1
|
Fuchs S, Fiedler MK, Heiduk N, Wanisch A, Mibus C, Singh D, Debowski AW, Marshall BJ, Vieth M, Josenhans C, Suerbaum S, Sieber SA, Gerhard M, Mejías-Luque R. Helicobacter pylori γ-glutamyltransferase is linked to proteomic adaptions important for colonization. Gut Microbes 2025; 17:2488048. [PMID: 40205659 PMCID: PMC11988274 DOI: 10.1080/19490976.2025.2488048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Helicobacter pylori γ-glutamyltransferase (gGT) is a virulence factor that promotes bacterial colonization and immune tolerance. Although some studies addressed potential functional mechanisms, the supportive role of gGT for in vivo colonization remains unclear. Additionally, it is unknown how different gGT expression levels may lead to compensatory mechanisms ensuring infection and persistence. Hence, it is crucial to unravel the in vivo function of gGT. We assessed acid survival under conditions mimicking the human gastric fluid and elevated the pH in the murine stomach prior to H. pylori infection to link gGT-mediated acid resistance to colonization. By comparing proteomes of gGT-proficient and -deficient isolates before and after infecting mice, we investigated proteomic adaptations of gGT-deficient bacteria during infection. Our data indicate that gGT is crucial to sustain urease activity in acidic environments, thereby supporting survival and successful colonization. Absence of gGT triggers expression of proteins involved in the nitrogen and iron metabolism and boosts the expression of adhesins and flagellar proteins during infection, resulting in increased motility and adhesion capacity. In summary, gGT-dependent mechanisms confer a growth advantage to the bacterium in the gastric environment, which renders gGT a valuable target for the development of new treatments against H. pylori infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Michaela K. Fiedler
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Nicole Heiduk
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Andreas Wanisch
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Cora Mibus
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Aleksandra W. Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Barry J. Marshall
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
2
|
Pu S, Zhuang Z, Liu N, Luo Q, Zhang D. Research progress on the relationship between Helicobacter pylori infection and iron deficiency anemia. Front Microbiol 2025; 16:1552630. [PMID: 40201441 PMCID: PMC11975960 DOI: 10.3389/fmicb.2025.1552630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection affects around half of the global population and is a globally highly prevalent pathogen that is closely linked not only to gastrointestinal diseases such as chronic atrophic gastritis, functional dyspepsia and peptic ulcer but also to the development and progression of a variety of extra-gastrointestinal diseases. Numerous studies have shown the correlation between H. pylori infection and iron-deficiency anemia (IDA). The prevalence of H. pylori infection is higher in individuals with IDA, and the hemoglobin level of patients with IDA can be increased to different degrees or even returned to normal following active H. pylori eradication. However, this conclusion is still controversial. In this paper, a comprehensive literature search was conducted using the PubMed/MEDLINE/Web of Science database, combining the following terms: "Helicobacter pylori," "Helicobacter pylori infection," "iron deficiency anemia," "iron deficiency," "iron absorption," "iron malabsorption," "serum iron," "hemoglobin," "pathogenesis," "mechanism," and "eradication therapy." Through extensive literature searches, the correlation between H. pylori infection and IDA, its potential mechanism, and the efficacy of H. pylori eradication therapy in IDA patients have been comprehensively discussed. We conclude that the majority of existing studies have confirmed the correlation between H. pylori infection and IDA, indicating that patients with H. pylori infection are more likely to develop IDA and that the prevalence of H. pylori infection is higher in individuals with IDA. Compared with iron supplementation alone, combining H. pylori eradication with iron supplementation is more effective in treating IDA, particularly in unexplained or refractory IDA cases. These findings provide valuable insights for clinicians managing patients with unexplained or refractory IDA.
