1
|
Wang C, Macintyre AN, Oguin TH, McCarthy KR, Moody MA, Yuan F. Spatiotemporal control of immune responses with nucleic acid cocktail vaccine. ADVANCED THERAPEUTICS 2024; 7:2400263. [PMID: 40248361 PMCID: PMC12002596 DOI: 10.1002/adtp.202400263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 04/19/2025]
Abstract
Nucleic acid vaccines play important roles in prevention and treatment of diseases. However, limited immunogenicity remains a major obstacle for DNA vaccine applications in the clinic. To address the issue, the present study investigates a cocktail approach to DNA vaccination. In this proof-of-the-concept study, the cocktail consists of two DNAs encoding viral hemagglutinin (HA) and granulocyte-macrophage colony stimulatory factor (GM-CSF), respectively. Data from the study demonstrate that recruitment and activation of antigen-presenting cells (APCs) can be substantially improved by spatiotemporal regulation of GM-CSF and HA expressions at the site of vaccination. The types of recruited APCs and their phenotypes are also controllable by adjusting the cocktail compositions. Compared to mono-ingredient vaccine, the optimized cocktail vaccine is able to enhance the anti-viral humoral and T cell immune responses. No significant systemic inflammation has been detected after either prime or boost immunization using the cocktail vaccine. Data in the study suggest that the DNA cocktail is a safe, effective, and controllable platform for improving vaccine efficacy.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute (DHVI), Duke University, Durham, NC 27708, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Thomas H. Oguin
- Duke Human Vaccine Institute (DHVI), Duke University, Durham, NC 27708, USA
| | - Kevin R. McCarthy
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA 15261, USA
| | - M. Anthony Moody
- Duke Human Vaccine Institute (DHVI), Duke University, Durham, NC 27708, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Jamour P, Jamali A, Langeroudi AG, Sharafabad BE, Abdoli A. Comparing chemical transfection, electroporation, and lentiviral vector transduction to achieve optimal transfection conditions in the Vero cell line. BMC Mol Cell Biol 2024; 25:15. [PMID: 38741034 PMCID: PMC11089686 DOI: 10.1186/s12860-024-00511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Transfection is an important analytical method for studying gene expression in the cellular environment. There are some barriers to efficient DNA transfection in host cells, including circumventing the plasma membrane, escaping endosomal compartmentalization, autophagy, immune sensing pathways, and translocating the nuclear envelope. Therefore, it would be very useful to introduce an optimum transfection approach to achieve a high transfection efficiency in the Vero cell line. The aim of this study was to compare various transfection techniques and introduce a highly efficient method for gene delivery in Vero cells. METHODS In the current study, three transfection methods were used, including chemical transfection, electroporation, and lentiviral vector transduction, to obtain the optimum transfection conditions in the Vero cell line. Vero cells were cultured and transfected with chemical transfection reagents, electroporation, or HIV-1-based lentivectors under different experimental conditions. Transfection efficiency was assessed using flow cytometry and fluorescence microscopy to detect GFP-positive cells. RESULTS Among the tested methods, TurboFect™ chemical transfection exhibited the highest efficiency. Optimal transfection conditions were achieved using 1 µg DNA and 4 µL TurboFect™ in 6 × 104 Vero cells. CONCLUSION TurboFect™, a cationic polymer transfection reagent, demonstrated superior transfection efficiency in Vero cells compared with electroporation and lentivirus particles, and is the optimal choice for chemical transfection in the Vero cell line.
Collapse
Affiliation(s)
- Parisa Jamour
- Department of Hepatitis and HIV, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Jamali
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Ghalyanchi Langeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and HIV, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Sundara Rajan R. S, Thomas J, Francis D, Daniel EC. Effective gene delivery using size dependant nano core-shell in human cervical cancer cell lines by magnetofection. PLoS One 2023; 18:e0289731. [PMID: 37676882 PMCID: PMC10484435 DOI: 10.1371/journal.pone.0289731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Biocompatible magnetic nanoparticles are effective for gene delivery in vitro and in vivo transfection. These mediators are mainly used to deliver drugs and genes. It can also be used as probes to diagnose and treat various diseases. Magnetic nanoparticles, primarily iron oxide nanoparticles, are used in various biological applications. However, preparing stable and small-size biocompatible core-shell is crucial in site direct gene delivery. In the present study, superparamagnetic iron oxide nanoparticles were synthesized using the chemical co-precipitation method and were functionalized with starch to attain stable particles. These SPIONs were coated with polyethylenimine to give a net positive charge. The fluorescent plasmid DNA bound to the SPIONs were used as a core shell for gene delivery into the HeLa cells via magnetofection. UV-Visible Spectrophotometry analysis showed a peak at 200 nm, which confirms the presence of FeO nanoparticles. The Scanning Electron Microscopy images revealed the formation of spherical-shaped nanoparticles with an average size of 10 nm. X-ray Diffraction also confirmed FeO as a significant constituent element. Vibrating Sample Magnetometry ensures that the nanoparticles are superparamagnetic. Atomic Force Microscopy images show the DNA bound on the surface of the nanoparticles. The gene delivery and transfection efficiency were analyzed by flow cytometry. These nanoparticles could effectively compact the pDNA, allowing efficient gene transfer into the HeLa cell lines.
