1
|
Chen A, Zhang H, Zi Y, Gao Y, Lee CT, Li C. Enhancing fish sludge bioconversion kinetics for nutrient recovery in aquaponics using a modified biological aerated filter with a novel media of polyhedral hollow spheres. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123709. [PMID: 39724672 DOI: 10.1016/j.jenvman.2024.123709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Nutrient recovery from aquaculture sludge is vital for promoting hydroponic plant growth and achieving near-zero solid waste discharge in aquaponic systems. Modified biological aerated filters (MBAFs) are promising because of the dual capabilities of aquaculture sludge collection and aerobic mineralization. However, the bioconversion kinetics, which is indirectly related to the packed media, need to be improved. In this study, a novel polyhedral hollow sphere (PHS) medium was used in an MBAF (MBAF-PHS) to overcome the shortcomings of the current medium, facilitating fish sludge retention and enhancing subsequent bioconversion kinetics for nutrient recovery. An average rate of 36.9 g/d for dry weight of fish sludge was achieved during 29 d of filtration and an average reduction rate of 31.30 g/d during 26 d of bioconversion. The total mass of fish sludge was converted by 76.2% via the co-action of the solubilization of organic solids and degradation of dissolved organic matter. MBAF-PHS was competitive for macronutrient recovery compared with the MBAF-sponge previously used. The ratios of the final concentrations of the macronutrients (P, Mg, and S) to the concentrations in Hoagland solution (Cf/CH, %) were 278.1, 162.8, and 200.9%, respectively, whereas the ratios of N, K, and Ca were 65.9, 37.1, and 51.0%, respectively. High bioconversion kinetics of NO3--N and PO43--P were obtained within 7 d with an MNO3-N/MTN of 79.9% and MPO4-P/MDTP of 80.3%. The nutrient bioconversion of fish sludge was associated with the diversity of the microbial community in the MBAF-PHS, especially the population of nitrogen-removing microbial species that developed after 9 d of mineralization.
Collapse
Affiliation(s)
- Ang Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Hainan, 572025, China
| | - Hong Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongxia Zi
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueshu Gao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chew Tin Lee
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, 81310, Malaysia
| | - Chunjie Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Hainan, 572025, China.
| |
Collapse
|
2
|
Pinho S, Leal MM, Shaw C, Baganz D, Baganz G, Staaks G, Kloas W, Körner O, Monsees H. Insect-based fish feed in decoupled aquaponic systems: Effect on lettuce production and resource use. PLoS One 2024; 19:e0295811. [PMID: 38241264 PMCID: PMC10798475 DOI: 10.1371/journal.pone.0295811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024] Open
Abstract
The utilisation of insect meal-based fish feed as a substitute for conventional fish meal-based fish feed is considered as a promising innovative alternative to boost circularity in aquaculture and aquaponics. Basic research on its use in aquaponics is limited. So far, no reports on the effects of fish waste water, derived from a recirculating aquaculture system using Black Soldier Fly (BSF) meal-based diets, were available on the growth performance of lettuce. Therefore, this study aimed to compare the effect of reusing fish waste water from tilapia culture (as a base for the nutrient solution) fed with a fish meal-based diet (FM) and a BSF meal-based diet on resource use and lettuce growth in decoupled aquaponic systems. A conventional hydroponics nutrient solution (HP) served as control, and inorganic fertilisers were added to all nutrient solutions to reach comparable target concentrations. The experiment was conducted in a controlled climate chamber in nine separate hydroponics units, three per treatment. Lettuce fresh and dry weight, number of leaves, relative leaf chlorophyll concentration, water consumption, and the usage of inorganic fertilisers were measured. Micro- and macronutrients in the nutrient solutions were monitored in time series. Similar lettuce yield was seen in all treatments, with no significant effects on fresh and dry weight, the number of leaves, and relative chlorophyll values. Water use per plant was also similar between treatments, while the amount of total inorganic fertiliser required was 32% lower in FM and BSF compared to HP. Higher sodium concentrations were found in the FM nutrient solutions compared to BSF and HP. The results confirm that BSF-based diet is a promising alternative to FM-based diet in aquaponics with no negative effects on lettuce growth. Additionally, BSF-based diet might be beneficial in intensive, professional aquaponics applications due to the lower sodium concentration in the nutrient solution.