Collapse
Affiliation(s)
- Sugui Pu
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Lanzhou, China
| | - Ze Zhuang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Lanzhou, China
| | - Na Liu
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Lanzhou, China
| | - Qian Luo
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
Liu Y, Miao R, Xia J, Zhou Y, Yao J, Shao S. Infection of Helicobacter pylori contributes to the progression of gastric cancer through ferroptosis. Cell Death Discov 2024; 10:485. [PMID: 39622791 PMCID: PMC11612470 DOI: 10.1038/s41420-024-02253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative pathogen that colonizes gastric epithelial cells, and its chronic infection is the primary risk factor for the development of gastric cancer (GC). Ferroptosis is an iron-dependent form of cell death characterized by intracellular lipid peroxide accumulation and reactive oxygen species (ROS) imbalance. There is evidence suggesting that pathogens can manipulate ferroptosis to facilitate their replication, transmission, and pathogenesis. However, the interaction between ferroptosis and H. pylori infection requires further elucidation. We reviewed the mechanism of ferroptosis and found that H. pylori virulence factors such as cytotoxin-associated gene A (CagA), vacuolating cytotoxin A (VacA), neutrophil-activating protein A (NapA), superoxide dismutase B (SodB), γ-glutamyl transpeptidase (gGT), lipopolysaccharide (LPS), and outer inflammatory protein A (OipA) affected glutathione (GSH), ROS, and lipid oxidation to regulate ferroptosis. It also affected the progression of GC by regulating ferroptosis-related indicators through abnormal gene expression after H. pylori infected gastric mucosa cells. Finally, we discuss the potential application value of ferroptosis inducers, inhibitors and other drugs in treating H. pylori-infected GC patients while acknowledging that their interactions are still not fully understood.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Renjie Miao
- Department of Clinical laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jinxuan Xia
- Zhenjiang Mental Health Center, Jiangsu, China
| | - Yong Zhou
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jun Yao
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
4
|
Zakrzewski M, Gornowicz A, Zakrzewska M, Bielawska A, Maciorkowska E. Selected Markers of Inflammation in the Saliva of Children Infected with Helicobacter pylori. Int J Mol Sci 2024; 25:12780. [PMID: 39684489 DOI: 10.3390/ijms252312780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Helicobacter pylori has been of interest to scientists and clinicians for many years, often causing diagnostic difficulties, especially in the youngest age group, in children. The presence of this bacterium in the population depends on the geographic region. However, it is assumed that even half of the world's population may be infected with H. pylori. Children infected with H. pylori-the study group (Hp(+)) and control group (Hp(-)), were chosen for further examination. The aim of the study was to analyze the concentrations of selected inflammatory markers in saliva (TNF-α, IL-8) and other markers (neutrophil defensin-1, sICAM-1, calprotectin, metalloproteinase-9, metalloproteinase-2, lactotransferrin, TLR-2) using ELISA technique. We confirmed the increased concentrations of IL-8, ND-1, and TLR-2 in the group of children infected with Helicobacter pylori. Moreover, there was also a positive, significant correlation between the concentration of ND-1 and MMP-2, sICAM-1, and calprotectin as well as MMP-9 and MMP-2 in the group of infected children. The study created new possibilities of insight into the pathogenetic mechanisms of developing inflammation in the mouth. This type of comprehensive research is also used to monitor the current disease process and create new opportunities for better in-depth diagnostics of children infected with H. pylori.
Collapse
Affiliation(s)
- Mateusz Zakrzewski
- Department of Urology and Oncological Urology, Voivodeship Hospital in Lomza, 18-404 Lomza, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Magdalena Zakrzewska
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Elżbieta Maciorkowska
- Department of Developmental Age Medicine and Pediatric Nursing, Medical University of Bialystok, 15-295 Bialystok, Poland
| |
Collapse
|
5
|
Wang L, Wang H. The putative role of ferroptosis in gastric cancer: a review. Eur J Cancer Prev 2023; 32:575-583. [PMID: 37318883 PMCID: PMC10538621 DOI: 10.1097/cej.0000000000000817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Ferroptosis is a unique cell death modality triggered by iron-dependent lipid peroxidation, with cysteine metabolism and glutathione-dependent antioxidant defence responses as the primary triggering mechanisms. Ferroptosis is an independent tumour suppression mechanism and has been implicated in various disorders. In tumourigenesis, ferroptosis plays a dual role in promoting and inhibiting tumours. P53, NFE2L2, BAP1, HIF, and other tumour suppressor genes regulate ferroptosis, releasing damage-associated molecular patterns or lipid metabolites to influence cellular immune responses. Ferroptosis is also involved in tumour suppression and metabolism. The combination of amino acid, lipid, and iron metabolism is involved in the initiation and execution of ferroptosis, and metabolic regulatory mechanisms also play roles in malignancies. Most investigations into ferroptosis in gastric cancer are concentrated on predictive models, not the underlying processes. This review investigates the underlying mechanisms of ferroptosis, tumour suppressor genes, and the tumour microenvironment.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency Medicine, Second Affiliated Hospital of School of Medicine and
| | - Haibin Wang
