1
|
Viana GM, Pan X, Fan S, Xu T, Wyatt A, Pshezhetsky AV. Cathepsin B inhibition blocks amyloidogenesis in the mouse models of neurological lysosomal diseases MPS IIIC and sialidosis. Mol Ther Methods Clin Dev 2025; 33:101432. [PMID: 40092638 PMCID: PMC11910108 DOI: 10.1016/j.omtm.2025.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Neuronal accumulation of amyloid aggregates is a hallmark of brain pathology in neurological lysosomal storage diseases (LSDs), including mucopolysaccharidoses (MPS); however, the molecular mechanism underlying this pathology has not been understood. We demonstrate that elevated lysosomal cathepsin B (CTSB) levels and CTSB leakage to the cytoplasm triggers amyloidogenesis in two neurological LSDs. CTSB levels were elevated 3- to 5-fold in the cortices of mouse models of MPS IIIC (Hgsnat-Geo and Hgsnat P304L ) and sialidosis (Neu1 ΔEx3 ), as well as in cortical samples of MPS I, IIIA, IIIC, and IIID patients. CTSB was found in the cytoplasm of pyramidal layer IV-V cortical neurons containing thioflavin-S+, β-amyloid+ aggregates consistent with a pro-senile phenotype. In contrast, CTSB-deficient MPS IIIC (Hgsnat P304L /Ctsb -/- ) mice as well as Hgsnat P304L and Neu1 ΔEx3 mice chronically treated with irreversible brain-penetrable CTSB inhibitor E64 showed a drastic reduction in neuronal thioflavin-S+/APP+ deposits. Neurons of Hgsnat P304L /Ctsb -/- mice and E64-treated Hgsnat P304L mice also showed reduced levels of P62+, LC3+ puncta, GM2 ganglioside, and misfolded subunit C of mitochondrial ATP synthase, consistent with restored autophagy. E64 treatment also rescued hyperactivity and reduced anxiety in Hgsnat P304L mice, implying that CTSB may become a novel pharmacological target for MPS III and similar LSDs.
Collapse
Affiliation(s)
- Gustavo M Viana
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
| | - Xuefang Pan
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
| | - Shuxian Fan
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3T 1C5, Canada
| | - TianMeng Xu
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3T 1C5, Canada
| | - Alexandra Wyatt
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
| | - Alexey V Pshezhetsky
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
2
|
Scott O, Saran E, Freeman SA. The spectrum of lysosomal stress and damage responses: from mechanosensing to inflammation. EMBO Rep 2025; 26:1425-1439. [PMID: 40016424 PMCID: PMC11933331 DOI: 10.1038/s44319-025-00405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Cells and tissues turn over their aged and damaged components in order to adapt to a changing environment and maintain homeostasis. These functions rely on lysosomes, dynamic and heterogeneous organelles that play essential roles in nutrient redistribution, metabolism, signaling, gene regulation, plasma membrane repair, and immunity. Because of metabolic fluctuations and pathogenic threats, lysosomes must adapt in the short and long term to maintain functionality. In response to such challenges, lysosomes deploy a variety of mechanisms that prevent the breaching of their membrane and escape of their contents, including pathogen-associated molecules and hydrolases. While transient permeabilization of the lysosomal membrane can have acute beneficial effects, supporting inflammation and antigen cross-presentation, sustained or repeated lysosomal perforations have adverse metabolic and transcriptional consequences and can lead to cell death. This review outlines factors contributing to lysosomal stress and damage perception, as well as remedial processes aimed at addressing lysosomal disruptions. We conclude that lysosomal stress plays widespread roles in human physiology and pathology, the understanding and manipulation of which can open the door to novel therapeutic strategies.
Collapse
Affiliation(s)
- Ori Scott
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical Immunology and Allergy, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Ekambir Saran
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Calderwood DA, Toomre D. Sugar unmasking for trafficking. Nat Cell Biol 2025; 27:375-376. [PMID: 40038537 DOI: 10.1038/s41556-025-01615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Affiliation(s)
- David A Calderwood
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
5
|
Ramos TDP, Ventura ALM, Lemos JP, Chammas R, Savino W, Carvalho-Pinto CE, Mendes-da-Cruz DA, Villa-Verde DMS. Altered galectin-3 distribution and migratory function in the pre-diabetic non-obese diabetic mouse thymus. Front Endocrinol (Lausanne) 2024; 15:1200935. [PMID: 39483979 PMCID: PMC11524864 DOI: 10.3389/fendo.2024.1200935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Galectin-3 is an endogenous lectin which binds mainly to β-galactosides on the cell surface and extracellular matrix (ECM) glycoproteins. In the thymus, this lectin is constitutively expressed, being involved in thymocyte adhesion, migration, and death. Galectin-3 has been related to type 1 diabetes, an autoimmune disease characterized by pancreatic β-cell destruction mediated by autoreactive T lymphocytes. Non-obese diabetic (NOD) mice represent a suitable model to study type 1 diabetes, as they develop the disease like humans. We previously described important thymic alterations in these animals such as the development of giant perivascular spaces (PVS), characterized by the retention of T and B cells, intermingled with an ECM network, and associated with a defect in the expression of the fibronectin receptor VLA-5 and reduced sphingosine-1-phosphate receptor expression on developing thymocytes. In order to investigate galectin-3 expression in thymic microenvironmental cells and verify its interaction with cells and ECM molecules in PVS, we performed immunofluorescence following colocalization analysis in the thymic parenchyma of pre-diabetic NOD mice by confocal microscopy. In addition, thymocyte migration assays were performed to evaluate the effect of galectin-3 on NOD thymocyte migration. Herein, we showed a significant enhancement of colocalization with cortical and medullary thymic epithelial cells in NOD mice, as compared to controls. In the giant PVS of these animals, we observed a heterogeneous distribution of galectin-3, predominantly found in clusters of B lymphocytes and dendritic cells. Functionally, NOD thymocyte migratory response towards galectin-3 was impaired and a similar decrease was seen in transendothelial thymocyte migration. Taken together, our data provide the histological and functional background for a potential defective thymocyte migration involving galectin-3, thus placing this molecule as a further player in the intrathymic disturbances observed in pre-diabetic NOD mice.
