1
|
Chatterjee S, Rankin JA, Farrugia MA, J S Rifayee SB, Christov CZ, Hu J, Hausinger RP. Biochemical, Structural, and Conformational Characterization of a Fungal Ethylene-Forming Enzyme. Biochemistry 2025; 64:2054-2067. [PMID: 40052306 DOI: 10.1021/acs.biochem.5c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The ethylene-forming enzyme (EFE) from the fungus Penicillium digitatum strain Pd1 was heterologously produced in Escherichia coli and its properties were compared to the extensively characterized bacterial enzyme from Pseudomonas savastanoi strain PK2. Both enzymes catalyze four reactions: the conversion of 2-oxoglutarate (2OG) to ethylene and CO2, oxidative decarboxylation of 2OG coupled to l-arginine (l-Arg) hydroxylation, uncoupled oxidative decarboxylation of 2OG, and the production of 3-hydroxypropionate (3-HP) from 2OG. The strain Pd1 enzyme exhibited a greater ratio of ethylene production over l-Arg hydroxylation than the PK2 strain EFE. The uncoupled decarboxylation of 2OG and 3-HP production are minor reactions in both cases, but they occur to a greater extent using the fungal enzyme. Additional distinctions of the fungal versus bacterial enzyme are noted in the absorbance maxima and l-Arg dependence of their anaerobic electronic spectra. The structures of the Pd1 EFE apoprotein and the EFE·Mn(II)·2OG complex resembled the corresponding structures of the PK2 enzyme, but notable structural differences were observed in the computationally predicted Pd1 EFE·Fe(II)·2OG·l-Arg complex versus the PK2 EFE·Mn(II)·2OG·l-Arg crystal structure. These studies extend our biochemical understanding and represent the first structural and conformational characterization of a eukaryotic EFE.
Collapse
Affiliation(s)
- Shramana Chatterjee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Joel A Rankin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mark A Farrugia
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | | | - Christo Z Christov
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Wijaya AJ, Dolan SK, Kohlstedt M, Gläser L, Brear P, Geddis S, Wittmann C, Spring DR, Welch M. The 2-methylcitrate cycle and the glyoxylate shunt in Pseudomonas aeruginosa are linked through enzymatic redundancy. J Biol Chem 2025; 301:108355. [PMID: 40015638 PMCID: PMC11982470 DOI: 10.1016/j.jbc.2025.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
The 2-methylcitrate cycle and the glyoxylate cycle are central metabolic pathways in Pseudomonas aeruginosa, enabling the organism to utilize organic acids such as propionate and acetate during infection. Here, we show that these cycles are linked through enzymatic redundancy, with isocitrate lyase (AceA) exhibiting secondary 2-methylisocitrate lyase activity. Furthermore, we use a combination of structural analyses, enzyme kinetics, metabolomics, and targeted mutation of PrpBPa to demonstrate that whereas loss of PrpB function impairs growth on propionate, the promiscuous 2-methylisocitrate lyase activity of AceA compensates for this by mitigating the accumulation of toxic 2-methylcitrate cycle intermediates. Our findings suggest that simultaneous inhibition of PrpB and AceA could present a robust antimicrobial strategy to target P. aeruginosa in propionate-rich environments, such as the cystic fibrosis airways. Our results emphasize the importance of understanding pathway interconnections in the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Andre J Wijaya
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Stephen K Dolan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, USA.