Collapse
Affiliation(s)
- Sara Pinho
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
| | - Margarida Meneses Leal
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Christopher Shaw
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Berlin, Germany
| | - Daniela Baganz
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Gösta Baganz
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Georg Staaks
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Werner Kloas
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Oliver Körner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
| | - Hendrik Monsees
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
3
|
Folorunso EA, Gebauer R, Bohata A, Velíšek J, Třešnáková N, Dvořák P, Tomčala A, Kuebutornye FKA, Mráz J. Runoff of foliar-applied natural fungicides in aquaponics: Implications for fish and nitrification. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104341. [PMID: 38072218 DOI: 10.1016/j.etap.2023.104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Aquaponics is a method of producing food in a sustainable manner through the integration of aquaculture and hydroponics, which allows simultaneous cultivation of fish and economic crops. The use of natural fungicides are crucial to the sustainable control of diseases in aquaponics. We assessed the potential impacts of natural fungicides, such as clove oil and lecithin, as well as a synthetic fungicide, tebuconazole, following foliar application in aquaponics. This study examined the runoff rates of the fungicides in decoupled aquaponics, and the subsequent effects of the runoffs on nitrification processes and Nile tilapia (Oreochromis niloticus). The runoffs of the foliar-applied fungicides, clove oil, lecithin, and tebuconazole, were detected in aquaponics water at a percentage runoff rate of 0.3 %, 2.3 %, and 0.3-0.8 % respectively. In the biofilter, lecithin altered the ammonium levels by increasing ammonium-nitrogen levels by 7 mg L-1, 6 h post application. Clove oil, on the other hand, showed no significant effect on ammonium, nitrite, and nitrate-nitrogen. Similarly, the toxicity test showed that eugenol had no significant effects on the hematological, biochemical and antioxidative activities of O. niloticus. Conversely, tebuconazole exhibited significant and persistent effects on various biochemical parameters, including lactate, albumin, and total protein, as well as hematological parameters like hemoglobin and MCH. The use of lecithin and tebuconazole should only be limited to decoupled aquaponics.
Collapse
Affiliation(s)
- Ewumi Azeez Folorunso
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Radek Gebauer
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Andrea Bohata
- University of South Bohemia in Ceske Budejovice, Faculty of Agriculture and Technology, Department of Plant Protection, Studentska 1668, České Budějovice 370 05, Czech Republic
| | - Josef Velíšek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Nikola Třešnáková
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Petr Dvořák
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Aleš Tomčala
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Felix Kofi Agbeko Kuebutornye
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Jan Mráz
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
4
|
Mourantian A, Aslanidou M, Mente E, Katsoulas N, Levizou E. Basil functional and growth responses when cultivated via different aquaponic and hydroponics systems. PeerJ 2023; 11:e15664. [PMID: 37483975 PMCID: PMC10361078 DOI: 10.7717/peerj.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Background Aquaponics is an innovative farming system that combines hydroponics and aquaculture, resulting in the production of both crops and fish. Decoupled aquaponics is a new approach introduced in aquaponics research for the elimination of certain system bottlenecks, specifically targeting the optimization of crops and fish production conditions. The aquaponics-related literature predominantly examines the system's effects on crop productivity, largely overlooking the plant functional responses which underlie growth and yield performance. The aim of the study was the integrated evaluation of basil performance cultivated under coupled and decoupled aquaponic systems compared with a hydroponic one, in terms of growth and functional parameters in a pilot-scale aquaponics greenhouse. Methods We focused on the efficiency of the photosynthetic process and the state of the photosynthetic machinery, assessed by instantaneous gas exchange measurements as well as photosynthetic light response curves, and in vivo chlorophyll a fluorescence. Light use efficiency was estimated through leaf reflectance determination. Photosynthetic pigments content and leaf nutritional state assessments completed the picture of basil functional responses to the three different treatments/systems. The plant's functional parameters were assessed at 15-day intervals. The experiment lasted for two months and included an intermediate and a final harvest during which several basil growth parameters were determined. Results Coupled aquaponics resulted in reduced growth, which was mainly ascribed to sub-sufficient leaf nutrient levels, a fact that triggered a series of negative feedbacks on all aspects of their photosynthetic performance. These plants experienced a down-regulation of PSII activity as reflected in the significant decreases of quantum yield and efficiency of electron transport, along with decreased photosynthetic pigments content. On the contrary, decoupled aquaponics favored both growth and photochemistry leading to higher light use efficiency compared with coupled system and hydroponics, yet without significant differences from the latter. Photosynthetic light curves indicated constantly higher photosynthetic capacity of the decoupled aquaponics-treated basil, while also enhanced pigment concentrations were evident. Basil functional responses to the three tested production systems provided insights on the underlying mechanisms of plant performance highlighting key-points for systems optimization. We propose decoupled aquaponics as an effective system that may replace hydroponics supporting high crops productivity. We suggest that future works should focus on the mechanisms involved in crop and fish species function, the elucidation of which would greatly contribute to the optimization of the aquaponics productivity.