- Department of Radiology, Hangzhou First People’s Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Gehrer CM, Mitterstiller AM, Grubwieser P, Meyron-Holtz EG, Weiss G, Nairz M. Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. Int J Mol Sci 2023; 24:4659. [PMID: 36902088 PMCID: PMC10003477 DOI: 10.3390/ijms24054659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
He J, Liu Y, Ouyang Q, Li R, Li J, Chen W, Hu W, He L, Bao Q, Li P, Hu C. Helicobacter pylori and unignorable extragastric diseases: Mechanism and implications. Front Microbiol 2022; 13:972777. [PMID: 35992650 PMCID: PMC9386483 DOI: 10.3389/fmicb.2022.972777] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Considered as the most popular pathogen worldwide, Helicobacter pylori is intensively associated with diverse gastric diseases, including gastric ulcers, chronic progressive gastritis, and gastric cancer. Aside from its pathogenic effect on gastric diseases, growing evidences reveal that H. pylori may be related to numerous extragastric diseases. In this article, we reviewed recent studies and systematically elucidated that H. pylori may interfere with many biological processes outside the stomach and influence the occurrence of various extragastric diseases. Many epidemiological studies have indicated that H. pylori plays a pathogenic role in COVID-19, atherosclerosis, hyperemesis gravidarum and several other extragastric diseases, while the effect of H. pylori is currently under investigation in gastroesophageal reflux disease, asthma, and inflammatory bowel disease. Moreover, we also summarized the possible pathogenic mechanisms of H. pylori that may be related to chronic systemic inflammation and molecular mimicker. Taken together, this review provides a new perspective on the role of H. pylori in extragastric diseases and explores the possible mechanisms, which may help guide clinical treatment.
Collapse
Affiliation(s)
- Junjian He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yunyi Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Army Medical University, Chongqing, China
| | - Rongxing Li
- Department of Foreign Languages, Army Medical University, Chongqing, China
| | - Jie Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weiyan Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weichao Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lijiao He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qiyu Bao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ping Li
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Ping Li,
| | - Changjiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
- Changjiang Hu,
| |
Collapse
|
8
|
Potapova MV, Broyaka NA, Skvortsov KY, Konobeeva EV. Helicobacter pylori roles in haematology disease pathogenesis. СИБИРСКИЙ НАУЧНЫЙ МЕДИЦИНСКИЙ ЖУРНАЛ 2022; 42:18-35. [DOI: 10.18699/ssmj20220302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- M. V. Potapova
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| | - N. A. Broyaka
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| | | | - E. V. Konobeeva
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| |
Collapse
|
9
|
Abstract
Little is known about the influence of gastric microbiota on host metabolism, even though the stomach plays an important role in the production of hormones involved in body weight regulation and glucose homeostasis. Proton pump inhibitors (PPIs) and Helicobacter pylori alter gut microbiota, but their impact on gastric microbiota in patients with obesity and the influence of these factors on the metabolic response to bariatric surgery is not fully understood. Forty-one subjects with morbid obesity who underwent sleeve gastrectomy were included in this study. The H. pylori group was established by the detection of H. pylori using a sequencing-based method (n = 16). Individuals in whom H. pylori was not detected were classified according to PPI treatment. Gastric biopsy specimens were obtained during surgery and were analyzed by a high-throughput-sequencing method. Patients were evaluated at baseline and 3, 6, and 12 months after surgery. β-Diversity measures were able to cluster patients according to their gastric mucosa-associated microbiota composition. H. pylori and PPI treatment are presented as two important factors for gastric mucosa-associated microbiota. H. pylori reduced diversity, while PPIs altered β-diversity. Both factors induced changes in the gastric mucosa-associated microbiota composition and its predicted functions. PPI users showed lower percentages of change in the body mass index (BMI) in the short term after surgery, while the H. pylori group showed higher glucose levels and lower percentages of reduction in body weight/BMI 1 year after surgery. PPIs and H. pylori colonization could modify the gastric mucosa-associated microbiota, altering its diversity, composition, and predicted functionality. These factors may have a role in the metabolic evolution of patients undergoing bariatric surgery. IMPORTANCE The gut microbiota has been shown to have an impact on host metabolism. In the stomach, factors like proton pump inhibitor treatment and Helicobacter pylori haven been suggested to alter gut microbiota; however, the influence of these factors on the metabolic response to bariatric surgery has not been fully studied. In this study, we highlight the impact of these factors on the gastric microbiota composition. Moreover, proton pump inhibitor treatment and the presence of Helicobacter pylori could have an influence on bariatric surgery outcomes, mainly on body weight loss and glucose homeostasis. Deciphering the relationship between gastric hormones and gastric microbiota and their contributions to bariatric surgery outcomes paves the way to develop gut manipulation strategies to improve the metabolic success of bariatric surgery.