Collapse
Affiliation(s)
| | - Jobin Thomas
- Biotechnology Research Centre, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka, India
- Centre for Nano Bbiotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Biotechnology Research Centre, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka, India
| | - Elcey C. Daniel
- Biotechnology Research Centre, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Agafonova L, Zhdanov D, Gladilina Y, Kanashenko S, Shumyantseva V. A pilot study on an electrochemical approach for assessing transient DNA transfection in eukaryotic cells. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Toma I, Porfire AS, Tefas LR, Berindan-Neagoe I, Tomuță I. A Quality by Design Approach in Pharmaceutical Development of Non-Viral Vectors with a Focus on miRNA. Pharmaceutics 2022; 14:1482. [PMID: 35890377 PMCID: PMC9322860 DOI: 10.3390/pharmaceutics14071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer is the leading cause of death worldwide. Tumors consist of heterogeneous cell populations that have different biological properties. While conventional cancer therapy such as chemotherapy, radiotherapy, and surgery does not target cancer cells specifically, gene therapy is attracting increasing attention as an alternative capable of overcoming these limitations. With the advent of gene therapy, there is increasing interest in developing non-viral vectors for genetic material delivery in cancer therapy. Nanosystems, both organic and inorganic, are the most common non-viral vectors used in gene therapy. The most used organic vectors are polymeric and lipid-based delivery systems. These nanostructures are designed to bind and protect the genetic material, leading to high efficiency, prolonged gene expression, and low toxicity. Quality by Design (QbD) is a step-by-step approach that investigates all the factors that may affect the quality of the final product, leading to efficient pharmaceutical development. This paper aims to provide a new perspective regarding the use of the QbD approach for improving the quality of non-viral vectors for genetic material delivery and their application in cancer therapy.
Collapse
Affiliation(s)
- Ioana Toma
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| |
Collapse
|
6
|
Jiang T, Zhang XO, Weng Z, Xue W. Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnol 2022; 40:227-234. [PMID: 34650270 PMCID: PMC8847310 DOI: 10.1038/s41587-021-01026-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Genomic insertions, duplications and insertion/deletions (indels), which account for ~14% of human pathogenic mutations, cannot be accurately or efficiently corrected by current gene-editing methods, especially those that involve larger alterations (>100 base pairs (bp)). Here, we optimize prime editing (PE) tools for creating precise genomic deletions and direct the replacement of a genomic fragment ranging from ~1 kilobases (kb) to ~10 kb with a desired sequence (up to 60 bp) in the absence of an exogenous DNA template. By conjugating Cas9 nuclease to reverse transcriptase (PE-Cas9) and combining it with two PE guide RNAs (pegRNAs) targeting complementary DNA strands, we achieve precise and specific deletion and repair of target sequences via using this PE-Cas9-based deletion and repair (PEDAR) method. PEDAR outperformed other genome-editing methods in a reporter system and at endogenous loci, efficiently creating large and precise genomic alterations. In a mouse model of tyrosinemia, PEDAR removed a 1.38-kb pathogenic insertion within the Fah gene and precisely repaired the deletion junction to restore FAH expression in liver.
