1
|
Guggeri L, Sosa-Redaelli I, Cárdenas-Rodríguez M, Alonso M, González G, Naya H, Prieto-Echagüe V, Lepanto P, Badano JL. Follistatin like-1 ( Fstl1) regulates adipose tissue development in zebrafish. Adipocyte 2024; 13:2435862. [PMID: 39644214 PMCID: PMC11633180 DOI: 10.1080/21623945.2024.2435862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024] Open
Abstract
Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous in vitro results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the in vivo relevance of the zebrafish orthologous genes fstl1a and fstl1b in primary cilia and adipose tissue development. Using a combination of knockdowns and a new fstl1a mutant line, we show that fstl1a promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that fstl1b partially compensates for the loss of fstl1a. Moreover, in high fat diet, fstl1a depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous in vitro data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.
Collapse
Affiliation(s)
- Lucía Guggeri
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ileana Sosa-Redaelli
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Martina Alonso
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gisell González
- Zebrafish Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | | | - Paola Lepanto
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jose L. Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
2
|
Yucel K, Disci SI. Systemic Immune Inflammation Index, Systemic Inflammation Response Index, Aggregate Index of Systemic Inflammation, and Follistatin-Like Protein-1 Levels in Children Diagnosed with Pneumonia. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2024; 37:106-111. [PMID: 39607763 DOI: 10.1089/ped.2024.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background: This study aims to evaluate systemic immune inflammation index, systemic inflammatory response index (SIRI), aggregate index of systemic inflammation (AISI), and follistatin-like protein-1 (FSTL-1) levels in children with pneumonia and healthy controls. Methods: The study was carried out at the Seydisehir State Hospital between February 1, 2024 and June 1, 2024. The patient group included 44 children diagnosed with pneumonia and the control group included 45 healthy children without any disease. Index values obtained from hemogram data. Enzyme-linked immunosorbent assay was used to measure FSTL-1 levels. Results: A total of 89 participants, 44 in the patient group and 45 in the healthy control group, were included in the study. White blood cells, monocyte, eosinophil, neutrophil, c-reactive protein, SIRI, and AISI levels were significantly higher in the patient group than in the control group. FSTL-1 levels were higher in the patient group, but did not differ statistically significant. The patient and control groups were compared in the receiver operating characteristics analysis, we found the highest area under curve (AUC) in the SIRI (AUC: 0.754) and AISI (AUC: 0.713) parameters. Conclusion: In conclusion, compared to healthy controls, SIRI and AISI levels were significantly higher in the patient group, and the highest AUC values belonged to these indices. Therefore, we believe that SIRI and AISI indices, which are inexpensive and simple tests, are useful for early diagnosis and treatment of pneumonia.
Collapse
Affiliation(s)
- Kamile Yucel
- Department of Medical Biochemistry, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | | |
Collapse
|
3
|
Veraar C, Kirschner E, Schwarz S, Jaksch P, Hoetzenecker K, Tschernko E, Dworschak M, Ankersmit HJ, Moser B. Follistatin-like 1 and Biomarkers of Neutrophil Activation Are Associated with Poor Short-Term Outcome after Lung Transplantation on VA-ECMO. BIOLOGY 2022; 11:biology11101475. [PMID: 36290379 PMCID: PMC9598172 DOI: 10.3390/biology11101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
The investigation of biomarkers associated with undesired outcome following lung transplantation (LuTX) is essential for a better understanding of the underlying pathophysiology, an earlier identification of susceptible recipients and the development of targeted therapeutic options. We therefore determined the longitudinal perioperative course of putative cytokines related to neutrophil activation (chemokine CC motif ligand 4 (CCL-4), interleukin (IL)-23 and Lipocalin 2 (LCN2)) and a cytokine that has been implicated in graft-versus-host disease (Follistatin-like 1 (FSTL1)) in 42 consecutive patients undergoing LuTX. We plotted receiver-operating curves (ROC) to assess the predictive power of the measured cytokines for short-term outcomes namely primary graft dysfunction (PGD), early complications requiring extracorporeal membrane oxygenation (ECMO), and a high postoperative sequential organ failure assessment (SOFA). All cytokines increased immediately after surgery. ROC analyses determined significant associations between CCL4 and a high SOFA score (area under the curve (AUC) 0.74 (95%CI:0.5−0.9; p < 0.05), between LCN2 and postoperative ECMO support (AUC 0.73 (95%CI:0.5−0.9; p < 0.05), and between FSTL1 and PGD (AUC 0.70 (95%CI:0.5−0.9; p < 0.05). The serum concentrations of the neutrophil-derived cytokines LCN2 and CCL4 as well as FSTL1 were all related to poor outcome after LuTX. The specific predictive power, however, still has to be assessed in larger trials. The potential role of FSTL1 as a biomarker in the development of PGD could be of great interest particularly since this protein appears to play a crucial role in allograft tolerance.
