliest stages of the disease, before motor neuron loss, making it a promising source for identifying biomarkers of the prodromal phase. The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time. The advent of "omics" technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle, ranging from coding and non-coding RNAs to proteins and metabolites. This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms. A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease. There are two major goals of this review. The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity, evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages, and evidence of progressive change during disease progression. The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression, and as such, their potential as therapeutic targets in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Peter H. King
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
18
|
Engquist EN, Greco A, Joosten LAB, van Engelen BGM, Zammit PS, Banerji CRS. FSHD muscle shows perturbation in fibroadipogenic progenitor cells, mitochondrial function and alternative splicing independently of inflammation. Hum Mol Genet 2024; 33:182-197. [PMID: 37856562 PMCID: PMC10772042 DOI: 10.1093/hmg/ddad175] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy. FSHD is highly heterogeneous, with patients following a variety of clinical trajectories, complicating clinical trials. Skeletal muscle in FSHD undergoes fibrosis and fatty replacement that can be accelerated by inflammation, adding to heterogeneity. Well controlled molecular studies are thus essential to both categorize FSHD patients into distinct subtypes and understand pathomechanisms. Here, we further analyzed RNA-sequencing data from 24 FSHD patients, each of whom donated a biopsy from both a non-inflamed (TIRM-) and inflamed (TIRM+) muscle, and 15 FSHD patients who donated peripheral blood mononucleated cells (PBMCs), alongside non-affected control individuals. Differential gene expression analysis identified suppression of mitochondrial biogenesis and up-regulation of fibroadipogenic progenitor (FAP) gene expression in FSHD muscle, which was particularly marked on inflamed samples. PBMCs demonstrated suppression of antigen presentation in FSHD. Gene expression deconvolution revealed FAP expansion as a consistent feature of FSHD muscle, via meta-analysis of 7 independent transcriptomic datasets. Clustering of muscle biopsies separated patients in an unbiased manner into clinically mild and severe subtypes, independently of known disease modifiers (age, sex, D4Z4 repeat length). Lastly, the first genome-wide analysis of alternative splicing in FSHD muscle revealed perturbation of autophagy, BMP2 and HMGB1 signalling. Overall, our findings reveal molecular subtypes of FSHD with clinical relevance and identify novel pathomechanisms for this highly heterogeneous condition.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
- The Alan Turing Institute, The British Library, 96 Euston Road, London NW1 2DB, United Kingdom
| |
Collapse
|
19
|
Schutz PW, Cheung S, Yi L, Rossi FMV. Cellular activation patterns of CD10+ fibro-adipogenic progenitors across acquired disease states in human skeletal muscle biopsies. FREE NEUROPATHOLOGY 2024; 5:3. [PMID: 38357523 PMCID: PMC10865694 DOI: 10.17879/freeneuropathology-2024-5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2024]
Abstract
Background: Fibro-adipogenic progenitors (FAP) are muscle resident mesenchymal stem cells pivotal for regulation of myofiber repair. Experimental results show in addition involvement in a range of other pathological conditions and potential for pharmacological intervention. FAP histopathology in human muscle biopsies is largely unknown, but has potential to inform translational research. Methods: CD10+ FAPs in 32 archival muscle biopsies from 8 groups (normal, dermatomyositis, inclusion body myositis (IBM), anti-synthetase syndrome, immune-mediated necrotizing myopathy (IMNM), denervation, type 2 atrophy, rhabdomyolysis) were visualized by CD10 immunohistochemistry and their histology compared. Groups are compared by semi-quantitative scoring. Results: Histological activation of endomysial CD10+ FAPs includes prominent expansion of a network of cell processes surrounding muscle fibers, as well as endomysial cell clusters evidencing proliferation. Prominence of periarteriolar processes is a notable feature in some pathologies. FAP activation is often associated with fiber degeneration/regeneration, foci of inflammation, and denervation in keeping with experimental results. Type 2 atrophy shows no evidence of FAP activation. Dermatomyositis and anti-synthetase syndrome associated myositis demonstrate diffuse activation. Conclusion: Assessment of CD10+ FAP activation is routinely possible using CD10 immunohistochemistry and demonstrates several patterns in keeping with preclinical results. Prominent expansion of FAP processes surrounding myofibers suggests enhanced interaction between myofiber/basement membranes and FAPs during activation. The presence of diffuse FAP activation in dermatomyositis biopsies unrelated to fiber repair raises the possibility of FAP activation as part of the autoimmune process. Future diagnostic applications, clinical significance and therapeutic potential remain to be elucidated.
Collapse
Affiliation(s)
- Peter W. Schutz
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | - Simon Cheung
- Department of Pathology, Vancouver General Hospital, Vancouver, Canada
| | - Lin Yi
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Fabio M. V. Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Loomis T, Smith LR. Thrown for a loop: fibro-adipogenic progenitors in skeletal muscle fibrosis. Am J Physiol Cell Physiol 2023; 325:C895-C906. [PMID: 37602412 PMCID: PMC11932532 DOI: 10.1152/ajpcell.00245.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Fibro-adipogenic progenitors (FAPs) are key regulators of skeletal muscle regeneration and homeostasis. However, dysregulation of these cells leads to fibro-fatty infiltration across various muscle diseases. FAPs are the key source of extracellular matrix (ECM) deposition in muscle, and disruption to this process leads to a pathological accumulation of ECM, known as fibrosis. The replacement of contractile tissue with fibrotic ECM functionally impairs the muscle and increases muscle stiffness. FAPs and fibrotic muscle form a progressively degenerative feedback loop where, as a muscle becomes fibrotic, it induces a fibrotic FAP phenotype leading to further development of fibrosis. In this review, we summarize FAPs' role in fibrosis in terms of their activation, heterogeneity, contributions to fibrotic degeneration, and role across musculoskeletal diseases. We also discuss current research on potential therapeutic avenues to attenuate fibrosis by targeting FAPs.