Collapse
Affiliation(s)
- Tingting Jiang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Fus-Kujawa A, Prus P, Bajdak-Rusinek K, Teper P, Gawron K, Kowalczuk A, Sieron AL. An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro. Front Bioeng Biotechnol 2021; 9:701031. [PMID: 34354988 PMCID: PMC8330802 DOI: 10.3389/fbioe.2021.701031] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transfection is a powerful analytical tool enabling studies of gene products and functions in eukaryotic cells. Successful delivery of genetic material into cells depends on DNA quantity and quality, incubation time and ratio of transfection reagent to DNA, the origin, type and the passage of transfected cells, and the presence or absence of serum in the cell culture. So far a number of transfection methods that use viruses, non-viral particles or physical factors as the nucleic acids carriers have been developed. Among non-viral carriers, the cationic polymers are proposed as the most attractive ones due to the possibility of their chemical structure modification, low toxicity and immunogenicity. In this review the delivery systems as well as physical, biological and chemical methods used for eukaryotic cells transfection are described and discussed.
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Pawel Prus
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students’ Scientific Society, Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Paulina Teper
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Aleksander L. Sieron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
8
|
Chong ZX, Yeap SK, Ho WY. Transfection types, methods and strategies: a technical review. PeerJ 2021; 9:e11165. [PMID: 33976969 PMCID: PMC8067914 DOI: 10.7717/peerj.11165] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Transfection is a modern and powerful method used to insert foreign nucleic acids into eukaryotic cells. The ability to modify host cells' genetic content enables the broad application of this process in studying normal cellular processes, disease molecular mechanism and gene therapeutic effect. In this review, we summarized and compared the findings from various reported literature on the characteristics, strengths, and limitations of various transfection methods, type of transfected nucleic acids, transfection controls and approaches to assess transfection efficiency. With the vast choices of approaches available, we hope that this review will help researchers, especially those new to the field, in their decision making over the transfection protocol or strategy appropriate for their experimental aims.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| |
Collapse
|
9
|
Kho KW, Berselli GB, Keyes TE. A Nanoplasmonic Assay of Oligonucleotide-Cargo Delivery from Cationic Lipoplexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005815. [PMID: 33634594 DOI: 10.1002/smll.202005815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/18/2021] [Indexed: 05/17/2023]
Abstract
A powerful new biophysical model is reported to assay nanocarrier lipid membrane permeability. The approach employs a nanophotonic biophysical membrane model as an assay to study oligonucleotide escape from delivery vector following fusion with endosomal membrane that relies on plasmonic hotspots within the receptor well, below the membrane to follow cargo arrival. Through the combined use of surface enhanced Raman spectroscopy and fluorescence lifetime correlation spectroscopy (FLCS), the model enables identification of a lipoplex-mediated endosomal-escape mechanism facilitated by DOTAP-oligonucleotide interaction that dictates the rate of oligonucleotide release. This work reveals a hitherto unreported release mechanism as a complex multistep interplay between the oligonucleotide cargo and the target membrane, rather than a process based solely on lipid mixing at the fusing site as previously proposed. This substantiates the observations that lipid mixing is not necessarily followed by cargo release. The approach presents a new paradigm for assessment of vector delivery at model membranes that promises to have wide application within the drug delivery design application space. Overall, this plasmonic membrane model offers a potential solution to address persistent challenges in engineering the release mechanism of large therapeutic molecules from their nanocarrier, which is a major bottleneck in intracellular delivery.
Collapse
Affiliation(s)
- Kiang W Kho
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasvenin, Dublin, D09 W6Y4, Ireland
| | - Guilherme B Berselli
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasvenin, Dublin, D09 W6Y4, Ireland
| | - Tia E Keyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasvenin, Dublin, D09 W6Y4, Ireland
| |
Collapse
|
10
|
Ayala-Sarmiento AE, Kobritz N, Breunig JJ. De Novo Generation of Murine and Human MADR Recipient Cell Lines for Locus-Specific, Stable Integration of Transgenic Elements. STAR Protoc 2020; 1:100184. [PMID: 33377078 PMCID: PMC7757409 DOI: 10.1016/j.xpro.2020.100184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mosaic analysis by dual recombinase-mediated cassette exchange (MADR) is a technology that allows stable and locus-specific integration of transgenic elements into recipient cells carrying loxP and FRT sites. Nevertheless, most cell lines lack these recombination-specific sites. This protocol describes a method to introduce the minimum requirements into cells, leading to the generation of de novo primary MADR recipient cells or MADR "Proxy" cells. These cell lines allow the combinatorial use of a wide range of transgenic elements through MADR. For complete details on the use and execution of this protocol, please refer to Kim et al. (2019).
