1
|
Jia K, Cao L, Yu Y, Jing D, Wu W, Van Tine BA, Shao Z. Signaling pathways and targeted therapies in Ewing sarcoma. Pharmacol Ther 2025; 266:108765. [PMID: 39622389 DOI: 10.1016/j.pharmthera.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Ewing sarcoma, the second most prevalent malignant bone tumor with potential occurrence in soft tissues, exhibits a high level of aggressiveness, primarily afflicting children and adolescents. It is characterized by fusion proteins arising from chromosomal translocations. The fusion proteins induce aberrations in multiple signaling pathways and molecules, constituting a key event in oncogenic transformation. While diagnostic and therapeutic modalities have advanced in recent decades and multimodal treatments, including surgery, radiotherapy, and chemotherapy, have significantly improved survival of patients with localized tumors, patients with metastatic tumors continue to face poor prognoses. There persists a pressing need for novel alternative treatments, yet the translation of our understanding of Ewing sarcoma pathogenesis into improved clinical outcomes remains a critical challenge. Here, we provide a comprehensive review of Ewing sarcoma, including fusion proteins, various signaling pathways, pivotal pathogenetic molecules implicated in its development, and associated targeted therapies and immunotherapies. We summarize past endeavors, current advancements, and deliberate on limitations and future research directions. It is envisaged that this review will furnish novel insights into prospective treatment avenues for Ewing sarcoma.
Collapse
Affiliation(s)
- Ke Jia
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Li Cao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Washington University School of Medicine, St Louis, MO, USA.
| | - Yihan Yu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Wei Wu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | - Zengwu Shao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Raoufinia R, Afrasiabi P, Dehghanpour A, Memarpour S, Hosseinian SHS, Saburi E, Naghipoor K, Rezaei S, Haghmoradi M, Keyhanvar N, Rostami M, Fakoor F, Kazemi MI, Moghbeli M, Rahimi HR. The Landscape of microRNAs in Bone Tumor: A Comprehensive Review in Recent Studies. Microrna 2024; 13:175-201. [PMID: 39005129 DOI: 10.2174/0122115366298799240625115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Cancer, the second greatest cause of mortality worldwide, frequently causes bone metastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord compression. These injurious incidents leave uncomfortably in each of the cancer patient's life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and exhibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various biological processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Afrasiabi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Memarpour
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naghipoor
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Haghmoradi
- Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Keyhanvar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Fakoor
- Department of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Izadpanah Kazemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Hassan M, Shahzadi S, Malik A, Din SU, Yasir M, Chun W, Kloczkowski A. Oncomeric Profiles of microRNAs as New Therapeutic Targets for Treatment of Ewing's Sarcoma: A Composite Review. Genes (Basel) 2023; 14:1849. [PMID: 37895198 PMCID: PMC10606885 DOI: 10.3390/genes14101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ewing's sarcoma is a rare type of cancer that forms in bones and soft tissues in the body, affecting mostly children and young adults. Current treatments for ES are limited to chemotherapy and/or radiation, followed by surgery. Recently, microRNAs have shown favourable results as latent diagnostic and prognostic biomarkers in various cancers. Furthermore, microRNAs have shown to be a good therapeutic agent due to their involvement in the dysregulation of various molecular pathways linked to tumour progression, invasion, angiogenesis, and metastasis. In this review, comprehensive data mining was employed to explore various microRNAs that might have therapeutic potential as target molecules in the treatment of ES.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
| | - Amal Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan;
| | - Salah ud Din
- Department of Bioinformatics, University of Okara, Okara 56130, Pakistan;
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
4
|
Vaswani CM, Varkouhi AK, Gupta S, Ektesabi AM, Tsoporis JN, Yousef S, Plant PJ, da Silva AL, Cen Y, Tseng YC, Batah SS, Fabro AT, Advani SL, Advani A, Leong-Poi H, Marshall JC, Garcia CC, Rocco PRM, Albaiceta GM, Sebastian-Bolz S, Watts TH, Moraes TJ, Capelozzi VL, Dos Santos CC. Preventing occludin tight-junction disruption via inhibition of microRNA-193b-5p attenuates viral load and influenza-induced lung injury. Mol Ther 2023; 31:2681-2701. [PMID: 37340634 PMCID: PMC10491994 DOI: 10.1016/j.ymthe.2023.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Virus-induced lung injury is associated with loss of pulmonary epithelial-endothelial tight junction integrity. While the alveolar-capillary membrane may be an indirect target of injury, viruses may interact directly and/or indirectly with miRs to augment their replication potential and evade the host antiviral defense system. Here, we expose how the influenza virus (H1N1) capitalizes on host-derived interferon-induced, microRNA (miR)-193b-5p to target occludin and compromise antiviral defenses. Lung biopsies from patients infected with H1N1 revealed increased miR-193b-5p levels, marked reduction in occludin protein, and disruption of the alveolar-capillary barrier. In C57BL/6 mice, the expression of miR-193b-5p increased, and occludin decreased, 5-6 days post-infection with influenza (PR8). Inhibition of miR-193b-5p in primary human bronchial, pulmonary microvascular, and nasal epithelial cells enhanced antiviral responses. miR-193b-deficient mice were resistant to PR8. Knockdown of occludin, both in vitro and in vivo, and overexpression of miR-193b-5p reconstituted susceptibility to viral infection. miR-193b-5p inhibitor mitigated loss of occludin, improved viral clearance, reduced lung edema, and augmented survival in infected mice. Our results elucidate how the innate immune system may be exploited by the influenza virus and how strategies that prevent loss of occludin and preserve tight junction function may limit susceptibility to virus-induced lung injury.
