1
|
Liu P, Zhou L, Chen H, He Y, Li G, Hu K. Identification of a novel intermittent hypoxia-related prognostic lncRNA signature and the ceRNA of lncRNA GSEC/miR-873-3p/EGLN3 regulatory axis in lung adenocarcinoma. PeerJ 2023; 11:e16242. [PMID: 37842058 PMCID: PMC10573295 DOI: 10.7717/peerj.16242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is still the most prevalent type of respiratory cancer. Intermittent hypoxia can increase the mortality and morbidity associated with lung cancer. Long non-coding RNAs (lncRNAs) are crucial in lung adenocarcinoma. However, the effects of intermittent hypoxia-related long non-coding RNAs (IHRLs) on lung adenocarcinoma are still unknown. Method In the current research, eight IHRLs were selected to create a prognostic model. The risk score of the prognostic model was evaluated using multivariate and univariate analyses, and its accuracy and reliability were validated using a nomogram and ROC. Additionally, we investigated the relationships between IHRLs and the immune microenvironment. Result Our analysis identified GSEC, AC099850.3, and AL391001.1 as risk lncRNAs, while AC010615.2, AC010654.1, AL513550.1, LINC00996, and LINC01150 were categorized as protective lncRNAs. We observed variances in the expression of seven immune cells and 15 immune-correlated pathways between the two risk groups. Furthermore, our results confirmed the ceRNA network associated with the intermittent hypoxia-related lncRNA GSEC/miR-873-3p/EGLN3 regulatory pathway. GSEC showed pronounced expression in lung adenocarcinoma tissues and specific cell lines, and its inhibition resulted in reduced proliferation and migration in A549 and PC9 cells. Intriguingly, GSEC manifested oncogenic properties by sponging miR-873-3p and demonstrated a tendency to modulate EGLN3 expression favorably. Conclusion GSEC acts as an oncogenic lncRNA by interacting with miR-873-3p, modulating EGLN3 expression. This observation underscores the potential of GSEC as a diagnostic and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Long Zhou
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Hao Chen
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guangcai Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Zhang Z, Kalra H, Delzell MC, Jedlicka CR, Vasilyev M, Vasileva A, Tomasson MH, Bates ML. CORP: Sources and degrees of variability in whole animal intermittent hypoxia experiments. J Appl Physiol (1985) 2023; 134:1207-1215. [PMID: 36958346 PMCID: PMC10151045 DOI: 10.1152/japplphysiol.00643.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023] Open
Abstract
Chamber exposures are commonly used to evaluate the physiological and pathophysiological consequences of intermittent hypoxia in animal models. Researchers in this field use both commercial and custom-built chambers in their experiments. The purpose of this Cores of Reproducibility in Physiology paper is to demonstrate potential sources of variability in these systems that researchers should consider. Evaluating the relationship between arterial oxygen saturation and inspired oxygen concentration, we found that there are important sex-dependent differences in the commonly used C57BL6/J mouse model. The time delay of the oxygen sensor that provides feedback to the system during the ramp-down and ramp-up phases was different, limiting the number of cycles per hour that can be conducted and the overall stability of the oxygen concentration. The time to reach the hypoxic and normoxic hold stages, and the overall oxygen concentration, were impacted by the cycle number. These variables were further impacted by whether there are animals present in the chamber, highlighting the importance of verifying the cycling frequency with animals in the chamber. At ≤14 cycles/h, instability in the chamber oxygen concentration did not impact arterial oxygen saturation but may be important at higher cycle numbers. Taken together, these data demonstrate the important sources of variability that justify reporting and verifying the target oxygen concentration, cycling frequency, and arterial oxygen concentration, particularly when comparing different animal models and chamber configurations.NEW & NOTEWORTHY Intermittent hypoxia exposures are commonly used in physiology and many investigators use chamber systems to perform these studies. Because of the variety of chamber systems and protocols used, it is important to understand the sources of variability in intermittent hypoxia experiments that can impact reproducibility. We demonstrate sources of variability that come from the animal model, the intermittent hypoxia protocol, and the chamber system that can impact reproducibility.
Collapse
Affiliation(s)
- Zishan Zhang
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Hardik Kalra
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Matthew C Delzell
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri, United States
| | - Charles R Jedlicka
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Mikhail Vasilyev
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Anastasiia Vasileva
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Michael H Tomasson
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Melissa L Bates
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Division of Neonatology, Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
3
|
Minoves M, Hazane-Puch F, Moriondo G, Boutin-Paradis A, Lemarié E, Pépin JL, Godin-Ribuot D, Briançon-Marjollet A. Differential Impact of Intermittent vs. Sustained Hypoxia on HIF-1, VEGF and Proliferation of HepG2 Cells. Int J Mol Sci 2023; 24:ijms24086875. [PMID: 37108039 PMCID: PMC10139223 DOI: 10.3390/ijms24086875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Obstructive sleep apnea (OSA) is an emerging risk factor for cancer occurrence and progression, mainly mediated by intermittent hypoxia (IH). Systemic IH, a main landmark of OSA, and local sustained hypoxia (SH), a classical feature at the core of tumors, may act separately or synergistically on tumor cells. Our aim was to compare the respective consequences of intermittent and sustained hypoxia on HIF-1, endothelin-1 and VEGF expression and on cell proliferation and migration in HepG2 liver tumor cells. Wound healing, spheroid expansion, proliferation and migration were evaluated in HepG2 cells following IH or SH exposure. The HIF-1α, endothelin-1 and VEGF protein levels and/or mRNA expression were assessed, as were the effects of HIF-1 (acriflavine), endothelin-1 (macitentan) and VEGF (pazopanib) inhibition. Both SH and IH stimulated wound healing, spheroid expansion and proliferation of HepG2 cells. HIF-1 and VEGF, but not endothelin-1, expression increased with IH exposure but not with SH exposure. Acriflavine prevented the effects of both IH and SH, and pazopanib blocked those of IH but not those of SH. Macitentan had no impact. Thus, IH and SH stimulate hepatic cancer cell proliferation via distinct signaling pathways that may act synergistically in OSA patients with cancer, leading to enhanced tumor progression.