Collapse
Affiliation(s)
- Tiago Dutra Pereira Ramos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Ana Lucia Marques Ventura
- Laboratory of Neurochemistry, Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - Julia Pereira Lemos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Carla Eponina Carvalho-Pinto
- Laboratory of Experimental Pathology, Department of Immunobiology, Biology Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Déa Maria Serra Villa-Verde
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Jang I, Menon S, Indra I, Basith R, Beningo KA. Calpain Small Subunit Mediated Secretion of Galectin-3 Regulates Traction Stress. Biomedicines 2024; 12:1247. [PMID: 38927454 PMCID: PMC11200796 DOI: 10.3390/biomedicines12061247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The complex regulation of traction forces (TF) produced during cellular migration remains poorly understood. We have previously found that calpain 4 (Capn4), the small non-catalytic subunit of the calpain 1 and 2 proteases, regulates the production of TF independent of the proteolytic activity of the larger subunits. Capn4 was later found to facilitate tyrosine phosphorylation and secretion of the lectin-binding protein galectin-3 (Gal3). In this study, recombinant Gal3 (rGal3) was added to the media-enhanced TF generated by capn4-/- mouse embryonic fibroblasts (MEFs). Extracellular Gal3 also rescued defects in the distribution, morphology, and adhesive strength of focal adhesions present in capn4-/- MEF cells. Surprisingly, extracellular Gal3 does not influence mechanosensing. c-Abl kinase was found to affect Gal3 secretion and the production of TF through phosphorylation of Y107 on Gal3. Our study also suggests that Gal3-mediated regulation of TF occurs through signaling pathways triggered by β1 integrin but not by focal adhesion kinase (FAK) Y397 autophosphorylation. Our findings provide insights into the signaling mechanism by which Capn4 and secreted Gal3 regulate cell migration through the modulation of TF distinctly independent from a mechanosensing mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Karen A. Beningo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; (I.J.)
| |
Collapse
|
7
|
Żukowska D, Chorążewska A, Ciura K, Gędaj A, Kalka M, Poźniak M, Porębska N, Opaliński Ł. The diverse dependence of galectin-1 and -8 on multivalency for the modulation of FGFR1 endocytosis. Cell Commun Signal 2024; 22:270. [PMID: 38750548 PMCID: PMC11094976 DOI: 10.1186/s12964-024-01661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a N-glycosylated cell surface receptor tyrosine kinase, which upon recognition of specific extracellular ligands, fibroblast growth factors (FGFs), initiates an intracellular signaling. FGFR1 signaling ensures homeostasis of cells by fine-tuning essential cellular processes, like differentiation, division, motility and death. FGFR1 activity is coordinated at multiple steps and unbalanced FGFR1 signaling contributes to developmental diseases and cancers. One of the crucial control mechanisms over FGFR1 signaling is receptor endocytosis, which allows for rapid targeting of FGF-activated FGFR1 to lysosomes for degradation and the signal termination. We have recently demonstrated that N-glycans of FGFR1 are recognized by a precise set of extracellular galectins, secreted and intracellular multivalent lectins implicated in a plethora of cellular processes and altered in immune responses and cancers. Specific galectins trigger FGFR1 clustering, resulting in activation of the receptor and in initiation of intracellular signaling cascades that shape the cell physiology. Although some of galectin family members emerged recently as key players in the clathrin-independent endocytosis of specific cargoes, their impact on endocytosis of FGFR1 was largely unknown.Here we assessed the contribution of extracellular galectins to the cellular uptake of FGFR1. We demonstrate that only galectin-1 induces internalization of FGFR1, whereas the majority of galectins predominantly inhibit endocytosis of the receptor. We focused on three representative galectins: galectin-1, -7 and -8 and we demonstrate that although all these galectins directly activate FGFR1 by the receptor crosslinking mechanism, they exert different effects on FGFR1 endocytosis. Galectin-1-mediated internalization of FGFR1 doesn't require galectin-1 multivalency and occurs via clathrin-mediated endocytosis, resembling in this way the uptake of FGF/FGFR1 complex. In contrast galectin-7 and -8 impede FGFR1 endocytosis, causing stabilization of the receptor on the cell surface and prolonged propagation of the signals. Furthermore, using protein engineering approaches we demonstrate that it is possible to modulate or even fully reverse the endocytic potential of galectins.