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Geddis
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - David R Spring
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Zaunseder E, Teinert J, Boy N, Garbade SF, Haupt S, Feyh P, Hoffmann GF, Kölker S, Mütze U, Heuveline V. Digital-Tier Strategy Improves Newborn Screening for Glutaric Aciduria Type 1. Int J Neonatal Screen 2024; 10:83. [PMID: 39728403 DOI: 10.3390/ijns10040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Glutaric aciduria type 1 (GA1) is a rare inherited metabolic disease increasingly included in newborn screening (NBS) programs worldwide. Because of the broad biochemical spectrum of individuals with GA1 and the lack of reliable second-tier strategies, NBS for GA1 is still confronted with a high rate of false positives. In this study, we aim to increase the specificity of NBS for GA1 and, hence, to reduce the rate of false positives through machine learning methods. Therefore, we studied NBS profiles from 1,025,953 newborns screened between 2014 and 2023 at the Heidelberg NBS Laboratory, Germany. We identified a significant sex difference, resulting in twice as many false-positives male than female newborns. Moreover, the proposed digital-tier strategy based on logistic regression analysis, ridge regression, and support vector machine reduced the false-positive rate by over 90% compared to regular NBS while identifying all confirmed individuals with GA1 correctly. An in-depth analysis of the profiles revealed that in particular false-positive results with high associated follow-up costs could be reduced significantly. In conclusion, understanding the origin of false-positive NBS and implementing a digital-tier strategy to enhance the specificity of GA1 testing may significantly reduce the burden on newborns and their families from false-positive NBS results.
Collapse
Affiliation(s)
- Elaine Zaunseder
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| | - Julian Teinert
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Nikolas Boy
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Sven F Garbade
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Saskia Haupt
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| | - Patrik Feyh
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Ulrike Mütze
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| |
Collapse
|
4
|
Hu Z, Hu L, Zhang C, Yin X, Zhang Y, Fang K, Wu B, Huang X. Simultaneous determination of total homocysteine, methionine, methylmalonic acid and 2-methylcitric acid in dried blood spots by ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124253. [PMID: 39089063 DOI: 10.1016/j.jchromb.2024.124253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
Homocysteine, methionine, methylmalonic acid and 2-methylcitric acid are clinically relevant markers in the methionine, propionate, and cobalamin metabolism. This study aimed to develop and validate an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for simultaneously determining total homocysteine, methionine, methylmalonic acid and 2-methylcitric acid in dried blood spots. Three 3.2 mm discs were punched from each calibrator, quality control, and sample dried blood spot into a 96-well U-plate. Each sample was spiked with internal standards and extracted. Then the supernatant was transferred to another 96-well U-plate. After nitrogen drying, the dried residues were reconstituted, centrifuged, and the resulting supernatant was transferred to another 96-well plate for analysis. The method was performed using UPLC-MS/MS within 3 min, validated according to guidance documents, and applied to 72 samples from confirmed patients with methionine, propionate, and cobalamin metabolism disorders. The UPLC-MS/MS method provided satisfactory separation of the four analytes. The R2 values were ≥ 0.9937 for all analytes. The recoveries ranged from 94.17 to 114.29 %, and the coefficients of variation for intraday and interday precision were 0.19 % to 5.23 % and 1.02 % to 6.89 %, respectively. No significant carry-over was detected for the four analytes, and most of confirmed samples exhibited biomarker patterns characteristic of the relevant disorders. A simple and fast UPLC-MS/MS method was successfully developed, validated, and applied to clinical samples for the simultaneous determination of total homocysteine, methionine, methylmalonic acid, and 2-methylcitric acid in dried blood spots.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Zhang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoshan Yin
- School of Health in Social Science, The University of Edinburg, United Kingdom
| | - Yu Zhang
- Zhejiang BiosanBiochemical Technologies Co., Ltd., Hangzhou, China
| | - Kexin Fang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Benqing Wu
- Department of Neonatology, Children's Medical Center, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
5
|
