1
|
Lin P, Lane AN, Fan TWM. NMR-Based Stable Isotope Tracing of Cancer Metabolism. Methods Mol Biol 2025; 2855:457-504. [PMID: 39354323 DOI: 10.1007/978-1-0716-4116-3_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
NMR is widely used for metabolite profiling (metabolomics, metabonomics) particularly of various readily obtainable biofluids such as plasma and urine. It is especially valuable for stable isotope tracer studies to track metabolic pathways under control or perturbed conditions in a wide range of cell models as well as animal models and human subjects. NMR has unique properties for utilizing stable isotopes to edit or simplify otherwise complex spectra acquired in vitro and in vivo, while quantifying the level of enrichment at specific atomic positions in various metabolites (i.e., isotopomer distribution analysis).In this protocol, we give an overview with specific protocols for NMR-based stable isotope-resolved metabolomics, or SIRM, with a workflow from administration of isotope-enriched precursors, via sample preparation through to NMR data collection and reduction. We focus on indirect detection of common NMR-active stable isotopes including 13C, 15N, 31P, and 2H, using a variety of 1H-based two-dimensional experiments. We also include the application and analyses of multiplex tracer experiments.
Collapse
Affiliation(s)
- Penghui Lin
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Johnstone M, Leck A, Lange T, Wilcher K, Shephard MS, Paranjpe A, Schutte S, Wells S, Kappes F, Salomonis N, Privette Vinnedge LM. The chromatin remodeler DEK promotes proliferation of mammary epithelium and is associated with H3K27me3 epigenetic modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612116. [PMID: 39314335 PMCID: PMC11419013 DOI: 10.1101/2024.09.09.612116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The DEK chromatin remodeling protein was previously shown to confer oncogenic phenotypes to human and mouse mammary epithelial cells using in vitro and knockout mouse models. However, its functional role in normal mammary gland epithelium remained unexplored. We developed two novel mouse models to study the role of Dek in normal mammary gland biology in vivo . Mammary gland-specific Dek over-expression in mice resulted in hyperproliferation of cells that visually resembled alveolar cells, and a transcriptional profile that indicated increased expression of cell cycle, mammary stem/progenitor, and lactation-associated genes. Conversely, Dek knockout mice exhibited an alveologenesis or lactation defect, resulting in dramatically reduced pup survival. Analysis of previously published single-cell RNA-sequencing of mouse mammary glands revealed that Dek is most highly expressed in mammary stem cells and alveolar progenitor cells, and to a lesser extent in basal epithelial cells, supporting the observed phenotypes. Mechanistically, we discovered that Dek is a modifier of Ezh2 methyltransferase activity, upregulating the levels of histone H3 trimethylation on lysine 27 (H3K27me3) to control gene transcription. Combined, this work indicates that Dek promotes proliferation of mammary epithelial cells via cell cycle deregulation. Furthermore, we report a novel function for Dek in alveologenesis and histone H3 K27 trimethylation.
Collapse
|
3
|
Marcucci F, Rumio C. On the Role of Glycolysis in Early Tumorigenesis-Permissive and Executioner Effects. Cells 2023; 12:cells12081124. [PMID: 37190033 DOI: 10.3390/cells12081124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Reprogramming energy production from mitochondrial respiration to glycolysis is now considered a hallmark of cancer. When tumors grow beyond a certain size they give rise to changes in their microenvironment (e.g., hypoxia, mechanical stress) that are conducive to the upregulation of glycolysis. Over the years, however, it has become clear that glycolysis can also associate with the earliest steps of tumorigenesis. Thus, many of the oncoproteins most commonly involved in tumor initiation and progression upregulate glycolysis. Moreover, in recent years, considerable evidence has been reported suggesting that upregulated glycolysis itself, through its enzymes and/or metabolites, may play a causative role in tumorigenesis, either by acting itself as an oncogenic stimulus or by facilitating the appearance of oncogenic mutations. In fact, several changes induced by upregulated glycolysis have been shown to be involved in tumor initiation and early tumorigenesis: glycolysis-induced chromatin remodeling, inhibition of premature senescence and induction of proliferation, effects on DNA repair, O-linked N-acetylglucosamine modification of target proteins, antiapoptotic effects, induction of epithelial-mesenchymal transition or autophagy, and induction of angiogenesis. In this article we summarize the evidence that upregulated glycolysis is involved in tumor initiation and, in the following, we propose a mechanistic model aimed at explaining how upregulated glycolysis may play such a role.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
4
|
Lactate Activates AMPK Remodeling of the Cellular Metabolic Profile and Promotes the Proliferation and Differentiation of C2C12 Myoblasts. Int J Mol Sci 2022; 23:ijms232213996. [PMID: 36430479 PMCID: PMC9694550 DOI: 10.3390/ijms232213996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lactate is a general compound fuel serving as the fulcrum of metabolism, which is produced from glycolysis and shuttles between different cells, tissues and organs. Lactate is usually accumulated abundantly in muscles during exercise. It remains unclear whether lactate plays an important role in the metabolism of muscle cells. In this research, we assessed the effects of lactate on myoblasts and clarified the underlying metabolic mechanisms through NMR-based metabonomic profiling. Lactate treatment promoted the proliferation and differentiation of myoblasts, as indicated by significantly enhanced expression levels of the proteins related to cellular proliferation and differentiation, including p-AKT, p-ERK, MyoD and myogenin. Moreover, lactate treatment profoundly regulated metabolisms in myoblasts by promoting the intake and intracellular utilization of lactate, activating the TCA cycle, and thereby increasing energy production. For the first time, we found that lactate treatment evidently promotes AMPK signaling as reflected by the elevated expression levels of p-AMPK and p-ACC. Our results showed that lactate as a metabolic regulator activates AMPK, remodeling the cellular metabolic profile, and thereby promoting the proliferation and differentiation of myoblasts. This study elucidates molecular mechanisms underlying the effects of lactate on skeletal muscle in vitro and may be of benefit to the exploration of lactate acting as a metabolic regulator.
