1
|
Sun R, Wang Y, Zhu R, Li L, Xi Q, Dai Y, Li J, Cao Y, Guo X, Pan X, Wang Q, Zhang B. Genome-wide identification of CA genes in cotton and the functional analysis of GhαCA4-D, GhβCA6-D and GhγCA2-D in response to drought and salt stresses. Int J Biol Macromol 2025; 304:140872. [PMID: 39938833 DOI: 10.1016/j.ijbiomac.2025.140872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/25/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Carbonic anhydrases (CAs) are critical metalloenzymes, widely exist in organisms, which involve in many physiological processes, including response to adverse environmental conditions. Although CA genes have been comprehensive identified and analyzed in numerous plants, there are a few of reports in cotton. Therefore, we conducted an exhaustive research for CA genes from two tetraploid cotton species and their ancestral species. A total of 138 CA genes were found, and 45 of them belonged to Gossypium hirsutum. Phylogenetic relationships and sequences analysis showed that CA genes were categorized into three distinct subtypes: α-type, β-type and γ-type. The exon numbers of β-type members were highly variable. Various types of cis-elements, including drought inducibility, were identified in CA genes, suggesting that CA genes might be involved in the regulation of drought stress response. qRT-PCR was applied to assess the gene expression level in various tissues under drought stress. The results indicated that the expression levels of GhαCA4-D, GhβCA1-A, GhβCA1-D, GhβCA3-D and GhβCA6-D were significantly higher in leaves than that in stems and roots. The expression of GhαCA4-A, GhαCA8-A, GhαCA4-D, GhβCA3-D, GhβCA6-D and GhγCAL1-D was significantly upregulated in roots at severe drought treatment. The functions of GhαCA4-D, GhβCA6-D and GhγCA2-D were analyzed using virus-induced gene silencing (VIGS) technology. Compared to the controls, GhγCA2-D-silenced upland cotton seedlings were more sensitive to salt stress. However, the drought tolerance of GhαCA4-D and GhβCA6-D silenced plants was significantly decreased. Stomatal density, width and area were significantly higher in TRV:GhβCA6-D compared to TRV:00 inoculated plants. GhαCA4-D silenced plants were susceptible to oxidative stress, and silencing GhαCA4-D induced leave cell death. Our results will assist to make clear the regulatory mechanism of CA genes under abiotic stress.
Collapse
Affiliation(s)
- Runrun Sun
- Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yuanyuan Wang
- Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ruihao Zhu
- Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Lijie Li
- Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Qianhui Xi
- Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yunpeng Dai
- Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Jiahui Li
- Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yuanyuan Cao
- Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xinlei Guo
- Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Qinglian Wang
- Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
2
|
Ignatenko AA, Nilova IA, Kholoptseva ES, Titov AF, Kaznina NM. Effect of Seed Treatment with Salicylic Acid on the Carbonic Anhydrase Activity, Photosynthesis Rate, Stomatal Conductance, and Pigments Content in Wheat Leaves at Zinc Excess. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 513:400-403. [PMID: 37950810 DOI: 10.1134/s0012496623700758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 11/13/2023]
Abstract
The effect of seed treatment with salicylic acid (SA) on the carbonic anhydrase (CA) activity, photosynthesis rate, stomatal conductance, and pigment content in wheat leaves was studied at an optimal zinc content (2 μM) and zinc excess (1500 μM). It was shown for the first time that the CA activity and stomatal conductance increased upon seed treatment with SA at the optimal zinc content as compared with untreated plants, while the photosynthesis rate was not affected. When zinc was in excess in the root zone, seed treatment with SA decreased the CA activity to a greater extent, but the photosynthesis rate was higher than in untreated plants, apparently due to an increase in the contents of chlorophylls and carotenoids and stomatal conductivity. It was concluded that SA is involved in the protective and adaptive responses of wheat plants to excess environmental zinc along with other nonhormonal factors and hormones.
Collapse
Affiliation(s)
- A A Ignatenko
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia.
| | - I A Nilova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - E S Kholoptseva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - A F Titov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - N M Kaznina
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
3
|
Yang M, Umer MJ, Wang H, Han J, Han J, Liu Q, Zheng J, Cai X, Hou Y, Xu Y, Wang Y, Khan MKR, Ditta A, Liu F, Zhou Z. Decoding the guardians of cotton resilience: A comprehensive exploration of the βCA genes and its role in Verticillium dahliae resistance. PHYSIOLOGIA PLANTARUM 2023; 175:e14113. [PMID: 38148227 DOI: 10.1111/ppl.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Plant Carbonic anhydrases (Cas) have been shown to be stress-responsive enzymes that may play a role in adapting to adverse conditions. Cotton is a significant economic crop in China, with upland cotton (Gossypium hirsutum) being the most widely cultivated species. We conducted genome-wide identification of the βCA gene in six cotton species and preliminary analysis of the βCA gene in upland cotton. In total, 73 βCA genes from six cotton species were identified, with phylogenetic analysis dividing them into five subgroups. GHβCA proteins were predominantly localized in the chloroplast and cytoplasm. The genes exhibited conserved motifs, with motifs 1, 2, and 3 being prominent. GHβCA genes were unevenly distributed across chromosomes and were associated with stress-responsive cis-regulatory elements, including those responding to light, MeJA, salicylic acid, abscisic acid, cell cycle regulation, and defence/stress. Expression analysis indicated that GHβCA6, GHβCA7, GHβCA10, GHβCA15, and GHβCA16 were highly expressed under various abiotic stress conditions, whereas GHβCA3, GHβCA9, GHβCA10, and GHβCA18 had higher expression patterns under Verticillium dahliae infection at different time intervals. In Gossypium thurberi, GthβCA1, GthβCA2, and GthβCA4 showed elevated expression across stress conditions and tissues. Silencing GHβCA10 through VIGS increased Verticillium wilt severity and reduced lignin deposition compared to non-silenced plants. GHβCA10 is crucial for cotton's defense against Verticillium dahliae. Further research is needed to understand the underlying mechanisms and develop strategies to enhance resistance against Verticillium wilt.
Collapse
Affiliation(s)
- Mengying Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Muhammad Jawad Umer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Heng Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Jiale Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangping Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiankun Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Jie Zheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Xiaoyan Cai
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| | - Yuqing Hou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Yanchao Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Yuhong Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | | | - Allah Ditta
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| | - Zhongli Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| |
Collapse
|
4
|
Balbinott N, Margis R. The many faces of lysine acylation in proteins: Phytohormones as unexplored substrates. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111866. [PMID: 37714383 DOI: 10.1016/j.plantsci.2023.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Protein post-translational modification (PTM) is a ubiquitous process that occurs in most proteins. Lysine residues containing an ε-amino group are recognized as hotspots for the addition of different chemical groups. Lysine acetylation, extensively studied in histones, serves as an epigenetic hallmark capable of promoting changes in chromatin structure and availability. Acyl groups derived from molecules involved in carbohydrate and lipid metabolisms, such as lactate, succinate and hydroxybutyrate, were identified as lysine modifications of histones and other proteins. Lysine-acyltransferases do not exhibit significant substrate specificity concerning acyl donors. Furthermore, plant hormones harboring acyl groups often form conjugates with free amino acids to regulate their activity and function during plant physiological processes and responses, a process mediated by GH3 enzymes. Besides forming low-molecular weight conjugates, auxins have been shown to covalently modify proteins in bean seeds. Aside from auxins, other phytohormones with acyl groups are unexplored potential substrates for post-translational acylation of proteins. Using MS data searches, we revealed various proteins with lysine residues linked to auxin, abscisic acid, gibberellic acid, jasmonic acid, and salicylic acid. These findings raise compelling questions about the ability of plant hormones harboring carboxyl groups to serve as new candidates for protein acylation and acting in protein PTM and modulation.