Collapse
Affiliation(s)
- Chirag M Vaswani
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Amir K Varkouhi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Sahil Gupta
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Amin M Ektesabi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - James N Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Sadiya Yousef
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Pamela J Plant
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Adriana L da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Brazil
| | - Yuchen Cen
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada
| | - Yi-Chieh Tseng
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada
| | - Sabrina S Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Alexandre T Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Howard Leong-Poi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John C Marshall
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cristiana C Garcia
- Laboratory of Respiratory, Exanthematic Viruses, Enterovirus and Viral Emergencies, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil; Integrated Research Group on Biomarkers. René Rachou Institute, FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Brazil
| | - Guillermo M Albaiceta
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain; CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Steffen Sebastian-Bolz
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Theo J Moraes
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada; Department of Pediatrics University of Toronto and Respirology, Hospital for Sick Children, Toronto, ON, Canada
| | - Vera L Capelozzi
- Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Claudia C Dos Santos
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Interdepartmental Division of Critical Care, St Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Daher M, Zalaquett Z, Chalhoub R, Abi Farraj S, Abdo M, Sebaaly A, Kourie HR, Ghanem I. Molecular and biologic biomarkers of Ewing sarcoma: A systematic review. J Bone Oncol 2023; 40:100482. [PMID: 37180735 PMCID: PMC10173001 DOI: 10.1016/j.jbo.2023.100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
With an annual incidence of less than 1%, Ewing sarcoma mainly occurs in children and young adults. It is not a frequent tumor but is the second most common bone malignancy in children. It has a 5-year survival rate of 65-75%; however, it has a poor prognosis when it relapses in patients. A genomic profile of this tumor can potentially help identify poor prognosis patients earlier and guide their treatment. A systematic review of the articles concerning genetic biomarkers in Ewing sarcoma was conducted using the Google Scholar, Cochrane, and PubMed database. There were 71 articles discovered. Numerous diagnostic, prognostic, and predictive biomarkers were found. However, more research is necessary to confirm the role of some of the mentioned biomarkers. .
Collapse
Affiliation(s)
- Mohammad Daher
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
- Corresponding author at: Hotel Dieu de France, Beirut, Lebanon.
| | - Ziad Zalaquett
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Ralph Chalhoub
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Sami Abi Farraj
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Majd Abdo
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Amer Sebaaly
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Hampig-Raphaël Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Ismat Ghanem
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| |
Collapse
|
6
|
miR-193b-3p Promotes Proliferation of Goat Skeletal Muscle Satellite Cells through Activating IGF2BP1. Int J Mol Sci 2022; 23:ijms232415760. [PMID: 36555418 PMCID: PMC9779864 DOI: 10.3390/ijms232415760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
As a well-known cancer-related miRNA, miR-193b-3p is enriched in skeletal muscle and dysregulated in muscle disease. However, the mechanism underpinning this has not been addressed so far. Here, we probed the impact of miR-193b-3p on myogenesis by mainly using goat tissues and skeletal muscle satellite cells (MuSCs), compared with mouse C2C12 myoblasts. miR-193b-3p is highly expressed in goat skeletal muscles, and ectopic miR-193b-3p promotes MuSCs proliferation and differentiation. Moreover, insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) is the most activated insulin signaling gene when there is overexpression of miR-193b-3p; the miRNA recognition element (MRE) within the IGF1BP1 3' untranslated region (UTR) is indispensable for its activation. Consistently, expression patterns and functions of IGF2BP1 were similar to those of miR-193b-3p in tissues and MuSCs. In comparison, ectopic miR-193b-3p failed to induce PAX7 expression and myoblast proliferation when there was IGF2BP1 knockdown. Furthermore, miR-193b-3p destabilized IGF2BP1 mRNA, but unexpectedly promoted levels of IGF2BP1 heteronuclear RNA (hnRNA), dramatically. Moreover, miR-193b-3p could induce its neighboring genes. However, miR-193b-3p inversely regulated IGF2BP1 and myoblast proliferation in the mouse C2C12 myoblast. These data unveil that goat miR-193b-3p promotes myoblast proliferation via activating IGF2BP1 by binding to its 3' UTR. Our novel findings highlight the positive regulation between miRNA and its target genes in muscle development, which further extends the repertoire of miRNA functions.