Collapse
Affiliation(s)
- Cecilia Veraar
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Applied Immunology Laboratory, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Enzo Kirschner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Schwarz
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Edda Tschernko
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Dworschak
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik J. Ankersmit
- Applied Immunology Laboratory, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernhard Moser
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Bottasso-Arias N, Leesman L, Burra K, Snowball J, Shah R, Mohanakrishnan M, Xu Y, Sinner D. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L224-L242. [PMID: 34851738 PMCID: PMC8794023 DOI: 10.1152/ajplung.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tracheobronchomalacia and complete tracheal rings are congenital malformations of the trachea associated with morbidity and mortality for which the etiology remains poorly understood. Epithelial expression of Wls (a cargo receptor mediating Wnt ligand secretion) by tracheal cells is essential for patterning the embryonic mouse trachea's cartilage and muscle. RNA sequencing indicated that Wls differentially modulated the expression of BMP signaling molecules. We tested whether BMP signaling, induced by epithelial Wnt ligands, mediates cartilage formation. Deletion of Bmp4 from respiratory tract mesenchyme impaired tracheal cartilage formation that was replaced by ectopic smooth muscle, recapitulating the phenotype observed after epithelial deletion of Wls in the embryonic trachea. Ectopic muscle was caused in part by anomalous differentiation and proliferation of smooth muscle progenitors rather than tracheal cartilage progenitors. Mesenchymal deletion of Bmp4 impaired expression of Wnt/β-catenin target genes, including targets of WNT signaling: Notum and Axin2. In vitro, recombinant (r)BMP4 rescued the expression of Notum in Bmp4-deficient tracheal mesenchymal cells and induced Notum promoter activity via SMAD1/5. RNA sequencing of Bmp4-deficient tracheas identified genes essential for chondrogenesis and muscle development coregulated by BMP and WNT signaling. During tracheal morphogenesis, WNT signaling induces Bmp4 in mesenchymal progenitors to promote cartilage differentiation and restrict trachealis muscle. In turn, Bmp4 differentially regulates the expression of Wnt/β-catenin targets to attenuate mesenchymal WNT signaling and to further support chondrogenesis.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kaulini Burra
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John Snowball
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ronak Shah
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Megha Mohanakrishnan
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Yan Xu
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Debora Sinner
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
5
|
Follistatin-Like Proteins: Structure, Functions and Biomedical Importance. Biomedicines 2021; 9:biomedicines9080999. [PMID: 34440203 PMCID: PMC8391210 DOI: 10.3390/biomedicines9080999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Main forms of cellular signal transmission are known to be autocrine and paracrine signaling. Several cells secrete messengers called autocrine or paracrine agents that can bind the corresponding receptors on the surface of the cells themselves or their microenvironment. Follistatin and follistatin-like proteins can be called one of the most important bifunctional messengers capable of displaying both autocrine and paracrine activity. Whilst they are not as diverse as protein hormones or protein kinases, there are only five types of proteins. However, unlike protein kinases, there are no minor proteins among them; each follistatin-like protein performs an important physiological function. These proteins are involved in a variety of signaling pathways and biological processes, having the ability to bind to receptors such as DIP2A, TLR4, BMP and some others. The activation or experimentally induced knockout of the protein-coding genes often leads to fatal consequences for individual cells and the whole body as follistatin-like proteins indirectly regulate the cell cycle, tissue differentiation, metabolic pathways, and participate in the transmission chains of the pro-inflammatory intracellular signal. Abnormal course of these processes can cause the development of oncology or apoptosis, programmed cell death. There is still no comprehensive understanding of the spectrum of mechanisms of action of follistatin-like proteins, so the systematization and study of their cellular functions and regulation is an important direction of modern molecular and cell biology. Therefore, this review focuses on follistatin-related proteins that affect multiple targets and have direct or indirect effects on cellular signaling pathways, as well as to characterize the directions of their practical application in the field of biomedicine.