Collapse
Affiliation(s)
- Taryn Loomis
- Biomedical Engineering Graduate Group, University of California, Davis, California, United States
| | - Lucas R Smith
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
- Department of Physical Medicine and Rehabilitation, University of California, Davis, California, United States
| |
Collapse
|
21
|
Chen X, Ji Y, Liu R, Zhu X, Wang K, Yang X, Liu B, Gao Z, Huang Y, Shen Y, Liu H, Sun H. Mitochondrial dysfunction: roles in skeletal muscle atrophy. J Transl Med 2023; 21:503. [PMID: 37495991 PMCID: PMC10373380 DOI: 10.1186/s12967-023-04369-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xucheng Zhu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Nantong, Jiangsu, 226600, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Cruz-Soca M, Faundez-Contreras J, Córdova-Casanova A, Gallardo FS, Bock-Pereda A, Chun J, Casar JC, Brandan E. Activation of skeletal muscle FAPs by LPA requires the Hippo signaling via the FAK pathway. Matrix Biol 2023; 119:57-81. [PMID: 37137584 DOI: 10.1016/j.matbio.2023.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a lysophospholipid that signals through six G-protein coupled receptors (LPARs), LPA1 to LPA6. LPA has been described as a potent modulator of fibrosis in different pathologies. In skeletal muscle, LPA increases fibrosis-related proteins and the number of fibro/adipogenic progenitors (FAPs). FAPs are the primary source of ECM-secreting myofibroblasts in acute and chronic damage. However, the effect of LPA on FAPs activation in vitro has not been explored. This study aimed to investigate FAPs' response to LPA and the downstream signaling mediators involved. Here, we demonstrated that LPA mediates FAPs activation by increasing their proliferation, expression of myofibroblasts markers, and upregulation of fibrosis-related proteins. Pretreatment with the LPA1/LPA3 antagonist Ki16425 or genetic deletion of LPA1 attenuated the LPA-induced FAPs activation, resulting in decreased expression of cyclin e1, α-SMA, and fibronectin. We also evaluated the activation of the focal adhesion kinase (FAK) in response to LPA. Our results showed that LPA induces FAK phosphorylation in FAPs. Treatment with the P-FAK inhibitor PF-228 partially prevented the induction of cell responses involved in FAPs activation, suggesting that this pathway mediates LPA signaling. FAK activation controls downstream cell signaling within the cytoplasm, such as the Hippo pathway. LPA induced the dephosphorylation of the transcriptional coactivator YAP (Yes-associated protein) and promoted direct expression of target pathway genes such as Ctgf/Ccn2 and Ccn1. The blockage of YAP transcriptional activity with Super-TDU further confirmed the role of YAP in LPA-induced FAPs activation. Finally, we demonstrated that FAK is required for LPA-dependent YAP dephosphorylation and the induction of Hippo pathway target genes. In conclusion, LPA signals through LPA1 to regulate FAPs activation by activating FAK to control the Hippo pathway.
Collapse
Affiliation(s)
- Meilyn Cruz-Soca
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jennifer Faundez-Contreras
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Adriana Córdova-Casanova
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Felipe S Gallardo
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Alexia Bock-Pereda
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
23
|
Kotsaris G, Qazi TH, Bucher CH, Zahid H, Pöhle-Kronawitter S, Ugorets V, Jarassier W, Börno S, Timmermann B, Giesecke-Thiel C, Economides AN, Le Grand F, Vallecillo-García P, Knaus P, Geissler S, Stricker S. Odd skipped-related 1 controls the pro-regenerative response of fibro-adipogenic progenitors. NPJ Regen Med 2023; 8:19. [PMID: 37019910 PMCID: PMC10076435 DOI: 10.1038/s41536-023-00291-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Skeletal muscle regeneration requires the coordinated interplay of diverse tissue-resident- and infiltrating cells. Fibro-adipogenic progenitors (FAPs) are an interstitial cell population that provides a beneficial microenvironment for muscle stem cells (MuSCs) during muscle regeneration. Here we show that the transcription factor Osr1 is essential for FAPs to communicate with MuSCs and infiltrating macrophages, thus coordinating muscle regeneration. Conditional inactivation of Osr1 impaired muscle regeneration with reduced myofiber growth and formation of excessive fibrotic tissue with reduced stiffness. Osr1-deficient FAPs acquired a fibrogenic identity with altered matrix secretion and cytokine expression resulting in impaired MuSC viability, expansion and differentiation. Immune cell profiling suggested a novel role for Osr1-FAPs in macrophage polarization. In vitro analysis suggested that increased TGFβ signaling and altered matrix deposition by Osr1-deficient FAPs actively suppressed regenerative myogenesis. In conclusion, we show that Osr1 is central to FAP function orchestrating key regenerative events such as inflammation, matrix secretion and myogenesis.
Collapse
Affiliation(s)
- Georgios Kotsaris
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Taimoor H Qazi
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Bioengineering, University of Pennsylvania, 19104, Philadelphia, USA
- Weldon School of Biomedical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Christian H Bucher
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Hafsa Zahid
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- International Max Planck Research School for Biology and Computing IMPRS-BAC, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | - Sophie Pöhle-Kronawitter
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Vladimir Ugorets
- Institute of Chemistry and Biochemistry, Cell Signaling Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - William Jarassier
- Institut NeuroMyoGène, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Stefan Börno
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | | | | | - Fabien Le Grand
- Institut NeuroMyoGène, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Pedro Vallecillo-García
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Petra Knaus
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Institute of Chemistry and Biochemistry, Cell Signaling Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
- Berlin Center for Advanced Therapies (BECAT), Charité Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
24
|
Gallardo FS, Córdova-Casanova A, Bock-Pereda A, Rebolledo DL, Ravasio A, Casar JC, Brandan E. Denervation Drives YAP/TAZ Activation in Muscular Fibro/Adipogenic Progenitors. Int J Mol Sci 2023; 24:ijms24065585. [PMID: 36982659 PMCID: PMC10059792 DOI: 10.3390/ijms24065585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Loss of motoneuron innervation (denervation) is a hallmark of neurodegeneration and aging of the skeletal muscle. Denervation induces fibrosis, a response attributed to the activation and expansion of resident fibro/adipogenic progenitors (FAPs), i.e., multipotent stromal cells with myofibroblast potential. Using in vivo and in silico approaches, we revealed FAPs as a novel cell population that activates the transcriptional coregulators YAP/TAZ in response to skeletal muscle denervation. Here, we found that denervation induces the expression and transcriptional activity of YAP/TAZ in whole muscle lysates. Using the PdgfraH2B:EGFP/+ transgenic reporter mice to trace FAPs, we demonstrated that denervation leads to increased YAP expression that accumulates within FAPs nuclei. Consistently, re-analysis of published single-nucleus RNA sequencing (snRNA-seq) data indicates that FAPs from denervated muscles have a higher YAP/TAZ signature level than control FAPs. Thus, our work provides the foundations to address the functional role of YAP/TAZ in FAPs in a neurogenic pathological context, which could be applied to develop novel therapeutic approaches for the treatment of muscle disorders triggered by motoneuron degeneration.
Collapse
Affiliation(s)
- Felipe S. Gallardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Adriana Córdova-Casanova
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Alexia Bock-Pereda
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Daniela L. Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, School of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
- Correspondence:
| |
Collapse
|
25
|
Santanasto AJ, Zmuda JM, Cvejkus RK, Gordon CL, Nair S, Carr JJ, Terry JG, Wheeler VW, Miljkovic I. Thigh and Calf Myosteatosis are Strongly Associated with Muscle and Physical Function in African Caribbean Men. J Gerontol A Biol Sci Med Sci 2023; 78:527-534. [PMID: 35661875 PMCID: PMC9977257 DOI: 10.1093/gerona/glac124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND African Caribbeans have higher levels of myosteatosis than other populations; however, little is known about the impact of myosteatosis on physical function in African Caribbeans. Herein, we examined the association between regional myosteatosis of the calf, thigh, and abdomen versus physical function in 850 African-Ancestry men aged 64.2 ± 8.9 (range 50-95) living on the Caribbean Island of Tobago. METHODS Myosteatosis was measured using computed tomography and included intermuscular adipose tissue (IMAT) and muscle density levels of the thigh, calf, psoas, and paraspinous muscles. Outcomes included grip strength, time to complete 5 chair-rises, and 4-meter gait speed. Associations were quantified using separate linear models for each myosteatosis depot and were adjusted for age, height, demographics, physical activity, and chronic diseases. Beta coefficients were presented per standard deviation of each myosteatosis depot. RESULTS Higher thigh IMAT was the only IMAT depot significantly associated with weaker grip strength (β = -1.3 ± 0.43 kg, p = .003). However, lower muscle density of all 4 muscle groups was associated with weaker grip strength (all p < .05). Calf and thigh myosteatosis (IMAT and muscle density) were significantly associated with both worse chair rise time and gait speed (all p < .05), whereas psoas IMAT and paraspinous muscle density were associated with gait speed. CONCLUSION Myosteatosis of the calf and thigh-but not the abdomen-were strongly associated with grip strength and performance measures of physical function in African Caribbean men. However, posterior abdominal myosteatosis may have some utility when abdominal images are all that are available.