Collapse
|
10
|
Öztekin M, Yılmaz B, Ağagündüz D, Capasso R. Overview of Helicobacter pylori Infection: Clinical Features, Treatment, and Nutritional Aspects. Diseases 2021; 9:66. [PMID: 34698140 PMCID: PMC8544542 DOI: 10.3390/diseases9040066] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a 0.5-1 µm wide, 2-4 µm long, short helical, S-shaped Gram-negative microorganism. It is mostly found in the pyloric region of the stomach and causes chronic gastric infection. It is estimated that these bacteria infect more than half of the world's population. The mode of transmission and infection of H. pylori is still not known exactly, but the faecal-oral and oral-oral routes via water or food consumption are thought to be a very common cause. In the last three decades, research interest has increased regarding the pathogenicity, microbial activity, genetic predisposition, and clinical treatments to understand the severity of gastric atrophy and gastric cancer caused by H. pylori. Studies have suggested a relationship between H. pylori infection and malabsorption of essential micronutrients, and noted that H. pylori infection may affect the prevalence of malnutrition in some risk groups. On the other hand, dietary factors may play a considerably important role in H. pylori infection, and it has been reported that an adequate and balanced diet, especially high fruit and vegetable consumption and low processed salty food consumption, has a protective effect against the outcomes of H. pylori infection. The present review provides an overview of all aspects of H. pylori infection, such as clinical features, treatment, and nutrition.
Collapse
Affiliation(s)
- Merve Öztekin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.Ö.); (B.Y.)
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.Ö.); (B.Y.)
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Sarıçam, Adana 01330, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.Ö.); (B.Y.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
11
|
Soluri MF, Puccio S, Caredda G, Edomi P, D’Elios MM, Cianchi F, Troilo A, Santoro C, Sblattero D, Peano C. Defining the Helicobacter pylori Disease-Specific Antigenic Repertoire. Front Microbiol 2020; 11:1551. [PMID: 32849324 PMCID: PMC7396715 DOI: 10.3389/fmicb.2020.01551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
The analysis of the interaction between Helicobacter pylori (HP) and the host in vivo is an extremely informative way to enlighten the molecular mechanisms behind the persistency/latency of the bacterium as well as in the progression of the infection. An important source of information is represented by circulating antibodies targeting the bacteria that define a specific "disease signature" with prospective diagnostic implications. The diagnosis of some of the HP induced diseases such as gastric cancer (GC), MALT lymphoma (MALT), and autoimmune gastritis (AIG) is not easy because patients do not show symptoms of illness in early-onset stages, at the same time they progress rapidly. The possibility of identifying markers able to provide an early diagnosis would be extremely beneficial since a late diagnosis results in a delay in undergoing active therapy and reduces the survival rate of patients. With the aim to identify the HP antigens recognized during the host immune-response to the infection and possibly disease progression, we applied a discovery-driven approach, that combines "phage display" and deep sequencing. The procedure is based on the selection of ORF phage libraries, specifically generated from the pathogen's genome, with sera antibodies from patients with different HP-related diseases. To this end two phage display libraries have been constructed starting from genomic DNA from the reference HP 26695 and the pathogenic HP B128 strains; libraries were filtered for ORFs by using an ORF selection vector developed by our group (Di Niro et al., 2005; Soluri et al., 2018), selected with antibodies from patients affected by GC, MALT, and AIG and putative HP antigens/epitopes were identified after Sequencing and ranking. The results show that individual selection significantly reduced the library diversity and comparison of individual ranks for each condition allowed us to highlight a pattern of putative antigens specific for the different pathological outcomes or common for all of them. Within the putative antigens enriched after selection, we have validated protein CagY/Cag7 by ELISA assay as a marker of HP infection and progression. Overall, we have defined HP antigenic repertoire and identified a panel of putative specific antigens/epitopes for three different HP infection pathological outcomes that could be validated in the next future.