Collapse
Affiliation(s)
- Natalia Balbinott
- Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rogerio Margis
- Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
5
|
Zhao J, Yuan Z, Han X, Bao T, Yang T, Liu Z, Liu H. The Carbonic Anhydrase βCA1 Functions in PopW-Mediated Plant Defense Responses in Tomato. Int J Mol Sci 2023; 24:11021. [PMID: 37446199 DOI: 10.3390/ijms241311021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
β-Carbonic anhydrase (βCA) is very important for plant growth and development, but its function in immunity has also been examined. In this study, we found that the expression level of Solanum lycopersicum βCA1 (SlβCA1) was significantly upregulated in plants treated with Xanthomonas euvesicatoria 85-10. The protein was localized in the nucleus, cell membrane and chloroplast. Using tomato plants silenced with SlβCA1, we demonstrated that SlβCA1 plays an active role in plant disease resistance. Moreover, we found that the elicitor PopW upregulated the expression of SlβCA1, while the microbe-associated molecular pattern response induced by PopW was inhibited in TRV-SlβCA1. The interaction between PopW and SlβCA1 was confirmed. Here, we found that SlβCA1 was positively regulated during PopW-induced resistance to Xanthomonas euvesicatoria 85-10. These data indicate the importance of SlβCA1 in plant basic immunity and its recognition by the Harpin protein PopW as a new target for elicitor recognition.
Collapse
Affiliation(s)
- Jieru Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixiang Yuan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xixi Han
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Bao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingmi Yang
- Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Zhuang Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxia Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Ali J, Faridi S, Sardar M. Carbonic anhydrase as a tool to mitigate global warming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83093-83112. [PMID: 37336857 DOI: 10.1007/s11356-023-28122-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
The global average temperature breaks the record every year, and this unprecedented speed at which it is unfolding is causing serious climate change which in turn impacts the lives of humans and other living organisms. Thus, it is imperative to take immediate action to limit global warming. Increased CO2 emission from the industrial sector that relies on fossil fuels is the major culprit. Mitigating global warming is an uphill battle that involves an integration of technologies such as switching to renewable energy, increasing the carbon sink capacity, and implementing carbon capture and sequestration (CCS) on major sources of CO2 emissions. Among all these methods, CCS is globally accepted as a potential technology to address this climate change. CCS using carbonic anhydrase (CA) is gaining momentum due to its advantages over other conventional CCS technologies. CA is a metalloenzyme that catalyses a fundamental reaction for life, i.e. the interconversion of bicarbonate and protons from carbon dioxide and water. The practical application of CA requires stable CAs operating under harsh operational conditions. CAs from extremophilic microbes are the potential candidates for the sequestration of CO2 and conversion into useful by-products. The soluble free form of CA is expensive, unstable, and non-reusable in an industrial setup. Immobilization of CA on various support materials can provide a better alternative for application in the sequestration of CO2. The present review provides insight into several types of CAs, their distinctive characteristics, sources, and recent developments in CA immobilization strategies for application in CO2 sequestration.
Collapse
Affiliation(s)
- Juned Ali
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shazia Faridi
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meryam Sardar
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
7
|
Kasili RW, Rai AK, Moroney JV. LCIB functions as a carbonic anhydrase: evidence from yeast and Arabidopsis carbonic anhydrase knockout mutants. PHOTOSYNTHESIS RESEARCH 2023; 156:193-204. [PMID: 36856938 DOI: 10.1007/s11120-023-01005-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/10/2023] [Indexed: 05/03/2023]
Abstract
Chlamydomonas reinhardtii evolved a CO2-concentrating mechanism (CCM) because of the limited CO2 in its natural environment. One critical component of the C. reinhardtii CCM is the limiting CO2 inducible B (LCIB) protein. LCIB is required for acclimation to air levels of CO2. C. reinhardtii cells with a mutated LCIB protein have an 'air-dier' phenotype when grown in low CO2 conditions, meaning they die in air levels of CO2 but can grow in high and very low CO2 conditions. The LCIB protein functions together with its close homolog in C. reinhardtii, limiting CO2 inducible C protein (LCIC), in a hexameric LCIB-LCIC complex. LCIB has been proposed to act as a vectoral carbonic anhydrase (CA) that helps to recapture CO2 that would otherwise leak out of the chloroplast. Although both LCIB and LCIC are structurally similar to βCAs, their CA activity has not been demonstrated to date. We provide evidence that LCIB is an active CA using a Saccharomyces cerevisiae CA knockout mutant (∆NCE103) and an Arabidopsis thaliana βCA5 knockout mutant (βca5). We show that different truncated versions of the LCIB protein complement ∆NCE103, while the full length LCIB protein complements βca5 plants, so that both the yeast and plant mutants can grow in low CO2 conditions.
Collapse
Affiliation(s)
- Remmy W Kasili
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ashwani K Rai
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
8
|
Sharma N, Froehlich JE, Rillema R, Raba DA, Chambers T, Kerfeld CA, Kramer DM, Walker B, Brandizzi F. Arabidopsis stromal carbonic anhydrases exhibit non-overlapping roles in photosynthetic efficiency and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37010739 DOI: 10.1111/tpj.16231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Carbonic anhydrases (CAs) are ubiquitous enzymes that accelerate the reversible conversion of CO2 to HCO3 - . The Arabidopsis genome encodes members of the α-, β- and γ-CA families, and it has been hypothesized that βCA activity has a role in photosynthesis. In this work, we tested this hypothesis by characterizing the two plastidial βCAs, βCA1 and βCA5, in physiological conditions of growth. We conclusively established that both proteins are localized in the chloroplast stroma and that the loss of βCA5 induced the expression of βCA1, supporting the existence of regulatory mechanisms to control the expression of stromal βCAs. We also established that βCA1 and βCA5 have markedly different enzymatic kinetics and physiological relevance. Specifically, we found that βCA5 had a first-order rate constant ~10-fold lower than βCA1, and that the loss of βCA5 is detrimental to growth and could be rescued by high CO2 . Furthermore, we established that, while a βCA1 mutation showed near wild-type growth and no significant impact on photosynthetic efficiency, the loss of βCA5 markedly disrupted photosynthetic efficiency and light-harvesting capacity at ambient CO2 . Therefore, we conclude that in physiological autotrophic growth, the loss of the more highly expressed βCA1 does not compensate for the loss of a less active βCA5, which in turn is involved in growth and photosynthesis at ambient CO2 levels. These results lend support to the hypothesis that, in Arabidopsis,βCAs have non-overlapping roles in photosynthesis and identify a critical activity of stromal βCA5 and a dispensable role for βCA1.