Collapse
|
7
|
Crow J, Samuel G, Farrow E, Gibson M, Johnston J, Guest E, Miller N, Pei D, Koestler D, Pathak H, Liang X, Mangels C, Godwin AK. MicroRNA Content of Ewing Sarcoma Derived Extracellular Vesicles Leads to Biomarker Potential and Identification of a Previously Undocumented EWS-FLI1 Translocation. Biomark Insights 2022; 17:11772719221132693. [PMID: 36341281 PMCID: PMC9629554 DOI: 10.1177/11772719221132693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Objective: Ewing Sarcoma Family of Tumors (ESFT) are a highly aggressive pediatric bone and soft tissue malignancy with poor outcomes in the refractory and recurrent setting. Over 90% of Ewing Sarcoma (ES) tumors are driven by the pathognomonic EWS-ETS chimeric transcripts and their corresponding oncoproteins. It has been suggested that the EWS-ETS oncogenic action can mediate microRNA (miRNA) processing. Importantly, small extracellular vesicles (sEVs), including those frequently referred to as exosomes have been shown to be highly enriched with tumor-derived small RNAs such as miRNAs. We hypothesized that ESFT-specific sEVs are enriched with certain miRNAs which could be utilized toward an exo-miRNA biomarker signature specific to this disease. Methods: We performed miRNAseq to compare both the exo-derived and cell-derived miRNA content from 8 ESFT, 2 osteosarcoma, 2 non-cancerous cell lines, and pediatric plasma samples. Results: We found that sEVs derived from ESFT cells contained nearly 2-fold more number of unique individual miRNAs as compared to non-ESFT samples. Quantitative analysis of the differential enrichment of sEV miRNAs resulted in the identification of 62 sEV-miRNAs (exo-miRNAs) with significant (P < .05) enrichment variation between ESFT and non-ESFT sEV samples. To determine if we could utilize this miRNA signature to diagnose ESFT patients via a liquid biopsy, we analyzed the RNA content of total circulating sEVs isolated from 500 µL plasma from 5 pediatric ESFT patients, 2 pediatric osteosarcoma patients, 2 pediatric rhabdomyosarcoma patients, and 4 non-cancer pediatric controls. Pearson's clustering of 60 of the 62 candidate exo-miRNAs correctly identified 80% (4 of 5) of pathology confirmed ESFT patients. Importantly, RNAseq analysis of tumor tissue from the 1 outlier, revealed a previously uncharacterized EWS-FLI1 translocation.Conclusions: Taken together, these findings support the development and validation of an exo-miRNA-based liquid biopsy to aid in the diagnosis and monitoring of ESFT.