Collapse
Affiliation(s)
- Mélanie Minoves
- INSERM U1300, HP2 Laboratory, CHU Grenoble Alpes, University Grenoble Alpes, 38042 Grenoble, France
| | | | - Giorgia Moriondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Antoine Boutin-Paradis
- INSERM U1300, HP2 Laboratory, CHU Grenoble Alpes, University Grenoble Alpes, 38042 Grenoble, France
| | - Emeline Lemarié
- INSERM U1300, HP2 Laboratory, CHU Grenoble Alpes, University Grenoble Alpes, 38042 Grenoble, France
| | - Jean-Louis Pépin
- INSERM U1300, HP2 Laboratory, CHU Grenoble Alpes, University Grenoble Alpes, 38042 Grenoble, France
| | - Diane Godin-Ribuot
- INSERM U1300, HP2 Laboratory, CHU Grenoble Alpes, University Grenoble Alpes, 38042 Grenoble, France
| | - Anne Briançon-Marjollet
- INSERM U1300, HP2 Laboratory, CHU Grenoble Alpes, University Grenoble Alpes, 38042 Grenoble, France
| |
Collapse
|
4
|
Ou Y, Zong D, Ouyang R. Role of epigenetic abnormalities and intervention in obstructive sleep apnea target organs. Chin Med J (Engl) 2023; 136:631-644. [PMID: 35245923 PMCID: PMC10129098 DOI: 10.1097/cm9.0000000000002080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Obstructive sleep apnea (OSA) is a common condition that has considerable impacts on human health. Epigenetics has become a rapidly developing and exciting area in biology, and it is defined as heritable alterations in gene expression and has regulatory effects on disease progression. However, the published literature that is integrating both of them is not sufficient. The purpose of this article is to explore the relationship between OSA and epigenetics and to offer better diagnostic methods and treatment options. Epigenetic modifications mainly manifest as post-translational modifications in DNA and histone proteins and regulation of non-coding RNAs. Chronic intermittent hypoxia-mediated epigenetic alterations are involved in the progression of OSA and diverse multiorgan injuries, including cardiovascular disease, metabolic disorders, pulmonary hypertension, neural dysfunction, and even tumors. This article provides deeper insights into the disease mechanism of OSA and potential applications of targeted diagnosis, treatment, and prognosis in OSA complications.
Collapse
Affiliation(s)
- Yanru Ou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Dandan Zong
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Ruoyun Ouyang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
5
|
Impact of obstructive sleep apnea on cancer risk: a systematic review and meta-analysis. Sleep Breath 2022; 27:843-852. [DOI: 10.1007/s11325-022-02695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 10/14/2022]
|
6
|
Chronic Intermittent Hypoxia Increases Cell Proliferation in Hepatocellular Carcinoma. Cells 2022; 11:cells11132051. [PMID: 35805134 PMCID: PMC9265377 DOI: 10.3390/cells11132051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) syndrome is characterized by chronic intermittent hypoxia and is associated with an increased risk of all-cause mortality, including cancer mortality. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, characterized by increasing incidence and high mortality. However, the link between HCC and OSA-related chronic intermittent hypoxia remains unclear. Herein, we used a diethylnitrosamine (DEN)-induced HCC model to investigate whether OSA-related chronic intermittent hypoxia has an impact on HCC progression. To elucidate the associated mechanisms, we first evaluated the hypoxia status in the DEN-induced HCC model. Next, to simulate OSA-related intermittent hypoxia, we exposed cirrhotic rats with HCC to intermittent hypoxia during six weeks. We performed histopathological, immunohistochemical, RT-qPCR, and RNA-seq analysis. Chronic DEN injections strongly promoted cell proliferation, fibrosis, disorganized vasculature, and hypoxia in liver tissue, which mimics the usual events observed during human HCC development. Intermittent hypoxia further increased cell proliferation in DEN-induced HCC, which may contribute to an increased risk of HCC progression. In conclusion, our observations suggest that chronic intermittent hypoxia may be a factor worsening the prognosis of HCC.
Collapse
|
7
|
Circulating ADAMTS13 Levels Are Associated with an Increased Occurrence of Obstructive Sleep Apnea. DISEASE MARKERS 2022; 2022:1504137. [PMID: 35392493 PMCID: PMC8983172 DOI: 10.1155/2022/1504137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
Background and Aims. Obstructive sleep apnea (OSA) is strongly associated with obesity, metabolic diseases, coronary artery disease (CAD), stroke, hypertension, and other disorders. This study assessed the relationship between circulating a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13 (ADAMTS13) levels and the presence of OSA. Materials and Methods. This cross-sectional study included a total of 223 patients. We used a powerful high-throughput multiplexed immunobead-based assay to detect circulating levels of ADAMTS13. The associations between circulating ADAMTS13 levels and OSA were evaluated by multivariate logistic regression analysis. Results. Circulating ADAMTS13 levels were significantly elevated in patients with OSA compared with controls (0.8 vs. 2.7 μg/mL, respectively,
). After adjusting for confounding factors, circulating ADAMTS13 levels were significantly independently associated with the presence of OSA (
, 95% confidence interval (CI) =4.11–24.13,
). Furthermore, circulating ADAMTS13 levels showed discriminatory accuracy in assessing the presence of OSA (area under the curve: 0.87, 95% CI 0.81–0.93,
). Conclusion. Circulating ADAMTS13 levels were significantly correlated with the presence of OSA. ADAMTS13 may therefore function as a novel biomarker for monitoring the development and progression of OSA.