Collapse
Affiliation(s)
- Adam J Santanasto
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan K Cvejkus
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Sangeeta Nair
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - J Jeffrey Carr
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Victor W Wheeler
- Tobago Health Studies Office, Scarborough, Tobago, Trinidad and Tobago
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Cáceres-Ayala C, Mira RG, Acuña MJ, Brandan E, Cerpa W, Rebolledo DL. Episodic Binge-like Ethanol Reduces Skeletal Muscle Strength Associated with Atrophy, Fibrosis, and Inflammation in Young Rats. Int J Mol Sci 2023; 24:ijms24021655. [PMID: 36675170 PMCID: PMC9861047 DOI: 10.3390/ijms24021655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
Binge Drinking (BD) corresponds to episodes of ingestion of large amounts of ethanol in a short time, typically ≤2 h. BD occurs across all populations, but young and sports-related people are especially vulnerable. However, the short- and long-term effects of episodic BD on skeletal muscle function have been poorly explored. Young rats were randomized into two groups: control and episodic Binge-Like ethanol protocol (BEP) (ethanol 3 g/kg IP, 4 episodes of 2-days ON-2-days OFF paradigm). Muscle function was evaluated two weeks after the last BEP episode. We found that rats exposed to BEP presented decreased muscle strength and increased fatigability, compared with control animals. Furthermore, we observed that skeletal muscle from rats exposed to BEP presented muscle atrophy, evidenced by reduced fiber size and increased expression of atrophic genes. We also observed that BEP induced fibrotic and inflammation markers, accompanied by mislocalization of nNOSµ and high levels of protein nitration. Our findings suggest that episodic binge-like ethanol exposure alters contractile capacity and increases fatigue by mechanisms involving atrophy, fibrosis, and inflammation, which remain for at least two weeks after ethanol clearance. These pathological features are common to several neuromuscular diseases and might affect muscle performance and health in the long term.
Collapse
Affiliation(s)
- Constanza Cáceres-Ayala
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo G. Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - María José Acuña
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Waldo Cerpa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| | - Daniela L. Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| |
Collapse
|
27
|
Jiang Z, Wang Z, Wei X, Yu XF. Inflammatory checkpoints in amyotrophic lateral sclerosis: From biomarkers to therapeutic targets. Front Immunol 2022; 13:1059994. [PMID: 36618399 PMCID: PMC9815501 DOI: 10.3389/fimmu.2022.1059994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron damage. Due to the complexity of the ALS, so far the etiology and underlying pathogenesis of sporadic ALS are not completely understood. Recently, many studies have emphasized the role of inflammatory networks, which are comprised of various inflammatory molecules and proteins in the pathogenesis of ALS. Inflammatory molecules and proteins may be used as independent predictors of patient survival and might be used in patient stratification and in evaluating the therapeutic response in clinical trials. This review article describes the latest advances in various inflammatory markers in ALS and its animal models. In particular, this review discusses the role of inflammatory molecule markers in the pathogenesis of the disease and their relationship with clinical parameters. We also highlight the advantages and disadvantages of applying inflammatory markers in clinical manifestations, animal studies, and drug clinical trials. Further, we summarize the potential application of some inflammatory biomarkers as new therapeutic targets and therapeutic strategies, which would perhaps expand the therapeutic interventions for ALS.
Collapse
|
28
|
Beaudry KM, Binet ER, Collao N, De Lisio M. Nutritional Regulation of Muscle Stem Cells in Exercise and Disease: The Role of Protein and Amino Acid Dietary Supplementation. Front Physiol 2022; 13:915390. [PMID: 35874517 PMCID: PMC9301335 DOI: 10.3389/fphys.2022.915390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human skeletal muscle is a remarkedly plastic tissue that has a high capacity to adapt in response to various stimuli. These adaptations are due in part to the function of muscle-resident stem/progenitor cells. Skeletal muscle regeneration and adaptation is facilitated by the activation and expansion of muscle stem cells (MuSCs). MuSC fate is regulated by signals released from cells in their niche, such as fibro-adipogenic progenitors (FAPs), as well as a variety of non-cellular niche components. Sufficient dietary protein consumption is critical for maximizing skeletal muscle adaptation to exercise and maintaining skeletal muscle in disease; however, the role of dietary protein in altering MuSC and FAP responses to exercise in healthy populations and skeletal muscle disease states requires more research. The present review provides an overview of this emerging field and suggestions for future directions. The current literature suggests that in response to resistance exercise, protein supplementation has been shown to increase MuSC content and the MuSC response to acute exercise. Similarly, protein supplementation augments the increase in MuSC content following resistance training. Endurance exercise, conversely, is an area of research that is sparse with respect to the interaction of protein supplementation and exercise on muscle stem/progenitor cell fate. Initial evidence suggests that protein supplementation augments the early myogenic response to acute endurance exercise but does not enhance the MuSC response to endurance training. Resistance training increases the number of proliferating FAPs with no additional effect of protein supplementation. Future research should continue to focus on the nutritional regulation of skeletal muscle stem/progenitor cell fate paired with studies examining the effects of exercise on a variety of human populations.