Collapse
Affiliation(s)
- Jennifer Crow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Glenson Samuel
- Children’s Mercy Kansas City, Kansas City, MO, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily Farrow
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Margaret Gibson
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Jefferey Johnston
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Erin Guest
- Children’s Mercy Kansas City, Kansas City, MO, USA
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Neil Miller
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Dong Pei
- The Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin Koestler
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- The Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiaobo Liang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Cooper Mangels
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Palmini G, Brandi ML. microRNAs and bone tumours: Role of tiny molecules in the development and progression of chondrosarcoma, of giant cell tumour of bone and of Ewing's sarcoma. Bone 2021; 149:115968. [PMID: 33892177 DOI: 10.1016/j.bone.2021.115968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The increasing interest on microRNAs (miRNAs), small non-coding RNA molecules containing about 22 nucleotides, about their biological functions led researchers to discover that they are actively involved in several biological processes. In the last decades, miRNAs become one of the most topic of cancer research. miRNAs, thanks to their function, are the perfect molecules to modulate multiple signaling pathways and gene expression in cancer, with the consequent capacity to modulate cancerous processes, such as cellular proliferation, invasion, metastasis and chemoresistance in various tumours. In the last years, several studies have demonstrated the role of miRNAs in their pathophysiology, but little we know about the underlying mechanism that lead to bone tumours like chondrosarcoma (COS), giant cell tumour of bone (GCTB) and Ewing sarcoma (EWS) to still be highly aggressive and resistant tumours. An exploration of the role of miRNAs in the biology of them will permit to researchers to find new molecular mechanisms that can be used to develop new and more effective therapies against these bone tumours. Here we present a comprehensive study of the latest discoveries which have been performed in relation to the role of miRNAs in the neoplastic processes which characterize COS, EWS and GCTB, demonstrating how these tiny molecules can act as tumour promoters or as tumour suppressors and how they can be used for improving therapeutic approaches.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Fondazione Italiana Ricerca sulle Malattie dell'Osso, F.I.R.M.O Onlus, Florence, Italy.
| |
Collapse
|
9
|
Barrett C, Budhiraja A, Parashar V, Batish M. The Landscape of Regulatory Noncoding RNAs in Ewing's Sarcoma. Biomedicines 2021; 9:933. [PMID: 34440137 PMCID: PMC8391329 DOI: 10.3390/biomedicines9080933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Ewing's sarcoma (ES) is a pediatric sarcoma caused by a chromosomal translocation. Unlike in most cancers, the genomes of ES patients are very stable. The translocation product of the EWS-FLI1 fusion is most often the predominant genetic driver of oncogenesis, and it is pertinent to explore the role of epigenetic alterations in the onset and progression of ES. Several types of noncoding RNAs, primarily microRNAs and long noncoding RNAs, are key epigenetic regulators that have been shown to play critical roles in various cancers. The functions of these epigenetic regulators are just beginning to be appreciated in ES. Here, we performed a comprehensive literature review to identify these noncoding RNAs. We identified clinically relevant tumor suppressor microRNAs, tumor promoter microRNAs and long noncoding RNAs. We then explored the known interplay between different classes of noncoding RNAs and described the currently unmet need for expanding the noncoding RNA repertoire of ES. We concluded the review with a discussion of epigenetic regulation of ES via regulatory noncoding RNAs. These noncoding RNAs provide new avenues of exploration to develop better therapeutics and identify novel biomarkers.
Collapse
Affiliation(s)
| | | | | | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA; (C.B.); (A.B.); (V.P.)
| |
Collapse
|
10
|
Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, Oton-Gonzalez L, Rotondo JC, Torreggiani E, Tognon M, Martini F. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 2021; 11:6573-6591. [PMID: 33995677 PMCID: PMC8120225 DOI: 10.7150/thno.55664] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues. MSCs can regenerate through cell division or differentiate into adipocytes, osteoblasts and chondrocytes. As a result, MSCs have become an important source of cells in tissue engineering and regenerative medicine for bone tissue and cartilage. Several epigenetic factors are believed to play a role in MSCs differentiation. Among these, microRNA (miRNA) regulation is involved in the fine modulation of gene expression during osteogenic/chondrogenic differentiation. It has been reported that miRNAs are involved in bone homeostasis by modulating osteoblast gene expression. In addition, countless evidence has demonstrated that miRNAs dysregulation is involved in the development of osteoporosis and bone fractures. The deregulation of miRNAs expression has also been associated with several malignancies including bone cancer. In this context, bone-associated circulating miRNAs may be useful biomarkers for determining the predisposition, onset and development of osteoporosis, as well as in clinical applications to improve the diagnosis, follow-up and treatment of cancer and metastases. Overall, this review will provide an overview of how miRNAs activities participate in osteogenic/chondrogenic differentiation, while addressing the role of miRNA regulatory effects on target genes. Finally, the role of miRNAs in pathologies and therapies will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara. Ferrara, Italy
| |
Collapse
|
11
|
Lee HY, Son SW, Moeng S, Choi SY, Park JK. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. Int J Mol Sci 2021; 22:ijms22020627. [PMID: 33435156 PMCID: PMC7827914 DOI: 10.3390/ijms22020627] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells. Multiple cellular factors and events, such as apoptosis, survival factors, cell cycle, EMT, stemness, autophagy, and integrins influence the anoikis resistance and anchorage-independent cell growth in cancer. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are dysregulated in cancer. They regulate cellular signaling pathways and events, eventually contributing to cancer aggressiveness. This review presents the role of miRNAs and lncRNAs in modulating anoikis resistance and anchorage-independent cell growth. We also discuss the feasibility of ncRNA-based therapy and the natural features of ncRNAs that need to be contemplated for more beneficial therapeutic strategies against cancer.