Collapse
Affiliation(s)
- Maria Felicia Soluri
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Giada Caredda
- Department of Excellence in Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Arianna Troilo
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Claudio Santoro
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | | | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
12
|
Kuang S, Liao X, Zhang X, Rees TW, Guan R, Xiong K, Chen Y, Ji L, Chao H. FerriIridium: A Lysosome‐Targeting Iron(III)‐Activated Iridium(III) Prodrug for Chemotherapy in Gastric Cancer Cells. Angew Chem Int Ed Engl 2020; 59:3315-3321. [DOI: 10.1002/anie.201915828] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xianrui Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional MoleculeSchool of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
13
|
Kuang S, Liao X, Zhang X, Rees TW, Guan R, Xiong K, Chen Y, Ji L, Chao H. FerriIridium: A Lysosome‐Targeting Iron(III)‐Activated Iridium(III) Prodrug for Chemotherapy in Gastric Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xianrui Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
14
|
Yu M, Wang X, Ling F, Wang H, Zhang P, Shao S. Atractylodes lancea volatile oils attenuated helicobacter pylori NCTC11637 growth and biofilm. Microb Pathog 2019; 135:103641. [PMID: 31330262 DOI: 10.1016/j.micpath.2019.103641] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/03/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023]
Abstract
Atractylodes lancea is a traditional Chinese perennial herb, which has been used for treating gastrointestinal diseases in traditional medicine. The aim of this study was to investigate the effect of Atractylodes lancea volatile oils on the planktonic growth and biofilm formation of Helicobacter pylori (H. pylori). Firstly, the minimal inhibitory concentration (MIC) of the volatile oils against H. pylori were determined using broth dilution method. SPSS17.0 was used to account 50% inhibiting concentration (IC50). Moreover, the anti-biofilm activity of the volatile oils was determined by crystal violet measurement and fluorescence microscope. Finally, gastric epithelial cells (GES-1 cells) were co-incubated with H. pylori with or without volatile oils treated. Real-time PCR and western blot were performed to detect the translocation of virulence factor Cag A. We found that Atractylodes lancea volatile oils inhibited the growth of H. pylori in a concentration dependent manner. The MIC and IC50 of volatile oils against H. pylori were 7.5 mg/mL and 2.181 mg/mL respectively. Fluorescence microscopy and crystal violet measurement indicated that volatile oils at sub-MIC concentration could reduce biofilm formation of H. pylori. In addition, volatile oils decreased the translocation of Cag A and reduced inflammatory cytokine IL-8 in GES-1 cells. Our results suggested that Atractylodes lancea volatile oils could be a potential compound of a novel class of H. pylori inhibitors with anti-H. pylori effects.
Collapse
Affiliation(s)
- Min Yu
- Department of Clinical Laboratory, The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China; Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaochun Wang
- Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Ling
- Department of Clinical Laboratory, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Hua Wang
- Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ping Zhang
- Department of Clinical Laboratory, The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Shihe Shao
- Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
15
|
Gupta N, Maurya S, Verma H, Verma VK. Unraveling the factors and mechanism involved in persistence: Host-pathogen interactions in Helicobacter pylori. J Cell Biochem 2019; 120:18572-18587. [PMID: 31237031 DOI: 10.1002/jcb.29201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori and humans have one of the most complex relationships in nature. How a bacterium manages to live in one of the harshest and hostile environments is a topic of unraveling mysteries. H. pylori is a prevalent species and it colonizes the human gut of more than 50% of the world population. It infects the epithelial region of antrum and persists there for a long period. Over the time of evolution, H. pylori has developed complex strategies to extend the degree of inflammation in gastric mucosa. H. pylori needs specific adaptations for initial colonization into the host environment like helical shape, flagellar movement, chemotaxis, and the production of urease enzyme that neutralizes acidic environment of the stomach. There are several factors from the bacterium as well as from the host that participate in these complex interactions. On the other hand, to establish the persistent infection, H. pylori escapes the immune system by mimicking the host antigens. This pathogen has the ability to dodge the immune system and then persist there in the form of host cell, which leads to immune tolerance. H. pylori has an ability to manipulate its own pathogen-associated molecular patterns, which leads to an inhibition in the binding with specific pattern recognition receptors of the host to avoid immune cell detection. Also, it manipulates the host metabolic homeostasis in the gastric epithelium. Besides, it has several genes, which may get involved in the acquisition of nutrition from the host to survive longer in the host. Due to the persistence of H. pylori, it causes chronic inflammation and raises the chances of gastric cancer. This review highlights the important elements, which are certainly responsible for the persistence of H. pylori in the human host.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Shweta Maurya
