1
|
Børud B, Koomey M. Sweet complexity: O-linked protein glycosylation in pathogenic Neisseria. Front Cell Infect Microbiol 2024; 14:1407863. [PMID: 38808060 PMCID: PMC11130364 DOI: 10.3389/fcimb.2024.1407863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
The genus Neisseria, which colonizes mucosal surfaces, includes both commensal and pathogenic species that are exclusive to humans. The two pathogenic Neisseria species are closely related but cause quite different diseases, meningococcal sepsis and meningitis (Neisseria meningitidis) and sexually transmitted gonorrhea (Neisseria gonorrhoeae). Although obvious differences in bacterial niches and mechanisms for transmission exists, pathogenic Neisseria have high levels of conservation at the levels of nucleotide sequences, gene content and synteny. Species of Neisseria express broad-spectrum O-linked protein glycosylation where the glycoproteins are largely transmembrane proteins or lipoproteins localized on the cell surface or in the periplasm. There are diverse functions among the identified glycoproteins, for example type IV biogenesis proteins, proteins involved in antimicrobial resistance, as well as surface proteins that have been suggested as vaccine candidates. The most abundant glycoprotein, PilE, is the major subunit of pili which are an important colonization factor. The glycans attached can vary extensively due to phase variation of protein glycosylation (pgl) genes and polymorphic pgl gene content. The exact roles of glycosylation in Neisseria remains to be determined, but increasing evidence suggests that glycan variability can be a strategy to evade the human immune system. In addition, pathogenic and commensal Neisseria appear to have significant glycosylation differences. Here, the current knowledge and implications of protein glycosylation genes, glycan diversity, glycoproteins and immunogenicity in pathogenic Neisseria are summarized and discussed.
Collapse
Affiliation(s)
- Bente Børud
- Department of Bacteriology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Michael Koomey
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Williams E, Seib KL, Fairley CK, Pollock GL, Hocking JS, McCarthy JS, Williamson DA. Neisseria gonorrhoeae vaccines: a contemporary overview. Clin Microbiol Rev 2024; 37:e0009423. [PMID: 38226640 PMCID: PMC10938898 DOI: 10.1128/cmr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Neisseria gonorrhoeae infection is an important public health issue, with an annual global incidence of 87 million. N. gonorrhoeae infection causes significant morbidity and can have serious long-term impacts on reproductive and neonatal health and may rarely cause life-threatening disease. Global rates of N. gonorrhoeae infection have increased over the past 20 years. Importantly, rates of antimicrobial resistance to key antimicrobials also continue to increase, with the United States Centers for Disease Control and Prevention identifying drug-resistant N. gonorrhoeae as an urgent threat to public health. This review summarizes the current evidence for N. gonorrhoeae vaccines, including historical clinical trials, key N. gonorrhoeae vaccine preclinical studies, and studies of the impact of Neisseria meningitidis vaccines on N. gonorrhoeae infection. A comprehensive survey of potential vaccine antigens, including those identified through traditional vaccine immunogenicity approaches, as well as those identified using more contemporary reverse vaccinology approaches, are also described. Finally, the potential epidemiological impacts of a N. gonorrhoeae vaccine and research priorities for further vaccine development are described.
