1
|
Boxman ILA, Molin R, Persson S, Juréus A, Jansen CCC, Sosef NP, Le Guyader SF, Ollivier J, Summa M, Hautaniemi M, Suffredini E, Di Pasquale S, Myrmel M, Khatri M, Jamnikar-Ciglenecki U, Kusar D, Moor D, Butticaz L, Lowther JA, Walker DI, Stapleton T, Simonsson M, Dirks RAM. An international inter-laboratory study to compare digital PCR with ISO standardized qPCR assays for the detection of norovirus GI and GII in oyster tissue. Food Microbiol 2024; 120:104478. [PMID: 38431324 DOI: 10.1016/j.fm.2024.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
An optimized digital RT-PCR (RT-dPCR) assay for the detection of human norovirus GI and GII RNA was compared with ISO 15216-conform quantitative real-time RT-PCR (RT-qPCR) assays in an interlaboratory study (ILS) among eight laboratories. A duplex GI/GII RT-dPCR assay, based on the ISO 15216-oligonucleotides, was used on a Bio-Rad QX200 platform by six laboratories. Adapted assays for Qiagen Qiacuity or ThermoFisher QuantStudio 3D were used by one laboratory each. The ILS comprised quantification of norovirus RNA in the absence of matrix and in oyster tissue samples. On average, results of the RT-dPCR assays were very similar to those obtained by RT-qPCR assays. The coefficient of variation (CV%) of norovirus GI results was, however, much lower for RT-dPCR than for RT-qPCR in intra-laboratory replicates (eight runs) and between the eight laboratories. The CV% of norovirus GII results was in the same range for both detection formats. Had in-house prepared dsDNA standards been used, the CV% of norovirus GII could have been in favor of the RT-dPCR assay. The ratio between RT-dPCR and RT-qPCR results varied per laboratory, despite using the distributed RT-qPCR dsDNA standards. The study indicates that the RT-dPCR assay is likely to increase uniformity of quantitative results between laboratories.
Collapse
Affiliation(s)
- Ingeborg L A Boxman
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| | - Ramia Molin
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - Sofia Persson
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - Anna Juréus
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - Claudia C C Jansen
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| | - Nils P Sosef
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| | - Soizick F Le Guyader
- French Research Institute for Exploitation of the Sea (Ifremer) - Laboratoire de Santé, Environnement et Microbiologie, Nantes, France.
| | - Joanna Ollivier
- French Research Institute for Exploitation of the Sea (Ifremer) - Laboratoire de Santé, Environnement et Microbiologie, Nantes, France.
| | | | | | - Elisabetta Suffredini
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | - Simona Di Pasquale
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | - Mette Myrmel
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine, Virology Unit, Ås, Norway.
| | - Mamata Khatri
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine, Virology Unit, Ås, Norway.
| | - Urska Jamnikar-Ciglenecki
- University of Ljubljana Veterinary Faculty, Institute of Food Safety, Feed and Environment, Ljubljana, Slovenia.
| | - Darja Kusar
- University of Ljubljana Veterinary Faculty, Institute of Microbiology and Parasitology, Ljubljana, Slovenia.
| | - Dominik Moor
- Federal Institute of Metrology METAS, Biological Analysis and References Laboratory, Bern, Switzerland.
| | - Lisa Butticaz
- Federal Institute of Metrology METAS, Biological Analysis and References Laboratory, Bern, Switzerland.
| | - James A Lowther
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom.
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom.
| | - Tina Stapleton
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom.
| | - Magnus Simonsson
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - René A M Dirks
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Chandran S, Gibson KE. Improving the Detection and Understanding of Infectious Human Norovirus in Food and Water Matrices: A Review of Methods and Emerging Models. Viruses 2024; 16:776. [PMID: 38793656 PMCID: PMC11125872 DOI: 10.3390/v16050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Human norovirus (HuNoV) is a leading global cause of viral gastroenteritis, contributing to numerous outbreaks and illnesses annually. However, conventional cell culture systems cannot support the cultivation of infectious HuNoV, making its detection and study in food and water matrices particularly challenging. Recent advancements in HuNoV research, including the emergence of models such as human intestinal enteroids (HIEs) and zebrafish larvae/embryo, have significantly enhanced our understanding of HuNoV pathogenesis. This review provides an overview of current methods employed for HuNoV detection in food and water, along with their associated limitations. Furthermore, it explores the potential applications of the HIE and zebrafish larvae/embryo models in detecting infectious HuNoV within food and water matrices. Finally, this review also highlights the need for further optimization and exploration of these models and detection methods to improve our understanding of HuNoV and its presence in different matrices, ultimately contributing to improved intervention strategies and public health outcomes.
Collapse
Affiliation(s)
| | - Kristen E. Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA;
| |
Collapse
|
3
|
La Bella G, Basanisi MG, Nobili G, D’Antuono AM, Suffredini E, La Salandra G. Duplex Droplet Digital PCR Assay for Quantification of Hepatitis E Virus in Food. Viruses 2024; 16:413. [PMID: 38543778 PMCID: PMC10975721 DOI: 10.3390/v16030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 05/23/2024] Open
Abstract
Hepatitis E virus (HEV) represents an emerging risk in industrialized countries where the consumption of contaminated food plays a pivotal role. Quantitative real-time RT-PCR (RT-qPCR) is one of the most suitable methods for the detection and quantification of viruses in food. Nevertheless, quantification using RT-qPCR has limitations. Droplet digital PCR (ddPCR) provides the precise quantification of nucleic acids without the need for a standard curve and a reduction in the effect on virus quantification due to the presence of inhibitors. The objectives of the present work were (i) to develop a method for the absolute quantification of HEV in swine tissues based on ddPCR technology and provide internal process control for recovery assessment and (ii) to evaluate the performance of the method by analyzing a selection of naturally contaminated wild boar muscle samples previously tested using RT-qPCR. The method was optimized using a set of in vitro synthesized HEV RNA and quantified dsDNA. The limit of detection of the developed ddPCR assay was 0.34 genome copies/µL. The analysis of the wild boar samples confirmed the validity of the ddPCR assay. The duplex ddPCR method showed no reduction in efficiency compared to individual assays. The method developed in the present study could represent a sensitive assay for the detection and absolute quantification of HEV RNA in food samples with the advantage of presenting the co-amplification of internal process control.