Collapse
Affiliation(s)
- Alberto E. Ayala-Sarmiento
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Naomi Kobritz
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Inhibition of nuclease activity by a splice-switching oligonucleotide targeting deoxyribonuclease 1 mRNA prevents apoptosis progression and prolong viability of normal human CD4 + T-lymphocytes. Biochimie 2020; 174:34-43. [PMID: 32315661 DOI: 10.1016/j.biochi.2020.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 04/10/2020] [Indexed: 11/21/2022]
Abstract
The nuclease activity of deoxyribonuclease 1 (DNase I) is regulated by alternative splicing (AS) of its mRNA. The aim of this study was to define the ability of a splice-switching oligonucleotide (SSO) that base-paired with DNase I pre-mRNA to induce AS and inhibit nuclease activity in human T, B and NK lymphocytes. The SSO for DNase I could significantly downregulate the expression of full-length active DNase I and upregulate a truncated splice variant with a deleted exon 4. Such an induction of AS resulted in inhibition of nuclease activity and slowed apoptosis progression in anti-CD95/FAS stimulated lymphocytes. These results should facilitate further investigations of apoptosis regulation in lymphocytes and demonstrate that SSOs for DNase I are promising cytoprotective agents.
Collapse
|
12
|
Methods for protein delivery into cells: from current approaches to future perspectives. Biochem Soc Trans 2020; 48:357-365. [DOI: 10.1042/bst20190039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
The manipulation of cultured mammalian cells by the delivery of exogenous macromolecules is one of the cornerstones of experimental cell biology. Although the transfection of cells with DNA expressions constructs that encode proteins is routine and simple to perform, the direct delivery of proteins into cells has many advantages. For example, proteins can be chemically modified, assembled into defined complexes and subject to biophysical analyses prior to their delivery into cells. Here, we review new approaches to the injection and electroporation of proteins into cultured cells. In particular, we focus on how recent developments in nanoscale injection probes and localized electroporation devices enable proteins to be delivered whilst minimizing cellular damage. Moreover, we discuss how nanopore sensing may ultimately enable the quantification of protein delivery at single-molecule resolution.
Collapse
|
13
|
Targeted DNA demethylation of the Fgf21 promoter by CRISPR/dCas9-mediated epigenome editing. Sci Rep 2020; 10:5181. [PMID: 32198422 PMCID: PMC7083849 DOI: 10.1038/s41598-020-62035-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/06/2020] [Indexed: 11/08/2022] Open
Abstract
Recently, we reported PPARα-dependent DNA demethylation of the Fgf21 promoter in the postnatal mouse liver, where reduced DNA methylation is associated with enhanced gene expression after PPARα activation. However, there is no direct evidence for the effect of site-specific DNA methylation on gene expression. We employed the dCas9-SunTag and single-chain variable fragment (scFv)-TET1 catalytic domain (TET1CD) system to induce targeted DNA methylation of the Fgf21 promoter both in vitro and in vivo. We succeeded in targeted DNA demethylation of the Fgf 21 promoter both in Hepa1-6 cells and PPARα-deficient mice, with increased gene expression response to PPARα synthetic ligand administration and fasting, respectively. This study provides direct evidence that the DNA methylation status of a particular gene may determine the magnitude of the gene expression response to activation cues.
Collapse
|
14
|
Mu W, Homann S, Hofmann C, Gorin A, Huynh D, Yang OO, Kelesidis T. A Flow Cytometric Method to Determine Transfection Efficiency. Bio Protoc 2019; 9:e3244. [PMID: 32855997 PMCID: PMC7449265 DOI: 10.21769/bioprotoc.3244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/29/2019] [Indexed: 11/02/2022] Open
Abstract
Mammalian cell transfection is a powerful technique commonly used in molecular biology to express exogenous DNA or RNA in cells and study gene and protein function. Although several transfection strategies have been developed, there is a wide variation with regards to transfection efficiency, cell toxicity and reproducibility. Thus, a sensitive and robust method that can optimize transfection efficiency based not only on expression of the target protein of interest but also on the uptake of the nucleic acids, can be an important tool in molecular biology. Herein, we present a simple, rapid and robust flow cytometric method that can be used as a tool to optimize transfection efficiency while overcoming limitations of prior established methods that quantify transfection efficiency.
Collapse
Affiliation(s)
- Wenli Mu
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Stefanie Homann
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Christian Hofmann
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Alexandr Gorin
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Diana Huynh
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Otto Orlean Yang
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Theodoros Kelesidis
- David Geffen School of Medicine, University of California, Los Angeles, USA
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|