Collapse
|
5
|
Kimura M, Iguchi T, Iwasawa K, Dunn A, Thompson WL, Yoneyama Y, Chaturvedi P, Zorn AM, Wintzinger M, Quattrocelli M, Watanabe-Chailland M, Zhu G, Fujimoto M, Kumbaji M, Kodaka A, Gindin Y, Chung C, Myers RP, Subramanian GM, Hwa V, Takebe T. En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH. Cell 2022; 185:4216-4232.e16. [PMID: 36240780 PMCID: PMC9617783 DOI: 10.1016/j.cell.2022.09.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/01/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Genotype-phenotype associations for common diseases are often compounded by pleiotropy and metabolic state. Here, we devised a pooled human organoid-panel of steatohepatitis to investigate the impact of metabolic status on genotype-phenotype association. En masse population-based phenotypic analysis under insulin insensitive conditions predicted key non-alcoholic steatohepatitis (NASH)-genetic factors including the glucokinase regulatory protein (GCKR)-rs1260326:C>T. Analysis of NASH clinical cohorts revealed that GCKR-rs1260326-T allele elevates disease severity only under diabetic state but protects from fibrosis under non-diabetic states. Transcriptomic, metabolomic, and pharmacological analyses indicate significant mitochondrial dysfunction incurred by GCKR-rs1260326, which was not reversed with metformin. Uncoupling oxidative mechanisms mitigated mitochondrial dysfunction and permitted adaptation to increased fatty acid supply while protecting against oxidant stress, forming a basis for future therapeutic approaches for diabetic NASH. Thus, "in-a-dish" genotype-phenotype association strategies disentangle the opposing roles of metabolic-associated gene variant functions and offer a rich mechanistic, diagnostic, and therapeutic inference toolbox toward precision hepatology. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Takuma Iguchi
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew Dunn
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wendy L Thompson
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Praneet Chaturvedi
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Miki Watanabe-Chailland
- NMR-Based Metabolomics Core Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gaohui Zhu
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Masanobu Fujimoto
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Meenasri Kumbaji
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Asuka Kodaka
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | | | | | - Robert P Myers
- Gilead Sciences, Foster City, CA 94404, USA; The Liver Company, Inc., Palo Alto, CA 94303, USA
| | - G Mani Subramanian
- Gilead Sciences, Foster City, CA 94404, USA; The Liver Company, Inc., Palo Alto, CA 94303, USA
| | - Vivian Hwa
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
6
|
Greene AN, Solomon MB, Privette Vinnedge LM. Novel molecular mechanisms in Alzheimer's disease: The potential role of DEK in disease pathogenesis. Front Aging Neurosci 2022; 14:1018180. [PMID: 36275000 PMCID: PMC9582447 DOI: 10.3389/fnagi.2022.1018180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease and age-related dementias (AD/ADRD) are debilitating diseases that exact a significant physical, emotional, cognitive, and financial toll on the individual and their social network. While genetic risk factors for early-onset AD have been identified, the molecular and genetic drivers of late-onset AD, the most common subtype, remain a mystery. Current treatment options are limited for the 35 million people in the United States with AD/ADRD. Thus, it is critically important to identify novel molecular mechanisms of dementia-related pathology that may be targets for the development of new interventions. Here, we summarize the overarching concepts regarding AD/ADRD pathogenesis. Then, we highlight one potential molecular driver of AD/ADRD, the chromatin remodeling protein DEK. We discuss in vitro, in vivo, and ex vivo findings, from our group and others, that link DEK loss with the cellular, molecular, and behavioral signatures of AD/ADRD. These include associations between DEK loss and cellular and molecular hallmarks of AD/ADRD, including apoptosis, Tau expression, and Tau hyperphosphorylation. We also briefly discuss work that suggests sex-specific differences in the role of DEK in AD/ADRD pathogenesis. Finally, we discuss future directions for exploiting the DEK protein as a novel player and potential therapeutic target for the treatment of AD/ADRD.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
7
|
NMR-based metabolomic analysis identifies RON-DEK-β-catenin dependent metabolic pathways and a gene signature that stratifies breast cancer patient survival. PLoS One 2022; 17:e0274128. [PMID: 36067206 PMCID: PMC9447910 DOI: 10.1371/journal.pone.0274128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Advances in detection techniques and treatment have increased the diagnosis of breast cancer at early stages; however, recurrence occurs in all breast cancer subtypes, and both recurrent and de novo metastasis are typically treatment resistant. A growing body of evidence supports the notion that metabolic plasticity drives cancer recurrence. RON and DEK are proteins that promote cancer metastasis and synergize mechanistically to activate β-catenin, but the metabolic consequences are unknown. METHODS To ascertain RON-DEK-β-catenin dependent metabolic pathways, we utilized an NMR-based metabolomics approach to determine steady state levels of metabolites. We also interrogated altered metabolic pathway gene expression for prognostic capacity in breast cancer patient relapse-free and distant metastasis-free survival and discover a metabolic signature that is likely associated with recurrence. RESULTS RON-DEK-β-catenin loss showed a consistent metabolite regulation of succinate and phosphocreatine. Consistent metabolite alterations between RON and DEK loss (but not β-catenin) were found in media glucose consumption, lactate secretion, acetate secretion, and intracellular glutamine and glutathione levels. Consistent metabolite alterations between RON and β-catenin loss (and not DEK) were found only in intracellular lactate levels. Further pathway hits include β-catenin include glycolysis, glycosylation, TCA cycle/anaplerosis, NAD+ production, and creatine dynamics. Genes in these pathways epistatic to RON-DEK-β-catenin were used to define a gene signature that prognosticates breast cancer patient survival and response to chemotherapy. CONCLUSIONS The RON-DEK-β-catenin axis regulates the numerous metabolic pathways with significant associations to breast cancer patient outcomes.