Collapse
Affiliation(s)
- Gianfranco La Bella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy (G.N.); (A.M.D.); (G.L.S.)
| | - Maria Grazia Basanisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy (G.N.); (A.M.D.); (G.L.S.)
| | - Gaia Nobili
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy (G.N.); (A.M.D.); (G.L.S.)
| | - Anna Mattea D’Antuono
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy (G.N.); (A.M.D.); (G.L.S.)
| | - Elisabetta Suffredini
- Department of Food Safety Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Giovanna La Salandra
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy (G.N.); (A.M.D.); (G.L.S.)
| |
Collapse
|
4
|
Dutra LB, Stein JF, da Rocha BS, Berger A, de Souza BA, Prandi BA, Mangini AT, Jarenkow A, Campos AAS, Fan FM, de Almeida Silva MC, Lipp-Nissinen KH, Loncan MR, Augusto MR, Franco AC, de Freitas Bueno R, Rigotto C. Environmental monitoring of SARS-CoV-2 in the metropolitan area of Porto Alegre, Rio Grande do Sul (RS), Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2129-2144. [PMID: 38057673 PMCID: PMC10791933 DOI: 10.1007/s11356-023-31081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Since starts the coronavirus disease 2019 (COVID-19) pandemic identified the presence of genomic fragments of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in various environmental matrices: domestic sewage, surface waters, and contaminated freshwater. Environmental monitoring of SARS-CoV-2 is a tool for evaluating trend curves over the months, compared to several clinical cases of the disease. The objective of this study was to monitor the SARS-CoV-2 in environmental samples collected in different sites in a metropolitan area of Porto Alegre, Southern Brazil. During 10 months from 2020 to 2021, 300 samples were collected weekly and biweekly from nine points located in 3 cities: one point from a wastewater treatment plant (WWTP) in São Leopoldo (fortnightly collection), two points in Dilúvio Stream in Porto Alegre (fortnightly collection), two points in Pampa and Luiz Rau Streams (weekly collection), and two points in public fountains (fortnightly collection) in Novo Hamburgo. After collection, samples were concentrated by ultracentrifugation, and viral nucleic acids were extracted using MagMax® Core Nucleic Acid Purifications kits and submitted to RT-qPCR, using E, N1, and N2 gene targets of SARS-CoV-2. Only 7% (3/41) samples from public fountains were positive, with a mean viral load (VL) of SARS-CoV-2 RNA of 5.02 × 101 gc/l (2.41~8.59 × 101 gc/l), while the streams had average VL of 7.43 × 105 gc/l (Pampa), 7.06 × 105 gc/l (Luiz Rau), 2.01 × 105 gc/l (Dilúvio), and 4.46 × 105 cg/l (WWTP). The results showed varying levels of viral presence in different sample types, with a demonstrated correlation between environmental viral load and clinical COVID-19 cases. These findings contribute to understanding virus persistence and transmission pathways in the environment. Continuous monitoring, especially in less developed regions, is crucial for early detection of vaccine resistance, new variants, and potential COVID-19 resurgence.
Collapse
Affiliation(s)
- Leticia Batista Dutra
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Janaína Francieli Stein
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Bruna Seixas da Rocha
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Andresa Berger
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Beatriz Andrade de Souza
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Bruno Aschidamini Prandi
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Arthur Tonietto Mangini
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 90050-170, Brazil
| | - André Jarenkow
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, RS, CEP 90119-900, Brazil
| | - Aline Alves Scarpellini Campos
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, RS, CEP 90119-900, Brazil
| | - Fernando Mainardi Fan
- Hydraulic Research Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 91501-970, Brazil
| | | | - Katia Helena Lipp-Nissinen
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Manuel Rodrigues Loncan
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Matheus Ribeiro Augusto
- Center of Engineering, Modelling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo Andre, SP, CEP 09210-580, Brazil
| | - Ana Cláudia Franco
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Rodrigo de Freitas Bueno
- Center of Engineering, Modelling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo Andre, SP, CEP 09210-580, Brazil
| | - Caroline Rigotto
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil.
| |
Collapse
|
5
|
Lin SC, Bai GH, Lin PC, Chen CY, Hsu YH, Lee YC, Chen SY. Molecular and Genetics-Based Systems for Tracing the Evolution and Exploring the Mechanisms of Human Norovirus Infections. Int J Mol Sci 2023; 24:ijms24109093. [PMID: 37240438 DOI: 10.3390/ijms24109093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Human noroviruses (HuNoV) are major causes of acute gastroenteritis around the world. The high mutation rate and recombination potential of noroviruses are significant challenges in studying the genetic diversity and evolution pattern of novel strains. In this review, we describe recent advances in the development of technologies for not only the detection but also the analysis of complete genome sequences of noroviruses and the future prospects of detection methods for tracing the evolution and genetic diversity of human noroviruses. The mechanisms of HuNoV infection and the development of antiviral drugs have been hampered by failure to develop the infectious virus in a cell model. However, recent studies have demonstrated the potential of reverse genetics for the recovery and generation of infectious viral particles, suggesting the utility of this genetics-based system as an alternative for studying the mechanisms of viral infection, such as cell entry and replication.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Allergy, Asthma, and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City 10002, Taiwan
| | - Pei-Chun Lin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chung-Yung Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
- Center for Nanotechnology, Institute of Biomedical Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuan-Chang Lee
- Department of Infectious Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Infectious Diseases, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|
6
|
Alegbeleye O, Sant'Ana AS. Microbiological quality of irrigation water for cultivation of fruits and vegetables: An overview of available guidelines, water testing strategies and some factors that influence compliance. ENVIRONMENTAL RESEARCH 2023; 220:114771. [PMID: 36586712 DOI: 10.1016/j.envres.2022.114771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Contaminated irrigation water is among many potential vehicles of human pathogens to food plants, constituting significant public health risks especially for the fresh produce category. This review discusses some available guidelines or regulations for microbiological safety of irrigation water, and provides a summary of some common methods used for characterizing microbial contamination. The goal of such exploration is to understand some of the considerations that influence formulation of water testing guidelines, describe priority microbial parameters particularly with respect to food safety risks, and attempt to determine what methods are most suitable for their screening. Furthermore, the review discusses factors that influence the potential for microbiologically polluted irrigation water to pose substantial risks of pathogenic contamination to produce items. Some of these factors include type of water source exploited, irrigation methods, other agro ecosystem features/practices, as well as pathogen traits such as die-off rates. Additionally, the review examines factors such as food safety knowledge, other farmer attitudes or inclinations, level of social exposure and financial circumstances that influence adherence to water testing guidelines and other safe water application practices. A thorough understanding of relevant risk metrics for the application and management of irrigation water is necessary for the development of water testing criteria. To determine sampling and analytical approach for water testing, factors such as agricultural practices (which differ among farms and regionally), as well as environmental factors that modulate how water quality may affect the microbiological safety of produce should be considered. Research and technological advancements that can improve testing approach and the determination of target levels for hazard characterization or description for the many different pollution contexts as well as farmer adherence to testing requirements, are desirable.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Aschidamini Prandi B, Mangini AT, Santiago Neto W, Jarenkow A, Violet-Lozano L, Campos AAS, Colares ERDC, Buzzetto PRDO, Azambuja CB, Trombin LCDB, Raugust MDS, Lorenzini R, Larre ADS, Rigotto C, Campos FS, Franco AC. Wastewater-based epidemiological investigation of SARS-CoV-2 in Porto Alegre, Southern Brazil. SCIENCE IN ONE HEALTH 2022; 1:100008. [PMID: 39076600 PMCID: PMC9894774 DOI: 10.1016/j.soh.2023.100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/20/2023] [Indexed: 09/03/2023]
Abstract
Wastewater-based epidemiology (WBE) may be successfully used to comprehensively monitor and determine the scale and dynamics of some infections in the community. We monitored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in raw wastewater samples from Porto Alegre, Southern Brazil. The samples were collected and analyzed every week between May 2020 to May 2021. Meanwhile, different social restrictions were applied according to the number of hospitalized patients in the region. Weekly samples were obtained from two wastewater treatment plants (WWTP), named Navegantes and Serraria. To determine the SARS-CoV-2 RNA titers in wastewater, we performed RT-qPCR analysis targeting the N gene (N1). The highest titer of SARS-CoV-2 RNA was observed between epidemiological weeks (EWs) 33-37 (August), 42-43 (October), 45-46 (November), 49-51 (December) in 2020, and 1-3 (January), 7-13 (February to March) in 2021, with viral loads ranging from 1 × 106-3 × 106 genomic copies/Liter. An increase in positive confirmed cases followed such high viral loads. Depending on the sampling method used, positive cases increased in 6-7 days and 15 days after the rise of viral RNA titers in wastewater, with composite sampling methods showing a lower time lag and a higher resolution on the analyses. The results showed a direct relation between strict social restrictions and the loads of detected RNA reduction in wastewater, corroborating the number of confirmed cases. Differences in viral loads between different sampling points and methods were observed, as composite samples showed more stable results during the analyzed period. Besides, viral loads obtained from samples collected at Serraria WWTP were consistently higher than the ones obtained at Navegantes WWTP, indicating differences in local dynamics of SARS-CoV-2 spread in different regions of Porto Alegre. In conclusion, wastewater sampling to monitor SARS-CoV-2 is a robust tool to evaluate the viral loads contributing to hospitalized patients' data and confirmed cases. In addition, SARS-CoV-2 detection in sewage may inform and alert the government when there are asymptomatic or non-tested patients.