Collapse
Affiliation(s)
- Naveen Sharma
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - John E Froehlich
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Rees Rillema
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Daniel A Raba
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Taylor Chambers
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, Michigan, 48824, USA
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Berkley Walker
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- DOE-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
9
|
Ding Y, Fan B, Zhu C, Chen Z. Shared and Related Molecular Targets and Actions of Salicylic Acid in Plants and Humans. Cells 2023; 12:219. [PMID: 36672154 PMCID: PMC9856608 DOI: 10.3390/cells12020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Salicylic acid (SA) is a phenolic compound produced by all plants that has an important role in diverse processes of plant growth and stress responses. SA is also the principal metabolite of aspirin and is responsible for many of the anti-inflammatory, cardioprotective and antitumor activities of aspirin. As a result, the number of identified SA targets in both plants and humans is large and continues to increase. These SA targets include catalases/peroxidases, metabolic enzymes, protein kinases and phosphatases, nucleosomal and ribosomal proteins and regulatory and signaling proteins, which mediate the diverse actions of SA in plants and humans. While some of these SA targets and actions are unique to plants or humans, many others are conserved or share striking similarities in the two types of organisms, which underlie a host of common biological processes that are regulated or impacted by SA. In this review, we compare shared and related SA targets and activities to highlight the common nature of actions by SA as a hormone in plants versus a therapeutic agent in humans. The cross examination of SA targets and activities can help identify new actions of SA and better explain their underlying mechanisms in plants and humans.
Collapse
Affiliation(s)
- Yuanyuan Ding
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
10
|
Rudenko NN, Permyakova NV, Ignatova LK, Nadeeva EM, Zagorskaya AA, Deineko EV, Ivanov BN. The Role of Carbonic Anhydrase αCA4 in Photosynthetic Reactions in Arabidopsis thaliana Studied, Using the Cas9 and T-DNA Induced Mutations in Its Gene. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233303. [PMID: 36501340 PMCID: PMC9735932 DOI: 10.3390/plants11233303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 05/27/2023]
Abstract
An homozygous mutant line of Arabidopsis thaliana with a knocked out At4g20990 gene encoding thylakoid carbonic anhydrase αCA4 was created using a CRISPR/Cas9 genome editing system. The effects of the mutation were compared with those in two mutant lines obtained by the T-DNA insertion method. In αCA4 knockouts of all three lines, non-photochemical quenching of chlorophyll a fluorescence was lower than in the wild type (WT) plants due to a decrease in its energy-dependent component. The αCA4 knockout also affected the level of expression of the genes encoding all proteins of the PSII light harvesting antennae, the genes encoding cytoplasmic and thylakoid CAs and the genes induced by plant immune signals. The production level of starch synthesis during the light period, as well as the level of its utilization during the darkness, were significantly higher in these mutants than in WT plants. These data confirm that the previously observed differences between insertional mutants and WT plants were not the result of the negative effects of T-DNA insertion transgenesis but the results of αCA4 gene knockout. Overall, the data indicate the involvement of αCA4 in the photosynthetic reactions in the thylakoid membrane, in particular in processes associated with the protection of higher plants' photosynthetic apparatus from photoinhibition.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Natalya V. Permyakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Lyudmila K. Ignatova
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Elena M. Nadeeva
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Alla A. Zagorskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V. Deineko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Boris N. Ivanov
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
11
|
Son S, Park SR. Climate change impedes plant immunity mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:1032820. [PMID: 36523631 PMCID: PMC9745204 DOI: 10.3389/fpls.2022.1032820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 06/02/2023]
Abstract
Rapid climate change caused by human activity is threatening global crop production and food security worldwide. In particular, the emergence of new infectious plant pathogens and the geographical expansion of plant disease incidence result in serious yield losses of major crops annually. Since climate change has accelerated recently and is expected to worsen in the future, we have reached an inflection point where comprehensive preparations to cope with the upcoming crisis can no longer be delayed. Development of new plant breeding technologies including site-directed nucleases offers the opportunity to mitigate the effects of the changing climate. Therefore, understanding the effects of climate change on plant innate immunity and identification of elite genes conferring disease resistance are crucial for the engineering of new crop cultivars and plant improvement strategies. Here, we summarize and discuss the effects of major environmental factors such as temperature, humidity, and carbon dioxide concentration on plant immunity systems. This review provides a strategy for securing crop-based nutrition against severe pathogen attacks in the era of climate change.
Collapse
|
12
|
Weerasooriya HN, DiMario RJ, Rosati VC, Rai AK, LaPlace LM, Filloon VD, Longstreth DJ, Moroney JV. Arabidopsis plastid carbonic anhydrase βCA5 is important for normal plant growth. PLANT PHYSIOLOGY 2022; 190:2173-2186. [PMID: 36149291 PMCID: PMC9706431 DOI: 10.1093/plphys/kiac451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 05/19/2023]
Abstract
Carbonic anhydrases (CAs) are zinc-metalloenzymes that catalyze the interconversion of CO2 and HCO3-. In heterotrophic organisms, CAs provide HCO3- for metabolic pathways requiring a carboxylation step. Arabidopsis (Arabidopsis thaliana) has 14 α- and β-type CAs, two of which are plastid CAs designated as βCA1 and βCA5. To study their physiological properties, we obtained knock-out (KO) lines for βCA1 (SALK_106570) and βCA5 (SALK_121932). These mutant lines were confirmed by genomic PCR, RT-PCR, and immunoblotting. While βca1 KO plants grew normally, growth of βca5 KO plants was stunted under ambient CO2 conditions of 400 µL L-1; high CO2 conditions (30,000 µL L-1) partially rescued their growth. These results were surprising, as βCA1 is more abundant than βCA5 in leaves. However, tissue expression patterns of these genes indicated that βCA1 is expressed only in shoot tissue, while βCA5 is expressed throughout the plant. We hypothesize that βCA5 compensates for loss of βCA1 but, owing to its expression being limited to leaves, βCA1 cannot compensate for loss of βCA5. We also demonstrate that βCA5 supplies HCO3- required for anaplerotic pathways that take place in plastids, such as fatty acid biosynthesis.