Collapse
|
8
|
Greene AN, Nguyen ET, Paranjpe A, Lane A, Privette Vinnedge LM, Solomon MB. In silico gene expression and pathway analysis of DEK in the human brain across the lifespan. Eur J Neurosci 2022; 56:4720-4743. [PMID: 35972263 PMCID: PMC9730547 DOI: 10.1111/ejn.15791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
DEK, a chromatin-remodelling phosphoprotein, is associated with various functions and biological pathways in the periphery, including inflammation, oncogenesis, DNA repair, and transcriptional regulation. We recently identified an association between DEK loss and central nervous system diseases, such as Alzheimer's. To understand DEK's potential role in disease, it is critical to characterize DEK in healthy human brain to distinguish between neural DEK expression and function in healthy versus diseased states like dementia. We utilized two public databases, BrainCloud and Human Brain Transcriptome, and analysed DEK mRNA expression across the lifespan in learning and memory relevant brain regions. Since DEK loss induces phenotypes associated with brain ageing (e.g., DNA damage and apoptosis), we hypothesized that neural DEK expression may be highest during foetal development and lower in elderly individuals. In agreement with this hypothesis, DEK was most prominently expressed during foetal development in all queried forebrain areas, relative to other ages. Consistent with its roles in the periphery, pathways related to DEK in the brain were associated with cellular proliferation, DNA replication and repair, apoptosis, and inflammation. We also found novel neural development-relevant pathways (e.g., synaptic transmission, neurite outgrowth, and myelination) to be enriched from genes correlated with DEK expression. These findings suggest that DEK is important for human brain development. Overall, we highlight age-related changes in neural DEK expression across the human lifespan and illuminate novel biological pathways associated with DEK that are distinct from normal brain ageing. These findings may further our understanding of how DEK impacts brain function and disease susceptibility.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45267
| | | | - Aditi Paranjpe
- Division of Biomedical Informatics, Bioinformatics Collaborative Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45267
- Department of Psychology, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
9
|
OLIVEIRA CSD, ANDRADE JKS, RAJAN M, NARAIN N. Influence of the phytochemical profile on the peel, seed and pulp of margarida, breda and geada varieties of avocado (Persea Americana Mill) associated with their antioxidant potential. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.25822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Wessendarp M, Watanabe-Chailland M, Liu S, Stankiewicz T, Ma Y, Kasam RK, Shima K, Chalk C, Carey B, Rosendale LR, Dominique Filippi M, Arumugam P. Role of GM-CSF in regulating metabolism and mitochondrial functions critical to macrophage proliferation. Mitochondrion 2021; 62:85-101. [PMID: 34740864 DOI: 10.1016/j.mito.2021.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) exerts pleiotropic effects on macrophages and is required for self-renewal but the mechanisms responsible are unknown. Using mouse models with disrupted GM-CSF signaling, we show GM-CSF is critical for mitochondrial turnover, functions, and integrity. GM-CSF signaling is essential for fatty acid β-oxidation and markedly increased tricarboxylic acid cycle activity, oxidative phosphorylation, and ATP production. GM-CSF also regulated cytosolic pathways including glycolysis, pentose phosphate pathway, and amino acid synthesis. We conclude that GM-CSF regulates macrophages in part through a critical role in maintaining mitochondria, which are necessary for cellular metabolism as well as proliferation and self-renewal.