Collapse
|
8
|
Sillah A, Watson NF, Peters U, Biggs ML, Nieto FJ, Li CI, Gozal D, Thornton T, Barrie S, Phipps AI. Sleep problems and risk of cancer incidence and mortality in an older cohort: The Cardiovascular Health Study (CHS). Cancer Epidemiol 2022; 76:102057. [PMID: 34798387 PMCID: PMC8792277 DOI: 10.1016/j.canep.2021.102057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/17/2021] [Accepted: 10/31/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Sleep problems (SP) can indicate underlying sleep disorders, such as obstructive sleep apnea, which may adversely impact cancer risk and mortality. METHODS We assessed the association of baseline and longitudinal sleep apnea and insomnia symptoms with incident cancer (N = 3930) and cancer mortality (N = 4580) in the Cardiovascular Health Study. We used Cox proportional hazards regression to calculate adjusted hazard ratios (HR) and 95% confidence intervals (CI) to evaluate the associations. RESULTS Overall, 885 incident cancers and 804 cancer deaths were identified over a median follow-up of 12 and 14 years, respectively. Compared to participants who reported no sleep apnea symptoms, the risk of incident cancer was inversely associated [(HR (95%CI)] with snoring [0.84 (0.71, 0.99)]. We noted an elevated prostate cancer incidence for apnea [2.34 (1.32, 4.15)] and snoring [1.69 (1.11, 2.57)]. We also noted an elevated HR for lymphatic or hematopoietic cancers [daytime sleepiness: 1.81 (1.06, 3.08)]. We found an inverse relationship for cancer mortality with respect to snoring [0.73 (0.62, 0.8)] and apnea [(0.69 (0.51, 0.94))]. We noted a significant inverse relationship between difficulty falling asleep and colorectal cancer death [0.32 (0.15, 0.69)] and snoring with lung cancer death [0.56 (0.35, 0.89)]. CONCLUSIONS The relationship between SP and cancer risk and mortality was heterogeneous. Larger prospective studies addressing more cancer sites, molecular type-specific associations, and better longitudinal SP assessments are needed for improved delineation of SP-cancer risk dyad.
Collapse
Affiliation(s)
- Arthur Sillah
- University of Washington School of Public Health, United States; Fred Hutchinson Research Cancer Research Center, United States.
| | - Nathaniel F Watson
- Department of Neurology, University of Washington School of Medicine, United States
| | - Ulrike Peters
- University of Washington School of Public Health, United States; Fred Hutchinson Research Cancer Research Center, United States
| | - Mary L Biggs
- University of Washington School of Public Health, United States
| | - F Javier Nieto
- Oregon State University College of Public Health and Human Sciences, Corvallis, OR, United States
| | - Christopher I Li
- University of Washington School of Public Health, United States; Fred Hutchinson Research Cancer Research Center, United States
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, United States
| | | | - Sonnah Barrie
- Burrell College of Osteopathic Medicine, University Park, NM, United States
| | - Amanda I Phipps
- University of Washington School of Public Health, United States; Fred Hutchinson Research Cancer Research Center, United States
| |
Collapse
|
9
|
Li C, Pan J, Jiang Y, Yu Y, Jin Z, Chen X. Characteristics of the Immune Cell Infiltration Landscape in Gastric Cancer to Assistant Immunotherapy. Front Genet 2022; 12:793628. [PMID: 35069691 PMCID: PMC8770548 DOI: 10.3389/fgene.2021.793628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Gastric cancer (GC) was usually associated with poor prognosis and invalid therapeutical response to immunotherapy due to biological heterogeneity. It is urgent to screen reliable indices especially immunotherapy-associated parameters that can predict the therapeutic responses to immunotherapy of GC patients. Methods: Gene expression profile of 854 GC patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets (GSE84433) with their corresponding clinical and somatic mutation data. Based on immune cell infiltration (ICI) levels, molecular clustering classification was performed to identify subtypes and ICI scores in GC patients. After functional enrichment analysis of subtypes, we further explored the correlation between ICI scores and Tumor Mutation Burden (TMB) and the significance in clinical immunotherapy response. Results: Three subtypes were identified based on ICI scores with distinct immunological and prognostic characteristics. The ICI-cluster C, associated with better outcomes, was characterized by significantly higher stromal and immune scores, T lymphocytes infiltration and up-regulation of PD-L1. ICI scores were identified through using principal component analysis (PCA) and the low ICI scores were consistent with the increased TMB and the immune-activating signaling pathways. Contrarily, the high-ICI score cluster was involved in the immunosuppressive pathways, such as TGF-beta, MAPK and WNT signaling pathways, which might be responsible for poor prognosis of GC. External immunotherapy and chemotherapy cohorts validated the patients with lower ICI scores exhibited significant therapeutic responses and clinical benefits. Conclusion: This study elucidated that ICI score could sever as an effective prognostic and predictive indicator for immunotherapy in GC. These findings indicated that the systematic assessment of tumor ICI landscapes and identification of ICI scores have crucial clinical implications and facilitate tailoring optimal immunotherapeutic strategies.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinyan Jiang
- Department of Hematopathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Yu
- Wenzhou Medical University, Wenzhou, China
| | - Zhenlin Jin
- Department of Hematopathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xupeng Chen
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Associating sleep problems with advanced cancer diagnosis, and immune checkpoint treatment outcomes: a pilot study. Support Care Cancer 2022; 30:3829-3838. [PMID: 35034197 PMCID: PMC8761099 DOI: 10.1007/s00520-022-06825-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/10/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Sleep problems (SP) are common in cancer patients but have not been previously assessed in patients receiving immune checkpoint inhibitors (ICI). METHODS We collected questionnaire data on sleep apnea risk, insomnia, and general sleep patterns. We used an adjusted multivariate Poisson regression to calculate prevalence ratios (PRs) and associated 95% confidence intervals (CIs) for associations between these SP and metastatic versus localized cancer stage (M1 vs. M0), and adjusted logistic regression models to calculate ORs for associations between SP with the number of ICI infusions completed (6 + vs. < 6). RESULTS Among 32 patients who received ICI treatment, the prevalence of low, intermediate, and high-risk OSA risk was 36%, 42%, and 21%, respectively. Overall, 58% of participants reported clinically significant insomnia. We did not find a significant association between intermediate or high risk OSA (vs. low risk) and metastatic cancer status (PR = 1.01 (95% CI: 0.28, 3.67)). Patients in the cohort who reported taking > 15 min to fall asleep were 3.6 times more likely to be diagnosed with metastatic cancer compared to those reporting shorter sleep latency (95% CI (1.74, 7.35)). We did not find a significant association between SP and number of ICI infusions completed. CONCLUSION Our data associating sleep apnea risk, insomnia, and sleep patterns with more advanced cancer encourages further exploration in larger-scale observational studies and suggests interventional clinical trials focused on sleep quality improvement that could result in better outcomes for these patients.