Collapse
Affiliation(s)
- Bruno Aschidamini Prandi
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Arthur Tonietto Mangini
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Waldemir Santiago Neto
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - André Jarenkow
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Lina Violet-Lozano
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Aline Alves Scarpellini Campos
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Evandro Ricardo da Costa Colares
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | | | | | - Lisiane Correa de Barros Trombin
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Margot de Souza Raugust
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Rafaela Lorenzini
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Alberto da Silva Larre
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Caroline Rigotto
- FEEVALE University, ERS 239 n° 2755, Novo Hamburgo, RS, 93352-000, Brazil
| | - Fabrício Souza Campos
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Ana Cláudia Franco
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Larocque É, Lévesque V, Lambert D. Crystal digital RT-PCR for the detection and quantification of norovirus and hepatitis A virus RNA in frozen raspberries. Int J Food Microbiol 2022; 380:109884. [PMID: 36055105 DOI: 10.1016/j.ijfoodmicro.2022.109884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022]
Abstract
Berries are important vehicles for norovirus (NoV) and hepatitis A virus (HAV) foodborne outbreaks. Sensitive and quantitative detection of these viruses in food samples currently relies on RT-qPCR, but remains challenging due to their low concentration and the presence of RT-qPCR inhibitors. Moreover, quantification requires a standard curve. In this study, crystal digital RT-PCR (RT-cdPCR) assays were adapted from RT-qPCR sets of primers and probe currently used in our diagnostic laboratory for the detection and precise quantification of norovirus genogroups I and II (NoV GI, GII) and hepatitis A virus (HAV) RNA in frozen raspberry samples. We selected assay conditions based on optimal separation of positive and negative droplets, and peak resolution. Using virus-specific in vitro RNA transcripts diluted in raspberry RNA extracts, we showed that all three RT-cdPCR assays were sensitive, and we estimated the 95 % detection limit at 9 copies per RT-cdPCR reaction for NoV GI, 3 for NoV GII, and 14 for HAV. Serial dilutions of the RNA transcripts showed excellent linearity over a range of four orders of magnitude. We achieved precise quantification (CV ≤ 35 %) of the RNA transcripts between runs down to 15-145 copies per reaction for NoV GI, <20 for NoV GII, and < 15 for HAV. The three RT-cdPCR assays also proved to be tolerant to inhibitors from frozen raspberries, although not as tolerant as the RT-qPCR assays in the case of NoV GI and HAV. We further evaluated the assays with inoculated frozen raspberry samples and compared their performance to that of the RT-qPCR assays. As compared to the corresponding RT-qPCR assays, the NoV GI and HAV RT-cdPCR assays showed a decreased qualitative sensitivity, while the NoV GII RT-cdPCR assay had an increased sensitivity. As for quantification, the NoV GI and NoV GII RT-cdPCR assays produced similar estimates of RNA copy number than their respective RT-qPCR assays, whereas for HAV, the RT-cdPCR assay produced lower estimates than the RT-qPCR assay. However, all the RT-cdPCR assays provided more precise quantitative measurements at low levels of contamination than the RT-qPCR assays. In conclusion, the potential of the RT-cdPCR assays in this study to detect viral RNA from frozen raspberries varied according to assay, but these RT-cdPCR assays should be considered for precise absolute quantification in difficult matrices such as frozen raspberries.
Collapse
Affiliation(s)
- Émilie Larocque
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada.
| | - Valérie Lévesque
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Dominic Lambert
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
9
|
Di Trani N, Racca N, Demarchi D, Grattoni A. Comprehensive Analysis of Electrostatic Gating in Nanofluidic Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35400-35408. [PMID: 35905377 DOI: 10.1021/acsami.2c08809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular transport in nanofluidic systems exhibits properties that are unique to the nanoscale. Here, the electrostatic and steric interactions between particle and surfaces become dominant in determining particle transport. At the solid-liquid interface of charged surfaces an electric double layer (EDL) forms due to electrostatic interactions between surfaces and charged particles. In these systems, tunable charge-selective nanochannels can be generated by manipulating electrostatic gating via co-ions exclusion and counterions enrichment of the EDL at the solid-liquid interface. In this context, electrostatic gating has been used to modulate the selectivity of nanofluidic membranes for drug delivery, nanofluidic transistors, and FlowFET, among other applications. While an extensive body of literature investigating nanofluidic systems exists, there is a lack of a comprehensive analysis accounting for all major parameters involved in these systems. Here we performed an all-encompassing modeling investigation corroborated by experimental analysis to assess the influence of nanochannel size, electrolyte properties, surface chemistry, gate voltage, dielectric properties, and molecular charge and size on the exclusion and enrichment of charged analytes in nanochannels. We found that the leakage current in electrostatic gating, often overlooked, plays a dominant role in molecular exclusion. Importantly, by independently considering all ionic species, we found that counterions compete for EDL formation at the surface proximity, resulting in concentration distributions that are nearly impossible to predict with analytical models. Achieving a deeper understanding of these nanofluidic phenomena will help the development of innovative miniaturized systems for both medical and industrial applications.