Collapse
Affiliation(s)
- Anastasia Mourantian
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, N. Ionia, Volos, Greece
| | - Maria Aslanidou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, N. Ionia, Volos, Greece
| | - Eleni Mente
- Department of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Katsoulas
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, N. Ionia, Volos, Greece
| | - Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, N. Ionia, Volos, Greece
| |
Collapse
|
5
|
Kumar G, Bhujel RC, Aggarwal A, Gupta D, Yadav A, Asjad M. Analyzing the barriers for aquaponics adoption using integrated BWM and fuzzy DEMATEL approach in Indian context. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47800-47821. [PMID: 36749509 PMCID: PMC9902835 DOI: 10.1007/s11356-023-25561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/22/2023] [Indexed: 06/06/2023]
Abstract
Aquaponic system in greenhouses which can recycle and reuse the water and nutrients is gaining importance across the world to counter the uncertainties due to weather fluctuations. However, there is a slow pace of growth in aquaculture practices around the globe in general and India in particular. There are many barriers to adopt the aquaponic culture. In this study an analysis of the barriers for aquaponics culture in Indian context during the COVID-19 period is presented. Literature review and interactions with various stakeholders help to find out the list of potential factors while gauging the success of their prospective aquaponics project. The "best-worst" methodology (BWM) is employed for ranking of barriers, whereas categorizing of barriers is carried out with the help of fuzzy DEMATEL. Furthermore, the results of this research work are of great value to corporations or start-up companies looking to invest in this technology as well as to farmers who wish to adopt this farming technique.
Collapse
Affiliation(s)
- Girish Kumar
- Department of Mechanical Engineering, Delhi Technological University, Delhi, India
| | - Ram C. Bhujel
- School of Environment, Resources and Development, Asian Institute of Technology, Bangkok, Thailand
| | - Aniket Aggarwal
- Department of Mechanical Engineering, Delhi Technological University, Delhi, India
| | - Divyansh Gupta
- Department of Mechanical Engineering, Delhi Technological University, Delhi, India
| | - Ashish Yadav
- Department of Mechanical Engineering, Delhi Technological University, Delhi, India
| | - Mohammad Asjad
- Department of Mechanical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Thakur K, Kuthiala T, Singh G, Arya SK, Iwai CB, Ravindran B, Khoo KS, Chang SW, Awasthi MK. An alternative approach towards nitrification and bioremediation of wastewater from aquaponics using biofilm-based bioreactors: A review. CHEMOSPHERE 2023; 316:137849. [PMID: 36642133 DOI: 10.1016/j.chemosphere.2023.137849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Aquaponics combines the advantages of aquaculture and hydroponics as it suits the urban environment where a lack of agricultural land and water resources is observed. It is an ecologically sound system that completely reuses its system waste as plant fertilizer. It offers sustainable water savings, making it a supreme technology for food production. The two major processes that hold the system together are nitrification and denitrification. The remains of fish in form of ammonia reach the bio filters where it is converted into nitrite and further into nitrate in presence of nitrifying and denitrifying bacteria. Nitrate eventually is taken up by the plants. However, even after the uptake from the flow stream, the effluent contains remaining ammonium and nitrates, which cannot be directly released into the environment. In this review it is suggested how integrating the biofilm-based bioreactors in addition to aquaculture and hydroponics eliminates the possibility of remains of total ammonia nitrogen [TAN] contents, leading to bioremediation of effluent water from the system. Effluent water after releasing from a bioreactor can be reused in an aquaculture system, conditions provided in these bioreactors promote the growth of required bacteria and encourages the mutual development of plants and fishes and eventually leading to bioremediation of wastewater from aquaponics.