Collapse
Affiliation(s)
- Eloise Williams
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher K. Fairley
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Georgina L. Pollock
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jane S. Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - James S. McCarthy
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Tzeng YL, Sannigrahi S, Berman Z, Bourne E, Edwards JL, Bazan JA, Turner AN, Moir JWB, Stephens DS. Acquisition of Gonococcal AniA-NorB Pathway by the Neisseria meningitidis Urethritis Clade Confers Denitrifying and Microaerobic Respiration Advantages for Urogenital Adaptation. Infect Immun 2023; 91:e0007923. [PMID: 37092998 PMCID: PMC10187123 DOI: 10.1128/iai.00079-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Neisseria meningitidis historically has been an infrequent and sporadic cause of urethritis and other urogenital infections. However, a nonencapsulated meningococcal clade belonging to the hyperinvasive clonal complex 11.2 lineage has recently emerged and caused clusters of urethritis cases in the United States and other countries. One of the genetic signatures of the emerging N. meningitidis urethritis clade (NmUC) is a chromosomal gene conversion event resulting in the acquisition of the Neisseria gonorrhoeae denitrification apparatus-the N. gonorrhoeae alleles encoding the nitrite reductase AniA, the nitric oxide (NO) reductase NorB, and the intergenic promoter region. The biological importance of the N. gonorrhoeae AniA-NorB for adaptation of the NmUC to a new environmental niche is investigated herein. We found that oxygen consumption, nitrite utilization, and NO production were significantly altered by the conversion event, resulting in different denitrifying aerobic and microaerobic growth of the clade. Further, transcription of aniA and norB in NmUC isolates differed from canonical N. meningitidis, and important polymorphisms within the intergenic region, which influenced aniA promoter activity of the NmUC, were identified. The contributions of three known meningococcal regulators (NsrR, FNR, and NarQP) in controlling the denitrification pathway and endogenous NO metabolism were distinct. Overall, transcription of aniA was dampened relative to canonical N. meningitidis, and this correlated with the lower NO accumulation in the clade. Denitrification and microaerobic respiration were bolstered, and protection against host-derived NO was likely enhanced. The acquisition of the N. gonorrhoeae denitrification pathway by the NmUC supports the clade's adaptation and survival in a microaerobic urogenital environment.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Soma Sannigrahi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zachary Berman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Emily Bourne
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Jennifer L. Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children’s Hospital and The Ohio State University, Columbus, Ohio, USA
| | - Jose A. Bazan
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Sexual Health Clinic, Columbus Public Health, Columbus, Ohio, USA
| | - Abigail Norris Turner
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James W. B. Moir
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Vickram A, Dhama K, Thanigaivel S, Chakraborty S, Anbarasu K, Dey N, Karunakaran R. Strategies for successful designing of immunocontraceptive vaccines and recent updates in vaccine development against sexually transmitted infections - A Review. Saudi J Biol Sci 2022; 29:2033-2046. [PMID: 35531220 PMCID: PMC9073025 DOI: 10.1016/j.sjbs.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 11/28/2022] Open
Abstract
Background Objective Methods Results Conclusion
Collapse
Affiliation(s)
- A.S. Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - S. Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences &, Animal Husbandry, R.K.Nagar, West Tripura, Pin- 799008, India
| | - K. Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India
| | - Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India
| | - Rohini Karunakaran
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah, Malaysia
- Corresponding author.
| |
Collapse
|
5
|
Harrison OB, Maiden MCJ. Recent advances in understanding and combatting Neisseria gonorrhoeae: a genomic perspective. Fac Rev 2021; 10:65. [PMID: 34557869 PMCID: PMC8442004 DOI: 10.12703/r/10-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sexually transmitted infection (STI) gonorrhoea remains a major global public health concern. The World Health Organization (WHO) estimates that 87 million new cases in individuals who were 15 to 49 years of age occurred in 2016. The growing number of gonorrhoea cases is concerning given the rise in gonococci developing antimicrobial resistance (AMR). Therefore, a global action plan is needed to facilitate surveillance. Indeed, the WHO has made surveillance leading to the elimination of STIs (including gonorrhoea) a global health priority. The availability of whole genome sequence data offers new opportunities to combat gonorrhoea. This can be through (i) enhanced surveillance of the global prevalence of AMR, (ii) improved understanding of the population biology of the gonococcus, and (iii) opportunities to mine sequence data in the search for vaccine candidates. Here, we review the current status in Neisseria gonorrhoeae genomics. In particular, we explore how genomics continues to advance our understanding of this complex pathogen.
Collapse
Affiliation(s)
- Odile B Harrison
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| | - Martin CJ Maiden
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| |
Collapse
|
6
|
Kulkarni A, Mochnáčová E, Majerova P, Čurlík J, Bhide K, Mertinková P, Bhide M. Single Domain Antibodies Targeting Receptor Binding Pockets of NadA Restrain Adhesion of Neisseria meningitidis to Human Brain Microvascular Endothelial Cells. Front Mol Biosci 2020; 7:573281. [PMID: 33425985 PMCID: PMC7785856 DOI: 10.3389/fmolb.2020.573281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Neisseria adhesin A (NadA), one of the surface adhesins of Neisseria meningitides (NM), interacts with several cell types including human brain microvascular endothelial cells (hBMECs) and play important role in the pathogenesis. Receptor binding pockets of NadA are localized on the globular head domain (A33 to K69) and the first coiled-coil domain (L121 to K158). Here, the phage display was used to develop a variable heavy chain domain (VHH) that can block receptor binding sites of recombinant NadA (rec-NadA). A phage library displaying VHH was panned against synthetic peptides (NadA-gdA33−K69 or NadA-ccL121−K158), gene encoding VHH was amplified from bound phages and re-cloned in the expression vector, and the soluble VHHs containing disulfide bonds were overexpressed in the SHuffle E. coli. From the repertoire of 96 clones, two VHHs (VHHF3–binding NadA-gdA33−K69 and VHHG9–binding NadA-ccL121−K158) were finally selected as they abrogated the interaction between rec-NadA and the cell receptor. Preincubation of NM with VHHF3 and VHHG9 significantly reduced the adhesion of NM on hBMECs in situ and hindered the traversal of NM across the in-vitro BBB model. The work presents a phage display pipeline with a single-round of panning to select receptor blocking VHHs. It also demonstrates the production of soluble and functional VHHs, which blocked the interaction between NadA and its receptor, decreased adhesion of NM on hBMECs, and reduced translocation of NM across BBB in-vitro. The selected NadA blocking VHHs could be promising molecules for therapeutic translation.