Collapse
Affiliation(s)
- Hiruni N Weerasooriya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - Viviana C Rosati
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, York YO10 5DD, UK
| | - Ashwani K Rai
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Lillian M LaPlace
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Victoria D Filloon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - David J Longstreth
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
13
|
Bittner A, Cieśla A, Gruden K, Lukan T, Mahmud S, Teige M, Vothknecht UC, Wurzinger B. Organelles and phytohormones: a network of interactions in plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7165-7181. [PMID: 36169618 PMCID: PMC9675595 DOI: 10.1093/jxb/erac384] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/26/2022] [Indexed: 06/08/2023]
Abstract
Phytohormones are major signaling components that contribute to nearly all aspects of plant life. They constitute an interconnected communication network to fine-tune growth and development in response to the ever-changing environment. To this end, they have to coordinate with other signaling components, such as reactive oxygen species and calcium signals. On the one hand, the two endosymbiotic organelles, plastids and mitochondria, control various aspects of phytohormone signaling and harbor important steps of hormone precursor biosynthesis. On the other hand, phytohormones have feedback actions on organellar functions. In addition, organelles and phytohormones often act in parallel in a coordinated matter to regulate cellular functions. Therefore, linking organelle functions with increasing knowledge of phytohormone biosynthesis, perception, and signaling will reveal new aspects of plant stress tolerance. In this review, we highlight recent work on organelle-phytohormone interactions focusing on the major stress-related hormones abscisic acid, jasmonates, salicylic acid, and ethylene.
Collapse
|
14
|
Rudenko NN, Ignatova LK, Naydov IA, Novichkova NS, Ivanov BN. Effect of CO2 Content in Air on the Activity of Carbonic Anhydrases in Cytoplasm, Chloroplasts, and Mitochondria and the Expression Level of Carbonic Anhydrase Genes of the α- and β-Families in Arabidopsis thaliana Leaves. PLANTS 2022; 11:plants11162113. [PMID: 36015416 PMCID: PMC9414674 DOI: 10.3390/plants11162113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
The carbonic anhydrase (CA) activities of the preparations of cytoplasm, mitochondria, chloroplast stroma, and chloroplast thylakoids, as well as the expression levels of genes encoding αCA1, αCA2, αCA4, βCA1, βCA2, βCA3, βCA4, βCA5, and βCA6, were measured in the leaves of Arabidopsis thaliana plants, acclimated to different CO2 content in the air: low (150 ppm, lCO2), normal (450 ppm, nCO2), and high (1200 ppm, hCO2). To evaluate the photosynthetic apparatus operation, the carbon assimilation and chlorophyll a fluorescence were measured under the same conditions. It was found that the CA activities of the preparations of cytoplasm, chloroplast stroma, and chloroplast thylakoids measured after two weeks of acclimation were higher, the lower CO2 concentration in the air. That was preceded by an increase in the expression levels of genes encoding the cytoplasmic form of βCA1, and other cytoplasmic CAs, βCA2, βCA3, and βCA4, as well as of the chloroplast CAs, βCA5, and the stromal forms of βCA1 in a short-term range 1–2 days after the beginning of the acclimation. The dependence on the CO2 content in the air was most noticeable for the CA activity of the preparations of the stroma; it was two orders higher in lCO2 plants than in hCO2 plants. The CA activity of thylakoid membranes from lCO2 plants was higher than that in nCO2 and hCO2 plants; however, in these plants, a significant increase in the expression levels of the genes encoding αCA2 and αCA4 located in thylakoid membranes was not observed. The CA activity of mitochondria and the expression level of the mitochondrial βCA6 gene did not depend on the content of carbon dioxide. Taken together, the data implied that in the higher plants, the supply of inorganic carbon to carboxylation sites is carried out with the cooperative functioning of CAs located in the cytoplasm and CAs located in the chloroplasts.
Collapse
|
15
|
Rai AK, DiMario RJ, Kasili RW, Groszmann M, Cousins AB, Donze D, Moroney JV. A Rapid Method for Detecting Normal or Modified Plant and Algal Carbonic Anhydrase Activity Using Saccharomyces cerevisiae. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141882. [PMID: 35890517 PMCID: PMC9320139 DOI: 10.3390/plants11141882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 05/19/2023]
Abstract
In recent years, researchers have attempted to improve photosynthesis by introducing components from cyanobacterial and algal CO2-concentrating mechanisms (CCMs) into terrestrial C3 plants. For these attempts to succeed, we need to understand the CCM components in more detail, especially carbonic anhydrase (CA) and bicarbonate (HCO3−) transporters. Heterologous complementation systems capable of detecting carbonic anhydrase activity (i.e., catalysis of the pH-dependent interconversion between CO2 and HCO3−) or active HCO3− transport can be of great value in the process of introducing CCM components into terrestrial C3 plants. In this study, we generated a Saccharomyces cerevisiae CA knock-out (ΔNCE103 or ΔCA) that has a high-CO2-dependent phenotype (5% (v/v) CO2 in air). CAs produce HCO3− for anaplerotic pathways in S. cerevisiae; therefore, the unavailability of HCO3− for neutral lipid biosynthesis is a limitation for the growth of ΔCA in ambient levels of CO2 (0.04% (v/v) CO2 in air). ΔCA can be complemented for growth at ambient levels of CO2 by expressing a CA from human red blood cells. ΔCA was also successfully complemented for growth at ambient levels of CO2 through the expression of CAs from Chlamydomonas reinhardtii and Arabidopsis thaliana. The ΔCA strain is also useful for investigating the activity of modified CAs, allowing for quick screening of modified CAs before putting them into the plants. CA activity in the complemented ΔCA strains can be probed using the Wilbur−Anderson assay and by isotope exchange membrane-inlet mass spectrometry (MIMS). Other potential uses for this new ΔCA-based screening system are also discussed.
Collapse
Affiliation(s)
- Ashwani K. Rai
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.K.R.); (R.W.K.); (D.D.)
| | - Robert J. DiMario
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (R.J.D.); (A.B.C.)
| | - Remmy W. Kasili
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.K.R.); (R.W.K.); (D.D.)
| | - Michael Groszmann
- ARC Centre of Excellence in Translational Photosynthesis, Research School of Biology, Australian National University, Linnaeus Building, 134 Linnaeus Way, Canberra, ACT 2601, Australia;
| | - Asaph B. Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (R.J.D.); (A.B.C.)
| | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.K.R.); (R.W.K.); (D.D.)
| | - James V. Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.K.R.); (R.W.K.); (D.D.)