Collapse
Affiliation(s)
- Matthew Wessendarp
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | - Serena Liu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Yan Ma
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | - Kenjiro Shima
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | - Claudia Chalk
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | - Brenna Carey
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | | | - Paritha Arumugam
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA.
| |
Collapse
|
11
|
Deng R, Zhang HL, Huang JH, Cai RZ, Wang Y, Chen YH, Hu BX, Ye ZP, Li ZL, Mai J, Huang Y, Li X, Peng XD, Feng GK, Li JD, Tang J, Zhu XF. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy 2021. [PMID: 33213267 DOI: 10.1080/155486271760623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
The function of mitophagy in cancer is controversial. ULK1 is critical for induction of macroautophagy/autophagy and has a more specific role in mitophagy in response to hypoxia. Here, we show that ULK1 deficiency induces an invasive phenotype of breast cancer cells under hypoxia and increases osteolytic bone metastasis. Mechanistically, ULK1 depletion attenuates mitophagy ability during hypoxia. As a result, the accumulation of damaged, ROS-generating mitochondria leads to activation of the NLRP3 inflammasome, which induces abnormal soluble cytokines secretion, then promotes the differentiation and maturation of osteoclasts, and ultimately results in bone metastasis. Notably, phosphorylation of ULK1 by MAPK1/ERK2-MAPK3/ERK1 kinase triggers its interaction with BTRC and subsequent K48-linked ubiquitination and proteasome degradation. Also, a clearly negative correlation between the expression levels of ULK1 and p-MAPK1/3 was observed in human breast cancer tissues. The MAP2K/MEK inhibitor trametinib is sufficient to restore mitophagy function via upregulation of ULK1, leading to inhibition of NLRP3 inflammasome activation, thereby reduces bone metastasis. These results indicate that ULK1 knockout-mediated mitophagy defect promotes breast cancer bone metastasis and provide evidence to explore MAP2K/MEK- MAPK1/3 pathway inhibitors for therapy, especially in cancers displaying low levels of ULK1.Abbreviations: ATG: autophagy-related; Baf A1: bafilomycin A1; BTRC/β-TrCP: beta-transducin repeat containing E3 ubiquitin protein ligase; CHX: cycloheximide; CM: conditioned media; FBXW7/FBW7: F-box and WD repeat domain containing 7; MAPK1: mitogen-activated protein kinase 1; MTDR: MitoTracker Deep Red; mtROS: mitochondrial reactive oxygen species; microCT: micro-computed tomography; mtROS: mitochondrial reactive oxygen species; OCR: oxygen consumption rate; SQSTM1: sequestosome 1; ACP5/TRAP: acid phosphatase, tartrate resistant; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Hao Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Zhao Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bing-Xin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Peng Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Dan Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Dong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
12
|
Moreno-Fernandez ME, Giles DA, Oates JR, Chan CC, Damen MSMA, Doll JR, Stankiewicz TE, Chen X, Chetal K, Karns R, Weirauch MT, Romick-Rosendale L, Xanthakos SA, Sheridan R, Szabo S, Shah AS, Helmrath MA, Inge TH, Deshmukh H, Salomonis N, Divanovic S. PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease. Cell Metab 2021; 33:1187-1204.e9. [PMID: 34004162 PMCID: PMC8237408 DOI: 10.1016/j.cmet.2021.04.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests a key contribution to non-alcoholic fatty liver disease (NAFLD) pathogenesis by Th17 cells. The pathogenic characteristics and mechanisms of hepatic Th17 cells, however, remain unknown. Here, we uncover and characterize a distinct population of inflammatory hepatic CXCR3+Th17 (ihTh17) cells sufficient to exacerbate NAFLD pathogenesis. Hepatic ihTh17 cell accrual was dependent on the liver microenvironment and CXCR3 axis activation. Mechanistically, the pathogenic potential of ihTh17 cells correlated with increased chromatin accessibility, glycolytic output, and concomitant production of IL-17A, IFNγ, and TNFα. Modulation of glycolysis using 2-DG or cell-specific PKM2 deletion was sufficient to reverse ihTh17-centric inflammatory vigor and NAFLD severity. Importantly, ihTh17 cell characteristics, CXCR3 axis activation, and hepatic expression of glycolytic genes were conserved in human NAFLD. Together, our data show that the steatotic liver microenvironment regulates Th17 cell accrual, metabolism, and competence toward an ihTh17 fate. Modulation of these pathways holds potential for development of novel therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel A Giles
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jarren R Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Calvin C Chan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jessica R Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kashish Chetal
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lindsey Romick-Rosendale
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; NMR Metabolomics Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Stavra A Xanthakos
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rachel Sheridan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sara Szabo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Amy S Shah
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas H Inge
- Department of Surgery, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; The Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
13
|
Yang MQ, Bai LL, Wang Z, Lei L, Zheng YW, Li ZH, Huang WJ, Liu CC, Xu HT. DEK is highly expressed in breast cancer and is associated with malignant phenotype and progression. Oncol Lett 2021; 21:440. [PMID: 33868478 PMCID: PMC8045159 DOI: 10.3892/ol.2021.12701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/10/2021] [Indexed: 01/21/2023] Open
Abstract
DEK proto-oncogene (DEK) has been demonstrated as an oncogene and is associated with the development of many types of tumor; however, the expression and role of DEK in breast cancer remain unknown. The present study aimed to determine the role of DEK in the progression of breast cancer. The expression of DEK in 110 breast cancer tissues and 50 adjacent normal breast tissues was examined using immunohistochemistry. Furthermore, DEK expression was upregulated by DEK transfection or downregulated by DEK shRNA interference in MCF7 cells. Proliferative and invasive abilities were examined in MCF7 cells using MTT assay, colony-formation assay and transwell invasion assays. The results demonstrated that DEK expression level was significantly increased in breast cancer tissues compared with normal breast tissues. Furthermore, high DEK expression was associated with high histological grade, lymph node metastasis, advanced Tumor-Node-Metastasis stage and high Ki-67 index; however, DEK expression was not associated with the expression level of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. High DEK expression indicated poor prognosis in patients with breast cancer. DEK overexpression upregulated the protein expression of β-catenin and Wnt and increased the proliferative and invasive abilities of breast cancer cells. DEK downregulation had the opposite effect. Taken together, the results from the present study demonstrated that high expression of DEK was common in patients with breast cancer and was associated with progression of the disease and poor prognosis, and that DEK overexpression promoted the proliferative and invasive abilities of breast cancer cells.