Collapse
Affiliation(s)
- Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Čurlík
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
Gottlieb SL, Jerse AE, Delany-Moretlwe S, Deal C, Giersing BK. Advancing vaccine development for gonorrhoea and the Global STI Vaccine Roadmap. Sex Health 2020; 16:426-432. [PMID: 31476278 DOI: 10.1071/sh19060] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Efforts to develop vaccines against Neisseria gonorrhoeae have become increasingly important, given the rising threat of gonococcal antimicrobial resistance (AMR). Recent data suggest vaccines for gonorrhoea are biologically feasible; in particular, epidemiological evidence shows that vaccines against a closely related pathogen, serogroup B Neisseria meningitidis outer membrane vesicle (OMV) vaccines, may reduce gonorrhoea incidence. Vaccine candidates using several approaches are currently in preclinical development, including meningococcal and gonococcal OMV vaccines, a lipooligosaccharide epitope and purified protein subunit vaccines. The Global STI Vaccine Roadmap provides action steps to build on this technical momentum and advance gonococcal vaccine development. Better quantifying the magnitude of gonorrhoea-associated disease burden, for outcomes like infertility, and modelling the predicted role of gonococcal vaccines in addressing AMR will be essential for building a full public health value proposition, which can justify investment and help with decision making about future vaccine policy and programs. Efforts are underway to gain consensus on gonorrhoea vaccine target populations, implementation strategies and other preferred product characteristics that would make these vaccines suitable for use in low- and middle-income, as well as high-income, contexts. Addressing these epidemiological, programmatic and policy considerations in parallel to advancing research and development, including direct assessment of the ability of meningococcal B OMV vaccines to prevent gonorrhoea, can help bring about the development of viable gonococcal vaccines.
Collapse
Affiliation(s)
- Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland; and Corresponding author.
| | - Ann E Jerse
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Sinead Delany-Moretlwe
- Wits RHI, University of the Witwatersrand, 22 Esselen Street, 2001 Johannesburg, South Africa
| | - Carolyn Deal
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Bethesda, MD 20892, USA
| | - Birgitte K Giersing
- Department of Immunizations, Vaccines, and Biologicals, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland
| |
Collapse
|
8
|
Semchenko EA, Tan A, Borrow R, Seib KL. The Serogroup B Meningococcal Vaccine Bexsero Elicits Antibodies to Neisseria gonorrhoeae. Clin Infect Dis 2020; 69:1101-1111. [PMID: 30551148 PMCID: PMC6743822 DOI: 10.1093/cid/ciy1061] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/08/2018] [Indexed: 12/24/2022] Open
Abstract
Background Neisseria gonorrhoeae and Neisseria meningitidis are closely-related bacteria that cause a significant global burden of disease. Control of gonorrhoea is becoming increasingly difficult, due to widespread antibiotic resistance. While vaccines are routinely used for N. meningitidis, no vaccine is available for N. gonorrhoeae. Recently, the outer membrane vesicle (OMV) meningococcal B vaccine, MeNZB, was reported to be associated with reduced rates of gonorrhoea following a mass vaccination campaign in New Zealand. To probe the basis for this protection, we assessed the cross-reactivity to N. gonorrhoeae of serum raised to the meningococcal vaccine Bexsero, which contains the MeNZB OMV component plus 3 recombinant antigens (Neisseria adhesin A, factor H binding protein [fHbp]-GNA2091, and Neisserial heparin binding antigen [NHBA]-GNA1030). Methods A bioinformatic analysis was performed to assess the similarity of MeNZB OMV and Bexsero antigens to gonococcal proteins. Rabbits were immunized with the OMV component or the 3 recombinant antigens of Bexsero, and Western blots and enzyme-linked immunosorbent assays were used to assess the generation of antibodies recognizing N. gonorrhoeae. Serum from humans immunized with Bexsero was investigated to assess the nature of the anti-gonococcal response. Results There is a high level of sequence identity between MeNZB OMV and Bexsero OMV antigens, and between the antigens and gonococcal proteins. NHBA is the only Bexsero recombinant antigen that is conserved and surfaced exposed in N. gonorrhoeae. Bexsero induces antibodies in humans that recognize gonococcal proteins. Conclusions The anti-gonococcal antibodies induced by MeNZB-like OMV proteins could explain the previously-seen decrease in gonorrhoea following MeNZB vaccination. The high level of human anti-gonococcal NHBA antibodies generated by Bexsero vaccination may provide additional cross-protection against gonorrhoea.