Collapse
Affiliation(s)
- Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marta Poźniak
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| |
Collapse
|
8
|
Querol Cano L, Dunlock VME, Schwerdtfeger F, van Spriel AB. Membrane organization by tetraspanins and galectins shapes lymphocyte function. Nat Rev Immunol 2024; 24:193-212. [PMID: 37758850 DOI: 10.1038/s41577-023-00935-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/29/2023]
Abstract
Immune receptors are not randomly distributed at the plasma membrane of lymphocytes but are segregated into specialized domains that function as platforms to initiate signalling, as exemplified by the B cell or T cell receptor complex and the immunological synapse. 'Membrane-organizing proteins' and, in particular, tetraspanins and galectins, are crucial for controlling the spatiotemporal organization of immune receptors and other signalling proteins. Deficiencies in specific tetraspanins and galectins result in impaired immune synapse formation, lymphocyte proliferation, antibody production and migration, which can lead to impaired immunity, tumour development and autoimmunity. In contrast to conventional ligand-receptor interactions, membrane organizers interact in cis (on the same cell) and modulate receptor clustering, receptor dynamics and intracellular signalling. New findings have uncovered their complex and dynamic nature, revealing shared binding partners and collaborative activity in determining the composition of membrane domains. Therefore, immune receptors should not be envisaged as independent entities and instead should be studied in the context of their spatial organization in the lymphocyte membrane. We advocate for a novel approach to study lymphocyte function by globally analysing the role of membrane organizers in the assembly of different membrane complexes and discuss opportunities to develop therapeutic approaches that act via the modulation of membrane organization.
Collapse
Affiliation(s)
- Laia Querol Cano
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vera-Marie E Dunlock
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabian Schwerdtfeger
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Sarangi N, Shafaq-Zadah M, Berselli GB, Robinson J, Dransart E, Di Cicco A, Lévy D, Johannes L, Keyes TE. Galectin-3 Binding to α 5β 1 Integrin in Pore Suspended Biomembranes. J Phys Chem B 2022; 126:10000-10017. [PMID: 36413808 PMCID: PMC9743206 DOI: 10.1021/acs.jpcb.2c05717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Galectin-3 (Gal3) is a β-galactoside binding lectin that mediates many physiological functions, including the binding of cells to the extracellular matrix for which the glycoprotein α5β1 integrin is of critical importance. The mechanisms by which Gal3 interacts with membranes have not been widely explored to date due to the complexity of cell membranes and the difficulty of integrin reconstitution within model membranes. Herein, to study their interaction, Gal3 and α5β1 were purified, and the latter reconstituted into pore-suspended lipid bilayers comprised eggPC:eggPA. Using electrochemical impedance and fluorescence lifetime correlation spectroscopy, we found that on incubation with low nanomolar concentrations of wild-type Gal3, the membrane's admittance and fluidity, as well as integrin's lateral diffusivity, were enhanced. These effects were diminished in the following conditions: (i) absence of integrin, (ii) presence of lactose as a competitive inhibitor of glycan-Gal3 interaction, and (iii) use of a Gal3 mutant that lacked the N-terminal oligomerization domain (Gal3ΔNter). These findings indicated that WTGal3 oligomerized on α5β1 integrin in a glycan-dependent manner and that the N-terminal domain interacted directly with membranes in a way that is yet to be fully understood. At concentrations above 10 nM of WTGal3, membrane capacitance started to decrease and very slowly diffusing molecular species appeared, which indicated the formation of protein clusters made from WTGal3-α5β1 integrin assemblies. Overall, our study demonstrates the capacity of WTGal3 to oligomerize in a cargo protein-dependent manner at low nanomolar concentrations. Of note, these WTGal3 oligomers appeared to have membrane active properties that could only be revealed using our sensitive methods. At slightly higher WTGal3 concentrations, the capacity to generate lateral assemblies between cargo proteins was observed. In cells, this could lead to the construction of tubular endocytic pits according to the glycolipid-lectin (GL-Lect) hypothesis or to the formation of galectin lattices, depending on cargo glycoprotein stability at the membrane, the local Gal3 concentration, or plasma membrane intrinsic parameters. The study also demonstrates the utility of microcavity array-suspended lipid bilayers to address the biophysics of transmembrane proteins.