Collapse
|
12
|
Jin W. The Role of Tyrosine Kinases as a Critical Prognostic Parameter and Its Targeted Therapies in Ewing Sarcoma. Front Cell Dev Biol 2020; 8:613. [PMID: 32754598 PMCID: PMC7381324 DOI: 10.3389/fcell.2020.00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (ES) is a rare, highly aggressive, bone, or soft tissue-associated tumor. Although this sarcoma often responds well to initial chemotherapy, 40% of the patients develop a lethal recurrence of the disease, with death recorded in 75-80% of patients with metastatic ES within 5 years, despite receiving high-dose chemotherapy. ES is genetically well-characterized, as indicated by the EWS-FLI1 fusion protein encoded as a result of chromosomal translocation in 80-90% of patients with ES, as well as in ES-related cancer cell lines. Recently, tyrosine kinases have been identified in the pathogenesis of ES. These tyrosine kinases, acting as oncoproteins, are associated with the clinical pathogenesis, metastasis, acquisition of self-renewal traits, and chemoresistance of ES, through the activation of various intracellular signaling pathways. This review describes the recent progress related to cellular and molecular functional roles of tyrosine kinases in the progression of ES.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
13
|
Gao J, Ma S, Yang F, Chen X, Wang W, Zhang J, Li Y, Wang T, Shan L. miR‑193b exhibits mutual interaction with MYC, and suppresses growth and metastasis of osteosarcoma. Oncol Rep 2020; 44:139-155. [PMID: 32377743 PMCID: PMC7254955 DOI: 10.3892/or.2020.7601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence has indicated that microRNAs (miRs) are involved in the malignant behavior of cancer. The present study explored the role of miR‑193b in the development and metastasis of osteosarcoma. Compared with F4 osteosarcoma cells, which have a relatively low metastatic potential, highly metastatic F5M2 cells exhibited a lower expression of miR‑193b. Furthermore, miR‑193b exerted negative effects on cell proliferation, colony formation, cell cycle progression, migration and invasion, and induced apoptosis. In vivo studies revealed negative influences of miR‑193b on tumorigenesis and metastasis. The tumor‑suppressive role of miR‑193b was achieved by targeting KRAS and stathmin 1 (STMN1). Notably, overexpression of KRAS and STMN1 attenuated the miR‑193b‑induced inhibition of malignant behaviors. There was a double‑negative regulatory loop between MYC and miR‑193b, with MYC inhibiting miR‑193b expression by directly binding to its promoter region and miR‑193b negatively influencing MYC expression indirectly through some unknown mechanism. Collectively, these findings indicated that miR‑193b may serve a tumor suppressive role in osteosarcoma by targeting KRAS and STMN1. The double‑negative regulatory loop between MYC and miR‑193b may contribute to the sustained upregulation of MYC, the downregulation of miR‑193b, and to the subsequently enhanced expression of KRAS and STMN1, which may eventually lead to the development and metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Jinjian Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Sai Ma
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fan Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xu Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jianping Zhang
- Department of Orthopedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| | - Yufang Li
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tao Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lequn Shan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
14
|
Sobral LM, Sechler M, Parrish JK, McCann TS, Jones KL, Black JC, Jedlicka P. KDM3A/Ets1/MCAM axis promotes growth and metastatic properties in Rhabdomyosarcoma. Genes Cancer 2020; 11:53-65. [PMID: 32577157 PMCID: PMC7289905 DOI: 10.18632/genesandcancer.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy of childhood. RMS exists as two major disease subtypes, with oncofusion-positive RMS (FP-RMS) typically carrying a worse prognosis than oncofusion-negative RMS (FN-RMS), in part due to higher propensity for metastasis. Epigenetic mechanisms have recently emerged as critical players in the pathogenesis of pediatric cancers, as well as potential new therapeutic vulnerabilities. Herein, we show that the epigenetic regulator KDM3A, a member of the Jumonji-domain histone demethylase (JHDM) family, is overexpressed, potently promotes colony formation and transendothelial invasion, and activates the expression of genes involved in cell growth, migration and metastasis, in both FN-RMS and FP-RMS. In mechanistic studies, we demonstrate that both RMS subtypes utilize a KDM3A/Ets1/MCAM disease-promoting axis recently discovered in Ewing Sarcoma, another aggressive pediatric cancer of distinct cellular and molecular origin. We further show that KDM3A depletion in FP-RMS cells inhibits both tumor growth and metastasis in vivo, and that RMS cells are highly sensitive to colony growth inhibition by the pan-JHDM inhibitor JIB-04. Together, our studies reveal an important role for the KDM3A/Ets1/MCAM axis in pediatric sarcomas of distinct cellular and molecular ontogeny, and identify new targetable vulnerabilities in RMS.