Collapse
Affiliation(s)
- Mai-Qing Yang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Pathology, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| | - Lin-Lin Bai
- Department of Pathology, Shenyang 242 Hospital, Shenyang, Liaoning 110034, P.R. China
| | - Zhao Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Pathology, General Hospital of Heilongjiang Land Reclamation Bureau, Harbin, Heilongjiang 150088, P.R. China
| | - Lei Lei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi-Wen Zheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi-Han Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wen-Jing Huang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chen-Chen Liu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hong-Tao Xu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
14
|
Guo H, Prell M, Königs H, Xu N, Waldmann T, Hermans-Sachweh B, Ferrando-May E, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS) identifies a loss-of-function mutant of the DEK oncogene, indicating DNA modulating activities of DEK in chromatin. FEBS Lett 2021; 595:1438-1453. [PMID: 33686684 DOI: 10.1002/1873-3468.14070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
The DEK oncoprotein regulates cellular chromatin function via a number of protein-protein interactions. However, the biological relevance of its unique pseudo-SAP/SAP-box domain, which transmits DNA modulating activities in vitro, remains largely speculative. As hypothesis-driven mutations failed to yield DNA-binding null (DBN) mutants, we combined random mutagenesis with the Bacterial Growth Inhibition Screen (BGIS) to overcome this bottleneck. Re-expression of a DEK-DBN mutant in newly established human DEK knockout cells failed to reduce the increase in nuclear size as compared to wild type, indicating roles for DEK-DNA interactions in cellular chromatin organization. Our results extend the functional roles of DEK in metazoan chromatin and highlight the predictive ability of recombinant protein toxicity in E. coli for unbiased studies of eukaryotic DNA modulating protein domains.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Germany
| | | | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, Germany
| | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| |
Collapse
|
15
|
Bilska B, Schedel F, Piotrowska A, Stefan J, Zmijewski M, Pyza E, Reiter RJ, Steinbrink K, Slominski AT, Tulic MK, Kleszczyński K. Mitochondrial function is controlled by melatonin and its metabolites in vitro in human melanoma cells. J Pineal Res 2021; 70:e12728. [PMID: 33650175 DOI: 10.1111/jpi.12728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Melanoma is a leading cause of cancer deaths worldwide. Although immunotherapy has revolutionized the treatment for some patients, resistance towards therapy and unwanted side effects remain a problem for numerous individuals. Broad anti-cancer activities of melatonin are recognized; however, additional investigations still need to be elucidated. Herein, using various human melanoma cell models, we explore in vitro the new insights into the regulation of melanoma by melatonin and its metabolites which possess, on the other side, high safety profiles and biological meaningful. In this study, using melanotic (MNT-1) and amelanotic (A375, G361, Sk-Mel-28) melanoma cell lines, the comparative oncostatic responses, the impact on melanin content (for melanotic MNT-1 melanoma cells) as well as the mitochondrial function controlled by melatonin, its precursor (serotonin), a kynuric (N1 -acetyl-N2 -formyl-5-methoxykynuramine, AFMK) and indolic pathway (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) metabolites were assessed. Namely, significant disturbances were observed in bioenergetics as follows: (i) uncoupling of oxidative phosphorylation (OXPHOS), (ii) attenuation of glycolysis, (iii) dissipation of mitochondrial transmembrane potential (mtΔΨ) accompanied by (iv) massive generation of reactive oxygen species (ROS), and (v) decrease of glucose uptake. Collectively, these results together with previously published reports provide a new biological potential and make an imperative to consider using melatonin or its metabolites for complementary future treatments of melanoma-affected patients; however, these associations should be additionally investigated in clinical setting.