Collapse
|
11
|
Cheng H, Li D. Investigation into the association between obstructive sleep apnea and incidence of all-type cancers: a systematic review and meta-analysis. Sleep Med 2021; 88:274-281. [PMID: 34219029 DOI: 10.1016/j.sleep.2021.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/13/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Obstructive sleep apnea (OSA) is one of the most common sleep-related breathing disorders and is featured by complete or partial obstruction of the upper airway using sleep. Conflicting reports regarding the association between obstructive sleep apnea (OSA) and cancer incidence are existing in different studies. The aim of this study is to determine whether OSA is independently associated with incidence of all-type cancers by using the meta-analysis. Medline, Embase, PubMed, Ovid, the Cochrane Library database, Web of Science, and Google Scholar were searched by two independent reviewers until 31 January 2021. Studies that evaluated OSA and the cancer incidence were included. Pooled risk ratios (RR) and corresponding 95% confidence intervals (CI) were calculated. Twelve studies, involved 184,915 participants, were pooled in this meta-analysis. Fixed-effects model analysis showed that patients with OSA had an increased risk of cancer incidence (RR: 1.52, 95% CI: 1.39-1.66, P < 0.001). The subgroup analysis showed that the pooled RRs of cancer incidence were 1.14 (95% CI: 1.04-1.25, P = 0.006) for mild OSA, 1.36 (95% CI: 1.32-1.92; P < 0.001) for moderate OSA and 1.59 (95% CI: 1.45-1.74; P < 0.001) for severe OSA, respectively. Patients with moderate and severe OSA were identified to have an increased risk of cancer incidence when compared to patients with mild OSA. In addition, patients with severe OSA also showed an increased risk of incident cancer (RR: 1.18, 95% CI: 1.08-1.28, P < 0.001) when compared to patients with moderate OSA. In conclusion, from most updated literatures, our meta-analysis results indicated that OSA was independently associated with incidence of all-type cancers when stratified the severity of OSA. However, further detailed analysis and clinical studies are warranted to decipher the association between OSA and cancer prevalence.
Collapse
Affiliation(s)
- Hanrong Cheng
- Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China.
| | - Dongcai Li
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
12
|
Lung cancer aggressiveness in an intermittent hypoxia murine model of postmenopausal sleep apnea. ACTA ACUST UNITED AC 2021; 27:706-713. [PMID: 32108736 DOI: 10.1097/gme.0000000000001526] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Intermittent hypoxia (IH)-a hallmark of obstructive sleep apnea (OSA)-enhances lung cancer progression in mice via altered host immune responses that are also age and sex-dependent. However, the interactions of menopause with IH on tumor malignant properties remain unexplored. Here, we aimed to investigate lung cancer outcomes in the context of ovariectomy (OVX)-induced menopause in a murine model of OSA. METHODS Thirty-four female mice (C57BL/6, 12-week-old) were subjected to bilateral OVX or to Sham intervention. Six months after surgery, mice were pre-exposed to either IH or room air (RA) for 2 weeks. Then, 10 lung carcinoma (LLC1) cells were injected subcutaneously in the left flank, with IH or RA exposures continued for 4 weeks. Tumor weight, tumor invasion, and spontaneous lung metastases were assessed. Tumor-associated macrophages (TAMs) were isolated and subjected to flow cytometry polarity evaluation along with assessment of TAMs modulation of LLC1 proliferation in vitro. To determine the effect of IH and OVX on each experimental variable, a two-way analysis of variance was performed. RESULTS IH and OVX promoted a similar increase in tumor growth (∼2-fold; P = 0.05 and ∼1.74-fold; P < 0.05, respectively), and OVX-IH further increased it. Regarding lung metastasis, the concurrence of OVX in mice exposed to IH enhanced the number of metastases (23.7 ± 8.0) in comparison to those without OVX (7.9 ± 2.8; P < 0.05). The pro-tumoral phenotype of TAMS, assessed as M2/M1 ratio, was increased in OVX (0.06 ± 0.01; P < 0.01) and IH (0.06 ± 0.01; P < 0.01) compared with sham/RA conditions (0.14 ± 0.03). The co-culture of TAMS with naive LLC1 cells enhanced their proliferation only under IH. CONCLUSION In female mice, both the IH that is characteristically present in OSA and OVX as a menopause model emerge as independent contributors that promote lung cancer aggressiveness and seemingly operate through alterations in the host immune response.
Collapse
|
13
|
Hao S, Zhu X, Liu Z, Wu X, Li S, Jiang P, Jiang L. Chronic intermittent hypoxia promoted lung cancer stem cell-like properties via enhancing Bach1 expression. Respir Res 2021; 22:58. [PMID: 33596919 PMCID: PMC7890965 DOI: 10.1186/s12931-021-01655-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/07/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND An adverse role for obstructive sleep apnea (OSA) in cancer aggressiveness and mortality has recently emerged from clinical and animal studies, and the reasons have not been fully determined. Cancer stem cells (CSCs) are regarded as the main cause of carcinoma metastasis. So far, the relationship between OSA and lung CSCs has not been explored. METHOD In the present study, we established an orthotopic mouse model of primary lung cancer and utilized chronic intermittent hypoxia (CIH) exposure to mimic OSA status. RESULTS We observed that CIH endows lung cancer with greater metastatic potential, evidenced by increased tumor growth, tumor seeding, and upregulated CSC-related gene expression in the lungs. Notably, the transcription factor BTB and CNC homology 1 (Bach1), a key factor in responding to conditions of oxidative stress, is increased in lung cancer after CIH exposure in vitro and in vivo. Meanwhile, exposing lung cancer cells to CIH promoted cell proliferation, clonal diversity, induced stem-like cell marker expression, and gave rise to CSCs at a relatively higher frequency. Furthermore, the increase of mitochondrial ROS (mtROS) and CSC-marker expression induced by CIH exposure was abolished in Bach1 shRNA-treated lung cancer cells. CONCLUSIONS Our results indicated that CIH promoted lung CSC-like properties by activating mtROS, which was partially mediated by Bach1.