Collapse
Affiliation(s)
- Kritika Thakur
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Tanya Kuthiala
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Chuleemas Boonthai Iwai
- Integrated Land and Water Resource Management Research and Development Center in Northeast Thailand, Khon Kaen University, Thailand; Department of Soil Science and Environment, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Kuan Shiong Khoo
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling, 712100, China.
| |
Collapse
|
7
|
Krastanova M, Sirakov I, Ivanova-Kirilova S, Yarkov D, Orozova P. Aquaponic systems: biological and technological parameters. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2074892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Milena Krastanova
- Department of Anatomy, Physiology and Animal Sciences, Faculty of Veterinary Medicine, University of Forestry, Sofia, Bulgaria
| | - Ivo Sirakov
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Sofiya Ivanova-Kirilova
- Department of Pathology, Parasitology and Parasitic Diseases of Animals, Diseases of Aquatic Animals and Bees, National Diagnostic and Research Veterinary Medical Institute “Professor G. Pavlov,”Sofia, Bulgaria³
| | - Dobry Yarkov
- Department of General Animal Husbandry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Petya Orozova
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, National Diagnostic and Research Veterinary Medical Institute “Professor G. Pavlov,”Sofia, Bulgaria
| |
Collapse
|
8
|
Aquaculture—Production System and Waste Management for Agriculture Fertilization—A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14127257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aquaculture is the fastest growing animal food production sector worldwide and is becoming the main source of aquatic animal foodstuff for human consumption. However, the aquaculture sector has been strongly criticized for its environmental impacts. It can cause discharge and accumulation of residual nutrients in the areas surrounding the production farms. This is because, of the total nutrients supplied to production ponds, only 30% are converted into product, while the rest is usually discharged into the environment to maintain water quality in aquaculture culture systems, thereby altering the physic-chemical characteristics of the receiving water. In contrast, this same accumulation of nutrients is gaining importance within the agricultural sector, as it has been reported that the main nutrients required by plants for their development are found in this aquaculture waste. The purpose of this review article is to indicate the different aquaculture production systems, the waste they generate, as well as the negative effects of their discharge into the environment. Biofiltration and bioremediation processes are mentioned as alternatives for aquaculture waste management. Furthermore, the state of the art in the treatment and utilization of aquaculture waste as a mineral source for agricultural nutrition through biodigestion and biomineralization processes is described. Finally, aquaponics is referred to as a biological production approach that, through efficient use of water and recycling of accumulated organic nutrients in aquaculture systems, can contribute to addressing the goals of sustainable aquaculture development.
Collapse
|
9
|
Pattillo DA, Hager JV, Cline DJ, Roy LA, Hanson TR. System design and production practices of aquaponic stakeholders. PLoS One 2022; 17:e0266475. [PMID: 35363828 PMCID: PMC8975150 DOI: 10.1371/journal.pone.0266475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Aquaponics is an agricultural practice incorporating aquaculture and hydroponic principles. This study assesses the current system design and production practices of the aquaponic industry, compares these metrics by stakeholder group, identifies trends, and provides recommendations for future development. An electronic survey of aquaponic stakeholders was conducted from December 2019 to June 2020 targeting hobbyists, producers, and educators from various aquaponic-focused professional associations, email and social media groups. Of 378 total responses, 84% came from the United States and were clustered in plant hardiness zones five to nine. Aquaponic systems were commonly homemade/do-it-yourself (DIY), many of which incorporated commercially available (turn-key) technology. Most growers used coupled systems that integrated recirculating aquaculture systems and either deep-water culture (DWC) or media bed hydroponic units. Common plant lighting sources were sunlight and light emitting diode (LED). Water sources were typically municipal or wells. Personal labor input was typically less than 20 hrs/wk. Funding sources were primarily personal funds, followed by government grants, and private investor funds. System sizes varied greatly, but the median area was 50 to 500 ft2 for hobbyists and educators and 500 to 3,000 ft2 for producers. Respondents commonly sold vegetable produce, training and education, food fish, and microgreens. Tilapia and ornamental fish were commonly grown, with 16 other species reported. Common crops were lettuce, leafy greens, basil, tomatoes, peppers, and herbs with many additional lesser-grown crops reported, including cannabis. Overall, the industry still growing, with a large portion of stakeholders having less than two years of experience. However, veteran growers have remained in operation, particularly in the producer and educator groups. The survey results suggest a shift away from outdoor systems, media beds, tomatoes, ornamental fish, and perch production, and a shift toward decoupled systems, DWC, drip irrigation, and wicking beds, larger system area, leafy greens, and trout/salmon production compared to previous industry surveys. The reduced diversity of plant species grown suggest some level of crop standardization. Commercial producers tended to sell more types of products than other stakeholders, suggesting that diversification of offerings may be key to profitability. The combined production area specified by respondents indicates the industry has grown substantially in recent years. Finally, the presence of bank loan-funded operations suggests increased knowledge and comfort with aquaponics among lenders.