Collapse
Affiliation(s)
- Nirod
Kumar Sarangi
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Massiullah Shafaq-Zadah
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France
| | - Guilherme B. Berselli
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Jack Robinson
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Estelle Dransart
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France
| | - Aurélie Di Cicco
- Institut
Curie, PSL Research University, UMR 168 CNRS, 75248Paris Cedex 05, France
| | - Daniel Lévy
- Institut
Curie, PSL Research University, UMR 168 CNRS, 75248Paris Cedex 05, France
| | - Ludger Johannes
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France,
| | - Tia E. Keyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland,
| |
Collapse
|
10
|
Grazier JJ, Sylvester PW. Role of Galectins in Metastatic Breast Cancer. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-galectins] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Demina EP, Smutova V, Pan X, Fougerat A, Guo T, Zou C, Chakraberty R, Snarr BD, Shiao TC, Roy R, Orekhov AN, Miyagi T, Laffargue M, Sheppard DC, Cairo CW, Pshezhetsky AV. Neuraminidases 1 and 3 Trigger Atherosclerosis by Desialylating Low-Density Lipoproteins and Increasing Their Uptake by Macrophages. J Am Heart Assoc 2021; 10:e018756. [PMID: 33554615 PMCID: PMC7955353 DOI: 10.1161/jaha.120.018756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Chronic vascular disease atherosclerosis starts with an uptake of atherogenic modified low-density lipoproteins (LDLs) by resident macrophages, resulting in formation of arterial fatty streaks and eventually atheromatous plaques. Increased plasma sialic acid levels, increased neuraminidase activity, and reduced sialic acid LDL content have been previously associated with atherosclerosis and coronary artery disease in human patients, but the mechanism underlying this association has not been explored. Methods and Results We tested the hypothesis that neuraminidases contribute to development of atherosclerosis by removing sialic acid residues from glycan chains of the LDL glycoprotein and glycolipids. Atherosclerosis progression was investigated in apolipoprotein E and LDL receptor knockout mice with genetic deficiency of neuraminidases 1, 3, and 4 or those treated with specific neuraminidase inhibitors. We show that desialylation of the LDL glycoprotein, apolipoprotein B 100, by human neuraminidases 1 and 3 increases the uptake of human LDL by human cultured macrophages and by macrophages in aortic root lesions in Apoe-/- mice via asialoglycoprotein receptor 1. Genetic inactivation or pharmacological inhibition of neuraminidases 1 and 3 significantly delays formation of fatty streaks in the aortic root without affecting the plasma cholesterol and LDL levels in Apoe-/- and Ldlr-/- mouse models of atherosclerosis. Conclusions Together, our results suggest that neuraminidases 1 and 3 trigger the initial phase of atherosclerosis and formation of aortic fatty streaks by desialylating LDL and increasing their uptake by resident macrophages.
Collapse
Affiliation(s)
- Ekaterina P Demina
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Victoria Smutova
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Xuefang Pan
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Anne Fougerat
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Tianlin Guo
- Department of Chemistry University of Alberta Edmonton Alberta Canada
| | - Chunxia Zou
- Department of Chemistry University of Alberta Edmonton Alberta Canada
| | | | - Brendan D Snarr
- Departments of Medicine, Microbiology and Immunology McGill University Montreal Quebec Canada
| | - Tze C Shiao
- Department of Chemistry Université du Québec à Montréal Montreal Quebec Canada
| | - Rene Roy
- Department of Chemistry Université du Québec à Montréal Montreal Quebec Canada
| | | | - Taeko Miyagi
- Miyagi Cancer Center Research Institute Natori Miyagi Japan
| | - Muriel Laffargue
- Institut National de la Santé et de la Recherche MédicaleUMR 1048Institute of Metabolic and Cardiovascular Diseases Toulouse France
| | - Donald C Sheppard
- Departments of Medicine, Microbiology and Immunology McGill University Montreal Quebec Canada
| | | | - Alexey V Pshezhetsky
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| |
Collapse
|
12
|
Abstract
Changes in glycosylation on proteins or lipids are one of the hallmarks of tumorigenesis. In many cases, it is still not understood how glycan information is translated into biological function. In this review, we discuss at the example of specific cancer-related glycoproteins how their endocytic uptake into eukaryotic cells is tuned by carbohydrate modifications. For this, we not only focus on overall uptake rates, but also illustrate how different uptake processes-dependent or not on the conventional clathrin machinery-are used under given glycosylation conditions. Furthermore, we discuss the role of certain sugar-binding proteins, termed galectins, to tune glycoprotein uptake by inducing their crosslinking into lattices, or by co-clustering them with glycolipids into raft-type membrane nanodomains from which the so-called clathrin-independent carriers (CLICs) are formed for glycoprotein internalization into cells. The latter process has been termed glycolipid-lectin (GL-Lect) hypothesis, which operates in a complementary manner to the clathrin pathway and galectin lattices.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| | - Anne Billet
- Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Université de Paris, F-75005, Paris, France
| |
Collapse
|
13
|
Rushton E, Kopke DL, Broadie K. Extracellular heparan sulfate proteoglycans and glycan-binding lectins orchestrate trans-synaptic signaling. J Cell Sci 2020; 133:133/15/jcs244186. [PMID: 32788209 DOI: 10.1242/jcs.244186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The exceedingly narrow synaptic cleft (<20 nm) and adjacent perisynaptic extracellular space contain an astonishing array of secreted and membrane-anchored glycoproteins. A number of these extracellular molecules regulate intercellular trans-synaptic signaling by binding to ligands, acting as co-receptors or modulating ligand-receptor interactions. Recent work has greatly expanded our understanding of extracellular proteoglycan and glycan-binding lectin families as key regulators of intercellular signaling at the synapse. These secreted proteins act to regulate the compartmentalization of glycoprotein ligands and receptors, crosslink dynamic extracellular and cell surface lattices, modulate both exocytosis and endocytosis vesicle cycling, and control postsynaptic receptor trafficking. Here, we focus closely on the Drosophila glutamatergic neuromuscular junction (NMJ) as a model synapse for understanding extracellular roles of the many heparan sulfate proteoglycan (HSPG) and lectin proteins that help determine synaptic architecture and neurotransmission strength. We particularly concentrate on the roles of extracellular HSPGs and lectins in controlling trans-synaptic signaling, especially that mediated by the Wnt and BMP pathways. These signaling mechanisms are causally linked to a wide spectrum of neurological disease states that impair coordinated movement and cognitive functions.