- Correspondence:
| |
Collapse
|
16
|
Hines KM, Chaudhari V, Edgeworth KN, Owens TG, Hanson MR. Absence of carbonic anhydrase in chloroplasts affects C 3 plant development but not photosynthesis. Proc Natl Acad Sci U S A 2021; 118:e2107425118. [PMID: 34380739 PMCID: PMC8379964 DOI: 10.1073/pnas.2107425118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The enzyme carbonic anhydrase (CA), which catalyzes the interconversion of bicarbonate with carbon dioxide (CO2) and water, has been hypothesized to play a role in C3 photosynthesis. We identified two tobacco stromal CAs, β-CA1 and β-CA5, and produced CRISPR/Cas9 mutants affecting their encoding genes. While single knockout lines Δβ-ca1 and Δβ-ca5 had no striking phenotypic differences compared to wild type (WT) plants, Δβ-ca1ca5 leaves developed abnormally and exhibited large necrotic lesions even when supplied with sucrose. Leaf development of Δβ-ca1ca5 plants normalized at 9,000 ppm CO2 Leaves of Δβ-ca1ca5 mutants and WT that had matured in high CO2 had identical CO2 fixation rates and photosystem II efficiency. Fatty acids, which are formed through reactions with bicarbonate substrates, exhibited abnormal profiles in the chloroplast CA-less mutant. Emerging Δβ-ca1ca5 leaves produce reactive oxygen species in chloroplasts, perhaps due to lower nonphotochemical quenching efficiency compared to WT. Δβ-ca1ca5 seedling germination and development is negatively affected at ambient CO2 Transgenes expressing full-length β-CA1 and β-CA5 proteins complemented the Δβ-ca1ca5 mutation but inactivated (ΔZn-βCA1) and cytoplasm-localized (Δ62-βCA1) forms of β-CA1 did not reverse the growth phenotype. Nevertheless, expression of the inactivated ΔZn-βCA1 protein was able to restore the hypersensitive response to tobacco mosaic virus, while Δβ-ca1 and Δβ-ca1ca5 plants failed to show a hypersensitive response. We conclude that stromal CA plays a role in plant development, likely through providing bicarbonate for biosynthetic reactions, but stromal CA is not needed for maximal rates of photosynthesis in the C3 plant tobacco.
Collapse
Affiliation(s)
- Kevin M Hines
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Kristen N Edgeworth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Thomas G Owens
- Section of Plant Biology, Cornell University, Ithaca, NY 14853
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
17
|
Hines KM, Chaudhari V, Edgeworth KN, Owens TG, Hanson MR. Absence of carbonic anhydrase in chloroplasts affects C 3 plant development but not photosynthesis. Proc Natl Acad Sci U S A 2021. [PMID: 34380739 DOI: 10.1073/pnas.210742511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
The enzyme carbonic anhydrase (CA), which catalyzes the interconversion of bicarbonate with carbon dioxide (CO2) and water, has been hypothesized to play a role in C3 photosynthesis. We identified two tobacco stromal CAs, β-CA1 and β-CA5, and produced CRISPR/Cas9 mutants affecting their encoding genes. While single knockout lines Δβ-ca1 and Δβ-ca5 had no striking phenotypic differences compared to wild type (WT) plants, Δβ-ca1ca5 leaves developed abnormally and exhibited large necrotic lesions even when supplied with sucrose. Leaf development of Δβ-ca1ca5 plants normalized at 9,000 ppm CO2 Leaves of Δβ-ca1ca5 mutants and WT that had matured in high CO2 had identical CO2 fixation rates and photosystem II efficiency. Fatty acids, which are formed through reactions with bicarbonate substrates, exhibited abnormal profiles in the chloroplast CA-less mutant. Emerging Δβ-ca1ca5 leaves produce reactive oxygen species in chloroplasts, perhaps due to lower nonphotochemical quenching efficiency compared to WT. Δβ-ca1ca5 seedling germination and development is negatively affected at ambient CO2 Transgenes expressing full-length β-CA1 and β-CA5 proteins complemented the Δβ-ca1ca5 mutation but inactivated (ΔZn-βCA1) and cytoplasm-localized (Δ62-βCA1) forms of β-CA1 did not reverse the growth phenotype. Nevertheless, expression of the inactivated ΔZn-βCA1 protein was able to restore the hypersensitive response to tobacco mosaic virus, while Δβ-ca1 and Δβ-ca1ca5 plants failed to show a hypersensitive response. We conclude that stromal CA plays a role in plant development, likely through providing bicarbonate for biosynthetic reactions, but stromal CA is not needed for maximal rates of photosynthesis in the C3 plant tobacco.
Collapse
Affiliation(s)
- Kevin M Hines
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Kristen N Edgeworth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Thomas G Owens
- Section of Plant Biology, Cornell University, Ithaca, NY 14853
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
18
|
Hu Z, Ma Q, Foyer CH, Lei C, Choi HW, Zheng C, Li J, Zuo J, Mao Z, Mei Y, Yu J, Klessig DF, Shi K. High CO 2 - and pathogen-driven expression of the carbonic anhydrase βCA3 confers basal immunity in tomato. THE NEW PHYTOLOGIST 2021; 229:2827-2843. [PMID: 33206385 DOI: 10.1111/nph.17087] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/01/2020] [Indexed: 05/12/2023]
Abstract
Atmospheric CO2 concentrations exert a strong influence on the susceptibility of plants to pathogens. However, the mechanisms involved in the CO2 -dependent regulation of pathogen resistance are largely unknown. Here we show that the expression of tomato (Solanum lycopersicum) β-CARBONIC ANHYDRASE 3 (βCA3) is induced by the virulent pathogen Pseudomonas syringae pv. tomato DC3000. The role of βCA3 in the high CO2 -mediated response in tomato and two other Solanaceae crops is distinct from that in Arabidopsis thaliana. Using βCA3 knock-out and over-expression plants, we demonstrate that βCA3 plays a positive role in the activation of basal immunity, particularly under high CO2 . βCA3 is transcriptionally activated by the transcription factor NAC43 and is also post-translationally regulated by the receptor-like kinase GRACE1. The βCA3 pathway of basal immunity is independent on stomatal- and salicylic-acid-dependent regulation. Global transcriptome analysis and cell wall metabolite measurement implicate cell wall metabolism/integrity in βCA3-mediated basal immunity under both CO2 conditions. These data not only highlight the importance of βCA3 in plant basal immunity under high CO2 in a well-studied susceptible crop-pathogen system, but they also point to new targets for disease management strategies in a changing climate.
Collapse
Affiliation(s)
- Zhangjian Hu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qiaomei Ma
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Cui Lei
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hyong Woo Choi
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Chenfei Zheng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jianxin Li
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jinhua Zuo
- National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Zhuo Mao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yuyang Mei
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Daniel F Klessig
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Kai Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
19
|
Polishchuk OV. Stress-Related Changes in the Expression and Activity of Plant Carbonic Anhydrases. PLANTA 2021; 253:58. [PMID: 33532871 DOI: 10.1007/s00425-020-03553-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/23/2020] [Indexed: 05/17/2023]
Abstract
The data on stress-related changes in the expression and activity of plant carbonic anhydrases (CAs) suggest that they are generally upregulated at moderate stress severity. This indicates probable involvement of CAs in adaptation to drought, high salinity, heat, high light, Ci deficit, and excess bicarbonate. The changes in CA levels under cold stress are less studied and generally represented by the downregulation of CAs excepting βCA2. Excess Cd2+ and deficit of Zn2+ specifically reduce CA activity and reduce its synthesis. Probable roles of βCAs in stress adaptation include stomatal closure, ROS scavenging and partial compensation for decreased mesophyll CO2 conductance. βCAs play contrasting roles in pathogen responses, interacting with phytohormone signaling networks. Their role can be either negative or positive, probably depending on the host-pathogen system, pathogen initial titer, and levels of ·NO and ROS. It is still not clear why CAs are suppressed under severe stress levels. It should be noted, that the role of βCAs in the facilitation of CO2 diffusion and their involvement in redox signaling or ROS detoxication are potentially antagonistic, as they are inactivated by oxidation or nitrosylation. Interestingly, some chloroplastic βCAs may be relocated to the cytoplasm under stress conditions, but the physiological meaning of this effect remains to be studied.