Collapse
Affiliation(s)
- Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaodan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zilong Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiaodan Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Pan Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Liyan Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Gozal D, Almendros I, Phipps AI, Campos-Rodriguez F, Martínez-García MA, Farré R. Sleep Apnoea Adverse Effects on Cancer: True, False, or Too Many Confounders? Int J Mol Sci 2020; 21:ijms21228779. [PMID: 33233617 PMCID: PMC7699730 DOI: 10.3390/ijms21228779] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is a prevalent disorder associated with increased cardiovascular, metabolic and neurocognitive morbidity. Recently, an increasing number of basic, clinical and epidemiological reports have suggested that OSA may also increase the risk of cancer, and adversely impact cancer progression and outcomes. This hypothesis is convincingly supported by biological evidence linking certain solid tumours and hypoxia, as well as by experimental studies involving cell and animal models testing the effects of intermittent hypoxia and sleep fragmentation that characterize OSA. However, the clinical and epidemiological studies do not conclusively confirm that OSA adversely affects cancer, even if they hold true for specific cancers such as melanoma. It is likely that the inconclusive studies reflect that they were not specifically designed to test the hypothesis or because of the heterogeneity of the relationship of OSA with different cancer types or even sub-types. This review critically focusses on the extant basic, clinical, and epidemiological evidence while formulating proposed directions on how the field may move forward.
Collapse
Affiliation(s)
- David Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, MO 65201, USA
- Correspondence: (D.G.); (R.F.)
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain;
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain;
- Institut d’Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
| | - Amanda I. Phipps
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA 98195, USA;
- Epidemiology Program, Fred Hutchinson Research Cancer Research Center, Seattle, WA 98109, USA
| | - Francisco Campos-Rodriguez
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain;
- Respiratory Department, Hospital Valme (Seville, Spain), Institute of Biomedicine of Seville (IBiS), 41014 Seville, Spain
| | - Miguel A. Martínez-García
- Pneumology Department, Sleep-Disordered Breathing and Research Unit, Polytechnic and University La Fe Hospital, 46026 Valencia, Spain;
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain;
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain;
- Institut d’Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
- Correspondence: (D.G.); (R.F.)
| |
Collapse
|
15
|
Aiello I, Mul Fedele ML, Román F, Marpegan L, Caldart C, Chiesa JJ, Golombek DA, Finkielstein CV, Paladino N. Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation. SCIENCE ADVANCES 2020; 6:eaaz4530. [PMID: 33055171 PMCID: PMC7556830 DOI: 10.1126/sciadv.aaz4530] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 08/28/2020] [Indexed: 05/08/2023]
Abstract
Circadian disruption negatively affects physiology, posing a global health threat that manifests in proliferative, metabolic, and immune diseases, among others. Because outputs of the circadian clock regulate daily fluctuations in the immune response, we determined whether circadian disruption results in tumor-associated immune cell remodeling, facilitating tumor growth. Our findings show that tumor growth rate increased and latency decreased under circadian disruption conditions compared to normal light-dark (LD) schedules in a murine melanoma model. Circadian disruption induced the loss or inversion of daily patterns of M1 (proinflammatory) and M2 (anti-inflammatory) macrophages and cytokine levels in spleen and tumor tissues. Circadian disruption also induced (i) deregulation of rhythmic expression of clock genes and (ii) of cyclin genes in the liver, (iii) increased CcnA2 levels in the tumor, and (iv) dampened expression of the cell cycle inhibitor p21WAF/CIP1 , all of which contribute to a proliferative phenotype.
Collapse
Affiliation(s)
- I Aiello
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - M L Mul Fedele
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - F Román
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - L Marpegan
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - C Caldart
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - J J Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - D A Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina.
| | - C V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| | - N Paladino
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
16
|
Polycythemia with Renal Cell Carcinoma and Normal Erythropoietin Level. Case Rep Urol 2019; 2019:3792514. [PMID: 31934488 PMCID: PMC6942735 DOI: 10.1155/2019/3792514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022] Open
Abstract
A 61-year-old obese Caucasian male with past medical history of smoking, hypertension, chronic obstructive pulmonary disease (COPD), and sleep apnea presented to the hematology clinic with polycythemia. Despite the newly-diagnosed polycythemia, the patient denied any significant symptoms or history of blood clots. Further evaluation with computerized tomography (CT) and ultrasound showed a large renal mass suspicious for renal cell carcinoma of the right kidney. An incidental abdominal aortic aneurysm (AAA) measuring was also appreciated on imaging. Subsequent histological sections of the tumor showed cell renal cell carcinoma. Though previously reported, the concomitant finding of an AAA with renal cell carcinoma with a normal erythropoietin levels is surprising. Given the surgical complications associated with concomitant conditions with renal cell carcinoma, further investigation into paraneoplastic syndromes secondary to renal cell carcinoma remains open to investigation.