Collapse
Affiliation(s)
- Emma Rushton
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Danielle L Kopke
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
14
|
Shimada C, Xu R, Al-Alem L, Stasenko M, Spriggs DR, Rueda BR. Galectins and Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061421. [PMID: 32486344 PMCID: PMC7352943 DOI: 10.3390/cancers12061421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is known for its aggressive pathological features, including the capacity to undergo epithelial to mesenchymal transition, promoting angiogenesis, metastatic potential, chemoresistance, inhibiting apoptosis, immunosuppression and promoting stem-like features. Galectins, a family of glycan-binding proteins defined by a conserved carbohydrate recognition domain, can modulate many of these processes, enabling them to contribute to the pathology of ovarian cancer. Our goal herein was to review specific galectin members identified in the context of ovarian cancer, with emphasis on their association with clinical and pathological features, implied functions, diagnostic or prognostic potential and strategies being developed to disrupt their negative actions.
Collapse
Affiliation(s)
- Chisa Shimada
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Xu
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Linah Al-Alem
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Stasenko
- Gynecology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York City, NY 10065, USA;
| | - David R. Spriggs
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Department of Hematology/Medical Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bo R. Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
15
|
Song B, Yao B, Dang H, Dong R. Soluble ST2, Galectin-3 and clinical prognosis of patients with hypertrophic cardiomyopathy undergoing ventricular septal myectomy: a correlation analysis. Cardiovasc Diagn Ther 2020; 10:145-152. [PMID: 32420094 DOI: 10.21037/cdt.2020.01.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is the most common chromosomal abnormal heart disease. The pathophysiological mechanism of HCM is complex. Several studies have suggested that the level of Soluble ST2 (sST2) may be a biomarker of chronic systolic heart failure, however, the role of sST2 in HCM remains unclear. So we performed this study to analyze the role of Soluble ST2 (sST2), Galectin-3 (Gal-3) and its correlations with clinical prognosis of patients with hypertrophic cardiomyopathy (HCM) undergoing ventricular septal myectomy. Methods HCM patients who underwent modified Morrow surgery in our hospital during June 2016-June 2018 were included. We divided the patients into different groups stratified by sST2 and Gal-3 level. Besides, we included volunteers without heart disease for medical examination as normal controls. Biochemical analyses were conducted to identify the biomarkers difference. The predictive value of sST2 and Gal-3 on all-cause mortality was evaluated with Cox regression analysis. Results A total of 125 HCM patients were included in this present study. The sST2 and Gal-3 levels in HCM patients were significantly higher than that in control group (all P<0.001); there were significant differences in the incidence of all-cause mortality for HCM patients stratified by the sST2 and Gal-3 level; Cox univariate regression survival analysis showed that the hypertension (HR =1.19, 95% CI: 1.01-1.38), maximum wall thickness (HR =1.48, 95% CI: 1.04-1.98), Log sST2 (HR =1.02, 95% CI: 1.01-1.05), Log Gal-3 (HR =1.17, 95% CI: 1.09-1.32) were the predictors for all-cause mortality in patients with HCM, and Cox multivariate risk regression showed that maximum wall thickness was the independent predictors of all-cause mortality in patients with HCM (HR =1.63, 95% CI: 1.35-1.97). Conclusions Even through sST2 and Gal-3 were not associated with clinical prognosis of patients with HCM undergoing ventricular septal myectomy, it may be involved in the progress of HCM, more studies are warranted to identify the potential mechanism and reverence value.