Collapse
Affiliation(s)
- D. Allen Pattillo
- Environment, Natural Resources, and Sea Grant Extension, University of Maryland, Queenstown, MD, United States of America
| | - Janelle V. Hager
- School of Aquaculture and Aquatic Sciences, Kentucky State University, Frankfort, KY, United States of America
| | - David J. Cline
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, United States of America
| | - Luke A. Roy
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, United States of America
| | - Terrill R. Hanson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
10
|
Khalil S, Panda P, Ghadamgahi F, Rosberg A, Vetukuri RR. Comparison of two commercial recirculated aquacultural systems and their microbial potential in plant disease suppression. BMC Microbiol 2021; 21:205. [PMID: 34225658 PMCID: PMC8259135 DOI: 10.1186/s12866-021-02273-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aquaponics are food production systems advocated for food security and health. Their sustainability from a nutritional and plant health perspective is, however, a significant challenge. Recirculated aquaculture systems (RAS) form a major part of aquaponic systems, but knowledge about their microbial potential to benefit plant growth and plant health is limited. The current study tested if the diversity and function of microbial communities in two commercial RAS were specific to the fish species used (Tilapia or Clarias) and sampling site (fish tanks and wastewaters), and whether they confer benefits to plants and have in vitro antagonistic potential towards plant pathogens. RESULTS Microbial diversity and composition was found to be dependent on fish species and sample site. The Tilapia RAS hosted higher bacterial diversity than the Clarias RAS; but the later hosted higher fungal diversity. Both Tilapia and Clarias RAS hosted bacterial and fungal communities that promoted plant growth, inhibited plant pathogens and encouraged biodegradation. The production of extracellular enzymes, related to nutrient availability and pathogen control, by bacterial strains isolated from the Tilapia and Clarias systems, makes them a promising tool in aquaponics and in their system design. CONCLUSIONS This study explored the microbial diversity and potential of the commercial RAS with either Tilapia or Clarias as a tool to benefit the aquaponic system with respect to plant growth promotion and control of plant diseases.
Collapse
Affiliation(s)
- Sammar Khalil
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, 230 53, Alnarp, Sweden.