Collapse
Affiliation(s)
- Bernadetta Bilska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Fiona Schedel
- Department of Dermatology, University of Münster, Münster, Germany
| | - Anna Piotrowska
- Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Stefan
- Department of Oncology, Nicolaus Copernicus University Medical College, Bydgoszcz, Poland
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michal Zmijewski
- Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| | - Meri K Tulic
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | | |
Collapse
|
16
|
Deng R, Zhang HL, Huang JH, Cai RZ, Wang Y, Chen YH, Hu BX, Ye ZP, Li ZL, Mai J, Huang Y, Li X, Peng XD, Feng GK, Li JD, Tang J, Zhu XF. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy 2020; 17:3011-3029. [PMID: 33213267 DOI: 10.1080/15548627.2020.1850609] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The function of mitophagy in cancer is controversial. ULK1 is critical for induction of macroautophagy/autophagy and has a more specific role in mitophagy in response to hypoxia. Here, we show that ULK1 deficiency induces an invasive phenotype of breast cancer cells under hypoxia and increases osteolytic bone metastasis. Mechanistically, ULK1 depletion attenuates mitophagy ability during hypoxia. As a result, the accumulation of damaged, ROS-generating mitochondria leads to activation of the NLRP3 inflammasome, which induces abnormal soluble cytokines secretion, then promotes the differentiation and maturation of osteoclasts, and ultimately results in bone metastasis. Notably, phosphorylation of ULK1 by MAPK1/ERK2-MAPK3/ERK1 kinase triggers its interaction with BTRC and subsequent K48-linked ubiquitination and proteasome degradation. Also, a clearly negative correlation between the expression levels of ULK1 and p-MAPK1/3 was observed in human breast cancer tissues. The MAP2K/MEK inhibitor trametinib is sufficient to restore mitophagy function via upregulation of ULK1, leading to inhibition of NLRP3 inflammasome activation, thereby reduces bone metastasis. These results indicate that ULK1 knockout-mediated mitophagy defect promotes breast cancer bone metastasis and provide evidence to explore MAP2K/MEK- MAPK1/3 pathway inhibitors for therapy, especially in cancers displaying low levels of ULK1.Abbreviations: ATG: autophagy-related; Baf A1: bafilomycin A1; BTRC/β-TrCP: beta-transducin repeat containing E3 ubiquitin protein ligase; CHX: cycloheximide; CM: conditioned media; FBXW7/FBW7: F-box and WD repeat domain containing 7; MAPK1: mitogen-activated protein kinase 1; MTDR: MitoTracker Deep Red; mtROS: mitochondrial reactive oxygen species; microCT: micro-computed tomography; mtROS: mitochondrial reactive oxygen species; OCR: oxygen consumption rate; SQSTM1: sequestosome 1; ACP5/TRAP: acid phosphatase, tartrate resistant; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Hao Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Zhao Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bing-Xin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Peng Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Dan Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Dong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
17
|
Chandel V, Raj S, Kumar P, Gupta S, Dhasmana A, Kesari KK, Ruokolainen J, Mehra P, Das BC, Kamal MA, Kumar D. Metabolic regulation in HPV associated head and neck squamous cell carcinoma. Life Sci 2020; 258:118236. [PMID: 32795537 DOI: 10.1016/j.lfs.2020.118236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/25/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Cancer cells exhibit distinct energy metabolic pathways due to multiple oncogenic events. In normoxia condition, the anaerobic glycolysis (Warburg effect) is highly observed in head and neck squamous cell carcinoma (HNSCC). HNSCC is associated with smoking, chewing tobacco, consumption of alcohol or Human Papillomavirus (HPV) infection primarily HPV16. In recent years, the correlation of HPV with HNSCC has significantly expanded. Despite the recent advancement in therapeutic approaches, the rate of HPV infected HNSCC has significantly increased in the last few years, specifically, in lower middle-income countries. The oncoproteins of High-risk Human Papillomavirus (HR-HPV), E6 and E7, alter the metabolic phenotype in HNSCC, which is distinct from non-HPV associated HNSCC. These oncoproteins, modulate the cell cycle and metabolic signalling through interacting with tumor suppressor proteins, p53 and pRb. Since, metabolic alteration represents a major hallmark for tumorigenesis, HPV acts as a source of biomarker linked to cancer progression in HNSCC. The dependency of cancer cells to specific nutrients and alteration of various metabolic associated genes may provide a unique opportunity for pharmacological intervention in HPV infected HNSCC. In this review, we have discussed the molecular mechanism (s) and metabolic regulation in HNSCC depending on the HPV status. We have also discussed the possible potential therapeutic approaches for HPV associated HNSCC through targeting metabolic pathways.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Sibi Raj
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Prabhat Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Shilpi Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Anupam Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Doiwala, Dehradun 248016, India; Department of Immunology and Microbiology, School of Medicine, University of Rio Grande Valley, McAllen, TX, USA
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 02150, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo 02150, Finland
| | - Pravesh Mehra
- Department of Oral and Maxillofacial surgery, Lady Hardinge Medical College, New Delhi, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, NSW, Australia
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India.
| |
Collapse
|
18
|
Pease NA, Shephard MS, Sertorio M, Waltz SE, Vinnedge LMP. DEK Expression in Breast Cancer Cells Leads to the Alternative Activation of Tumor Associated Macrophages. Cancers (Basel) 2020; 12:cancers12071936. [PMID: 32708944 PMCID: PMC7409092 DOI: 10.3390/cancers12071936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer deaths among women. DEK is a known oncoprotein that is highly expressed in over 60% of breast cancers and is an independent marker of poor prognosis. However, the molecular mechanisms by which DEK promotes tumor progression are poorly understood. To identify novel oncogenic functions of DEK, we performed RNA-Seq analysis on isogenic Dek-knockout and complemented murine BC cells. Gene ontology analyses identified gene sets associated with immune system regulation and cytokine-mediated signaling and differential cytokine and chemokine expression was confirmed across Dek-proficient versus Dek-deficient cells. By exposing murine bone marrow-derived macrophages (BMDM) to tumor cell conditioned media (TCM) to mimic a tumor microenvironment, we showed that Dek-expressing breast cancer cells produce a cytokine milieu, including up-regulated Tslp and Ccl5 and down-regulated Cxcl1, Il-6, and GM-CSF, that drives the M2 polarization of macrophages. We validated this finding in primary murine mammary tumors and show that Dek expression in vivo is also associated with increased expression of M2 macrophage markers in murine tumors. Using TCGA data, we verified that DEK expression in primary human breast cancers correlates with the expression of several genes identified by RNA-Seq in our murine model and with M2 macrophage phenotypes. Together, our data demonstrate that by regulating the production of multiple secreted factors, DEK expression in BC cells creates a potentially immune suppressed tumor microenvironment, particularly by inducing M2 tumor associated macrophage (TAM) polarization.