Collapse
Affiliation(s)
- Nicola Di Trani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Nevio Racca
- Department of Electronics and Telecommunications, Polytechnic of Turin, 10129 Turin, Italy
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Polytechnic of Turin, 10129 Turin, Italy
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Surgery, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| |
Collapse
|
10
|
Monteiro S, Rente D, Cunha MV, Marques TA, Cardoso E, Álvaro P, Vilaça J, Ribeiro J, Silva M, Coelho N, Brôco N, Carvalho M, Santos R. Recovery of SARS-CoV-2 from large volumes of raw wastewater is enhanced with the inuvai R180 system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114296. [PMID: 34923418 PMCID: PMC8673751 DOI: 10.1016/j.jenvman.2021.114296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 05/06/2023]
Abstract
Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a powerful tool to complement syndromic surveillance. Although detection of SARS-CoV-2 in raw wastewater may be prompted with good recoveries during periods of high community prevalence, in the early stages of population outbreaks concentration procedures are required to overcome low viral concentrations. Several methods have become available for the recovery of SARS-CoV-2 from raw wastewater, generally involving filtration. However, these methods are limited to small sample volumes, possibly missing the early stages of virus circulation, and restrained applicability across different water matrices. The aim of this study was thus to evaluate the performance of three methods enabling the concentration of SARS-CoV-2 from large volumes of wastewater: i) hollow fiber filtration using the inuvai R180, with an enhanced elution protocol and polyethylene glycol (PEG) precipitation; ii) PEG precipitation; and iii) skimmed milk flocculation. The performance of the three approaches was evaluated in wastewater from multiple wastewater treatment plants (WWTP) with distinct singularities, according to: i) effective volume; ii) percentage of recovery; iii) extraction efficiency; iv) inhibitory effect; and v) the limits of detection and quantification. The inuvai R180 system had the best performance, with detection of spiked control across all samples, with average recovery percentages of 68% for porcine epidemic diarrhea virus (PEDV), with low variability. Mean recoveries for PEG precipitation and skimmed milk flocculation were 9% and 14%, respectively. The inuvai R180 enables the scalability of volumes without negative impact on the costs, time for analysis, and recovery/inhibition. Moreover, hollow fiber ultrafilters favor the concentration of different microbial taxonomic groups. Such combined features make this technology attractive for usage in environmental waters monitoring.
Collapse
Affiliation(s)
- Silvia Monteiro
- Laboratorio de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Daniela Rente
- Laboratorio de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Tiago A Marques
- Centre for Research Into Ecological and Environmental Modelling, The Observatory, University of St Andrews, St Andrews, KY16 9LZ, Scotland, UK; Centro de Estatística e Aplicações, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Eugénia Cardoso
- Águas Do Tejo Atlântico, Fábrica de Águas de Alcântara, Avenida de Ceuta, 1300-254, Lisboa, Portugal
| | - Pedro Álvaro
- Águas Do Tejo Atlântico, Fábrica de Águas de Alcântara, Avenida de Ceuta, 1300-254, Lisboa, Portugal
| | - João Vilaça
- SIMDOURO, ETAR de Gaia Litoral, 4400-356, Canidelo, Portugal
| | - Jorge Ribeiro
- SIMDOURO, ETAR de Gaia Litoral, 4400-356, Canidelo, Portugal
| | - Marco Silva
- Águas Do Norte, Lugar de Gaído, 4755-045, Barcelos, Portugal
| | - Norberta Coelho
- Águas Do Norte, Lugar de Gaído, 4755-045, Barcelos, Portugal
| | - Nuno Brôco
- AdP VALOR, Serviços Ambientais, S.A., Rua Visconde de Seabra, 3, 1700-421, Lisboa, Portugal
| | - Marta Carvalho
- AdP VALOR, Serviços Ambientais, S.A., Rua Visconde de Seabra, 3, 1700-421, Lisboa, Portugal
| | - Ricardo Santos
- Laboratorio de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Advances in improvement strategies of digital nucleic acid amplification for pathogen detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Wang N, Pan G, Liu P, Rong S, Gao Z, Li Q. Advances and Future Perspective on Detection Technology of Human Norovirus. Pathogens 2021; 10:pathogens10111383. [PMID: 34832539 PMCID: PMC8618740 DOI: 10.3390/pathogens10111383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Human norovirus (HuNoV) is a food-borne pathogen that causes acute gastroenteritis in people of all ages worldwide. However, no approved vaccines and antiviral drugs are available at present. Therefore, the development of accurate and rapid detection technologies is important in controlling the outbreak of HuNoVs. This paper reviewed the research progress on HuNoV detection, including immunological methods, molecular detection and biosensor technology. Immunological methods and molecular detection technologies are still widely used for HuNoV detection. Furthermore, biosensors will become an emerging developmental direction for the rapid detection of HuNoVs because of their high sensitivity, low cost, easy operation and suitability for onsite detection.
Collapse
Affiliation(s)
- Nan Wang
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Guiying Pan
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Ping Liu
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Shaofeng Rong
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Zhiyong Gao
- Beijing Research Center for Preventive Medicine, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
- Correspondence: ; Tel.: +86-21-60873381
| |
Collapse
|
13
|
Lei S, Chen S, Zhong Q. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects. Int J Biol Macromol 2021; 184:750-759. [PMID: 34171259 DOI: 10.1016/j.ijbiomac.2021.06.132] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022]
Abstract
Pathogens pose a severe threat to food safety and human health. The traditional methods for pathogen detection can't meet the growing diagnosis and control need. Digital PCR (dPCR) attracts a considerable attention for its ability to absolutely quantify pathogens with features of high selectivity, simplicity, accuracy and rapidity. The dPCR technique that achieves absolute quantification based on end-point measurement without standard curve offers a guideline for further genetic analysis and molecular diagnosis. It could contribute to the quantification of low level of nucleic acid, early detection and timely prevention of pathogenic diseases. In this review, 1442 publications about dPCR were selected and the detections of various pathogens by dPCR were reviewed comprehensively, including viruses, bacteria, parasites and fungi. A number of examples are cited to illustrate that dPCR is a new powerful tool with desired accuracy, sensitivity, and reproducibility for quantification of different types of pathogens. Moreover, the benefits, challenges and future prospects of the dPCR were also highlighted in this review.
Collapse
Affiliation(s)
- Shuwen Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Song Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Application of One-Step Reverse Transcription Droplet Digital PCR for Dengue Virus Detection and Quantification in Clinical Specimens. Diagnostics (Basel) 2021; 11:diagnostics11040639. [PMID: 33916081 PMCID: PMC8066273 DOI: 10.3390/diagnostics11040639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Detection and quantification of viruses in laboratory and clinical samples are standard assays in dengue virus (DENV) studies. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) is considered to be the standard for DENV detection and quantification due to its high sensitivity. However, qRT-PCR offers only quantification relative to a standard curve and consists of several "in-house" components resulting in interlaboratory variations. We developed and optimized a protocol for applying one-step RT-droplet digital PCR (RT-ddPCR) for DENV detection and quantification. The lower limit of detection (LLOD95) and the lower limit of quantification (LLOQ) for RT-ddPCR were estimated to be 1.851 log10-copies/reaction and 2.337 log10-copies/reaction, respectively. The sensitivity of RT-ddPCR was found to be superior to qRT-PCR (94.87% vs. 90.38%, p = 0.039) while no false positives were detected. Quantification of DENV in clinical samples was independently performed in three laboratories showing interlaboratory variations with biases <0.5 log10-copies/mL. The RT-ddPCR protocol presented here could help harmonize DENV quantification results and improve findings in the field such as identifying a DENV titer threshold correlating with disease severity.