| | - Preeti Panda
- Plant and Food Research, Plant Protection, Lincoln, New Zealand
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 102, 230 53, Alnarp, Sweden
| | - AnnaKarin Rosberg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, 230 53, Alnarp, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 102, 230 53, Alnarp, Sweden
| |
Collapse
|
11
|
Vågsholm I, Arzoomand NS, Boqvist S. Food Security, Safety, and Sustainability—Getting the Trade-Offs Right. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Lunda R, Roy K, Másílko J, Mráz J. Understanding nutrient throughput of operational RAS farm effluents to support semi-commercial aquaponics: Easy upgrade possible beyond controversies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:255-263. [PMID: 31158677 DOI: 10.1016/j.jenvman.2019.05.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
The present research attempted to address a key industry-level question amidst Recirculating Aquaculture System (RAS) waste throughput and aquaponics limitations controversies. Nutrient throughput of three operational RAS farms with progressive size proportions (16, 130, 1400 m3), aquaculture intensity (24, 62, 86 kg stock m-3) were studied. Results suggest - daily total efflux and potency of nutrients in effluents should not be generalized, extreme variability exists. Consistencies of nutrients in wastewater (except N, Ca and Na) are higher than in sludge. Asynchrony between patterns of nutrient loading and effluent nutrient concentrations exist for secondary macronutrients and micronutrients (S, Mg, Fe, Cu, Zn, B, Mo). Macronutrient output generally increases with increasing farm size and culture intensity but same cannot be said for micronutrients. Deficiency in wastewater can be completely masked using raw or mineralized sludge, usually containing 3-17 times higher nutrient concentrations. RAS effluents (wastewater and sludge combined) contain adequate N, P, Mg, Ca, S, Fe, Zn, Cu, Ni to meet most aquaponic crop needs. K is generally deficient requiring a full-fledged fertilization. Micronutrients B, Mo are partly sufficient and can be easily ameliorated by increasing sludge release. The presumption surrounding 'definite' phyto-toxic Na levels in RAS effluents should be reconsidered - practical solutions available too. No threat of heavy metal accumulation or discharge was observed. Most of the 'well-known' operational influences failed to show any significant predictable power in deciding nutrient throughput from RAS systems. Calibration of nutrient output from operational RAS farms may be primarily focused around six predictors we identified. Despite inherent complexity of effluents, the conversion of RAS farms to semi-commercial aquaponics should not be deterred by nutrient insufficiency or nutrient safety arguments. Incentivizing RAS farm wastes through semi-commercial aquaponics should be encouraged - sufficient and safe nutrients are available.
Collapse
Affiliation(s)
- Roman Lunda
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters. České Budějovice 370 05, Czech Republic
| | - Koushik Roy
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters. České Budějovice 370 05, Czech Republic
| | - Jan Másílko
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters. České Budějovice 370 05, Czech Republic
| | - Jan Mráz
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters. České Budějovice 370 05, Czech Republic.
| |
Collapse
|
13
|
Monsees H, Suhl J, Paul M, Kloas W, Dannehl D, Würtz S. Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer. PLoS One 2019; 14:e0218368. [PMID: 31220125 PMCID: PMC6586398 DOI: 10.1371/journal.pone.0218368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/02/2019] [Indexed: 11/18/2022] Open
Abstract
Decoupled aquaponic systems have the potential to become one of the most effective sustainable production systems for the combined production of animal protein and plant crops. Here, recirculating aquaculture systems for fish production are combined with hydroponics for soilless plant production thereby recycling dissolved nutrients derived from metabolism of the fish. The aim of the present study was to characterize hydroponic lettuce production using conventional nutrient solution in comparison with decoupled aquaponics using the nutrient rich fish water as basis for the nutrient solution being supplemented by missing nutrients. In addition, one aquaponic treatment became disinfected in order to assess any occurring advantage of the aquaponics derived fish water. For evaluation the temperature, electrical conductivity, pH, and the mineral composition of the nutrient solution, as well as colony forming units in the fish water were monitored. Additionally, plant growth (fresh and dry weight, number and area of leaves) and quality parameters of lettuce leaves (nitrate, mineral content, phenolic compounds) were examined. Carbon sources and microorganisms derived from fish water seem to have neither beneficial nor detrimental effects on plant growth in this study. Except for some differences in the mineral content of the lettuce leaves, all other quality parameters were not significantly different. The use of aquaponic fish water saved 62.8% mineral fertilizer and fully substituted the required water for the nutrient solution in comparison to the control. Additionally, the reduced fertilizer demand using decoupled aquaponics can contribute to reduce greenhouse gas emissions of an annual lettuce production site per ha by 72% due to saving the energy for fertilizer production. This study clearly demonstrates the huge potential of the innovative approach of decoupled aquaponics to foster the transformation of our conventional agriculture towards sustainable production systems saving resources and minimizing emissions.
Collapse
Affiliation(s)
- Hendrik Monsees
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Johanna Suhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer–Institute of Agricultural and Horticultural Sciences, Division Biosystems Engineering, Berlin, Germany
| | - Maurice Paul
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Institute of Biology, Department of Endocrinology, Berlin, Germany
| | - Dennis Dannehl
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer–Institute of Agricultural and Horticultural Sciences, Division Biosystems Engineering, Berlin, Germany
| | - Sven Würtz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|