Collapse
Affiliation(s)
| | | | - Nicolás Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
29
|
Lopez MA, Si Y, Hu X, Williams V, Qushair F, Carlyle J, Alesce L, Conklin M, Gilbert S, Bamman MM, Alexander MS, King PH. Smad8 Is Increased in Duchenne Muscular Dystrophy and Suppresses miR-1, miR-133a, and miR-133b. Int J Mol Sci 2022; 23:7515. [PMID: 35886863 PMCID: PMC9323105 DOI: 10.3390/ijms23147515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by skeletal muscle instability, progressive muscle wasting, and fibrosis. A major driver of DMD pathology stems from aberrant upregulation of transforming growth factor β (TGFβ) signaling. In this report, we investigated the major transducers of TGFβ signaling, i.e., receptor Smads (R-Smads), in DMD patient skeletal muscle and observed a 48-fold increase in Smad8 mRNA. Smad1, Smad2, Smad3, and Smad5 mRNA were only minimally increased. A similar pattern was observed in the muscle from the mdx5cv mouse. Western blot analysis showed upregulation of phosphorylated Smad1, Smad5, and Smad8 compared to total Smad indicating activation of this pathway. In parallel, we observed a profound diminishment of muscle-enriched microRNAs (myomiRs): miR-1, miR-133a, and miR-133b. The pattern of Smad8 induction and myomiR suppression was recapitulated in C2C12 muscle cells after stimulation with bone morphogenetic protein 4 (BMP4), a signaling factor that we found upregulated in DMD muscle. Silencing Smad8 in C2C12 myoblasts derepressed myomiRs and promoted myoblast differentiation; there was also a concomitant upregulation of myogenic regulatory factors (myogenin and myocyte enhancer factor 2D) and suppression of a pro-inflammatory cytokine (interleukin-6). Our data suggest that Smad8 is a negative regulator of miR-1, miR-133a, and miR-133b in muscle cells and that the BMP4-Smad8 axis is a driver of dystrophic pathology in DMD.
Collapse
Affiliation(s)
- Michael A. Lopez
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Ying Si
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | - Xianzhen Hu
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Valentyna Williams
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Fuad Qushair
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Jackson Carlyle
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Lyndsy Alesce
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
| | - Michael Conklin
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Orthopedic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Shawn Gilbert
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Orthopedic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Marcas M. Bamman
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- Department of Cell, Development and Integrative Biology, Birmingham, AL 35233, USA
| | - Matthew S. Alexander
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- UAB Civitan International Research Center (CIRC), Birmingham, AL 35233, USA
- Department of Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
30
|
Bidirectional roles of skeletal muscle fibro-adipogenic progenitors in homeostasis and disease. Ageing Res Rev 2022; 80:101682. [PMID: 35809776 DOI: 10.1016/j.arr.2022.101682] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
Sarcopenia and myopathies cause progressive muscle weakness and degeneration, which are closely associated with fat infiltration and fibrosis in muscle. Recently, experimental research has shed light on fibro-adipogenic progenitors (FAPs), also known as muscle-resident mesenchymal progenitors with multiple differentiation potential for adipogenesis, fibrosis, osteogenesis and chondrogenesis. They are considered key regulators of muscle homeostasis and integrity. They play supportive roles in muscle development and repair by orchestrating the regulatory interplay between muscle stem cells (MuSCs) and immune cells. Interestingly, FAPs also contribute to intramuscular fat infiltration, fibrosis and other pathologies when the functional integrity of the network is compromised. In this review, we summarize recent insights into the roles of FAPs in maintenance of skeletal muscle homeostasis, and discuss the underlying mechanisms regulating FAPs behavior and fate, highlighting their roles in participating in efficient muscle repair and fat infiltrated muscle degeneration as well as during muscle atrophy. We suggest that controlling and predicting FAPs differentiation may become a promising strategy to improve muscle function and prevent irreparable muscle damage.
Collapse
|
31
|
Identification of distinct non-myogenic skeletal-muscle-resident mesenchymal cell populations. Cell Rep 2022; 39:110785. [PMID: 35545045 PMCID: PMC9535675 DOI: 10.1016/j.celrep.2022.110785] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal progenitors of the lateral plate mesoderm give rise to various cell fates within limbs, including a heterogeneous group of muscle-resident mesenchymal cells. Often described as fibro-adipogenic progenitors, these cells are key players in muscle development, disease, and regeneration. To further define this cell population(s), we perform lineage/reporter analysis, flow cytometry, single-cell RNA sequencing, immunofluorescent staining, and differentiation assays on normal and injured murine muscles. Here we identify six distinct Pdgfra+ non-myogenic muscle-resident mesenchymal cell populations that fit within a bipartite differentiation trajectory from a common progenitor. One branch of the trajectory gives rise to two populations of immune-responsive mesenchymal cells with strong adipogenic potential and the capability to respond to acute and chronic muscle injury, whereas the alternative branch contains two cell populations with limited adipogenic capacity and inherent mineralizing capabilities; one of the populations displays a unique neuromuscular junction association and an ability to respond to nerve injury. Leinroth et al. explore the heterogeneity of Pdgfra+ muscle-resident mesenchymal cells, demonstrating that Pdgfra+ subpopulations have unique gene expression profiles, exhibit two distinct cell trajectories from a common progenitor, differ in their abilities to respond to muscle injuries, and show variable adipogenic and mineralizing capacities.
Collapse
|
32
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
33
|
Olivera-Bravo S, Bolatto C, Otero Damianovich G, Stancov M, Cerri S, Rodríguez P, Boragno D, Hernández Mir K, Cuitiño MN, Larrambembere F, Isasi E, Alem D, Canclini L, Marco M, Davyt D, Díaz-Amarilla P. Neuroprotective effects of violacein in a model of inherited amyotrophic lateral sclerosis. Sci Rep 2022; 12:4439. [PMID: 35292673 PMCID: PMC8924276 DOI: 10.1038/s41598-022-06470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive death of motor neurons and muscle atrophy, with defective neuron-glia interplay and emergence of aberrant glial phenotypes having a role in disease pathology. Here, we have studied if the pigment violacein with several reported protective/antiproliferative properties may control highly neurotoxic astrocytes (AbAs) obtained from spinal cord cultures of symptomatic hSOD1G93A rats, and if it could be neuroprotective in this ALS experimental model. At concentrations lower than those reported as protective, violacein selectively killed aberrant astrocytes. Treatment of hSOD1G93A rats with doses equivalent to the concentrations that killed AbAs caused a marginally significant delay in survival, partially preserved the body weight and soleus muscle mass and improved the integrity of the neuromuscular junction. Reduced motor neuron death and glial reactivity was also found and likely related to decreased inflammation and matrix metalloproteinase-2 and -9. Thus, in spite that new experimental designs aimed at extending the lifespan of hSOD1G93A rats are needed, improvements observed upon violacein treatment suggest a significant therapeutic potential that deserves further studies.