Collapse
Affiliation(s)
- Bangrong Song
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Bo Yao
- Cardiology Section 2, Zibo City Linzi District People's Hospital, Zibo 255400, China
| | - Haiming Dang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ran Dong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
16
|
Gong M, Cheung A, Wang Q, Li G, Goudis CA, Bazoukis G, Lip GYH, Baranchuk A, Korantzopoulos P, Letsas KP, Tse G, Liu T. Galectin-3 and risk of atrial fibrillation: A systematic review and meta-analysis. J Clin Lab Anal 2020; 34:e23104. [PMID: 31917884 PMCID: PMC7083505 DOI: 10.1002/jcla.23104] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/25/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Galectin-3 is an inflammatory marker that is raised in myocardial fibrosis and inflammation. Recent studies have explored its role in predicting atrial fibrillation (AF) outcomes. The aim of this systematic review and meta-analysis is to examine the association between serum concentration of galectin-3 and AF. METHODS PubMed, EMBASE, and the Cochrane Database were searched. A total of 280 studies were identified, of which 28 studies involving 10 830 patients were included in our meta-analysis. RESULTS Galectin-3 is present at higher concentrations in patients with AF than those in sinus rhythm (mean difference [MD] = -0.68 ng/mL, 95% CI: -0.92, -0.44, Z = 5.61, P < .00001). Galectin-3 levels were significantly higher in the persistent AF than in the paroxysmal AF group (MD = -0.94 ng/mL, 95% CI: -1.85, -0.03, Z = 2.04, P = .04). Higher galectin-3 levels were associated with a 45% increase in the odds of developing AF (odds ratio [OR] = 1.45, 95% CI: 1.15, 1.83, Z = 3.11, P = .002) and risk of AF recurrence (hazard ratio [HR] =1.17, 95% CI: 1.06, 1.29, Z = 3.12, P = .002). CONCLUSIONS Our meta-analysis found that galectin-3 is significantly higher in patients with persistent AF than in those with paroxysmal AF, and can predict both AF development and recurrence after treatment.
Collapse
Affiliation(s)
- Mengqi Gong
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular DiseaseDepartment of CardiologyTianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Angel Cheung
- Department of Biomedical EngineeringBrown UniversityBrownMichigan
| | - Qun‐Shan Wang
- Department of CardiologyXinhua Hospital affiliated to the Medical School of Shanghai Jiaotong UniversityShanghaiChina
| | - Guangping Li
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular DiseaseDepartment of CardiologyTianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | | | - George Bazoukis
- Second Department of CardiologyLaboratory of Cardiac ElectrophysiologyEvangelismos General Hospital of AthensAthensGreece
| | - Gregory Y. H. Lip
- University of Birmingham Centre for Cardiovascular SciencesCity HospitalBirminghamUK
- Aalborg Thrombosis Research UnitDepartment of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Adrian Baranchuk
- Department of MedicineKingston General HospitalQueen's UniversityKingstonOntarioCanada
| | | | - Konstantinos P. Letsas
- Second Department of CardiologyLaboratory of Cardiac ElectrophysiologyEvangelismos General Hospital of AthensAthensGreece
| | - Gary Tse
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular DiseaseDepartment of CardiologyTianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Tong Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular DiseaseDepartment of CardiologyTianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
17
|
Howlader MA, Li C, Zou C, Chakraberty R, Ebesoh N, Cairo CW. Neuraminidase-3 Is a Negative Regulator of LFA-1 Adhesion. Front Chem 2019; 7:791. [PMID: 31824923 PMCID: PMC6882948 DOI: 10.3389/fchem.2019.00791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 01/13/2023] Open
Abstract
Within the plasma membrane environment, glycoconjugate-receptor interactions play an important role in the regulation of cell-cell interactions. We have investigated the mechanism and activity of the human neuraminidase (NEU) isoenzyme, NEU3, on T cell adhesion receptors. The enzyme is known to prefer glycolipid substrates, and we confirmed that exogenous enzyme altered the glycolipid composition of cells. NEU3 was able to modify the sialic acid content of purified LFA-1 in vitro. Enzymatic activity of NEU3 resulted in re-organization of LFA-1 into large clusters on the membrane. This change was facilitated by an increase in the lateral mobility of LFA-1 upon NEU3 treatment. Changes to the lateral mobility of LFA-1 were specific for NEU3 activity, and we observed no significant change in diffusion when cells were treated with a bacterial NEU (NanI). Furthermore, we found that NEU3 treatment of cells increased surface expression levels of LFA-1. We observed that NEU3-treated cells had suppressed LFA-1 adhesion to an ICAM-1 coated surface using an in vitro static adhesion assay. These results establish that NEU3 can modulate glycoconjugate composition and contribute to the regulation of integrin activity. We propose that NEU3 should be investigated to determine its role on LFA-1 within the inflammatory cascade.