Collapse
|
6
|
Kishimoto K, Morimoto M. Mammalian tracheal development and reconstruction: insights from in vivo and in vitro studies. Development 2021; 148:dev198192. [PMID: 34228796 PMCID: PMC8276987 DOI: 10.1242/dev.198192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The trachea delivers inhaled air into the lungs for gas exchange. Anomalies in tracheal development can result in life-threatening malformations, such as tracheoesophageal fistula and tracheomalacia. Given the limitations of current therapeutic approaches, development of technologies for the reconstitution of a three-dimensional trachea from stem cells is urgently required. Recently, single-cell sequencing technologies and quantitative analyses from cell to tissue scale have been employed to decipher the cellular basis of tracheal morphogenesis. In this Review, recent advances in mammalian tracheal development and the generation of tracheal tissues from pluripotent stem cells are summarized.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
FSTL1 aggravates cigarette smoke-induced airway inflammation and airway remodeling by regulating autophagy. BMC Pulm Med 2021; 21:45. [PMID: 33509151 PMCID: PMC7841997 DOI: 10.1186/s12890-021-01409-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cigarette smoke (CS) is a major risk factor for Chronic Obstructive Pulmonary Disease (COPD). Follistatin-like protein 1 (FSTL1), a critical factor during embryogenesis particularly in respiratory lung development, is a novel mediator related to inflammation and tissue remodeling. We tried to investigate the role of FSTL1 in CS-induced autophagy dysregulation, airway inflammation and remodeling. METHODS Serum and lung specimens were obtained from COPD patients and controls. Adult female wild-type (WT) mice, FSTL1± mice and FSTL1flox/+ mice were exposed to room air or chronic CS. Additionally, 3-methyladenine (3-MA), an inhibitor of autophagy, was applied in CS-exposed WT mice. The lung tissues and serum from patients and murine models were tested for FSTL1 and autophagy-associated protein expression by ELISA, western blotting and immunohistochemical. Autophagosome were observed using electron microscope technology. LTB4, IL-8 and TNF-α in bronchoalveolar lavage fluid of mice were examined using ELISA. Airway remodeling and lung function were also assessed. RESULTS Both FSTL1 and autophagy biomarkers increased in COPD patients and CS-exposed WT mice. Autophagy activation was upregulated in CS-exposed mice accompanied by airway remodeling and airway inflammation. FSTL1± mice showed a lower level of CS-induced autophagy compared with the control mice. FSTL1± mice can also resist CS-induced inflammatory response, airway remodeling and impaired lung function. CS-exposed WT mice with 3-MA pretreatment have a similar manifestation with CS-exposed FSTL1± mice. CONCLUSIONS FSTL1 promotes CS-induced COPD by modulating autophagy, therefore targeting FSTL1 and autophagy may shed light on treating cigarette smoke-induced COPD.
Collapse
|
8
|
Regulation of Pulmonary Bacterial Immunity by Follistatin-Like Protein 1. Infect Immun 2020; 89:IAI.00298-20. [PMID: 33077624 DOI: 10.1128/iai.00298-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of antibiotic-resistant pneumonia. Follistatin-like protein 1 (FSTL-1) is highly expressed in the lung and is critical for lung homeostasis. The role of FSTL-1 in immunity to bacterial pneumonia is unknown. Wild-type (WT) and FSTL-1 hypomorphic (Hypo) mice were infected with Klebsiella pneumoniae to determine infectious burden, immune cell abundance, and cytokine production. FSTL-1 Hypo/TCRδ-/- and FSTL-1 Hypo/IL17ra-/- were also generated to assess the role of γδT17 cells in this model. FSTL-1 Hypo mice had reduced K. pneumoniae lung burden compared with that of WT controls. FSTL-1 Hypo mice had increased Il17a/interleukin-17A (IL-17A) and IL-17-dependent cytokine expression. FSTL-1 Hypo lungs also had increased IL-17A+ and TCRγδ+ cells. FSTL-1 Hypo/TCRδ-/- displayed a lung burden similar to that of FSTL-1 Hypo and reduced lung burden compared with the TCRδ-/- controls. However, FSTL-1 Hypo/TCRδ-/- mice had greater bacterial dissemination than FSTL-1 Hypo mice, suggesting that gamma delta T (γδT) cells are dispensable for FSTL-1 Hypo control of pulmonary infection but are required for dissemination control. Confusing these observations, FSTL-1 Hypo/TCRδ-/- lungs had an increased percentage of IL-17A-producing cells compared with that of TCRδ-/- mice. Removal of IL-17A signaling in the FSTL-1 Hypo mouse resulted in an increased lung burden. These findings identify a novel role for FSTL-1 in innate lung immunity to bacterial infection, suggesting that FSTL-1 influences type-17 pulmonary bacterial immunity.