Collapse
Affiliation(s)
- O V Polishchuk
- Membranology and Phytochemistry Department, M.G. Kholodny Institute of Botany of NAS of Ukraine, 2 Tereshchenkivska Str, Kyiv, 01004, Ukraine.
| |
Collapse
|
20
|
Kumar R, Barua P, Chakraborty N, Nandi AK. Systemic acquired resistance specific proteome of Arabidopsis thaliana. PLANT CELL REPORTS 2020; 39:1549-1563. [PMID: 32876806 DOI: 10.1007/s00299-020-02583-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/20/2020] [Indexed: 05/20/2023]
Abstract
A comparative proteomic study between WT and SAR-compromised rsi1/fld mutant reveals a set of proteins having possible roles in the SAR development. A partly infected plant shows enhanced resistance during subsequent infection through the development of systemic acquired resistance (SAR). Mobile signals generated at the site of primary infection travel across the plant for the activation of SAR. These mobile signals are likely to cause changes in the expression of a set of proteins in the distal tissue, which contributes to the SAR development. However, SAR-specific proteome is not revealed for any plant. The reduced systemic immunity 1 (rsi1)/(allelic to flowering locus D; fld) mutant of Arabidopsis is compromised for SAR but shows normal local resistance. Here we report the SAR-specific proteome of Arabidopsis by comparing differentially abundant proteins (DAPs) between WT and fld mutant. Plants were either mock-treated or SAR-induced by primary pathogen inoculation. For proteomic analysis, samples were collected from the systemic tissues before and after the secondary inoculation. Protein identification was carried out by using two-dimensional gel electrophoresis (2-DE) followed by tandem mass spectrometry. Our work identified a total of 94 DAPs between mock and pathogen treatment in WT and fld mutant. The DAPs were categorized into different functional groups along with their subcellular localization. The majority of DAPs are involved in metabolic processes and stress response. Among the subcellular compartments, plastids contained the highest number of DAPs, suggesting the importance of plastidic proteins in SAR activation. The findings of this study would provide resources to engineer efficient SAR activation traits in Arabidopsis and other plants.
Collapse
Affiliation(s)
- Rajiv Kumar
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Pragya Barua
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | | | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India.
| |
Collapse
|
21
|
Alegre S, Pascual J, Trotta A, Angeleri M, Rahikainen M, Brosche M, Moffatt B, Kangasjärvi S. Evolutionary conservation and post-translational control of S-adenosyl-L-homocysteine hydrolase in land plants. PLoS One 2020; 15:e0227466. [PMID: 32678822 PMCID: PMC7367456 DOI: 10.1371/journal.pone.0227466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/30/2020] [Indexed: 02/01/2023] Open
Abstract
Trans-methylation reactions are intrinsic to cellular metabolism in all living organisms. In land plants, a range of substrate-specific methyltransferases catalyze the methylation of DNA, RNA, proteins, cell wall components and numerous species-specific metabolites, thereby providing means for growth and acclimation in various terrestrial habitats. Trans-methylation reactions consume vast amounts of S-adenosyl-L-methionine (SAM) as a methyl donor in several cellular compartments. The inhibitory reaction by-product, S-adenosyl-L-homocysteine (SAH), is continuously removed by SAH hydrolase (SAHH), which essentially maintains trans-methylation reactions in all living cells. Here we report on the evolutionary conservation and post-translational control of SAHH in land plants. We provide evidence suggesting that SAHH forms oligomeric protein complexes in phylogenetically divergent land plants and that the predominant protein complex is composed by a tetramer of the enzyme. Analysis of light-stress-induced adjustments of SAHH in Arabidopsis thaliana and Physcomitrella patens further suggests that regulatory actions may take place on the levels of protein complex formation and phosphorylation of this metabolically central enzyme. Collectively, these data suggest that plant adaptation to terrestrial environments involved evolution of regulatory mechanisms that adjust the trans-methylation machinery in response to environmental cues.
Collapse
Affiliation(s)
- Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Jesús Pascual
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
- Institute of Biosciences and Bioresources, National Research Council of Italy, Sesto Fiorentino, Firenze, Italy
| | - Martina Angeleri
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Mikael Brosche
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Barbara Moffatt
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
22
|
Deciphering the Binding of Salicylic Acid to Arabidopsis thaliana Chloroplastic GAPDH-A1. Int J Mol Sci 2020; 21:ijms21134678. [PMID: 32630078 PMCID: PMC7370300 DOI: 10.3390/ijms21134678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 11/25/2022] Open
Abstract
Salicylic acid (SA) has an essential role in the responses of plants to pathogens. SA initiates defence signalling via binding to proteins. NPR1 is a transcriptional co-activator and a key target of SA binding. Many other proteins have recently been shown to bind SA. Amongst these proteins are important enzymes of primary metabolism. This fact could stand behind SA’s ability to control energy fluxes in stressed plants. Nevertheless, only sparse information exists on the role and mechanisms of such binding. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was previously demonstrated to bind SA both in human and plants. Here, we detail that the A1 isomer of chloroplastic glyceraldehyde 3-phosphate dehydrogenase (GAPA1) from Arabidopsis thaliana binds SA with a KD of 16.7 nM, as shown in surface plasmon resonance experiments. Besides, we show that SA inhibits its GAPDH activity in vitro. To gain some insight into the underlying molecular interactions and binding mechanism, we combined in silico molecular docking experiments and molecular dynamics simulations on the free protein and protein–ligand complex. The molecular docking analysis yielded to the identification of two putative binding pockets for SA. A simulation in water of the complex between SA and the protein allowed us to determine that only one pocket—a surface cavity around Asn35—would efficiently bind SA in the presence of solvent. In silico mutagenesis and simulations of the ligand/protein complexes pointed to the importance of Asn35 and Arg81 in the binding of SA to GAPA1. The importance of this is further supported through experimental biochemical assays. Indeed, mutating GAPA1 Asn35 into Gly or Arg81 into Leu strongly diminished the ability of the enzyme to bind SA. The very same cavity is responsible for the NADP+ binding to GAPA1. More precisely, modelling suggests that SA binds to the very site where the pyrimidine group of the cofactor fits. NADH inhibited in a dose-response manner the binding of SA to GAPA1, validating our data.