Collapse
Affiliation(s)
- Lays Martin Sobral
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Marybeth Sechler
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Cancer Biology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Janet K Parrish
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Tyler S McCann
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C Black
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Cancer Biology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
15
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
16
|
Huang Z, Wang SL, Chen H, Shen RK, Li XD, Huang QS, Wu CY, Weng DF, Lin JH. Clinicopathological and prognostic values of ErbB receptor family amplification in primary osteosarcoma. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:601-612. [PMID: 31663373 DOI: 10.1080/00365513.2019.1683764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is a malignant bone tumor with extremely high invasion, metastasis and mortality. The prognosis of patients with osteosarcoma remains poor. The ErbB receptor family was found to be overexpressed in human cancers and associated with poor prognosis. However, the role of ErbB receptor family in osteosarcoma has not been fully understood. The present study aimed to investigate the clinicopathological and prognostic significances of ErbB receptors in primary osteosarcoma. Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization (FISH) were used to detect the protein and gene expression of ErbB receptors in 60 primary osteosarcoma specimens and 30 non-neoplastic bone tissues. WB and RT-qPCR analyses showed that the protein and mRNA expression levels of EGFR, ErbB3 and ErbB4 in osteosarcoma specimens were significantly higher than those in non-neoplastic bone tissues. Seventeen (28.33%), 15 (25.00%) and 15 (25.00%) osteosarcoma specimens presented with amplification of EGFR, ErbB3 and ErbB4 gene, respectively, which were significantly higher compared with non-neoplastic bone tissues. The amplification of ErbB3 and ErbB4 in osteosarcoma was associated with advanced surgical stage. The amplification of EGFR, ErbB3, ErbB4 and the co-amplification of EGFR-ErbB3, EGFR-ErbB4, ErbB3-ErbB4 was linked with poor response to chemotherapy and distant metastasis. The amplification of EGFR, ErbB3 and ErbB4, as well as their co-amplification demonstrated independent prognostic values for reduced survival time of osteosarcoma patients and may serve as potential therapeutic targets for osteosarcoma patients in the future.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Sheng-Lin Wang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Hui Chen
- Department of Nephrology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Rong-Kai Shen
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Xiao-Dong Li
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Qing-Shan Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Chao-Yang Wu
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Dan-Feng Weng
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Jian-Hua Lin
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China.,Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
17
|
Smith CM, Catchpoole D, Hutvagner G. Non-Coding RNAs in Pediatric Solid Tumors. Front Genet 2019; 10:798. [PMID: 31616462 PMCID: PMC6764412 DOI: 10.3389/fgene.2019.00798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Pediatric solid tumors are a diverse group of extracranial solid tumors representing approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as a result of disruptions in the developmental process of precursor cells which lead them to accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors typically feature a low number of genetic mutations in protein-coding genes which could explain the emergence of these phenotypes. It is likely that oncogenesis occurs after a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a group of functional RNA molecules that lack protein coding potential but are essential in the regulation and maintenance of many epigenetic and post-translational mechanisms. Indeed, research has accumulated a large body of evidence implicating many ncRNAs in the regulation of well-established oncogenic networks. In this review we cover a range of extracranial solid tumors which represent some of the rarer and enigmatic childhood cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-coding RNAs, which are likely to play a key role in the development of these cancers and emphasize their functional contributions and molecular interactions during tumor formation.