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Harshvardhan Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Vijay K Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| |
Collapse
|
16
|
Gröber U, Schmidt J, Kisters K. Important drug-micronutrient interactions: A selection for clinical practice. Crit Rev Food Sci Nutr 2018; 60:257-275. [PMID: 30580552 DOI: 10.1080/10408398.2018.1522613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interactions between drugs and micronutrients have received only little or no attention in the medical and pharmaceutical world in the past. Since more and more pharmaceutics are used for the treatment of patients, this topic is increasingly relevant. As such interactions - depending on the duration of treatment and the status of micronutrients - impact the health of the patient and the action of the drugs, physicians and pharmacists should pay more attention to such interactions in the future. This review aims to sensitize physicians and pharmacists on drug micronutrient interactions with selected examples of widely pescribed drugs that can precipitate micronutrient deficiencies. In this context, the pharmacist, as a drug expert, assumes a particular role. Like no other professional in the health care sector, he is particularly predestined and called up to respond to this task. The following article intends to point out the relevance of mutual interactions between micronutrients and various examples of widely used drugs, without claiming to be exhaustive.
Collapse
Affiliation(s)
- Uwe Gröber
- Academy of Micronutrient Medicine, Essen, Germany
| | | | - Klaus Kisters
- Academy of Micronutrient Medicine, Essen, Germany.,Medizinische Klinik I, St. Anna Hospital, Herne, Germany
| |
Collapse
|
17
|
Hamedi Asl D, Naserpour Farivar T, Rahmani B, Hajmanoochehri F, Emami Razavi AN, Jahanbin B, Soleimani Dodaran M, Peymani A. The role of transferrin receptor in the Helicobacter pylori pathogenesis; L-ferritin as a novel marker for intestinal metaplasia. Microb Pathog 2018; 126:157-164. [PMID: 30391537 DOI: 10.1016/j.micpath.2018.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori growth requirements is a prerequisite to invade gastric epithelium and the process of injury to gastric cells will eventually lead to gastric cancer. The aim of this study is to investigate the effect of iron challenge on the expression of genes involved in iron homeostasis. The presence of Phosphoglucosamine mutase (glmM), cytotoxin-associated gene A (cagA) and vacuolating cytotoxin A (vacA) genes and mRNA expression of Iron Regulatory Protein 2 (IRP2), Transferrin Receptor (TFRC) and Ferritin Light Chain (FTL) genes in samples of 28 normal gastric mucosa, 33 chronic gastritis, 29 gastritis with intestinal metaplasia, 29 intestinal type adenocarcinoma patients were examined by real-time PCR. Immunohistochemistry was used to analyze cellular localization and protein levels. In the all H. pylori positive tissues, particularly in the basal regions of foveolar cells, TFRC was overexpressed (P < 0.05), and regardless of the H. pylori infection, FTL was overexpressed in all patient, exclusively in metaplastic glandular cells (P < 0.05). Furthermore, overexpression of IRP2 was associated with H. pylori positive chronic gastritis and intestinal metaplasia (P < 0.05). Our findings confirm the role of transferrin receptor in H. pylori attachment into the gastric mucosa to capture iron. Overexpression of FTL gene in metaplastic cells could be considered as a research background to investigate the role of this gene in the differentiation of gastric cells into intestinal metaplasia. In addition, this gene could be suggested as a diagnostic marker to be included among the other markers routinely performed by clinical diagnostic laboratories.
Collapse
Affiliation(s)
- Dariush Hamedi Asl
- Department of Molecular Medicine, Faculty of Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Babak Rahmani
- Department of Molecular Medicine, Faculty of Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Amir Nader Emami Razavi
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Jahanbin
- Department of Pathology, Cancer Research Institute, Tehran University of Medical, Tehran, Iran
| | | | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
18
|
Abstract
Many studies have been performed in the last year concerning the potential role of Helicobacter pylori in different extragastric diseases, reinforcing the idea that specific microorganisms may cause diseases even far from the primary site of infection. While the role of H. pylori on idiopathic thrombocytopenic purpura, sideropenic anemia, and vitamin B12 deficiency has been well established, there is a growing interest in other conditions, such as cardiovascular, neurologic, dermatologic, obstetric, immunologic, and metabolic diseases. Concerning neurologic diseases, there is a great interest in cognitive impairment and neurodegeneration. The aim of this review was to summarize the results of the most relevant studies published over the last year on this fascinating topic.