Collapse
|
9
|
Mona M, Kobeissy F, Park YJ, Miller R, Saleh W, Koh J, Yoo MJ, Chen S, Cha S. Secretome Analysis of Inductive Signals for BM-MSC Transdifferentiation into Salivary Gland Progenitors. Int J Mol Sci 2020; 21:E9055. [PMID: 33260559 PMCID: PMC7730006 DOI: 10.3390/ijms21239055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Severe dry mouth in patients with Sjögren's Syndrome, or radiation therapy for patients with head and neck cancer, significantly compromises their oral health and quality of life. The current clinical management of xerostomia is limited to palliative care as there are no clinically-proven treatments available. Previously, our studies demonstrated that mouse bone marrow-derived mesenchymal stem cells (mMSCs) can differentiate into salivary progenitors when co-cultured with primary salivary epithelial cells. Transcription factors that were upregulated in co-cultured mMSCs were identified concomitantly with morphological changes and the expression of acinar cell markers, such as α-amylase (AMY1), muscarinic-type-3-receptor(M3R), aquaporin-5(AQP5), and a ductal cell marker known as cytokeratin 19(CK19). In the present study, we further explored inductive molecules in the conditioned media that led to mMSC reprogramming by high-throughput liquid chromatography with tandem mass spectrometry and systems biology. Our approach identified ten differentially expressed proteins based on their putative roles in salivary gland embryogenesis and development. Additionally, systems biology analysis revealed six candidate proteins, namely insulin-like growth factor binding protein-7 (IGFBP7), cysteine-rich, angiogenetic inducer, 61(CYR61), agrin(AGRN), laminin, beta 2 (LAMB2), follistatin-like 1(FSTL1), and fibronectin 1(FN1), for their potential contribution to mMSC transdifferentiation during co-culture. To our knowledge, our study is the first in the field to identify soluble inductive molecules that drive mMSC into salivary progenitors, which crosses lineage boundaries.
Collapse
Affiliation(s)
- Mahmoud Mona
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
- Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Firas Kobeissy
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Yun-Jong Park
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Rehae Miller
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
| | - Wafaa Saleh
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt;
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA;
| | - Sixue Chen
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Seunghee Cha
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
- Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Li W, Alahdal M, Deng Z, Liu J, Zhao Z, Cheng X, Chen X, Li J, Yin J, Li Y, Wang G, Wang D, Tang K, Zhang J. Molecular functions of FSTL1 in the osteoarthritis. Int Immunopharmacol 2020; 83:106465. [PMID: 32259701 DOI: 10.1016/j.intimp.2020.106465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
|
11
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
12
|
Cheng S, Huang Y, Lou C, He Y, Zhang Y, Zhang Q. FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin β3/Wnt signaling under miR-137 regulation. Cancer Biol Ther 2018; 20:328-337. [PMID: 30336071 DOI: 10.1080/15384047.2018.1529101] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
FSTL1 is a protein coding gene associated with cell signaling pathway regulation and the progression of a variety of disorders. In this study, we hypothesized that FSTL1 increases oncogenesis in breast cancer by enhancing stemness and chemoresistance. RT-PCR and IHC revealed significantly higher FSTL1 mRNA and protein levels in TNBC than in non-TNBC specimens and in breast cancer cell lines. We then found that FSTL1 levels were significantly increased in chemoresistant cells. LIVE/DEAD, MTT cell viability and colony formation assays did in fact demonstrate that FSTL1 is required for CDDP and DOX chemoresistance in breast cancer cell lines. FSTL1 overexpression caused significant elevation of stem cell biomarkers, as well as breast cancer cell proliferation. To determine whether the Wnt/β-catenin signaling pathway is involved in the observed effects of FSTL1, we assessed levels of pathway target. TOP/FOP flash, colony formation, and tumor sphere formation assays indicated that FSTL1 activates Wnt/β-catenin signaling through integrin β3. We then sought to identify a microRNA (miRNA) that regulates FSTL1 activity. Luciferase assays demonstrated that miR-137 reduces FSTL1 mRNA and protein levels. Ultimately, our findings indicate that there is an miR-137/FSTL1/integrin β3/Wnt/β-catenin signaling axis in breast cancer cells that regulates stemness and chemoresistance.