Collapse
|
17
|
Saxena K, Jolly MK. Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression. Biomolecules 2019; 9:E339. [PMID: 31382593 PMCID: PMC6722594 DOI: 10.3390/biom9080339] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Hypoxia has been shown to increase the aggressiveness and severity of tumor progression. Along with chronic and acute hypoxic regions, solid tumors contain regions of cycling hypoxia (also called intermittent hypoxia or IH). Cyclic hypoxia is mimicked in vitro and in vivo by periodic exposure to cycles of hypoxia and reoxygenation (H-R cycles). Compared to chronic hypoxia, cyclic hypoxia has been shown to augment various hallmarks of cancer to a greater extent: angiogenesis, immune evasion, metastasis, survival etc. Cycling hypoxia has also been shown to be the major contributing factor in increasing the risk of cancer in obstructive sleep apnea (OSA) patients. Here, we first compare and contrast the effects of acute, chronic and intermittent hypoxia in terms of molecular pathways activated and the cellular processes affected. We highlight the underlying complexity of these differential effects and emphasize the need to investigate various combinations of factors impacting cellular adaptation to hypoxia: total duration of hypoxia, concentration of oxygen (O2), and the presence of and frequency of H-R cycles. Finally, we summarize the effects of cycling hypoxia on various hallmarks of cancer highlighting their dependence on the abovementioned factors. We conclude with a call for an integrative and rigorous analysis of the effects of varying extents and durations of hypoxia on cells, including tools such as mechanism-based mathematical modelling and microfluidic setups.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
18
|
Ali M, Kowkuntla S, Delloro DJ, Galambos C, Hathi D, Janz S, Shokeen M, Tripathi C, Xu H, Yuk J, Zhan F, Tomasson MH, Bates ML. Chronic intermittent hypoxia enhances disease progression in myeloma-resistant mice. Am J Physiol Regul Integr Comp Physiol 2019; 316:R678-R686. [PMID: 30892915 DOI: 10.1152/ajpregu.00388.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity is the only known modifiable risk factor for multiple myeloma (MM), an incurable cancer of bone marrow plasma cells. The mechanism linking the two is unknown. Obesity is associated with an increased risk of sleep apnea, which results in chronic intermittent hypoxia (CIH), and drives solid tumor aggressiveness. Given the link between CIH and solid tumor progression, we tested the hypothesis that CIH drives the proliferation of MM cells in culture and their engraftment and progression in vivo. Malignant mouse 5TGM1 cells were cultured in CIH, static hypoxia, or normoxia as a control in custom, gas-permeable plates. Typically MM-resistant C57BL/6J mice were exposed to 10 h/day CIH (AHI = 12/h), static hypoxia, or normoxia for 7 days, followed by injection with 5TGM1 cells and an additional 28 days of exposure. CIH and static hypoxia slowed the growth of 5TGM1 cells in culture. CIH-exposed mice developed significantly more MM than controls (67 vs. 12%, P = 0.005), evidenced by hindlimb paralysis, gammopathy, bone lesions, and bone tumor formation. Static hypoxia was not a significant driver of MM progression and did not reduce survival (P = 0.117). Interestingly, 5TGM1 cells preferentially engrafted in the bone marrow and promoted terminal disease in CIH mice, despite a lower tumor burden, compared with the positive controls. These first experiments in the context of hematological cancer demonstrate that CIH promotes MM through mechanisms distinct from solid tumors and that sleep apnea may be a targetable risk factor in patients with or at risk for blood cancer.
Collapse
Affiliation(s)
- Mahmoud Ali
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Sandeep Kowkuntla
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Derick J Delloro
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, Colorado
| | - Deep Hathi
- Department of Radiology, Washington University , St. Louis, Missouri
| | - Siegfried Janz
- Department of Pathology, University of Iowa , Iowa City, Iowa
| | - Monica Shokeen
- Department of Radiology, Washington University , St. Louis, Missouri
| | - Chakrapani Tripathi
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Hongwei Xu
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Jisung Yuk
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Fenghuang Zhan
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Michael H Tomasson
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Melissa L Bates
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa.,Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| |
Collapse
|
19
|
Guo X, Liu Y, Kim JL, Kim EY, Kim EQ, Jansen A, Li K, Chan M, Keenan BT, Conejo-Garcia J, Lim DC. Effect of cyclical intermittent hypoxia on Ad5CMVCre induced solitary lung cancer progression and spontaneous metastases in the KrasG12D+; p53fl/fl; myristolated p110fl/fl ROSA-gfp mouse. PLoS One 2019; 14:e0212930. [PMID: 30811514 PMCID: PMC6392281 DOI: 10.1371/journal.pone.0212930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epidemiological data suggests that obstructive sleep apnea (OSA) is associated with increased cancer incidence and mortality. We investigate the effects of cyclical intermittent hypoxia (CIH), akin to the underlying pathophysiology of OSA, on lung cancer progression and metastatic profile in a mouse model. METHODS Intrathoracic injection of Ad5CMVCre virus into a genetically engineered mouse (GEM) KrasG12D+/-; p53fl/fl; myristolated-p110αfl/fl-ROSA-gfp was utilized to induce a solitary lung cancer. Male mice were then exposed to either CIH or Sham for 40-41 days until harvest. To monitor malignant progression, serial micro CT scans with respiratory gating (no contrast) was performed. To detect spontaneous metastases in distant organs, H&E and immunohistochemistry were performed. RESULTS Eighty-eight percent of injected Ad5CMVCre virus was recovered from left lung tissue, indicating reliable and accurate injections. Serial micro CT demonstrated that CIH increases primary lung tumor volume progression compared to Sham on days 33 (p = 0.004) and 40 (p<0.001) post-injection. In addition, CIH increases variability in tumor volume on day 19 (p<0.0001), day 26 (p<0.0001), day 33 (p = 0.025) and day 40 (p = 0.004). Finally, metastases are frequently detected in heart, mediastinal lymph nodes, and right lung using H&E and immunohistochemistry. CONCLUSIONS Using a GEM mouse model of metastatic lung cancer, we report that male mice with solitary lung cancer have accelerated malignant progression and increased variability in tumor growth when exposed to cyclical intermittent hypoxia. Our results indicate that cyclical intermittent hypoxia is a pathogenic factor in non-small cell lung cancer that promotes the more rapid growth of developing tumors.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yan Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jessica L. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Y. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Edison Q. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexandria Jansen
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katherine Li
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - May Chan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brendan T. Keenan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jose Conejo-Garcia
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Diane C. Lim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| |
Collapse
|
20
|
Campillo N, Falcones B, Otero J, Colina R, Gozal D, Navajas D, Farré R, Almendros I. Differential Oxygenation in Tumor Microenvironment Modulates Macrophage and Cancer Cell Crosstalk: Novel Experimental Setting and Proof of Concept. Front Oncol 2019; 9:43. [PMID: 30788287 PMCID: PMC6373430 DOI: 10.3389/fonc.2019.00043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a common characteristic of many solid tumors that has been associated with tumor aggressiveness. Limited diffusion of oxygen generates a gradient of oxygen availability from the blood vessel to the interstitial space and may underlie the recruitment of macrophages fostering cancer progression. However, the available data based on the recruitment of circulating cells to the tumor microenvironment has been so far carried out by conventional co-culture systems which ignore the hypoxic gradient between the vessel to the tumor interstitium. Here, we have designed a novel easy-to-build cell culture device that enables evaluation of cellular cross-talk and cell migration while they are being simultaneously exposed to different oxygenation environments. As a proof-of-concept of the potential role of differential oxygenation among interacting cells we have evaluated the activation and recruitment of macrophages in response to hypoxic melanoma, breast, and kidney cancer cells. We found that hypoxic melanoma and breast cancer cells co-cultured with normoxic macrophages enhanced their directional migration. By contrast, hypoxic kidney cells were not able to increase their recruitment. We also identified well-described hypoxia-induced pathways which could contribute in the immune cell recruitment (VEGFA and PTGS2 genes). Moreover, melanoma and breast cancer increased their proliferation. However, oxygenation levels affected neither kidney cancer cell proliferation nor gene expression, which in turn resulted in no significant changes in macrophage migration and polarization. Therefore, the cell culture device presented here provides an excellent opportunity for researchers to reproduce the in vivo hypoxic gradients in solid tumors and to study their role in recruiting circulating cells to the tumor in specific types of cancer.