Collapse
Affiliation(s)
| | - Bianca Giupponi
- Internal Medicine Institute, Fondaeione Policlinico Unversitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Franceschi
- Internal Medicine Institute, Fondaeione Policlinico Unversitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
19
|
Abstract
In this review, we highlight progress in the last year in characterizing known virulence factors like flagella and the Cag type IV secretion system with sophisticated structural and biochemical approaches to yield new insight on the assembly and functions of these critical virulence determinants. Several aspects of Helicobacter pylori physiology were newly explored this year and evaluated for their functions during stomach colonization, including a fascinating role for the essential protease HtrA in allowing access of H. pylori to the basolateral side of the gastric epithelium through cleavage of the tight junction protein E-cadherin to facilitate CagA delivery. Molecular biology tools standard in model bacteria, including regulated gene expression during animal infection and fluorescent reporter gene fusions, were newly applied to H. pylori to explore functions for urease beyond initial colonization and establish high salt consumption as a mediator of gene expression changes. New sequencing technologies enabled validation of long postulated roles for DNA methylation in regulating H. pylori gene expression. On the cell biology side, elegant work using lineage tracing in the murine model and organoid primary cell culture systems has provided new insights into how H. pylori manipulates gastric tissue functions, locally and at a distance, to promote its survival in the stomach and induce pathologic changes. Finally, new work has bolstered the case for genomic variation as an important mechanism to generate phenotypic diversity during changing environmental conditions in the context of diet manipulation in animal infection models and during human experimental infection after vaccination.
Collapse
Affiliation(s)
- Langgeng Agung Waskito
- Faculty of Medicine, Department of Environmental and Preventive Medicine, Oita University, Yufu-City, Oita, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nina R Salama
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yoshio Yamaoka
- Faculty of Medicine, Department of Environmental and Preventive Medicine, Oita University, Yufu-City, Oita, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
20
|
Bravo D, Hoare A, Soto C, Valenzuela MA, Quest AFG. Helicobacter pylori in human health and disease: Mechanisms for local gastric and systemic effects. World J Gastroenterol 2018; 24:3071-3089. [PMID: 30065554 PMCID: PMC6064966 DOI: 10.3748/wjg.v24.i28.3071] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/17/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is present in roughly 50% of the human population worldwide and infection levels reach over 70% in developing countries. The infection has classically been associated with different gastro-intestinal diseases, but also with extra gastric diseases. Despite such associations, the bacterium frequently persists in the human host without inducing disease, and it has been suggested that H. pylori may also play a beneficial role in health. To understand how H. pylori can produce such diverse effects in the human host, several studies have focused on understanding the local and systemic effects triggered by this bacterium. One of the main mechanisms by which H. pylori is thought to damage the host is by inducing local and systemic inflammation. However, more recently, studies are beginning to focus on the effects of H. pylori and its metabolism on the gastric and intestinal microbiome. The objective of this review is to discuss how H. pylori has co-evolved with humans, how H. pylori presence is associated with positive and negative effects in human health and how inflammation and/or changes in the microbiome are associated with the observed outcomes.
Collapse
Affiliation(s)
- Denisse Bravo
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Anilei Hoare
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Cristopher Soto
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Manuel A Valenzuela
- Advanced Center for Chronic Diseases, Institute for Health-Related Research and Innovation, Faculty of Health Sciences, Universidad Central de Chile, Santiago 8380447, Chile
| | - Andrew FG Quest
- Advanced Center for Chronic Diseases, Center for Studies on Exercise, Metabolism and Cancer, Biomedical Science Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380447, Chile
| |
Collapse
|
21
|
Zou DM, Sun WL. Reply to “Iron Overload and Hepatitis C Virus Infection”. Chin Med J (Engl) 2018; 131:252. [PMID: 29336381 PMCID: PMC5776863 DOI: 10.4103/0366-6999.222336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|