Collapse
Affiliation(s)
- Silvia Olivera-Bravo
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| | - Carmen Bolatto
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Gabriel Otero Damianovich
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Matías Stancov
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Sofía Cerri
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Paola Rodríguez
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Boragno
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Karina Hernández Mir
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - María Noel Cuitiño
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Fernanda Larrambembere
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Eugenia Isasi
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Diego Alem
- Genetic Department, IIBCE, Montevideo, Uruguay
| | | | - Marta Marco
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Tumoral Biol Area, Clin Biochem Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Danilo Davyt
- Pharm Chem Lab, Organic Chemistry Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Pablo Díaz-Amarilla
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
34
|
Caceres-Ayala C, Pautassi RM, Acuña MJ, Cerpa W, Rebolledo DL. The functional and molecular effects of problematic alcohol consumption on skeletal muscle: a focus on athletic performance. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:133-147. [PMID: 35389308 DOI: 10.1080/00952990.2022.2041025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Chronic alcohol misuse is associated with alcoholic myopathy, characterized by skeletal muscle weakness and atrophy. Moreover, there is evidence that sports-related people seem to exhibit a greater prevalence of problematic alcohol consumption, especially binge drinking (BD), which might not cause alcoholic myopathy but can negatively impact muscle function and amateur and professional athletic performance.Objective: To review the literature concerning the effects of alcohol consumption on skeletal muscle function and structure that can affect muscle performance.Methodology: We examined the currently available literature (PubMed, Google Scholars) to develop a narrative review summarizing the knowledge about the effects of alcohol on skeletal muscle function and exercise performance, obtained from studies in human beings and animal models for problematic alcohol consumption.Results: Exercise- and sport-based studies indicate that alcohol consumption can negatively affect muscle recovery after vigorous exercise, especially in men, while women seem less affected. Clinical studies and pre-clinical laboratory research have led to the knowledge of some of the mechanisms involved in alcohol-related muscle dysfunction, including an imbalance between anabolic and catabolic pathways, reduced regeneration, increased inflammation and fibrosis, and deficiencies in energetic balance and mitochondrial function. These pathological features can appear not only under chronic alcohol misuse but also in other alcohol consumption patterns.Conclusions: Most laboratory-based studies use chronic or acute alcohol exposure, while episodic BD, the most common drinking pattern in amateur and professional athletes, is underrepresented. Nevertheless, alcohol consumption negatively affects skeletal muscle health through different mechanisms, which collectively might contribute to reduced sports performance.
Collapse
Affiliation(s)
- Constanza Caceres-Ayala
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo M Pautassi
- Instituto de Investigación Médica M. Y M. Ferreyra, Inimec-Conicet, Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María José Acuña
- Facultad de Salud, Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela L Rebolledo
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
35
|
Verma S, Khurana S, Vats A, Sahu B, Ganguly NK, Chakraborti P, Gourie-Devi M, Taneja V. Neuromuscular Junction Dysfunction in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:1502-1527. [PMID: 34997540 DOI: 10.1007/s12035-021-02658-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive degeneration of motor neurons leading to skeletal muscle denervation. Earlier studies have shown that motor neuron degeneration begins in motor cortex and descends to the neuromuscular junction (NMJ) in a dying forward fashion. However, accumulating evidences support that ALS is a distal axonopathy where early pathological changes occur at the NMJ, prior to onset of clinical symptoms and propagates towards the motor neuron cell body supporting "dying back" hypothesis. Despite several evidences, series of events triggering NMJ disassembly in ALS are still obscure. Neuromuscular junction is a specialized tripartite chemical synapse which involves a well-coordinated communication among the presynaptic motor neuron, postsynaptic skeletal muscle, and terminal Schwann cells. This review provides comprehensive insight into the role of NMJ in ALS pathogenesis. We have emphasized the molecular alterations in cellular components of NMJ leading to loss of effective neuromuscular transmission in ALS. Further, we provide a preview into research involved in exploring NMJ as potential target for designing effective therapies for ALS.
Collapse
Affiliation(s)
- Sagar Verma
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
- Department of Biotechnology, Jamia Hamdard, Delhi, India
| | - Shiffali Khurana
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Abhishek Vats
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bandana Sahu
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | | | | | | | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.
| |
Collapse
|
36
|
Identification of Regulatory Factors and Prognostic Markers in Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2022; 11:antiox11020303. [PMID: 35204186 PMCID: PMC8868268 DOI: 10.3390/antiox11020303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of motor neurons, leading to muscle atrophy, paralysis and even death. Immune disorder, redox imbalance, autophagy disorder, and iron homeostasis disorder have been shown to play critical roles in the pathogenesis of ALS. However, the exact pathogenic genes and the underlying mechanism of ALS remain unclear. The purpose of this study was to screen for pathogenic regulatory genes and prognostic markers in ALS using bioinformatics methods. We used Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), and expression regulation network analysis to investigate the function of differentially expressed genes in the nerve tissue, lymphoid tissue, and whole blood of patients with ALS. Our results showed that the up-regulated genes were mainly involved in immune regulation and inflammation, and the down-regulated genes were mainly involved in energy metabolism and redox processes. Eleven up-regulated transcription factors (CEBPB, CEBPD, STAT5A, STAT6, RUNX1, REL, SMAD3, GABPB2, FOXO1, PAX6, and FOXJ1) and one down-regulated transcription factor (NOG) in the nerve tissue of patients with ALS likely play important regulatory roles in the pathogenesis of ALS. Based on construction and evaluation of the ALS biomarker screening model, cluster analysis of the identified characteristic genes, univariate Cox proportional hazards regression analysis, and the random survival forest algorithm, we found that MAEA, TPST1, IFNGR2, and ALAS2 may be prognostic markers regarding the survival of ALS patients. High expression of MAEA, TPST1, and IFNGR2 and low expression of ALAS2 in ALS patients may be closely related to short survival of ALS patients. Taken together, our results indicate that immune disorders, inflammation, energy metabolism, and redox imbalance may be the important pathogenic factors of ALS. CEBPB, CEBPD, STAT5A, STAT6, RUNX1, REL, SMAD3, GABPB2, FOXO1, PAX6, FOXJ1, and NOG may be important regulatory factors linked to the pathogenesis of ALS. MAEA, TPST1, IFNGR2, and ALAS2 are potential important ALS prognostic markers. Our findings provide evidence on the pathogenesis of ALS, potential targets for the development of new drugs for ALS, and important markers for predicting ALS prognosis.
Collapse
|
37
|
Parker E, Khayrullin A, Kent A, Mendhe B, Youssef El Baradie KB, Yu K, Pihkala J, Liu Y, McGee-Lawrence M, Johnson M, Chen J, Hamrick M. Hindlimb Immobilization Increases IL-1β and Cdkn2a Expression in Skeletal Muscle Fibro-Adipogenic Progenitor Cells: A Link Between Senescence and Muscle Disuse Atrophy. Front Cell Dev Biol 2022; 9:790437. [PMID: 35047502 PMCID: PMC8762295 DOI: 10.3389/fcell.2021.790437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
Loss of muscle mass and strength contributes to decreased independence and an increased risk for morbidity and mortality. A better understanding of the cellular and molecular mechanisms underlying muscle atrophy therefore has significant clinical and therapeutic implications. Fibro-adipogenic progenitors (FAPs) are a skeletal muscle resident stem cell population that have recently been shown to play vital roles in muscle regeneration and muscle hypertrophy; however, the role that these cells play in muscle disuse atrophy is not well understood. We investigated the role of FAPs in disuse atrophy in vivo utilizing a 2-week single hindlimb immobilization model. RNA-seq was performed on FAPs isolated from the immobilized and non-immobilized limb. The RNAseq data show that IL-1β is significantly upregulated in FAPs following 2 weeks of immobilization, which we confirmed using droplet-digital PCR (ddPCR). We further validated the RNA-seq and ddPCR data from muscle in situ using RNAscope technology. IL-1β is recognized as a key component of the senescence-associated secretory phenotype, or SASP. We then tested the hypothesis that FAPs from the immobilized limb would show elevated senescence measured by cyclin-dependent kinase inhibitor 2A (Cdkn2a) expression as a senescence marker. The ddPCR and RNAscope data both revealed increased Cdkn2a expression in FAPs with immobilization. These data suggest that the gene expression profile of FAPs is significantly altered with disuse, and that disuse itself may drive senescence in FAPs further contributing to muscle atrophy.