Collapse
Affiliation(s)
- Christopher M Smith
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Daniel Catchpoole
- School of Software, University of Technology Sydney, Sydney, Australia.,The Tumour Bank-CCRU, Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
18
|
Dual-strand tumor suppressor miR-193b-3p and -5p inhibit malignant phenotypes of lung cancer by suppressing their common targets. Biosci Rep 2019; 39:BSR20190634. [PMID: 31262974 PMCID: PMC6630026 DOI: 10.1042/bsr20190634] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
Emerging studies suggest that microRNAs (miRNAs) play multiple roles in cancer malignancy, including proliferation and acquisition of metastatic potential. Differentially expressed miRNAs responsible for the malignancy of lung cancer were searched by miRNA microarray using a previously established brain metastatic lung cancer model. Twenty-five miRNAs were down-regulated in brain metastatic lung cancer cells. Among those, miR-193b-3p and -5p were chosen for further studies. Their function in metastatic potential and proliferation was examined using Transwell invasion, wound healing, and colony forming assays. The underlying mechanism of tumor-suppressor miR-193b-3p and -5p was explored using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), Western blot, Argonaute 2-RNA immunoprecipitation (Ago2-RIP), and reporter assays. Both strands of miR-193b were down-regulated in brain metastatic lung cancer cells and in tissues from lung cancer patients. Overexpression of miR-193b-3p and -5p inhibited invasive and migratory activities and diminished clonogenic ability. Conversely, inhibition of miR-193b-3p or -5p increased the metastatic potential and colony forming ability. Cyclin D1 (CCND1), Ajuba LIM Protein (AJUBA), and heart development protein with EGF like domains 1 (HEG1) were identified as common target genes of miR-193b-3p and -5p. A reporter assay and an Ago2-RIP experiment showed that both miRNAs directly bind to the 3′ untranslated region (3′UTR) of the target mRNA. Knockdown of target gene reduced the proliferative and metastatic potential of primary and metastatic lung cancer cells. Our results demonstrate miR-193b is a dual-strand tumor suppressor and a novel therapeutic target for lung cancer.
Collapse
|
19
|
Kang M, Li Y, Zhu S, Zhang S, Guo S, Li P. MicroRNA-193b acts as a tumor suppressor gene in human esophageal squamous cell carcinoma via target regulation of KRAS. Oncol Lett 2019; 17:3965-3973. [PMID: 30881513 DOI: 10.3892/ol.2019.10039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/12/2018] [Indexed: 01/26/2023] Open
Abstract
In recent years, microRNA-193b (miR-193b) is regarded as a tumor suppressor in the development and progression of various cancers. Several studies have indicated that KRAS could be regulated by miR-193b in pancreatic cancer cells. However, the function of miR-193b in human esophageal squamous cell carcinoma has not been explored intensively thus far. Herein, the relationship between miR-193b and KRAS was mainly explored in esophageal squamous cell carcinoma cells. In the present study, the expression levels of miR-193b and KRAS were assessed in both human esophageal cancer cells and tissues. The direct regulatory relationship between miR-193b and KRAS was evaluated using dual-luciferase assay. The effect of miR-193b overexpression and inhibitor on cell proliferation, migration/invasion, and apoptosis was further detected herein. Our results indicated that the expression of miR-193b was significantly lower in human esophageal cancer tissues than paracancerous tissues. The expression level of miR-193b/KRAS was stage-dependent in human esophageal cancers. KRAS was indicated as the direct target of miR-193b, and upregulation of miR-193b increased the percentage of cell apoptosis, and suppressed cell proliferation as well as cell migration/invasion via direct regulation of KRAS. Therefore, our study indicated that miR-193b plays an important role in the development and progression of human esophageal squamous cell carcinoma, which may become a novel target in the treatment of human esophageal squamous cell carcinoma in the future.
Collapse
Affiliation(s)
- Min Kang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, P.R. China.,Department of Digestive Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yan Li
- Molecular Medicine Experimental Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, P.R. China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, P.R. China
| |
Collapse
|
20
|
Expressions and clinical significance of HER4 and CD44 in sinonasal mucosal malignant melanoma. Melanoma Res 2019; 28:105-110. [PMID: 29309357 DOI: 10.1097/cmr.0000000000000428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sinonasal mucosal malignant melanoma (SNMMM) is a rare disease. The aim of this study was to investigate the expressions of HER4 and CD44 in human SNMMM tissues and their relationship with the clinicopathological features and prognosis of patients. In total, 64 paraffin-embedded samples of SNMMM treated in our hospital from 29 December 1999 to 24 June 2011 were collected. HER4 and CD44 were detected in the tissues of SNMMM by immunohistochemistry. The differences in the HER4 and CD44 expressions in the tissues were evaluated and matched with clinicopathological parameters and the survival rate, respectively. The positive rates of the HER4 and CD44 expressions were 70.3 and 65.6%, respectively; the positive expression of HER4 was correlated with a positive expression of CD44 (P<0.05). The positive expression of HER4 was correlated with the prognosis of SNMMM patients (P<0.05). There was no significant correlation between a positive expression of CD44 and the prognosis of patients (P>0.05). The expressions of HER4 and CD44 were not significantly correlated with sex, age, pigment, tumor site, etc. (P>0.05). Our results further emphasize a correlation between HER4 and CD44 expressions in SNMMM tissues and point out that a positive HER4 expression might be an important factor in valuing the prognosis of patients with SNMMM.