Collapse
Affiliation(s)
- Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Bryan Falcones
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Jordi Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Roser Colina
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri-School of Medicine, Columbia, MO, United States
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
21
|
Tomasson MH, Ali M, De Oliveira V, Xiao Q, Jethava Y, Zhan F, Fitzsimmons AM, Bates ML. Prevention Is the Best Treatment: The Case for Understanding the Transition from Monoclonal Gammopathy of Undetermined Significance to Myeloma. Int J Mol Sci 2018; 19:E3621. [PMID: 30453544 PMCID: PMC6274834 DOI: 10.3390/ijms19113621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an invariably fatal cancer of plasma cells. Despite tremendous advances in treatment, this malignancy remains incurable in most individuals. We postulate that strategies aimed at prevention have the potential to be more effective in preventing myeloma-related death than additional pharmaceutical strategies aimed at treating advanced disease. Here, we present a rationale for the development of prevention therapy and highlight potential target areas of study.
Collapse
Affiliation(s)
- Michael H Tomasson
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Mahmoud Ali
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Vanessa De Oliveira
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Qian Xiao
- Department of Health Human Physiology, University of Iowa, Iowa City, IA 52242, USA.
| | - Yogesh Jethava
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Fenghuang Zhan
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Adam M Fitzsimmons
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Melissa L Bates
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
- Department of Health Human Physiology, University of Iowa, Iowa City, IA 52242, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
22
|
Anti-tumor effect of endostatin in a sleep-apnea mouse model with tumor. Clin Transl Oncol 2018; 21:572-581. [PMID: 30293229 DOI: 10.1007/s12094-018-1955-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is associated with cancer incidence and mortality. The underlying mechanism is unclear. This study aims to evaluate the influence of intermittent hypoxia (IH), a novel hallmark of OSA, on tumor and to access the anti-tumor effect of endostatin on a mouse model with OSA. METHODS The C57BL/6 J mice were randomly classified into four groups: control (normoxia) (CTL), control plus endostatin (CTL + ED), IH, and IH plus endostatin (IH + ED). Mice in IH and IH + ED groups were subjected to IH 8 h per day in 5 weeks. Lewis lung cancer cells were injected into the flank of each mouse after 1 week of IH exposure. Endostatin was also intraperitoneally injected after tumor volume reached about 200 mm3. The maximum standard uptake values (SUVmax) were detected by micro-positron emission tomography-computed tomography (micro-PET-CT) imaging prior and post-endostatin administration. Microvessel density (MVD) and vascular endothelial growth factor (VEGF) were determined for evaluating the anti-tumor effect of endostatin among the normoxia and IH conditions. RESULTS Mice had higher SUVmax in the IH group than the CTL group (p < 0.01). When compared with mice in the CTL group, those in the IH group had significantly greater MVD values (p < 0.001). The SUVmax can be attenuated by endostatin both in the CTL (p < 0.01) and IH conditions (p < 0.001). When compared with CTL group, mice in the IH group had increased MVD values (p < 0.001) and VEGF expression both at mRNA (p < 0.05) and protein levels (p < 0.001 in western blotting results). Treatment with endostatin attenuated serum and tissue VEGF levels, lowering the MVD values. As compared to normoxia condition, the endostatin-therapeutic effects were more significant under the IH condition (p < 0.05 in western blotting results). CONCLUSIONS Micro-PET-CT imaging is a promising non-invasive technique to evaluate the tumor metabolic characteristics under IH condition in vivo. The anti-tumor effect of endostatin under IH condition is superior to that of the normoxia condition.
Collapse
|
23
|
Suarez-Giron MC, Castro-Grattoni A, Torres M, Farré R, Barbé F, Sánchez-de-la-Torre M, Gozal D, Picado C, Montserrat JM, Almendros I. Acetylsalicylic Acid Prevents Intermittent Hypoxia-Induced Vascular Remodeling in a Murine Model of Sleep Apnea. Front Physiol 2018; 9:600. [PMID: 29881356 PMCID: PMC5976862 DOI: 10.3389/fphys.2018.00600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
Study objectives: Chronic intermittent hypoxia (CIH), a hallmark feature of obstructive sleep apnea (OSA), induces accelerated atherogenesis as well as aorta vascular remodeling. Although the cyclooxygenase (COX) pathway has been proposed to contribute to the cardiovascular consequences of OSA, the potential benefits of a widely employed COX-inhibitor such (acetylsalicylic acid, ASA) on CIH-induced vascular pathology are unknown. Therefore, we hypothesized that a common non-selective COX inhibitor such as ASA would attenuate the aortic remodeling induced by CIH in mice. Methods: 40 wild-type C57/BL6 male mice were randomly allocated to CIH or normoxic exposures (N) and treated with daily doses of ASA or placebo for 6 weeks. At the end of the experiments, intima-media thickness (IMT), elastin disorganization (ED), elastin fragmentation (EF), length between fragmented fiber endpoints (LFF), aortic wall collagen abundance (AC) and mucoid deposition (MD) were assessed. Results: Compared to N, CIH promoted significant increases in IMT (52.58 ± 2.82 μm vs. 46.07 ± 4.18 μm, p < 0.003), ED (25.29 ± 14.60% vs. 4.74 ± 5.37%, p < 0.001), EF (5.80 ± 2.04 vs. 3.06 ± 0.58, p < 0.001), LFF (0.65 ± 0.34% vs. 0.14 ± 0.09%, p < 0.001), AC (3.43 ± 1.52% vs. 1.67 ± 0.67%, p < 0.001) and MD (3.40 ± 2.73 μm2 vs. 1.09 ± 0.72 μm2, p < 0.006). ASA treatment mitigated the CIH-induced alterations in IMT: 44.07 ± 2.73 μm; ED: 10.57 ± 12.89%; EF: 4.63 ± 0.88; LFF: 0.25 ± 0.17% and AC: 0.90 ± 0.13% (p<0.05 for all comparisons). Conclusions: ASA prevents the CIH-induced aortic vascular remodeling, and should therefore be prospectively evaluated as adjuvant treatment in patients with OSA.