Collapse
Affiliation(s)
- Emily Parker
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Andrew Khayrullin
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Andrew Kent
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Bharati Mendhe
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Khairat Bahgat Youssef El Baradie
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Faculty of Science, Tanta University, Tanta, Egypt
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jeanene Pihkala
- Flow Cytometry Core Facility Research Laboratory Director, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Meghan McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Maribeth Johnson
- Division of Biostatistics and Data Science, DPHS, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jie Chen
- Division of Biostatistics and Data Science, DPHS, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
38
|
Transforming Growth Factor-Beta in Skeletal Muscle Wasting. Int J Mol Sci 2022; 23:ijms23031167. [PMID: 35163088 PMCID: PMC8835446 DOI: 10.3390/ijms23031167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) is part of a family of molecules that is present in many body tissues and performs many different functions. Evidence has been obtained from mice and human cancer patients with bony metastases and non-metastatic disease, as well as pediatric burn patients, that inflammation leads to bone resorption and release of TGF-β from the bone matrix with paracrine effects on muscle protein balance, possibly mediated by the generation of reactive oxygen species. Whether immobilization, which confounds the etiology of bone resorption in burn injury, also leads to the release of TGF-β from bone contributing to muscle wasting in other conditions is unclear. The use of anti-resorptive therapy in both metastatic cancer patients and pediatric burn patients has been successful in the prevention of muscle wasting, thereby creating an additional therapeutic niche for this class of drugs. The liberation of TGF-β may be one way in which bone helps to control muscle mass, but further investigation will be necessary to assess whether the rate of bone resorption is the determining factor for the release of TGF-β. Moreover, whether different resorptive conditions, such as immobilization and hyperparathyroidism, also involve TGF-β release in the pathogenesis of muscle wasting needs to be investigated.
Collapse
|
39
|
Apolloni S, D'Ambrosi N. Fibrosis as a common trait in amyotrophic lateral sclerosis tissues. Neural Regen Res 2022; 17:97-98. [PMID: 34100438 PMCID: PMC8451558 DOI: 10.4103/1673-5374.314302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/26/2020] [Accepted: 02/22/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Savina Apolloni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
40
|
Molina T, Fabre P, Dumont NA. Fibro-adipogenic progenitors in skeletal muscle homeostasis, regeneration and diseases. Open Biol 2021; 11:210110. [PMID: 34875199 PMCID: PMC8651418 DOI: 10.1098/rsob.210110] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle possesses a remarkable regenerative capacity that relies on the activity of muscle stem cells, also known as satellite cells. The presence of non-myogenic cells also plays a key role in the coordination of skeletal muscle regeneration. Particularly, fibro-adipogenic progenitors (FAPs) emerged as master regulators of muscle stem cell function and skeletal muscle regeneration. This population of muscle resident mesenchymal stromal cells has been initially characterized based on its bi-potent ability to differentiate into fibroblasts or adipocytes. New technologies such as single-cell RNAseq revealed the cellular heterogeneity of FAPs and their complex regulatory network during muscle regeneration. In acute injury, FAPs rapidly enter the cell cycle and secrete trophic factors that support the myogenic activity of muscle stem cells. Conversely, deregulation of FAP cell activity is associated with the accumulation of fibrofatty tissue in pathological conditions such as muscular dystrophies and ageing. Considering their central role in skeletal muscle pathophysiology, the regulatory mechanisms of FAPs and their cellular and molecular crosstalk with muscle stem cells are highly investigated in the field. In this review, we summarize the current knowledge on FAP cell characteristics, heterogeneity and the cellular crosstalk during skeletal muscle homeostasis and regeneration. We further describe their role in muscular disorders, as well as different therapeutic strategies targeting these cells to restore muscle regeneration.
Collapse
Affiliation(s)
- Thomas Molina
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas A. Dumont
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada,School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Poulin-Brière A, Rezaei E, Pozzi S. Antibody-Based Therapeutic Interventions for Amyotrophic Lateral Sclerosis: A Systematic Literature Review. Front Neurosci 2021; 15:790114. [PMID: 34912191 PMCID: PMC8667723 DOI: 10.3389/fnins.2021.790114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a mid-life onset neurodegenerative disease that manifests its symptomatology with motor impairments and cognitive deficits overlapping with Frontotemporal Lobar Degeneration (FTLD). The etiology of ALS remains elusive, with various mechanisms and cellular targets implicated, and no treatment can reverse or stop the progression of the pathology. Therapeutic interventions based on passive immunization are gaining attention for neurodegenerative diseases, and FDA recently approved the first antibody-based approach for Alzheimer's disease. The present systematic review of the literature aims to highlight the efforts made over the past years at developing antibody-based strategies to cure ALS. Thirty-one original research papers have been selected where the therapeutic efficacy of antibodies were investigated and described in patients and animal models of ALS. Antibody-based interventions analyzed, target both extracellular molecules implicated in the pathology and intracellular pathogenic proteins known to drive the disease, such as SOD1, TDP-43 or C9ORF72 repeats expansions. The potentials and limitations of these therapeutic interventions have been described and discussed in the present review.
Collapse
Affiliation(s)
| | - Edris Rezaei
- Department of Psychiatry and Neuroscience, Laval University, Quebec, QC, Canada
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, Laval University, Quebec, QC, Canada
- Cellular and Molecular Neuroscience Division, CERVO Brain Research Centre, Quebec, QC, Canada
| |
Collapse
|
42
|
Namboori SC, Thomas P, Ames R, Hawkins S, Garrett LO, Willis CRG, Rosa A, Stanton LW, Bhinge A. Single-cell transcriptomics identifies master regulators of neurodegeneration in SOD1 ALS iPSC-derived motor neurons. Stem Cell Reports 2021; 16:3020-3035. [PMID: 34767750 PMCID: PMC8693652 DOI: 10.1016/j.stemcr.2021.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterized by the loss of motor neurons. We utilized single-cell transcriptomics to uncover dysfunctional pathways in degenerating motor neurons differentiated from SOD1 E100G ALS patient-derived induced pluripotent stem cells (iPSCs) and respective isogenic controls. Differential gene expression and network analysis identified activation of developmental pathways and core transcriptional factors driving the ALS motor neuron gene dysregulation. Specifically, we identified activation of SMAD2, a downstream mediator of the transforming growth factor β (TGF-β) signaling pathway as a key driver of SOD1 iPSC-derived motor neuron degeneration. Importantly, our analysis indicates that activation of TGFβ signaling may be a common mechanism shared between SOD1, FUS, C9ORF72, VCP, and sporadic ALS motor neurons. Our results demonstrate the utility of single-cell transcriptomics in mapping disease-relevant gene regulatory networks driving neurodegeneration in ALS motor neurons. We find that ALS-associated mutant SOD1 targets transcriptional networks that perturb motor neuron homeostasis. Single-cell transcriptomic analysis of SOD1 E100G ALS iPSC-derived motor neurons Mapping an ALS-relevant transcriptional network Upregulation of developmental programs in familial and sporadic ALS motor neurons Inhibition of TGFβ pathway improves SOD1 ALS iPSC-derived motor neuron survival
Collapse
Affiliation(s)
- Seema C Namboori
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Patricia Thomas
- Institute of Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Ryan Ames
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sophie Hawkins
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | | | - Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Viale Regina Elena 291, 00161 Rome, Italy
| | - Lawrence W Stanton
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Akshay Bhinge
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK.