Collapse
|
15
|
Donia A, Hassan SU, Zhang X, Al-Madboly L, Bokhari H. COVID-19 Crisis Creates Opportunity towards Global Monitoring & Surveillance. Pathogens 2021; 10:256. [PMID: 33668358 PMCID: PMC7996165 DOI: 10.3390/pathogens10030256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 01/07/2023] Open
Abstract
The spectrum of emerging new diseases as well as re-emerging old diseases is broadening as infectious agents evolve, adapt, and spread at enormous speeds in response to changing ecosystems. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recent phenomenon and may take a while to understand its transmission routes from less traveled territories, ranging from fomite exposure routes to wastewater transmission. The critical challenge is how to negotiate with such catastrophic pandemics in high-income countries (HICs ~20% of the global population) and low-and middle-income countries (LMICs ~ 80% of the global population) with a total global population size of approximately eight billion, where practical mass testing and tracing is only a remote possibility, particularly in low-and middle-income countries (LMICs). Keeping in mind the population distribution disparities of high-income countries (HICs) and LMICs and urbanisation trends over recent years, traditional wastewater-based surveillance such as that used to combat polio may help in addressing this challenge. The COVID-19 era differs from any previous pandemics or global health challenges in the sense that there is a great deal of curiosity within the global community to find out everything about this virus, ranging from diagnostics, potential vaccines/therapeutics, and possible routes of transmission. In this regard, the fact that the gut is the common niche for both poliovirus and SARS-CoV-2, and due to the shedding of the virus through faecal material into sewerage systems, the need for long-term wastewater surveillance and developing early warning systems for better preparedness at local and global levels is increasingly apparent. This paper aims to provide an insight into the ongoing COVID-19 crisis, how it can be managed, and what measures are required to deal with a current global international public health concern. Additionally, it shed light on the importance of using wastewater surveillance strategy as an early warning practical tool suitable for massive passive screening, as well as the urgent need for microfluidic technology as a rapid and cost-effective approach tracking SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- Ahmed Donia
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan;
| | - Sammer-ul Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Xunli Zhang
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Lamiaa Al-Madboly
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Habib Bokhari
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan;
| |
Collapse
|
16
|
Jia R, Zhang G, Liu H, Chen Y, Zhou J, Liu Y, Ding P, Wang Y, Zang W, Wang A. Novel Application of Nanofluidic Chip Digital PCR for Detection of African Swine Fever Virus. Front Vet Sci 2021; 7:621840. [PMID: 33614757 PMCID: PMC7894257 DOI: 10.3389/fvets.2020.621840] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 01/06/2023] Open
Abstract
African swine fever virus (ASFV) gives rise to a grievous transboundary and infectious disease, African swine fever (ASF), which has caused a great economic loss in the swine industry. To prevent and control ASF, once suspicious symptoms have presented, the movement of animal and pork products should be stopped, and then, laboratory testing should be adopted to diagnose ASF. A method for ASFV DNA quantification is presented in this research, which utilizes the next-generation PCR platform, nanofluidic chip digital PCR (cdPCR). The cdPCR detection showed good linearity and repeatability. The limit of detection for cdPCR is 30.1995 copies per reaction, whereas no non-specific amplification curve was found with other swine viruses. In the detection of 69 clinical samples, the cdPCR showed significant consistency [91.30% (63/69)] to the Office International des Epizooties-approved quantitative PCR. Compared with the commercial quantitative PCR kit, the sensitivity of the cdPCR assay was 86.27% (44/50), and the specificity was 94.44% (17/18). The positive coincidence rate of the cdPCR assay was 88% (44/50). The total coincidence rate of the cdPCR and kit was 89.86% (62/69), and the kappa value reached 0.800 (P < 0.0001). This is the first time that cdPCR has been applied to detecting ASFV successfully.
Collapse
Affiliation(s)
- Rui Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongliang Liu
- Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yankai Liu
- Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanwei Wang
- Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Weimin Zang
- Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Jiang XW, Chen SZ, Zhu XY, Xu XX, Liu Y. Development and validation of a droplet digital PCR assay for the evaluation of PML-RARα fusion transcripts in acute promyelocytic leukemia. Mol Cell Probes 2020; 53:101617. [PMID: 32585184 DOI: 10.1016/j.mcp.2020.101617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 11/11/2022]
Abstract
Acute promyelocytic leukemia (APL) is an aggressive disease that requires prompt treatment. Promyelocytic leukemia protein-retinoic acid receptor α (PML-RARα) fusion genes resulting from reciprocal translocation are considered a molecular basis for diagnosing APL. Moreover, PML-RARα fusion gene testing is an essential tool for monitoring the response to therapy via minimal residual disease and providing a diagnosis before rapid disease progression in APL. The present study developed a novel droplet digital PCR (ddPCR) assay to rapidly detect two PML-RARα variants (bcr1 and bcr3) and compared its limit of detection (LOD) with quantitative PCR (qPCR). It was demonstrated that the LOD of ddPCR for PML-RARα reached 0.001%, and the evaluation of high copy number samples of PML-RARα by ddPCR correlated well with qPCR. Furthermore, clinical sample testing with ddPCR found that 34 and 24% samples were bcr-1-positive and bcr3-positive, respectively. However, according to qPCR, 30% of the samples were bcr1-positive and 20% were bcr3-positive. In addition, the concordance rate between ddPCR and qPCR reaction was 86%. While monitoring minimal residual disease, the PML-RARα mutation rate of three patients who recovered well decreased to 0.34%. However, one patient who was bcr3-positive and relapsed had a mutation rate of 13% while in remission, indicating that the bcr3 isoform may be an adverse prognostic factor affecting recovery. Therefore, the present results suggested that this novel ddPCR assay may be useful for monitoring and evaluating the treatment effects and prognosis of APL.