Collapse
Affiliation(s)
- Shaoqiang Cheng
- a Department of Breast Surgery , Harbin Medical University Cancer Hospital , Harbin , China
| | - Yuanxi Huang
- a Department of Breast Surgery , Harbin Medical University Cancer Hospital , Harbin , China
| | - Chun Lou
- a Department of Breast Surgery , Harbin Medical University Cancer Hospital , Harbin , China
| | - Yanxia He
- b Department of Clinical Oncology , Harbin Medical University Cancer Hospital , Harbin , China
| | - Yue Zhang
- b Department of Clinical Oncology , Harbin Medical University Cancer Hospital , Harbin , China
| | - Qingyuan Zhang
- b Department of Clinical Oncology , Harbin Medical University Cancer Hospital , Harbin , China
| |
Collapse
|
13
|
Cell type specific expression of Follistatin-like 1 (Fstl1) in mouse embryonic lung development. J Mol Histol 2018; 49:399-409. [PMID: 29916090 DOI: 10.1007/s10735-018-9780-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/13/2018] [Indexed: 10/14/2022]
Abstract
Follistatin like-1 (Fstl1) is a secreted glycoprotein and can be up-regulated by TGF-β1. To better study the function of Fstl1 in lung development, we examined Fstl1 expression in the developing lung, in a cell type specific manner, using a tamoxifen inducible Fstl1-reporter mouse strain. Our results show that Fstl1 is ubiquitously expressed at saccular stage in the developing lung. At E18.5, Fstl1 expression is robust in most type of mesenchymal cells, including airway smooth muscle cells surrounding airways, vascular smooth muscle cells, endothelial cells, and vascular pericytes from blood vessel, but not PDGFRα+ fibroblasts in the distal alveolar sacs. Meanwhile, relative weak and sporadic signals of Fstl1 expression are observed in epithelium, including a subgroup of club cells in proximal airways and a few type II alveolar epithelial cells in distal airways. Our data help to understand the critical role of Fstl1 in lung development and lung disease pathogenesis.
Collapse
|
14
|
Yang Y, Mu T, Li T, Xie S, Zhou J, Liu M, Li D. Effects of FSTL1 on the proliferation and motility of breast cancer cells and vascular endothelial cells. Thorac Cancer 2017; 8:606-612. [PMID: 28857515 PMCID: PMC5668505 DOI: 10.1111/1759-7714.12491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Treatments that prevent the motility of breast cancer cells and inhibit formation of new capillary vessels are urgently needed. FSTL1 is a secreted protein that has been implicated in maintaining the normal physiological function of the cardiovascular system, in addition to a variety of other biological functions. We investigated the role of FSTL1 in the proliferation and migration of breast cancer and vascular endothelial cells. METHODS Human umbilical vein endothelial cells and human breast cancer BT-549 cells were used to test the effects of FSTL1 and the N-terminal domain of FSTL1. Immunofluorescence microscopy and 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide, transwell invasion, and wound healing assays were conducted. RESULTS Different doses of the N-terminal fragment of FSTL1 (FSTL-N) have variable effects on the migration of these cells. However, FSTL1 does not significantly affect tube formation in vitro from vascular endothelial cells. FSTL1-FL and FSTL1-N have modest effects on the invasion of breast cancer and vascular endothelial cells. Interestingly, FSTL1-FL, but not FSTL-N, modulates vascular endothelial cell polarization. CONCLUSION FSTL1 modestly affects the proliferation of breast cancer cells and vascular endothelial cells. Our findings improve our understanding of the functions of FSTL1 in breast cancer development and angiogenesis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Tianhao Mu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Te Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Songbo Xie
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|