| |
Collapse
|
43
|
Wei X, Nicoletti C, Puri PL. Fibro-Adipogenic Progenitors: Versatile keepers of skeletal muscle homeostasis, beyond the response to myotrauma. Semin Cell Dev Biol 2021; 119:23-31. [PMID: 34332886 PMCID: PMC8552908 DOI: 10.1016/j.semcdb.2021.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
While Fibro-Adipogenic Progenitors (FAPs) have been originally identified as muscle-interstitial mesenchymal cells activated in response to muscle injury and endowed with inducible fibrogenic and adipogenic potential, subsequent studies have expanded their phenotypic and functional repertoire and revealed their contribution to skeletal muscle response to a vast range of perturbations. Here we review the emerging contribution of FAPs to skeletal muscle responses to motor neuron injuries and to systemic physiological (e.g., exercise) or pathological metabolic (e.g., diabetes) perturbations. We also provide an initial blueprint of discrete sub-clusters of FAPs that are activated by specific perturbations and discuss their role in muscle adaptation to these conditions.
Collapse
Affiliation(s)
- X Wei
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - C Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - P L Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
44
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
45
|
Rebolledo DL, Lipson KE, Brandan E. Driving fibrosis in neuromuscular diseases: Role and regulation of Connective tissue growth factor (CCN2/CTGF). Matrix Biol Plus 2021; 11:100059. [PMID: 34435178 PMCID: PMC8377001 DOI: 10.1016/j.mbplus.2021.100059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Connective tissue growth factor or cellular communication network 2 (CCN2/CTGF) is a matricellular protein member of the CCN family involved in several crucial biological processes. In skeletal muscle, CCN2/CTGF abundance is elevated in human muscle biopsies and/or animal models for diverse neuromuscular pathologies, including muscular dystrophies, neurodegenerative disorders, muscle denervation, and muscle overuse. In this context, CCN2/CTGF is deeply involved in extracellular matrix (ECM) modulation, acting as a strong pro-fibrotic factor that promotes excessive ECM accumulation. Reducing CCN2/CTGF levels or biological activity in pathological conditions can decrease fibrosis, improve muscle architecture and function. In this work, we summarize information about the role of CCN2/CTGF in fibrosis associated with neuromuscular pathologies and the mechanisms and signaling pathways that regulate their expression in skeletal muscle.
Collapse
Affiliation(s)
- Daniela L Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Punta Arenas, Chile
| | | | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| |
Collapse
|
46
|
Gutiérrez J, Gonzalez D, Escalona-Rivano R, Takahashi C, Brandan E. Reduced RECK levels accelerate skeletal muscle differentiation, improve muscle regeneration, and decrease fibrosis. FASEB J 2021; 35:e21503. [PMID: 33811686 DOI: 10.1096/fj.202001646rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
The muscle regeneration process requires a properly assembled extracellular matrix (ECM). Its homeostasis depends on the activity of different matrix-metalloproteinases (MMPs). The reversion-inducing-cysteine-rich protein with kazal motifs (RECK) is a membrane-anchored protein that negatively regulates the activity of different MMPs. However, the role of RECK in the process of skeletal muscle differentiation, regeneration, and fibrosis has not been elucidated. Here, we show that during skeletal muscle differentiation of C2C12 myoblasts and in satellite cells on isolated muscle fibers, RECK is transiently up regulated. C2C12 myoblasts with reduced RECK levels are more prone to enter the differentiation program, showing an accelerated differentiation process. Notch-1 signaling was reduced, while p38 and AKT signaling were augmented in myoblasts with decreased RECK levels. Overexpression of RECK restores the normal differentiation process but diminished the ability to form myotubes. Transient up-regulation of RECK occurs during skeletal muscle regeneration, which was accelerated in RECK-deficient mice (Reck±). RECK, MMPs and ECM proteins augmented in chronically damaged WT muscle, a model of muscle fibrosis. In this model, RECK ± mice showed diminished fibrosis compared to WT. These results strongly suggest that RECK is acting as a potential myogenic repressor during muscle formation and regeneration, emerging as a new player in these processes, and as a potential target to treat individuals with the muscle-wasting disease.
Collapse
Affiliation(s)
- Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile.,Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Gonzalez
- Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Escalona-Rivano
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Chiaki Takahashi
- Oncology and Molecular Biology, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Enrique Brandan
- Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
47
|
Contreras O, Rossi FMV, Theret M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors-time for new definitions. Skelet Muscle 2021; 11:16. [PMID: 34210364 PMCID: PMC8247239 DOI: 10.1186/s13395-021-00265-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Striated muscle is a highly plastic and regenerative organ that regulates body movement, temperature, and metabolism-all the functions needed for an individual's health and well-being. The muscle connective tissue's main components are the extracellular matrix and its resident stromal cells, which continuously reshape it in embryonic development, homeostasis, and regeneration. Fibro-adipogenic progenitors are enigmatic and transformative muscle-resident interstitial cells with mesenchymal stem/stromal cell properties. They act as cellular sentinels and physiological hubs for adult muscle homeostasis and regeneration by shaping the microenvironment by secreting a complex cocktail of extracellular matrix components, diffusible cytokines, ligands, and immune-modulatory factors. Fibro-adipogenic progenitors are the lineage precursors of specialized cells, including activated fibroblasts, adipocytes, and osteogenic cells after injury. Here, we discuss current research gaps, potential druggable developments, and outstanding questions about fibro-adipogenic progenitor origins, potency, and heterogeneity. Finally, we took advantage of recent advances in single-cell technologies combined with lineage tracing to unify the diversity of stromal fibro-adipogenic progenitors. Thus, this compelling review provides new cellular and molecular insights in comprehending the origins, definitions, markers, fate, and plasticity of murine and human fibro-adipogenic progenitors in muscle development, homeostasis, regeneration, and repair.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, 2052, Australia.