Collapse
Affiliation(s)
- Evgeny A Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, United Kingdom
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
9
|
Genetic Similarity of Gonococcal Homologs to Meningococcal Outer Membrane Proteins of Serogroup B Vaccine. mBio 2019; 10:mBio.01668-19. [PMID: 31506309 PMCID: PMC6737241 DOI: 10.1128/mbio.01668-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human pathogens Neisseria gonorrhoeae and Neisseria meningitidis share high genome identity. Retrospective analysis of surveillance data from New Zealand indicates the potential cross-protective effect of outer membrane vesicle (OMV) meningococcal serogroup B vaccine (MeNZB) against N. gonorrhoeae A licensed OMV-based MenB vaccine, MenB-4C, consists of a recombinant FHbp, NhbA, NadA, and the MeNZB OMV. Previous work has identified several abundantly expressed outer membrane proteins (OMPs) as major components of the MenB-4C OMV with high sequence similarity between N. gonorrhoeae and N. meningitidis, suggesting a mechanism for cross-protection. To build off these findings, we performed comparative genomic analysis on 970 recent N. gonorrhoeae isolates collected through a U.S surveillance system against N. meningitidis serogroup B (NmB) reference sequences. We identified 1,525 proteins that were common to both Neisseria species, of which 57 proteins were predicted to be OMPs using in silico methods. Among the MenB-4C antigens, NhbA showed moderate sequence identity (73%) to the respective gonococcal homolog, was highly conserved within N. gonorrhoeae, and was predicted to be surface expressed. In contrast, the gonococcal FHbp was predicted not to be surface expressed, while NadA was absent in all N. gonorrhoeae isolates. Our work confirmed recent observations (E. A. Semchenko, A. Tan, R. Borrow, and K. L. Seib, Clin Infect Dis, 2018, https://doi.org/10.1093/cid/ciy1061) and describes homologous OMPs from a large panel of epidemiologically relevant N. gonorrhoeae strains in the United States against NmB reference strains. Based on our results, we report a set of OMPs that may contribute to the previously observed cross-protection and provide potential antigen targets to guide the next steps in gonorrhea vaccine development.IMPORTANCE Gonorrhea, a sexually transmitted disease, causes substantial global morbidity and economic burden. New prevention and control measures for this disease are urgently needed, as strains resistant to almost all classes of antibiotics available for treatment have emerged. Previous reports demonstrate that cross-protection from gonococcal infections may be conferred by meningococcal serogroup B (MenB) outer membrane vesicle (OMV)-based vaccines. Among 1,525 common proteins shared across the genomes of both N. gonorrhoeae and N. meningitidis, 57 proteins were predicted to be surface expressed (outer membrane proteins [OMPs]) and thus preferred targets for vaccine development. The majority of these OMPs showed high sequence identity between the 2 bacterial species. Our results provide valuable insight into the meningococcal antigens present in the current OMV-containing MenB-4C vaccine that may contribute to cross-protection against gonorrhea and may inform next steps in gonorrhea vaccine development.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Neisseria gonorrhoeae is one of the most common causes of sexually transmitted infections, with an estimated more than 100 million cases of gonorrhea each year worldwide. N. gonorrhoeae has gained recent increasing attention because of the alarming rise in incidence and the widespread emergence of multidrug-resistant gonococcal strains. Vaccine development is one area of renewed interest. Herein, we review the recent advances in this area. RECENT FINDINGS Vaccine development for N. gonorrhoeae has been problematic, but recent progress in the field has provided new hope that a gonococcal vaccine may be feasible. Several new vaccine antigens have been characterized in various models of infection. Furthermore, the first potential vaccine-induced protection against gonorrhea in humans has been reported, with decreased rates of gonorrhea described among individuals vaccinated with the Neisseria meningitidis serogroup B vaccine, MeNZB. SUMMARY As antibiotic resistance continues to increase, vaccine development for N. gonorrhoeae becomes more urgent. The MeNZB vaccine is shown to have efficacy, albeit relatively low, against N. gonorrhoeae. This finding has the potential to reinvigorate research in the field of gonococcal vaccine development and will guide future studies of the antigens and mechanism(s) required for protection against gonococcal infection.