Collapse
|
23
|
He J, Zhang RX, Kim DS, Sun P, Liu H, Liu Z, Hetherington AM, Liang YK. ROS of Distinct Sources and Salicylic Acid Separate Elevated CO 2-Mediated Stomatal Movements in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:542. [PMID: 32457781 PMCID: PMC7225777 DOI: 10.3389/fpls.2020.00542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/09/2020] [Indexed: 05/12/2023]
Abstract
Elevated CO2 (eCO2) often reduces leaf stomatal aperture and density thus impacts plant physiology and productivity. We have previously demonstrated that the Arabidopsis BIG protein distinguishes between the processes of eCO2-induced stomatal closure and eCO2-inhibited stomatal opening. However, the mechanistic basis of this action is not fully understood. Here we show that eCO2-elicited reactive oxygen species (ROS) production in big mutants was compromised in stomatal closure induction but not in stomatal opening inhibition. Pharmacological and genetic studies show that ROS generated by both NADPH oxidases and cell wall peroxidases contribute to eCO2-induced stomatal closure, whereas inhibition of light-induced stomatal opening by eCO2 may rely on the ROS derived from NADPH oxidases but not from cell wall peroxidases. As with JA and ABA, SA is required for eCO2-induced ROS generation and stomatal closure. In contrast, none of these three signals has a significant role in eCO2-inhibited stomatal opening, unveiling the distinct roles of plant hormonal signaling pathways in the induction of stomatal closure and the inhibition of stomatal opening by eCO2. In conclusion, this study adds SA to a list of plant hormones that together with ROS from distinct sources distinguish two branches of eCO2-mediated stomatal movements.
Collapse
Affiliation(s)
- Jingjing He
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dae Sung Kim
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Honggang Liu
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhongming Liu
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alistair M. Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Zhou Y, Vroegop-Vos IA, Van Dijken AJH, Van der Does D, Zipfel C, Pieterse CMJ, Van Wees SCM. Carbonic anhydrases CA1 and CA4 function in atmospheric CO 2-modulated disease resistance. PLANTA 2020; 251:75. [PMID: 32146566 DOI: 10.1007/s00425-020-03370-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Carbonic anhydrases CA1 and CA4 attenuate plant immunity and can contribute to altered disease resistance levels in response to changing atmospheric CO2 conditions. β-Carbonic anhydrases (CAs) play an important role in CO2 metabolism and plant development, but have also been implicated in plant immunity. Here we show that the bacterial pathogen Pseudomonas syringae and application of the microbe-associated molecular pattern (MAMP) flg22 repress CA1 and CA4 gene expression in Arabidopsis thaliana. Using the CA double-mutant ca1ca4, we provide evidence that CA1 and CA4 play an attenuating role in pathogen- and flg22-triggered immune responses. In line with this, ca1ca4 plants exhibited enhanced resistance against P. syringae, which was accompanied by an increased expression of the defense-related genes FRK1 and ICS1. Under low atmospheric CO2 conditions (150 ppm), when CA activity is typically low, the levels of CA1 transcription and resistance to P. syringae in wild-type Col-0 were similar to those observed in ca1ca4. However, under ambient (400 ppm) and elevated (800 ppm) atmospheric CO2 conditions, CA1 transcription was enhanced and resistance to P. syringae reduced. Together, these results suggest that CA1 and CA4 attenuate plant immunity and that differential CA gene expression in response to changing atmospheric CO2 conditions contribute to altered disease resistance levels.
Collapse
Affiliation(s)
- Yeling Zhou
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Irene A Vroegop-Vos
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Anja J H Van Dijken
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Dieuwertje Van der Does
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zurich, Switzerland
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
25
|
Li P, Liu H, Yang H, Pu X, Li C, Huo H, Chu Z, Chang Y, Lin Y, Liu L. Translocation of Drought-Responsive Proteins from the Chloroplasts. Cells 2020; 9:E259. [PMID: 31968705 PMCID: PMC7017212 DOI: 10.3390/cells9010259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Some chloroplast proteins are known to serve as messengers to transmit retrograde signals from chloroplasts to the nuclei in response to environmental stresses. However, whether particular chloroplast proteins respond to drought stress and serve as messengers for retrograde signal transduction are unclear. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) to monitor the proteomic changes in tobacco (Nicotiana benthamiana) treated with drought stress/re-watering. We identified 3936 and 1087 differentially accumulated total leaf and chloroplast proteins, respectively, which were grouped into 16 categories. Among these, one particular category of proteins, that includes carbonic anhydrase 1 (CA1), exhibited a great decline in chloroplasts, but a remarkable increase in leaves under drought stress. The subcellular localizations of CA1 proteins from moss (Physcomitrella patens), Arabidopsis thaliana and rice (Oryza sativa) in P. patens protoplasts consistently showed that CA1 proteins gradually diminished within chloroplasts but increasingly accumulated in the cytosol under osmotic stress treatment, suggesting that they could be translocated from chloroplasts to the cytosol and act as a signal messenger from the chloroplast. Our results thus highlight the potential importance of chloroplast proteins in retrograde signaling pathways and provide a set of candidate proteins for further research.
Collapse
Affiliation(s)
- Ping Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
| | - Haoju Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
| | - Hong Yang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
| | - Xiaojun Pu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
| | - Chuanhong Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
| | - Heqiang Huo
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, University of Florida, Miami, FL 32703, USA;
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China;
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
| | - Li Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430070, China
| |
Collapse
|
26
|
Pokotylo I, Kravets V, Ruelland E. Salicylic Acid Binding Proteins (SABPs): The Hidden Forefront of Salicylic Acid Signalling. Int J Mol Sci 2019; 20:E4377. [PMID: 31489905 PMCID: PMC6769663 DOI: 10.3390/ijms20184377] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Salicylic acid (SA) is a phytohormone that plays important roles in many aspects of plant life, notably in plant defenses against pathogens. Key mechanisms of SA signal transduction pathways have now been uncovered. Even though details are still missing, we understand how SA production is regulated and which molecular machinery is implicated in the control of downstream transcriptional responses. The NPR1 pathway has been described to play the main role in SA transduction. However, the mode of SA perception is unclear. NPR1 protein has been shown to bind SA. Nevertheless, NPR1 action requires upstream regulatory events (such as a change in cell redox status). Besides, a number of SA-induced responses are independent from NPR1. This shows that there is more than one way for plants to perceive SA. Indeed, multiple SA-binding proteins of contrasting structures and functions have now been identified. Yet, all of these proteins can be considered as candidate SA receptors and might have a role in multinodal (decentralized) SA input. This phenomenon is unprecedented for other plant hormones and is a point of discussion of this review.
Collapse
Affiliation(s)
- Igor Pokotylo
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
- Université Paris-Est, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 94010 Créteil, France
| | - Volodymyr Kravets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Eric Ruelland
- Université Paris-Est, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 94010 Créteil, France.
- CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, 94010 Créteil, France.
| |
Collapse
|
27
|
Bulman S, Richter F, Marschollek S, Benade F, Jülke S, Ludwig-Müller J. Arabidopsis thaliana expressing PbBSMT, a gene encoding a SABATH-type methyltransferase from the plant pathogenic protist Plasmodiophora brassicae, show leaf chlorosis and altered host susceptibility. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:120-130. [PMID: 29607585 DOI: 10.1111/plb.12728] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
The plant pathogenic protist Plasmodiophora brassicae causes clubroot disease of Brassicaceae. This biotrophic organism can down-regulate plant defence responses. The previously characterised P. brassicae PbBSMT methyltransferase has substrate specificity for salicylic, benzoic and anthranilic acids. We therefore propose a role for the methylation of SA in attenuating plant defence response in infected roots as a novel strategy for intracellular parasitism. We overexpressed PbBSMT under the control of an inducible promoter in Arabidopsis thaliana and performed physiological, molecular and phytopathological analyses with the transgenic plants under control and induced conditions in comparison to the wild type. Upon induction, transcription of PbBSMT was associated with: (1) strong leaf phenotypes from anthocyanin accumulation and chlorosis followed by browning; (2) increased plant susceptibility after infection with P. brassicae that was manifested as more yellow leaves and reduced growth of upper plant parts; and (3) induced transgenic plants were not able to support large galls and had a brownish appearance of some clubs. Microarray data indicated that chlorophyll loss was accompanied by reduced transcription of genes involved in photosynthesis, while genes encoding glucose metabolism, mitochondrial functions and cell wall synthesis were up-regulated. Our results indicate a role for PbBSMT in attenuation of host defence responses in the roots by metabolising a plant defence signal.
Collapse
Affiliation(s)
- S Bulman
- New Zealand Institute for Plant & Food Research Ltd, Christchurch, New Zealand
| | - F Richter
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - S Marschollek
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - F Benade
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - S Jülke
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - J Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
28
|
Canales FJ, Montilla-Bascón G, Rispail N, Prats E. Salicylic acid regulates polyamine biosynthesis during drought responses in oat. PLANT SIGNALING & BEHAVIOR 2019; 14:e1651183. [PMID: 31382811 PMCID: PMC6768256 DOI: 10.1080/15592324.2019.1651183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Salicylic acid (SA) is involved in several plant processes including responses to abiotic stresses. Although SA is thought to interact with other regulatory molecules in a complex way, currently, little information is available regarding its molecular mechanisms of action in response to abiotic stresses. In a previous work, we observed that drought-resistant oat plants significantly increased their SA levels as compared with a susceptible cultivar. Furthermore, exogenous SA treatment alleviated drought symptoms. Here, we investigated the interaction between SA and polyamine biosynthesis during drought responses in oat and revealed that SA regulated polyamine biosynthesis through changes in polyamine gene expression. Overall, SA treatment decreased the levels of putrescine under drought conditions while increased those of spermine. This correlates with the downregulation of the ADC gene and upregulation of the AdoMetDC gene. Based on the presented results, we propose that SA modulates drought responses in oat by regulating polyamine content and biosynthesis.
Collapse
Affiliation(s)
- Francisco J Canales
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Gracia Montilla-Bascón
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Nicolas Rispail
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Elena Prats
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
- CONTACT Elena Prats Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| |
Collapse
|
29
|
Castelló MJ, Medina-Puche L, Lamilla J, Tornero P. NPR1 paralogs of Arabidopsis and their role in salicylic acid perception. PLoS One 2018; 13:e0209835. [PMID: 30592744 PMCID: PMC6310259 DOI: 10.1371/journal.pone.0209835] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023] Open
Abstract
Salicylic acid (SA) is responsible for certain plant defence responses and NON EXPRESSER OF PATHOGENESIS RELATED 1 (NPR1) is the master regulator of SA perception. In Arabidopsis thaliana there are five paralogs of NPR1. In this work we tested the role of these paralogs in SA perception by generating combinations of mutants and transgenics. NPR2 was the only paralog able to partially complement an npr1 mutant. The null npr2 reduces SA perception in combination with npr1 or other paralogs. NPR2 and NPR1 interacted in all the conditions tested, and NPR2 also interacted with other SA-related proteins as NPR1 does. The remaining paralogs behaved differently in SA perception, depending on the genetic background, and the expression of some of the genes induced by SA in an npr1 background was affected by the presence of the paralogs. NPR2 fits all the requirements of an SA receptor while the remaining paralogs also work as SA receptors with a strong hierarchy. According to the data presented here, the closer the gene is to NPR1, the more relevant its role in SA perception.
Collapse
Affiliation(s)
- María José Castelló
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
| | - Laura Medina-Puche
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
| | - Julián Lamilla
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
| | - Pablo Tornero
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
- * E-mail:
| |
Collapse
|
30
|
Kiani M, Szczepaniec A. Effects of sugarcane aphid herbivory on transcriptional responses of resistant and susceptible sorghum. BMC Genomics 2018; 19:774. [PMID: 30367619 PMCID: PMC6204049 DOI: 10.1186/s12864-018-5095-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/20/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sugarcane aphid (Melanaphis sacchari) outbreaks in sorghum that were first reported in 2013 are now the most significant threat to this crop in all major sorghum production areas in the U.S. The outcomes of interactions between sugarcane aphid and sorghum and thus the severity of the outbreaks depend on sorghum genotype and potentially also on the phenology of sorghum. Mechanisms underlying these interactions are not known, however. Thus, the goal of this research was to characterize transcriptional changes in a commercially available resistant and a susceptible genotype of sorghum at 2- and 6-wk post-emergence exposed to M. sacchari herbivory. The effects of sorghum age and genotype on the daily change in aphid densities were also evaluated in separate greenhouse experiments. RESULTS A higher number of diffentially expressed genes (DEGs) was recovered from the 2-wk plants exposed to aphid herbivory compared to the 6-wk plants across genotypes. Further, gene ontology and pathway analysis indicated a suite of transcriptional changes in the resistant genotype that were weak or absent in the susceptible sorghum. Specifically, the aphid-resistant genotype exposed to M. sacchari up-regulated several genes involved in defense, which was particularly evident in the 2-wk plants that showed the most robust transcriptional responses. These transcriptional changes in the younger resistant sorghum were characterized by induction of hormone-signaling pathways, pathways coding for secondary metabolites, glutathion metabolism, and plant-pathogen interaction. Furthermore, the 2-wk resistant plants appeared to compensate for the effects of oxidative stress induced by sugarcane aphid herbivory with elevated expression of genes involved in detoxification. These transcriptional responses were reflected in the aphid population growth, which was significantly faster in the susceptible and older sorghum than in the resistant and younger plants. CONCLUSION This experiment provided the first insights into molecular mechanisms underlying lower population growth of M. sacchari on the resistant sorghum genotype. Further, it appears that the younger resistant sorghum was able to mount a robust defense response following aphid herbivory, which was much weaker in the older sorghum. Several pathways and specific genes provide specific clues into the mechanisms underlying host plant resistance to this invasive insect.
Collapse
Affiliation(s)
- Mahnaz Kiani
- Department of Entomology, Texas A&M AgriLife Research, 6500 Amarillo Blvd. W, Amarillo, TX 79106 USA
| | - Adrianna Szczepaniec
- Department of Entomology, Texas A&M AgriLife Research, 6500 Amarillo Blvd. W, Amarillo, TX 79106 USA
| |
Collapse
|
31
|
Bose H, Satyanarayana T. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives. Front Microbiol 2017; 8:1615. [PMID: 28890712 PMCID: PMC5574912 DOI: 10.3389/fmicb.2017.01615] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.
Collapse
|