Collapse
Affiliation(s)
- Md Amran Howlader
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Caishun Li
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Chunxia Zou
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Njuacha Ebesoh
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
18
|
Kitov PI, Kitova EN, Han L, Li Z, Jung J, Rodrigues E, Hunter CD, Cairo CW, Macauley MS, Klassen JS. A quantitative, high-throughput method identifies protein-glycan interactions via mass spectrometry. Commun Biol 2019; 2:268. [PMID: 31341967 PMCID: PMC6646405 DOI: 10.1038/s42003-019-0507-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/11/2019] [Indexed: 01/08/2023] Open
Abstract
Glycan binding by glycan-binding proteins and processing by carbohydrate-active enzymes is implicated in physiological and pathophysiological processes. Comprehensive mapping of glycan interactions is essential to understanding of glycan-mediated biology and can guide the development of new diagnostics and therapeutics. Here, we introduce the competitive universal proxy receptor assay (CUPRA), which combines electrospray ionization mass spectrometry, competitive binding and heterobifunctional glycan-based ligands to give a quantitative high-throughput method for screening glycan libraries against glycan-binding and glycan-processing proteins. Application of the assay to human (siglec-2), plant (Sambucus nigra and Maackia amurensis lectins) and bacterial (cholera toxin, and family 51 carbohydrate binding module) proteins allowed for the identification of ligands with affinities (Kd) ≤ 1 mM. The assay is unprecedentedly versatile and can be applied to natural libraries and, when implemented in a time-resolved manner, provides a quantitative measure of the activities and substrate specificity of carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Pavel I. Kitov
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Ling Han
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Zhixiong Li
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Jaesoo Jung
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Emily Rodrigues
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Carmanah D. Hunter
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Matthew S. Macauley
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| |
Collapse
|
19
|
Ruvolo PP, Ruvolo VR, Burks JK, Qiu Y, Wang RY, Shpall EJ, Mirandola L, Hail N, Zeng Z, McQueen T, Daver N, Post SM, Chiriva-Internati M, Kornblau SM, Andreeff M. Role of MSC-derived galectin 3 in the AML microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:959-969. [PMID: 29655803 PMCID: PMC5936474 DOI: 10.1016/j.bbamcr.2018.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Abstract
In acute myeloid leukemia (AML), high Galectin 3 (LGALS3) expression is associated with poor prognosis. The role of LGALS3 derived from mesenchymal stromal cells (MSC) in the AML microenvironment is unclear; however, we have recently found high LGALS3 expression in MSC derived from AML patients is associated with relapse. In this study, we used reverse phase protein analysis (RPPA) to correlate LGALS3 expression in AML MSC with 119 other proteins including variants of these proteins such as phosphorylated forms or cleaved forms to identify biologically relevant pathways. RPPA revealed that LGALS3 protein was positively correlated with expression of thirteen proteins including MYC, phosphorylated beta-Catenin (p-CTNNB1), and AKT2 and negatively correlated with expression of six proteins including integrin beta 3 (ITGB3). String analysis revealed that proteins positively correlated with LGALS3 showed strong interconnectivity. Consistent with the RPPA results, LGALS3 suppression by shRNA in MSC resulted in decreased MYC and AKT expression while ITGB3 was induced. In co-culture, the ability of AML cell to adhere to MSC LGALS3 shRNA transductants was reduced compared to AML cell adhesion to MSC control shRNA transductants. Finally, use of novel specific LGALS3 inhibitor CBP.001 in co-culture of AML cells with MSC reduced viable leukemia cell populations with induced apoptosis and augmented the chemotherapeutic effect of AraC. In summary, the current study demonstrates that MSC-derived LGALS3 may be critical for important biological pathways for MSC homeostasis and for regulating AML cell localization and survival in the leukemia microenvironmental niche.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Vivian R Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jared K Burks
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - YiHua Qiu
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rui-Yu Wang
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Numsen Hail
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhihong Zeng
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Teresa McQueen
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naval Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sean M Post
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maurizio Chiriva-Internati
- Kiromic Biopharma, Houston, TX, United States; Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven M Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Andreeff
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
20
|
Hönig E, Ringer K, Dewes J, von Mach T, Kamm N, Kreitzer G, Jacob R. Galectin-3 modulates the polarized surface delivery of β1-integrin in epithelial cells. J Cell Sci 2018; 131:jcs.213199. [PMID: 29748377 DOI: 10.1242/jcs.213199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
Epithelial cells require a precise intracellular transport and sorting machinery to establish and maintain their polarized architecture. This machinery includes β-galactoside-binding galectins for targeting of glycoprotein to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analysed the role of galectin-3 in the polarized distribution of β1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of β1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of β1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized β1-integrin to the apical membrane and promotes apical delivery of β1-integrin internalized from the basolateral membrane. In parallel, knockout of galectin-3 results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of β1-integrin and affects the morphogenesis of polarized cells.