Collapse
|
11
|
Baarda BI, Zielke RA, Jerse AE, Sikora AE. Lipid-Modified Azurin of Neisseria gonorrhoeae Is Not Surface Exposed and Does Not Interact With the Nitrite Reductase AniA. Front Microbiol 2018; 9:2915. [PMID: 30538694 PMCID: PMC6277709 DOI: 10.3389/fmicb.2018.02915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Lipid-modified cupredoxin azurin (Laz) is involved in electron transport in Neisseria and proposed to act as an electron donor to the surface-displayed nitrite reductase AniA. We identified Laz in Neisseria gonorrhoeae cell envelopes and naturally elaborated membrane vesicles in proteomic investigations focused on discovering new vaccine and therapeutic targets for this increasingly difficult to treat pathogen. Its surface exposure in N. meningitidis suggested Laz could be a vaccine candidate for N. gonorrhoeae. Here we characterized the localization, expression, and role of Laz within the gonococcal cell envelope and challenged the hypothesis that Laz and AniA interact. While we demonstrate that Laz indeed shows some good features of a vaccine antigen, such as stable expression, high conservation, and ability to elicit antibodies that cross-react with a diverse panel of Neisseria, it is not a surface-displayed lipoprotein in the gonococcus. This discovery eliminates Laz as a gonorrhea vaccine candidate, further highlighting the necessity of examining homologous protein localization between closely related species. Absence of Laz slightly altered cell envelope integrity but was not associated with growth defects in vitro, including during anoxia, implicating the presence of other electron pathways to AniA. To further dissect the implied AniA-Laz interaction, we utilized biolayer interferometry and optimized and executed chemical cross-linking coupled with immunoblotting to covalently link interacting protein partners in living gonococci. This method, applied for the first time in N. gonorrhoeae research to interrogate protein complexes, was validated by the appearance of the trimer form of AniA, as well as by increased formation of the β-barrel assembly machinery complex, in the presence of cross-linker. We conclude that Laz is not an electron donor to AniA based on their distinct subcellular localization, discordant expression during infection of the female mouse lower genital tract, and lack of interaction in vivo and in vitro.
Collapse
Affiliation(s)
- Benjamin I Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Ryszard A Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
12
|
Gonococcal MtrE and its surface-expressed Loop 2 are immunogenic and elicit bactericidal antibodies. J Infect 2018; 77:191-204. [PMID: 29902495 DOI: 10.1016/j.jinf.2018.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The rise in multidrug resistant Neisseria gonorrhoeae poses a threat to healthcare, while the development of an effective vaccine has remained elusive due to antigenic and phase variability of surface-expressed proteins. In the current study, we identified a fully conserved surface expressed protein and characterized its suitability as a vaccine antigen. METHODS An in silico approach was used to predict surface-expressed proteins and analyze sequence conservation and phase variability. The most conserved protein and its surface-exposed Loop 2, which was displayed as both a structural and linear epitope on the oligomerization domain of C4b binding protein, were used to immunize mice. Immunogenicity was subsequently analyzed by determination of antibody titers and serum bactericidal activity. RESULTS MtrE was identified as one of the most conserved surface-expressed proteins. Furthermore, MtrE and both Loop 2-containing fusion proteins elicited high protein-specific antibody titers and particularly the two Loop 2 fusion proteins showed high anti-Loop 2 titers. In addition, antibodies raised against all three proteins were able to recognize MtrE expressed on the surface of N. gonorrhoeae and showed high MtrE-dependent bactericidal activity. CONCLUSIONS Our results show that MtrE and Loop 2 are promising novel conserved surface-expressed antigens for vaccine development against N. gonorrhoeae.
Collapse
|