Collapse
Affiliation(s)
- Xi-Wen Jiang
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, 510080, China; The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, 510080, China.
| | - Si-Ze Chen
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China; The Precise Therapy Engineering Technology Research Cente of Guangdong Province for Esophageal Cancer, Guangzhou, 510080, China
| | - Xiao-Ya Zhu
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, 510080, China; The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, 510080, China
| | - Xiao-Xie Xu
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, 510080, China; The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, 510080, China
| | - Yue Liu
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, 510080, China; The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, 510080, China
| |
Collapse
|
18
|
Holcomb DA, Stewart JR. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr Environ Health Rep 2020; 7:311-324. [PMID: 32542574 PMCID: PMC7458903 DOI: 10.1007/s40572-020-00278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Fecal contamination of water is a major public health concern. This review summarizes recent developments and advancements in water quality indicators of fecal contamination. RECENT FINDINGS This review highlights a number of trends. First, fecal indicators continue to be a valuable tool to assess water quality and have expanded to include indicators able to detect sources of fecal contamination in water. Second, molecular methods, particularly PCR-based methods, have advanced considerably in their selected targets and rigor, but have added complexity that may prohibit adoption for routine monitoring activities at this time. Third, risk modeling is beginning to better connect indicators and human health risks, with the accuracy of assessments currently tied to the timing and conditions where risk is measured. Research has advanced although challenges remain for the effective use of both traditional and alternative fecal indicators for risk characterization, source attribution and apportionment, and impact evaluation.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7435, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7431, USA.
| |
Collapse
|
19
|
Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. WATER RESEARCH 2020. [PMID: 32425251 DOI: 10.1101/2020.04.22.20075200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 200,000 reported COVID-19 cases in Spain resulting in more than 20,800 deaths as of April 21, 2020. Faecal shedding of SARS-CoV-2 RNA from COVID-19 patients has extensively been reported. Therefore, we investigated the occurrence of SARS-CoV-2 RNA in six wastewater treatments plants (WWTPs) serving the major municipalities within the Region of Murcia (Spain), the area with the lowest COVID-19 prevalence within Iberian Peninsula. Firstly, an aluminum hydroxide adsorption-precipitation concentration method was validated using a porcine coronavirus (Porcine Epidemic Diarrhea Virus, PEDV) and mengovirus (MgV). The procedure resulted in average recoveries of 10 ± 3.5% and 10 ± 2.1% in influent water (n = 2) and 3.3 ± 1.6% and 6.2 ± 1.0% in effluent water (n = 2) samples for PEDV and MgV, respectively. Then, the method was used to monitor the occurrence of SARS-CoV-2 from March 12 to April 14, 2020 in influent, secondary and tertiary effluent water samples. By using the real-time RT-PCR (RT-qPCR) Diagnostic Panel validated by US CDC that targets three regions of the virus nucleocapsid (N) gene, we estimated quantification of SARS-CoV-2 RNA titers in untreated wastewater samples of 5.4 ± 0.2 log10 genomic copies/L on average. Two secondary water samples resulted positive (2 out of 18) and all tertiary water samples tested as negative (0 out 12). This environmental surveillance data were compared to declared COVID-19 cases at municipality level, revealing that members of the community were shedding SARS-CoV-2 RNA in their stool even before the first cases were reported by local or national authorities in many of the cities where wastewaters have been sampled. The detection of SARS-CoV-2 in wastewater in early stages of the spread of COVID-19 highlights the relevance of this strategy as an early indicator of the infection within a specific population. At this point, this environmental surveillance could be implemented by municipalities right away as a tool, designed to help authorities to coordinate the exit strategy to gradually lift its coronavirus lockdown.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain; Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pedro Simón
- ESAMUR, Avenida Juan Carlos, s/n - Edificio Torre Jemeca, Murcia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
20
|
Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. WATER RESEARCH 2020; 181:115942. [PMID: 32425251 PMCID: PMC7229723 DOI: 10.1016/j.watres.2020.115942] [Citation(s) in RCA: 812] [Impact Index Per Article: 162.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 05/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 200,000 reported COVID-19 cases in Spain resulting in more than 20,800 deaths as of April 21, 2020. Faecal shedding of SARS-CoV-2 RNA from COVID-19 patients has extensively been reported. Therefore, we investigated the occurrence of SARS-CoV-2 RNA in six wastewater treatments plants (WWTPs) serving the major municipalities within the Region of Murcia (Spain), the area with the lowest COVID-19 prevalence within Iberian Peninsula. Firstly, an aluminum hydroxide adsorption-precipitation concentration method was validated using a porcine coronavirus (Porcine Epidemic Diarrhea Virus, PEDV) and mengovirus (MgV). The procedure resulted in average recoveries of 10 ± 3.5% and 10 ± 2.1% in influent water (n = 2) and 3.3 ± 1.6% and 6.2 ± 1.0% in effluent water (n = 2) samples for PEDV and MgV, respectively. Then, the method was used to monitor the occurrence of SARS-CoV-2 from March 12 to April 14, 2020 in influent, secondary and tertiary effluent water samples. By using the real-time RT-PCR (RT-qPCR) Diagnostic Panel validated by US CDC that targets three regions of the virus nucleocapsid (N) gene, we estimated quantification of SARS-CoV-2 RNA titers in untreated wastewater samples of 5.4 ± 0.2 log10 genomic copies/L on average. Two secondary water samples resulted positive (2 out of 18) and all tertiary water samples tested as negative (0 out 12). This environmental surveillance data were compared to declared COVID-19 cases at municipality level, revealing that members of the community were shedding SARS-CoV-2 RNA in their stool even before the first cases were reported by local or national authorities in many of the cities where wastewaters have been sampled. The detection of SARS-CoV-2 in wastewater in early stages of the spread of COVID-19 highlights the relevance of this strategy as an early indicator of the infection within a specific population. At this point, this environmental surveillance could be implemented by municipalities right away as a tool, designed to help authorities to coordinate the exit strategy to gradually lift its coronavirus lockdown.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain; Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pedro Simón
- ESAMUR, Avenida Juan Carlos, s/n - Edificio Torre Jemeca, Murcia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
21
|
Monteiro S, Smigic N, Rajkovic A, Santos R. Efficiency of PEG secondary concentration and PCR for the simultaneous concentration and quantification of foodborne bacteria, viruses and protozoa. FEMS Microbiol Lett 2020; 367:5841523. [DOI: 10.1093/femsle/fnaa085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Fresh fruits are a potential source of many different pathogens, including bacteria, enteric viruses and protozoa that may pose serious health risks. The consumption of raspberries has been widely associated with large foodborne outbreaks and because of the low concentration at which most of these pathogens are found, sensitive and accurate detection methods are required. Methods that would allow for an accurate and sensitive simultaneous elution and concentration of the different classes of pathogens would decrease the time for analysis, the costs associated and the expertise necessary. In this study we explored the use of polyethylene glycol (PEG) secondary concentration to simultaneously concentrate bacteria, enteric viruses and protozoa from raspberries. PEG secondary concentration showed good recovery rates for all the organisms tested. This work indicates that PEG secondary concentration followed by quantitative (Reverse Transcription) Polymerase Chain Reaction (q(RT)PCR) may be a relevant alternative to standardized methods for the simultaneous concentration of bacteria, enteric viruses and protozoa.