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Fabio M V Rossi
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
48
|
Vicario N, Spitale FM, Tibullo D, Giallongo C, Amorini AM, Scandura G, Spoto G, Saab MW, D'Aprile S, Alberghina C, Mangione R, Bernstock JD, Botta C, Gulisano M, Buratti E, Leanza G, Zorec R, Vecchio M, Di Rosa M, Li Volti G, Lazzarino G, Parenti R, Gulino R. Clobetasol promotes neuromuscular plasticity in mice after motoneuronal loss via sonic hedgehog signaling, immunomodulation and metabolic rebalancing. Cell Death Dis 2021; 12:625. [PMID: 34135312 PMCID: PMC8209072 DOI: 10.1038/s41419-021-03907-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Motoneuronal loss is the main feature of amyotrophic lateral sclerosis, although pathogenesis is extremely complex involving both neural and muscle cells. In order to translationally engage the sonic hedgehog pathway, which is a promising target for neural regeneration, recent studies have reported on the neuroprotective effects of clobetasol, an FDA-approved glucocorticoid, able to activate this pathway via smoothened. Herein we sought to examine functional, cellular, and metabolic effects of clobetasol in a neurotoxic mouse model of spinal motoneuronal loss. We found that clobetasol reduces muscle denervation and motor impairments in part by restoring sonic hedgehog signaling and supporting spinal plasticity. These effects were coupled with reduced pro-inflammatory microglia and reactive astrogliosis, reduced muscle atrophy, and support of mitochondrial integrity and metabolism. Our results suggest that clobetasol stimulates a series of compensatory processes and therefore represents a translational approach for intractable denervating and neurodegenerative disorders.
Collapse
Affiliation(s)
- Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy.
- Molecular Preclinical and Translational Imaging Research Centre - IMPRonTE, University of Catania, 95125, Catania, Italy.
| | - Federica M Spitale
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Angela M Amorini
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Grazia Scandura
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Graziana Spoto
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Miriam W Saab
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Cristiana Alberghina
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Renata Mangione
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Rome, 00168, Rome, Italy
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02155, USA
| | - Cirino Botta
- Hematology Unit, Annunziata Hospital, 87100, Cosenza, Italy
| | - Massimo Gulisano
- Molecular Preclinical and Translational Imaging Research Centre - IMPRonTE, University of Catania, 95125, Catania, Italy
- Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Giampiero Leanza
- Molecular Preclinical and Translational Imaging Research Centre - IMPRonTE, University of Catania, 95125, Catania, Italy
- Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Michele Vecchio
- Rehabilitation Unit, AOU Policlinico G. Rodolico, 95123, Catania, Italy
- Department of Biomedical and Biotechnological Sciences,Section of Pharmacology, University of Catania, 95123, Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95123, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy.
- Molecular Preclinical and Translational Imaging Research Centre - IMPRonTE, University of Catania, 95125, Catania, Italy.
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy.
- Molecular Preclinical and Translational Imaging Research Centre - IMPRonTE, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
49
|
Milani M, Mammarella E, Rossi S, Miele C, Lattante S, Sabatelli M, Cozzolino M, D'Ambrosi N, Apolloni S. Targeting S100A4 with niclosamide attenuates inflammatory and profibrotic pathways in models of amyotrophic lateral sclerosis. J Neuroinflammation 2021; 18:132. [PMID: 34118929 PMCID: PMC8196441 DOI: 10.1186/s12974-021-02184-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Background An increasing number of studies evidences that amyotrophic lateral sclerosis (ALS) is characterized by extensive alterations in different cell types and in different regions besides the CNS. We previously reported the upregulation in ALS models of a gene called fibroblast-specific protein-1 or S100A4, recognized as a pro-inflammatory and profibrotic factor. Since inflammation and fibrosis are often mutual-sustaining events that contribute to establish a hostile environment for organ functions, the comprehension of the elements responsible for these interconnected pathways is crucial to disclose novel aspects involved in ALS pathology. Methods Here, we employed fibroblasts derived from ALS patients harboring the C9orf72 hexanucleotide repeat expansion and ALS patients with no mutations in known ALS-associated genes and we downregulated S100A4 using siRNA or the S100A4 transcriptional inhibitor niclosamide. Mice overexpressing human FUS were adopted to assess the effects of niclosamide in vivo on ALS pathology. Results We demonstrated that S100A4 underlies impaired autophagy and a profibrotic phenotype, which characterize ALS fibroblasts. Indeed, its inhibition reduces inflammatory, autophagic, and profibrotic pathways in ALS fibroblasts, and interferes with different markers known as pathogenic in the disease, such as mTOR, SQSTM1/p62, STAT3, α-SMA, and NF-κB. Importantly, niclosamide in vivo treatment of ALS-FUS mice reduces the expression of S100A4, α-SMA, and PDGFRβ in the spinal cord, as well as gliosis in central and peripheral nervous tissues, together with axonal impairment and displays beneficial effects on muscle atrophy, by promoting muscle regeneration and reducing fibrosis. Conclusion Our findings show that S100A4 has a role in ALS-related mechanisms, and that drugs such as niclosamide which are able to target inflammatory and fibrotic pathways could represent promising pharmacological tools for ALS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02184-1.
Collapse
Affiliation(s)
- Martina Milani
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Rome, Italy
| | - Eleonora Mammarella
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Rome, Italy
| | - Simona Rossi
- Institute of Translational Pharmacology, CNR, 00133, Rome, Italy
| | - Chiara Miele
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Rome, Italy
| | - Serena Lattante
- Unità Operativa Complessa di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.,Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Mario Sabatelli
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.,Centro Clinico NEMO, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.,Sezione di Neurologia, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, CNR, 00133, Rome, Italy
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Rome, Italy.
| | - Savina Apolloni
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Rome, Italy.
| |
Collapse
|
50
|
Si Y, Kazamel M, Benatar M, Wuu J, Kwon Y, Kwan T, Jiang N, Kentrup D, Faul C, Alesce L, King PH. FGF23, a novel muscle biomarker detected in the early stages of ALS. Sci Rep 2021; 11:12062. [PMID: 34103575 PMCID: PMC8187665 DOI: 10.1038/s41598-021-91496-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle weakness. Skeletal muscle is a prime source for biomarker discovery since it is one of the earliest sites to manifest disease pathology. From a prior RNA sequencing project, we identified FGF23 as a potential muscle biomarker in ALS. Here, we validate this finding with a large collection of ALS muscle samples and found a 13-fold increase over normal controls. FGF23 was also increased in the SOD1G93A mouse, beginning at a very early stage and well before the onset of clinical symptoms. FGF23 levels progressively increased through end-stage in the mouse. Immunohistochemistry of ALS muscle showed prominent FGF23 immunoreactivity in the endomysial connective tissue and along the muscle membrane and was significantly higher around grouped atrophic fibers compared to non-atrophic fibers. ELISA of plasma samples from the SOD1G93A mouse showed an increase in FGF23 at end-stage whereas no increase was detected in a large cohort of ALS patients. In conclusion, FGF23 is a novel muscle biomarker in ALS and joins a molecular signature that emerges in very early preclinical stages. The early appearance of FGF23 and its progressive increase with disease progression offers a new direction for exploring the molecular basis and response to the underlying pathology of ALS.
Collapse
Affiliation(s)
- Ying Si
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| | - Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, 33136, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, 33136, USA
| | - Yuri Kwon
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
| | - Thaddaeus Kwan
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
| | - Nan Jiang
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| | - Dominik Kentrup
- Department of Medicine (Division of Nephrology and Hypertension), University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christian Faul
- Department of Medicine (Division of Nephrology and Hypertension), University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lyndsy Alesce
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
| | - Peter H King
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA.
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|