Collapse
Affiliation(s)
- Nicholas A. Pease
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
- Molecular and Cellular Biology Program, Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Miranda S. Shephard
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
| | - Mathieu Sertorio
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-513-636-1155
| |
Collapse
|
19
|
Yue L, Wan R, Luan S, Zeng W, Cheung TH. Dek Modulates Global Intron Retention during Muscle Stem Cells Quiescence Exit. Dev Cell 2020; 53:661-676.e6. [DOI: 10.1016/j.devcel.2020.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/06/2020] [Accepted: 05/09/2020] [Indexed: 12/21/2022]
|
20
|
Wen Y, Xu HN, Privette Vinnedge L, Feng M, Li LZ. Optical Redox Imaging Detects the Effects of DEK Oncogene Knockdown on the Redox State of MDA-MB-231 Breast Cancer Cells. Mol Imaging Biol 2019; 21:410-416. [PMID: 30758703 PMCID: PMC6684344 DOI: 10.1007/s11307-019-01321-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Optical redox imaging (ORI), based on collecting the endogenous fluorescence of reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp) containing a redox cofactor flavin adenine dinucleotide (FAD), provides sensitive indicators of cellular metabolism and redox status. ORI indices (such as NADH, FAD, and their ratio) have been under investigation as potential progression/prognosis biomarkers for cancer. Higher FAD redox ratio (i.e., FAD/(FAD + NADH)) has been associated with higher invasive/metastatic potential in tumor xenografts and cultured cells. This study is to examine whether ORI indices can respond to the modulation of oncogene DEK activities that change cancer cell invasive/metastatic potential. PROCEDURES Using lentiviral shRNA, DEK gene expression was efficiently knocked down in MDA-MB-231 breast cancer cells (DEKsh). These DEKsh cells, along with scrambled shRNA-transduced control cells (NTsh), were imaged with a fluorescence microscope. In vitro invasive potential of the DEKsh cells and NTsh cells was also measured in parallel using the transwell assay. RESULTS FAD and FAD redox ratios in polyclonal cells with DEKsh were significantly lower than that in NTsh control cells. Consistently, the DEKsh cells demonstrated decreased invasive potential than their non-knockdown counterparts NTsh cells. CONCLUSIONS This study provides direct evidence that oncogene activities could mediate ORI-detected cellular redox state.
Collapse
Affiliation(s)
- Yu Wen
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - He N Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa Privette Vinnedge
- Cincinnati Children's Hospital Medical Center, Cancer and Blood Diseases Institute, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Min Feng
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Z Li
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center and Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Sertorio M, Perentesis JP, Vatner RE, Mascia AE, Zheng Y, Wells SI. Cancer Cell Metabolism: Implications for X-ray and Particle Radiation Therapy. Int J Part Ther 2018; 5:40-48. [PMID: 31773019 DOI: 10.14338/ijpt-18-00023.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/21/2018] [Indexed: 01/13/2023] Open
Abstract
Advances in radiation delivery technologies and immunotherapy have improved effective cancer treatments and long-term outcomes. Experimental and clinical trials have demonstrated the benefit of a combination of radiation therapy and immunotherapy for tumor eradication. Despite precise radiation dose delivery that is achievable by particle therapy and benefits from reactivating the antitumor immune response, resistance to both therapeutic strategies is frequently observed in patients. Understanding the biological origins of such resistance will create new opportunities for improved cancer treatment. Cancer metabolism and especially a high rate of aerobic glycolysis leading to overproduction and release of lactate is one such biological process favoring tumor progression and treatment resistance. Because of their known protumor effects, aerobic glycolysis and lactate production are potential targets for increased efficacy of radiation alone or in combination with immunotherapy. In the following review, we present an overview of the interplay of cancer cell lactate metabolism with the tumor microenvironment and immune cells. We discuss how a deeper understanding and careful modulation of lactate metabolism and radiation therapy might exploit this interplay for improved therapeutic outcome.
Collapse
Affiliation(s)
- Mathieu Sertorio
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - John P Perentesis
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Ralph E Vatner
- Division of Immunobiology, Cincinnati Children's Hospital, OH, USA.,Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Anthony E Mascia
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Susanne I Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| |
Collapse
|
22
|
Liu Z, Huang C, Liu Y, Lin D, Zhao Y. NMR-based metabolomic analysis of the effects of alanyl-glutamine supplementation on C2C12 myoblasts injured by energy deprivation. RSC Adv 2018; 8:16114-16125. [PMID: 35542200 PMCID: PMC9080260 DOI: 10.1039/c8ra00819a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
The dipeptide alanyl-glutamine (Ala-Gln) is a well-known parenteral nutritional supplement. The Ala-Gln supplementation is a potential treatment for muscle-related diseases and injuries. However, molecular mechanisms underlying the polyphenic effects of Ala-Gln supplementation remain elusive. Here, we performed NMR-based metabolomic profiling to analyze the effects of Ala-Gln, and the free alanine (Ala) and glutamine (Gln) supplementations on the mouse myoblast cell line C2C12 injured by glucose and glutamine deprivation. All the three supplementations can promote the differentiation ability of the injured C2C12 cells, while only Ala-Gln supplementation can facilitate the proliferation of the injured cells. Ala-Gln supplementation can partially restore the metabolic profile of C2C12 myoblasts disturbed by glucose and glutamine deprivation, and exhibits more significant effects than Ala and Gln supplementations. Our results suggest that Ala-Gln supplementation can promote MyoD1 protein synthesis, upregulate the muscle ATP-storage phosphocreatine (PCr), maintain TCA cycle anaplerosis, enhance the antioxidant capacity through promoting GSH biosynthesis, and stabilize lipid membranes by suppressing glycerophospholipids metabolism. This work provides new insight into mechanistic understanding of the polyphenic effects of Ala-Gln supplementation on muscle cells injured by energy deprivation.