Collapse
Affiliation(s)
- Ellena Hönig
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Karina Ringer
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Jenny Dewes
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Tobias von Mach
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Natalia Kamm
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Geri Kreitzer
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York, NY 10031, USA
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany .,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
21
|
Skrenkova K, Lee S, Lichnerova K, Kaniakova M, Hansikova H, Zapotocky M, Suh YH, Horak M. N-Glycosylation Regulates the Trafficking and Surface Mobility of GluN3A-Containing NMDA Receptors. Front Mol Neurosci 2018; 11:188. [PMID: 29915530 PMCID: PMC5994540 DOI: 10.3389/fnmol.2018.00188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) play critical roles in both excitatory neurotransmission and synaptic plasticity. NMDARs containing the nonconventional GluN3A subunit have different functional properties compared to receptors comprised of GluN1/GluN2 subunits. Previous studies showed that GluN1/GluN2 receptors are regulated by N-glycosylation; however, limited information is available regarding the role of N-glycosylation in GluN3A-containing NMDARs. Using a combination of microscopy, biochemistry, and electrophysiology in mammalian cell lines and rat hippocampal neurons, we found that two asparagine residues (N203 and N368) in the GluN1 subunit and three asparagine residues (N145, N264 and N275) in the GluN3A subunit are required for surface delivery of GluN3A-containing NMDARs. Furthermore, deglycosylation and lectin-based analysis revealed that GluN3A subunits contain extensively modified N-glycan structures, including hybrid/complex forms of N-glycans. We also found (either using a panel of inhibitors or by studying human fibroblasts derived from patients with a congenital disorder of glycosylation) that N-glycan remodeling is not required for the surface delivery of GluN3A-containing NMDARs. Finally, we found that the surface mobility of GluN3A-containing NMDARs in hippocampal neurons is increased following incubation with 1-deoxymannojirimycin (DMM, an inhibitor of the formation of the hybrid/complex forms of N-glycans) and decreased in the presence of specific lectins. These findings provide new insight regarding the mechanisms by which neurons can regulate NMDAR trafficking and function.
Collapse
Affiliation(s)
- Kristyna Skrenkova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Sanghyeon Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Katarina Lichnerova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Kaniakova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czechia
| | - Martin Zapotocky
- Department of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Young Ho Suh
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Martin Horak
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
22
|
Demetriou M, Nabi IR, Dennis JW. Galectins as Adaptors: Linking Glycosylation and Metabolism with Extracellular Cues. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1732.1se] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia
| | - James W. Dennis
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital
- Department of Molecular Genetics, & Department of Laboratory Medicine and Pathology, Department of Medicine, University of Toronto
| |
Collapse
|
23
|
Kariya Y, Oyama M, Hashimoto Y, Gu J, Kariya Y. β4-Integrin/PI3K Signaling Promotes Tumor Progression through the Galectin-3- N-Glycan Complex. Mol Cancer Res 2018; 16:1024-1034. [PMID: 29549127 DOI: 10.1158/1541-7786.mcr-17-0365] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 02/07/2018] [Accepted: 03/12/2018] [Indexed: 11/16/2022]
Abstract
Malignant transformation is associated with aberrant N-glycosylation, but the role of protein N-glycosylation in cancer progression remains poorly defined. β4-integrin is a major carrier of N-glycans and is associated with poor prognosis, tumorigenesis, and metastasis. Here, N-glycosylation of β4-integrin contributes to the activation of signaling pathways that promote β4-dependent tumor development and progression. Increased expression of β1,6GlcNAc-branched N-glycans was found to be colocalized with β4-integrin in human cutaneous squamous cell carcinoma tissues, and that the β1,6GlcNAc residue was abundant on β4-integrin in transformed keratinocytes. Interruption of β1,6GlcNAc-branching formation on β4-integrin with the introduction of bisecting GlcNAc by N-acetylglucosaminyltransferase III overexpression was correlated with suppression of cancer cell migration and tumorigenesis. N-Glycan deletion on β4-integrin impaired β4-dependent cancer cell migration, invasion, and growth in vitro and diminished tumorigenesis and proliferation in vivo The reduced abilities of β4-integrin were accompanied with decreased phosphoinositol-3 kinase (PI3K)/Akt signals and were restored by the overexpression of the constitutively active p110 PI3K subunit. Binding of galectin-3 to β4-integrin via β1,6GlcNAc-branched N-glycans promoted β4-integrin-mediated cancer cell adhesion and migration. In contrast, a neutralizing antibody against galectin-3 attenuated β4-integrin N-glycan-mediated PI3K activation and inhibited the ability of β4-integrin to promote cell motility. Furthermore, galectin-3 knockdown by shRNA suppressed β4-integrin N-glycan-mediated tumorigenesis. These findings provide a novel role for N-glycosylation of β4-integrin in tumor development and progression, and the regulatory mechanism for β4-integrin/PI3K signaling via the galectin-3-N-glycan complex.Implications:N-Glycosylation of β4-integrin plays a functional role in promoting tumor development and progression through PI3K activation via the galectin-3-N-glycan complex. Mol Cancer Res; 16(6); 1024-34. ©2018 AACR.
Collapse
Affiliation(s)
- Yukiko Kariya
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Midori Oyama
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yasuhiro Hashimoto
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Yoshinobu Kariya
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|