Collapse
Affiliation(s)
- Silvia Monteiro
- Laboratorio Analises, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Nada Smigic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Andreja Rajkovic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ricardo Santos
- Laboratorio Analises, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
22
|
Hata A, Furumai H, Katayama H. Sequential treatment using a hydrophobic resin and gel filtration to improve viral gene quantification from highly complex environmental concentrates. WATER RESEARCH 2020; 174:115652. [PMID: 32135428 DOI: 10.1016/j.watres.2020.115652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Assays based on the polymerase chain reaction (PCR) are widely applied to quantify enteric viruses in aquatic environments to study their fates and potential infection risks. However, inhibitory substances enriched by virus concentration processes can result in inaccurate quantification. This study aimed to find a method for improving virus quantification by mitigating the effects of inhibitory environmental concentrates, using previous knowledge of the properties of the inhibitory substances. Performances of anion exchange resins, gel filtration, and a hydrophobic resin (DAX-8) were comparatively evaluated using poliovirus and its extracted RNA spiked into humic acid solutions. These solutions served as good representatives of the inhibitory environmental concentrates. A sequential treatment using DAX-8 resin and gel filtration produced the most favorable results, i.e., low virus losses that were stable and a reduced inhibitory effect. Furthermore, the sequential treatment was applied to another set of 15 environmental concentrates. Without the sequential treatment, serious underestimation (>4.0 log10 to 1.1 log10) of a molecular process control (murine norovirus) was measured for eight samples. With the treatment, the control was detected with <1.0 log10 underestimation for all samples. The treatment improved the quantification of seven types of indigenous viruses. In summary, the sequential treatment is effective in improving the viral quantification in various of environmental concentrates.
Collapse
Affiliation(s)
- Akihiko Hata
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama, 939-0398, Japan.
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
23
|
Wen R, Lee J, Chu M, Tonu N, Dumonceaux T, Gossen BD, Yu F, Peng G. Quantification of Plasmodiophora brassicae Resting Spores in Soils Using Droplet Digital PCR (ddPCR). PLANT DISEASE 2020; 104:1188-1194. [PMID: 32065569 DOI: 10.1094/pdis-03-19-0584-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmodiophora brassicae, an obligate soilborne pathogen that causes clubroot on Brassica crops, is spreading rapidly in western Canada, threatening canola production in the region. Bioassays and molecular assays have been used to estimate the concentration of P. brassicae resting spores in soil, which can affect clubroot incidence and severity on crops. Droplet digital PCR (ddPCR) is a promising new approach for quantification of pathogen inoculum owing to its low sensitivity to inhibitors and consistency at low target concentrations. The objective of this study was to assess ddPCR against existing quantitative PCR (qPCR) for potential advantage and/or improvement in quantifying P. brassicae resting spores in soil. The new protocol enumerated resting spores accurately in spiked potting mix or soil samples ranging from 102 to 107 spores per gram. At a spore concentration ≥107 spores per gram, however, ddPCR became less accurate, with a tendency of overestimation. The protocol was validated by quantifying the resting spores in spiked brown, dark brown, and black soils using both ddPCR and qPCR simultaneously. These soil types are found commonly on the Canadian Prairies, and they vary in texture, pH, and organic content. ddPCR showed similar results among the different soil types, whereas qPCR often displayed lower counts for the same spore concentration, with the amplification of DNA inhibited completely in black soil samples. The inhibition can be removed by a 10-fold dilution of DNA samples. The results show that ddPCR can be a more versatile tool than qPCR for detection and quantification of P. brassicae resting spores in soil samples.
Collapse
Affiliation(s)
- Rui Wen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Jillian Lee
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Mingguang Chu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Nazmoon Tonu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Tim Dumonceaux
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Bruce D Gossen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
24
|
Di Trani N, Pimpinelli A, Grattoni A. Finite-Size Charged Species Diffusion and pH Change in Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12246-12255. [PMID: 32068385 DOI: 10.1021/acsami.9b19182] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Molecular transport through nanofluidic structures exhibits properties that are unique at the nanoscale. The high surface-to-volume ratio of nanometer-sized confined spaces renders particle interactions with the surface of central importance. The electrical double layer (EDL) at the solid-liquid interface of charged surfaces generates an enrichment of counterions and the exclusion of co-ions that lead to a change in their diffusivity. In addition, the diffusive transport is altered by steric and hydrodynamic interactions between fluid molecules and the boundaries. An extensive body of literature investigates molecular transport at the nanoscale. However, most studies account for ionic species as point charges, severely limiting the applicability of the results to "large" nanofluidic systems. Moreover, and even more importantly, the change of pH in the nanoconfined region inside nanochannels has been completely overlooked. Corroborated by experimental data, here we present an all-encompassing analysis of molecular diffusion from the micro- to the ultra-nanoscale. While accounting for finite-size ions, we compute self-consistently the pH inside the channels. Surprisingly, we found that the concentration of ions H+ can change by more than 2 orders of magnitude compared to the bulk, hugely affecting molecular transport. Further, we found that counterions exhibit both enrichment and exclusion, depending on the size of nanochannels. Achieving a greater understanding of the effective transport properties of fluids at the nanoscale will fill the gap in knowledge that still limits development of innovative systems for medicine and industrial applications alike.
Collapse
Affiliation(s)
- Nicola Di Trani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
- University of Chinese Academy of Science (UCAS), 19 Yuquan Road, Beijing 100049, Shijingshan, China
| | - Alberto Pimpinelli
- Smalley-Curl Institute and MSNE Department, Rice University, Houston, Texas 77005, United States
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Surgery, Houston Methodist Hospital, Houston, Texas 77030, United States
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas 77030, United States
| |
Collapse
|
25
|
Malik YS, Verma AK, Kumar N, Touil N, Karthik K, Tiwari R, Bora DP, Dhama K, Ghosh S, Hemida MG, Abdel-Moneim AS, Bányai K, Vlasova AN, Kobayashi N, Singh RK. Advances in Diagnostic Approaches for Viral Etiologies of Diarrhea: From the Lab to the Field. Front Microbiol 2019; 10:1957. [PMID: 31608017 PMCID: PMC6758846 DOI: 10.3389/fmicb.2019.01957] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/08/2019] [Indexed: 12/25/2022] Open
Abstract
The applications of correct diagnostic approaches play a decisive role in timely containment of infectious diseases spread and mitigation of public health risks. Nevertheless, there is a need to update the diagnostics regularly to capture the new, emergent, and highly divergent viruses. Acute gastroenteritis of viral origin has been identified as a significant cause of mortality across the globe, with the more serious consequences seen at the extremes of age groups (young and elderly) and immune-compromised individuals. Therefore, significant advancements and efforts have been put in the development of enteric virus diagnostics to meet the WHO ASSURED criteria as a benchmark over the years. The Enzyme-Linked Immunosorbent (ELISA) and Polymerase Chain Reaction (PCR) are the basic assays that provided the platform for development of several efficient diagnostics such as real-time RT-PCR, loop-mediated isothermal amplification (LAMP), polymerase spiral reaction (PSR), biosensors, microarrays and next generation sequencing. Herein, we describe and discuss the applications of these advanced technologies in context to enteric virus detection by delineating their features, advantages and limitations.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| | - Atul Kumar Verma
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| | - Naveen Kumar