Collapse
|
21
|
Sun L, He M, Xu N, Xu DH, Ben-David Y, Yang ZY, Li YJ. Regulation of RAB22A by mir-193b inhibits breast cancer growth and metastasis mediated by exosomes. Int J Oncol 2018; 53:2705-2714. [PMID: 30272274 DOI: 10.3892/ijo.2018.4571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is one of the main types of cancer affecting the health of females worldwide. Despite improvements in therapeutic approaches, cancer patients succumb to the disease due to metastasis itself, rather than the primary tumor from which metastases arise, emphasizing the need for the better understanding of the biological bases that contribute to disease progression. RAB22A, a member of the proto-oncogene RAS family, plays an important role in the formation, trafficking and metabolism of exosomes, and is associated with the occurrence and development of multiple human cancers. In this study, we demonstrate that the upregulation of RAB22A is associated with breast cancer progression and lymph node metastasis. We identified a signature of RAB22A and miR-193b that exhibited a negative association in metastatic as opposed to the surrounding normal cells, and RAB22A was identified as the target gene of miR-193b. While RAB22A was found to regulate exosomes-mediated breast cancer cell proliferation, invasion and migration, these biological characteristics were diminished in the breast cancer cells in which the RAB22A gene was knocked down or in the cells in which the exosomes were dissolved by proteinase K/RNase treatment. On the whole, the findings of this study demonstrate the critical role that miR-193b plays in the regulation of RAB22A-mediated exosome function during cancer growth and metastasis, which may have significant implications on cancer therapy.
Collapse
Affiliation(s)
- Liang Sun
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, Jilin 130022, P.R. China
| | - Ning Xu
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Da-Hai Xu
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhao-Ying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - You-Jun Li
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
22
|
Nunes S, Silva IB, Ampuero MR, de Noronha ALL, de Souza LCL, Correia TC, Khouri R, Boaventura VS, Barral A, Ramos PIP, Brodskyn C, Oliveira PRS, Tavares NM. Integrated Analysis Reveals That miR-193b, miR-671, and TREM-1 Correlate With a Good Response to Treatment of Human Localized Cutaneous Leishmaniasis Caused by Leishmania braziliensis. Front Immunol 2018; 9:640. [PMID: 29670621 PMCID: PMC5893808 DOI: 10.3389/fimmu.2018.00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Localized cutaneous leishmaniasis (LCL) is a chronic disease characterized by ulcerated skin lesion(s) and uncontrolled inflammation. The mechanisms underlying the pathogenesis of LCL are not completely understood, and little is known about posttranscriptional regulation during LCL. MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression and can be implicated in the pathogenesis of LCL. We investigated the involvement of miRNAs and their targets genes in human LCL using publicly available transcriptome data sets followed by ex vivo validation. Initial analysis highlighted that miRNA expression is altered during LCL, as patients clustered separately from controls. Joint analysis identified eight high confidence miRNAs that had altered expression (−1.5 ≤ fold change ≥ 1.5; p < 0.05) between cutaneous ulcers and uninfected skin. We found that the expression of miR-193b and miR-671 are greatly associated with their target genes, CD40 and TNFR, indicating the important role of these miRNAs in the expression of genes related to the inflammatory response observed in LCL. In addition, network analysis revealed that miR-193b, miR-671, and TREM1 correlate only in patients who show faster wound healing (up to 59 days) and not in patients who require longer cure times (more than 60 days). Given that these miRNAs are associated with control of inflammation and healing time, our findings reveal that they might influence the pathogenesis and prognosis of LCL.
Collapse
Affiliation(s)
- Sara Nunes
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Icaro Bonyek Silva
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Mariana Rosa Ampuero
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | | | | | | | - Ricardo Khouri
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Viviane Sampaio Boaventura
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Aldina Barral
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Centre for Data and Knowledge Integration for Health (CIDACS), FIOCRUZ, Salvador, Brazil
| | - Cláudia Brodskyn
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Pablo Rafael Silveira Oliveira
- Federal University of Bahia, Salvador, Brazil.,Centre for Data and Knowledge Integration for Health (CIDACS), FIOCRUZ, Salvador, Brazil
| | - Natalia Machado Tavares
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| |
Collapse
|