Collapse
Affiliation(s)
- Zhiqing Liu
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Caihua Huang
- Exercise and Health Laboratory, Xiamen University of Technology Xiamen 361024 China
| | - Yan Liu
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Yufen Zhao
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| |
Collapse
|
23
|
Matrka MC, Cimperman KA, Haas SR, Guasch G, Ehrman LA, Waclaw RR, Komurov K, Lane A, Wikenheiser-Brokamp KA, Wells SI. Dek overexpression in murine epithelia increases overt esophageal squamous cell carcinoma incidence. PLoS Genet 2018; 14:e1007227. [PMID: 29538372 PMCID: PMC5884580 DOI: 10.1371/journal.pgen.1007227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/04/2018] [Accepted: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer occurs as either squamous cell carcinoma (ESCC) or adenocarcinoma. ESCCs comprise almost 90% of cases worldwide, and recur with a less than 15% five-year survival rate despite available treatments. The identification of new ESCC drivers and therapeutic targets is critical for improving outcomes. Here we report that expression of the human DEK oncogene is strongly upregulated in esophageal SCC based on data in the cancer genome atlas (TCGA). DEK is a chromatin-associated protein with important roles in several nuclear processes including gene transcription, epigenetics, and DNA repair. Our previous data have utilized a murine knockout model to demonstrate that Dek expression is required for oral and esophageal SCC growth. Also, DEK overexpression in human keratinocytes, the cell of origin for SCC, was sufficient to cause hyperplasia in 3D organotypic raft cultures that mimic human skin, thus linking high DEK expression in keratinocytes to oncogenic phenotypes. However, the role of DEK over-expression in ESCC development remains unknown in human cells or genetic mouse models. To define the consequences of Dek overexpression in vivo, we generated and validated a tetracycline responsive Dek transgenic mouse model referred to as Bi-L-Dek. Dek overexpression was induced in the basal keratinocytes of stratified squamous epithelium by crossing Bi-L-Dek mice to keratin 5 tetracycline transactivator (K5-tTA) mice. Conditional transgene expression was validated in the resulting Bi-L-Dek_K5-tTA mice and was suppressed with doxycycline treatment in the tetracycline-off system. The mice were subjected to an established HNSCC and esophageal carcinogenesis protocol using the chemical carcinogen 4-nitroquinoline 1-oxide (4NQO). Dek overexpression stimulated gross esophageal tumor development, when compared to doxycycline treated control mice. Furthermore, high Dek expression caused a trend toward esophageal hyperplasia in 4NQO treated mice. Taken together, these data demonstrate that Dek overexpression in the cell of origin for SCC is sufficient to promote esophageal SCC development in vivo.
Collapse
Affiliation(s)
- Marie C. Matrka
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Katherine A. Cimperman
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Sarah R. Haas
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Geraldine Guasch
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institute Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Lisa A. Ehrman
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Ronald R. Waclaw
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kakajan Komurov
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Adam Lane
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine and Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Susanne I. Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
24
|
Smith EA, Krumpelbeck EF, Jegga AG, Greis KD, Ali AM, Meetei AR, Wells SI. The nuclear DEK interactome supports multi-functionality. Proteins 2018; 86:88-97. [PMID: 29082557 PMCID: PMC5730476 DOI: 10.1002/prot.25411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023]
Abstract
DEK is an oncoprotein that is overexpressed in many forms of cancer and participates in numerous cellular pathways. Of these different pathways, relevant interacting partners and functions of DEK are well described in regard to the regulation of chromatin structure, epigenetic marks, and transcription. Most of this understanding was derived by investigating DNA-binding and chromatin processing capabilities of the oncoprotein. To facilitate the generation of mechanism-driven hypotheses regarding DEK activities in underexplored areas, we have developed the first DEK interactome model using tandem-affinity purification and mass spectrometry. With this approach, we identify IMPDH2, DDX21, and RPL7a as novel DEK binding partners, hinting at new roles for the oncogene in de novo nucleotide biosynthesis and ribosome formation. Additionally, a hydroxyurea-specific interaction with replication protein A (RPA) was observed, suggesting that a DEK-RPA complex may form in response to DNA replication fork stalling. Taken together, these findings highlight diverse activities for DEK across cellular pathways and support a model wherein this molecule performs a plethora of functions.
Collapse
Affiliation(s)
- Eric A. Smith
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Eric F. Krumpelbeck
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45219, USA
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45219, USA
| | - Abdullah M. Ali
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Amom R. Meetei
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Susanne I. Wells
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| |
Collapse
|