Collapse
Affiliation(s)
| | - Anabel Castro-Grattoni
- Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Marta Torres
- Laboratori del Son, Servei de Pneumologia, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Ramon Farré
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ferran Barbé
- Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Manuel Sánchez-de-la-Torre
- Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - David Gozal
- Section of Pediatric Sleep Medicine, Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| | - Cesar Picado
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Department of Pneumology and Respiratory Allergy, Hospital Clinic, Barcelona, Spain
| | - Josep M Montserrat
- Laboratori del Son, Servei de Pneumologia, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isaac Almendros
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
24
|
Abuyassin B, Badran M, Ayas NT, Laher I. Intermittent hypoxia causes histological kidney damage and increases growth factor expression in a mouse model of obstructive sleep apnea. PLoS One 2018; 13:e0192084. [PMID: 29389945 PMCID: PMC5794148 DOI: 10.1371/journal.pone.0192084] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Epidemiological studies demonstrate an association between obstructive sleep apnea (OSA) and accelerated loss of kidney function. It is unclear whether the decline in function is due to OSA per se or to other confounding factors such as obesity. In addition, the structural kidney abnormalities associated with OSA are unclear. The objective of this study was to determine whether intermittent hypoxia (IH), a key pathological feature of OSA, induces renal histopathological damage using a mouse model. Ten 8-week old wild-type male CB57BL/6 mice were randomly assigned to receive either IH or intermittent air (IA) for 60 days. After euthanasia, one kidney per animal was paraformaldehyde-fixed and then sectioned for histopathological and immunohistochemical analysis. Measurements of glomerular hypertrophy and mesangial matrix expansion were made in periodic acid–Schiff stained kidney sections, while glomerular transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF) and vascular endothelial growth factor-A (VEGF-A) proteins were semi-quantified by immunohistochemistry. The antigen-antibody reaction was detected by 3,3′-diaminobenzidine chromogen where the color intensity semi-quantified glomerular protein expression. To enhance the accuracy of protein semi-quantification, the percentage of only highly-positive staining was used for analysis. Levels of TGF-β, CTGF and VEGF-A proteins in the kidney cortex were further quantified by western blotting. Cellular apoptosis was also investigated by measuring cortical antiapoptotic B-cell lymphoma 2 (Bcl-2) and apoptotic Bcl-2-associated X (Bax) proteins by western blotting. Further investigation of cellular apoptosis was carried out by fluorometric terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining. Finally, the levels of serum creatinine and 24-hour urinary albumin were measured as a general index of renal function. Our results indicate that mice exposed to IH have an increased glomerular area (by 1.13 fold, p< 0.001) and expansion of mesangial matrix (by 1.8 fold, p< 0.01). Moreover, the glomerular expressions of TGF-β1, CTGF and VEGF-A proteins were 2.7, 2.2 and 3.8-fold higher in mice exposed to IH (p< 0.05 for all). Furthermore, western blotting protein analysis demonstrates that IH-exposed mice express higher levels of TGF-β1, CTGF and VEGF-A proteins by 1.9, 4.0 and 1.6-fold (p< 0.05 for all) respectively. Renal cellular apoptosis was greater in the IH group as shown by an increased cortical Bax/Bcl-2 protein ratio (p< 0.01) and higher fluorometric TUNEL staining (p< 0.001). Finally, 24-hr urinary albumin levels were higher in mice exposed to IH (43.4 μg vs 9.7 μg, p< 0.01), while there were no differences in serum creatinine levels between the two groups. We conclude that IH causes kidney injury that is accompanied by glomerular hypertrophy, mesangial matrix expansion, increased expression of glomerular growth factors and an increased cellular apoptosis.
Collapse
Affiliation(s)
- Bisher Abuyassin
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mohammad Badran
- Departments of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Najib T. Ayas
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ismail Laher
- Departments of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
25
|
Almendros I, Gozal D. Intermittent hypoxia and cancer: Undesirable bed partners? Respir Physiol Neurobiol 2017; 256:79-86. [PMID: 28818483 DOI: 10.1016/j.resp.2017.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022]
Abstract
The deleterious effects of intermittent hypoxia (IH) on cancer biology have been primarily evaluated in the context of the aberrant circulation observed in solid tumors which results in recurrent intra-tumoral episodic hypoxia. From those studies, IH has been linked to an accelerated tumor progression, metastasis and resistance to therapies. More recently, the role of IH in cancer has also been studied in the context of obstructive sleep apnea (OSA), since IH is a hallmark characteristic of this condition. Such recent studies are undoubtedly adding more information regarding the role of IH on tumor malignancy. In terms of the IH patterns associated with OSA, this altered oxygenation paradigm has been recently proposed as a determinant factor in fostering cancer incidence and progression from both in vitro and in vivo experimental models. Here, we summarize all the available evidence to date linking IH effects on several types of cancer.
Collapse
Affiliation(s)
- Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| | - David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| |
Collapse
|