- ICAR-National Institute of High Security Animal Diseases, OIE Reference Laboratory for Avian Influenza, Bhopal, India
| | - Nadia Touil
- Laboratoire de Biosécurité et de Recherche, Hôpital Militaire d’Instruction Mohammed V, Rabat, Morocco
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology & Immunology, College of Veterinary Sciences, DUVASU, Mathura, India
| | - Durlav Prasad Bora
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Maged Gomaa Hemida
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Hufuf, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed S. Abdel-Moneim
- Department of Microbiology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Beni Suef University, Beni Suef, Egypt
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, CFAES, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | | | - Raj Kumar Singh
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
26
|
Hamza IA, Bibby K. Critical issues in application of molecular methods to environmental virology. J Virol Methods 2019; 266:11-24. [PMID: 30659861 DOI: 10.1016/j.jviromet.2019.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
Abstract
Waterborne diseases have significant public health and socioeconomic implications worldwide. Many viral pathogens are commonly associated with water-related diseases, namely enteric viruses. Also, novel recently discovered human-associated viruses have been shown to be a causative agent of gastroenteritis or other clinical symptoms. A wide range of analytical methods is available for virus detection in environmental water samples. Viral isolation is historically carried out via propagation on permissive cell lines; however, some enteric viruses are difficult or not able to propagate on existing cell lines. Real-time polymerase chain reaction (qPCR) screening of viral nucleic acid is routinely used to investigate virus contamination in water due to the high sensitivity and specificity. Additionally, the introduction of metagenomic approaches into environmental virology has facilitated the discovery of viruses that cannot be grown in cell culture. This review (i) highlights the applications of molecular techniques in environmental virology such as PCR and its modifications to overcome the critical issues associated with the inability to discriminate between infectious viruses and nonviable viruses, (ii) outlines the strengths and weaknesses of Nucleic Acid Sequence Based Amplification (NASBA) and microarray, (iii) discusses the role of digital PCR as an emerging water quality monitoring assay and its advantages over qPCR, (iv) addresses the viral metagenomics in terms of detecting emerging viral pathogens and diversity in aquatic environment. Indeed, there are many challenges for selecting methods to detect classic and emerging viruses in environmental samples. While the existing techniques have revealed the importance and diversity of viruses in the water environment, further developments are necessary to enable more rapid and accurate methodologies for viral water quality monitoring and regulation.
Collapse
Affiliation(s)
- Ibrahim Ahmed Hamza
- Department of Water Pollution Research, National Research Centre, Cairo, Egypt.
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, USA
| |
Collapse
|
27
|
Varela MF, Monteiro S, Rivadulla E, Santos R, Romalde JL. Development of a novel digital RT-PCR method for detection of human sapovirus in different matrices. J Virol Methods 2018; 254:21-24. [PMID: 29407209 DOI: 10.1016/j.jviromet.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 12/27/2022]
Abstract
A new nanofluidic digital RT-PCR method was developed for sapovirus (SaV) using control material obtained according to standards for enteric viruses. Primers employed amplify a fragment of 112 bp of the polymerase capsid junction, allowing the detection of human genogroups I, II and IV. Analytical validation was performed in clinical, shellfish and environmental water samples. This novel protocol rendered great effectiveness and repetitiveness, as well as higher sensitivity than real time RT-PCR assay, with differences in quantification ranging from 0.1 to 2.6 log-units. The method described here can constitute a promising tool for standardizing SaV quantification.
Collapse
Affiliation(s)
- Miguel F Varela
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Silvia Monteiro
- Laboratório de Análises, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001, Lisboa, Portugal
| | - Enrique Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ricardo Santos
- Laboratório de Análises, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001, Lisboa, Portugal
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Comparison between RT droplet digital PCR and RT real-time PCR for quantification of noroviruses in oysters. Int J Food Microbiol 2018; 284:73-83. [PMID: 30005929 DOI: 10.1016/j.ijfoodmicro.2018.06.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/24/2022]
Abstract
Oysters are frequently associated with norovirus outbreaks, but the presence of norovirus RNA in oysters does not necessarily imply a health risk to humans. There is a close link between human illness and consumption of oysters with high levels of norovirus RNA, but oysters with low levels of norovirus RNA are more unlikely to be associated with illness. Reliable and precise quantification methods are therefore important for outbreak investigations and risk assessments. This study optimised and validated RT droplet digital PCR (RT-ddPCR) assays for quantification of norovirus genogroups I and II in artificially contaminated oysters, and compared them with the standard method, RT real-time PCR (RT-qPCR). The two methods had comparable 95% limits of detection, but RT-ddPCR generally showed greater precision in quantification. Differences between fluorometric measurements and quantification with RT-ddPCR were determined on in vitro transcribed RNA with targets for norovirus genogroups I and II. Quantification by RT-ddPCR was on average 100 times lower than the fluorometric value for norovirus GI and 15.8 times lower than the fluorometric value for norovirus GII. The large inter-assay difference observed highlights the need for monitoring the RT efficiency in RT-ddPCR, especially when results from different assays are compared. Overall, this study suggests that RT-ddPCR can be a suitable method for precise quantification of norovirus genogroups I and II in oysters.
Collapse
|
29
|
Haramoto E, Kitajima M, Hata A, Torrey JR, Masago Y, Sano D, Katayama H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. WATER RESEARCH 2018; 135:168-186. [PMID: 29471200 DOI: 10.1016/j.watres.2018.02.004] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/17/2023]
Abstract
Waterborne human enteric viruses, such as noroviruses and adenoviruses, are excreted in the feces of infected individuals and transmitted via the fecal-oral route including contaminated food and water. Since viruses are normally present at low concentrations in aquatic environments, they should be concentrated into smaller volumes prior to downstream molecular biological applications, such as quantitative polymerase chain reaction (qPCR). This review describes recent progress made in the development of concentration and detection methods of human enteric viruses in water, and discusses their applications for providing a better understanding of the prevalence of the viruses in various types of water worldwide. Maximum concentrations of human enteric viruses in water that have been reported in previous studies are summarized to assess viral abundances in aquatic environments. Some descriptions are also available on recent applications of sequencing analyses used to determine the genetic diversity of viral genomes in water samples, including those of novel viruses. Furthermore, the importance and significance of utilizing appropriate process controls during viral analyses are discussed, and three types of process controls are considered: whole process controls, molecular process controls, and (reverse transcription (RT)-)qPCR controls. Although no standards have been established for acceptable values of virus recovery and/or extraction-(RT-)qPCR efficiency, use of at least one of these appropriate control types is highly recommended for more accurate interpretation of observed data.
Collapse
Affiliation(s)
- Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Akihiko Hata
- Integrated Research System for Sustainability Science, Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Jason R Torrey
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Yoshifumi Masago
- Institute for the Advanced Study of Sustainability, United Nations University, 5-53-70 Jingumae, Shibuya-ku, Tokyo 150-8925, Japan.
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Vietnam Japan University, Luu Huu Phuoc Road, My Dinh 1 Ward, Nam Tu Liem District, Ha Noi, Vietnam.
| |
Collapse
|