Reischl-Hajiabadi AT, Schnabel E, Gleich F, Mengler K, Lindner M, Burgard P, Posset R, Lommer-Steinhoff S, Grünert SC, Thimm E, Freisinger P, Hennermann JB, Krämer J, Gramer G, Lenz D, Christ S, Hörster F, Hoffmann GF, Garbade SF, Kölker S, Mütze U. Outcomes after newborn screening for propionic and methylmalonic acidemia and homocystinurias. J Inherit Metab Dis 2024; 47:674-689. [PMID: 38563533 DOI: 10.1002/jimd.12731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The current German newborn screening (NBS) panel includes 13 inherited metabolic diseases (IMDs). In addition, a NBS pilot study in Southwest Germany identifies individuals with propionic acidemia (PA), methylmalonic acidemia (MMA), combined and isolated remethylation disorders (e.g., cobalamin [cbl] C and methylenetetrahydrofolate reductase [MTHFR] deficiency), cystathionine β-synthase (CBS) deficiency, and neonatal cbl deficiency through one multiple-tier algorithm. The long-term health benefits of screened individuals are evaluated in a multicenter observational study. Twenty seven screened individuals with IMDs (PA [N = 13], MMA [N = 6], cblC deficiency [N = 5], MTHFR deficiency [N = 2] and CBS deficiency [N = 1]), and 42 with neonatal cbl deficiency were followed for a median of 3.6 years. Seventeen screened IMD patients (63%) experienced at least one metabolic decompensation, 14 of them neonatally and six even before the NBS report (PA, cbl-nonresponsive MMA). Three PA patients died despite NBS and immediate treatment. Fifteen individuals (79%) with PA or MMA and all with cblC deficiency developed permanent, mostly neurological symptoms, while individuals with MTHFR, CBS, and neonatal cbl deficiency had a favorable clinical outcome. Utilizing a combined multiple-tier algorithm, we demonstrate that NBS and specialized metabolic care result in substantial benefits for individuals with MTHFR deficiency, CBS deficiency, neonatal cbl deficiency, and to some extent, cbl-responsive MMA and cblC deficiency. However, its advantage is less evident for individuals with PA and cbl-nonresponsive MMA. SYNOPSIS: Early detection through newborn screening and subsequent specialized metabolic care improve clinical outcomes and survival in individuals with MTHFR deficiency and cystathionine-β-synthase deficiency, and to some extent in cobalamin-responsive methylmalonic acidemia (MMA) and cblC deficiency while the benefit for individuals with propionic acidemia and cobalamin-nonresponsive MMA is less evident due to the high (neonatal) decompensation rate, mortality, and long-term complications.
Collapse
Affiliation(s)
- Anna T Reischl-Hajiabadi
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Elena Schnabel
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Florian Gleich
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Katharina Mengler
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | | | - Peter Burgard
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Roland Posset
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Svenja Lommer-Steinhoff
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg Reutlingen, Reutlingen, Germany
| | - Julia B Hennermann
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, Medical School, Ulm University, Ulm, Germany
| | - Gwendolyn Gramer
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
- Department for Inborn Metabolic Diseases, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominic Lenz
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stine Christ
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Friederike Hörster
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Georg F Hoffmann
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Sven F Garbade
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Ulrike Mütze
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| |
Collapse
|
6
|
Liu Y, Ma X, Kang L, Jin Y, Li M, Song J, Li H, Cao Y, Yang Y. The utility of methylmalonic acid, methylcitrate acid, and homocysteine in dried blood spots for therapeutic monitoring of three inherited metabolic diseases. Front Nutr 2024; 11:1414681. [PMID: 38966413 PMCID: PMC11222987 DOI: 10.3389/fnut.2024.1414681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Backgroud Routine metabolic assessments for methylmalonic acidemia (MMA), propionic acidemia (PA), and homocysteinemia involve detecting metabolites in dried blood spots (DBS) and analyzing specific biomarkers in serum and urine. This study aimed to establish a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous detection of three specific biomarkers (methylmalonic acid, methylcitric acid, and homocysteine) in DBS, as well as to appraise the applicability of these three DBS metabolites in monitoring patients with MMA, PA, and homocysteinemia during follow-up. Methods A total of 140 healthy controls and 228 participants were enrolled, including 205 patients with MMA, 17 patients with PA, and 6 patients with homocysteinemia. Clinical data and DBS samples were collected during follow-up visits. Results The reference ranges (25th-95th percentile) for DBS methylmalonic acid, methylcitric acid, and homocysteine were estimated as 0.04-1.02 μmol/L, 0.02-0.27 μmol/L and 1.05-8.22 μmol/L, respectively. Following treatment, some patients achieved normal metabolite concentrations, but the majority still exhibited characteristic biochemical patterns. The concentrations of methylmalonic acid, methylcitric acid, and homocysteine in DBS showed positive correlations with urine methylmalonic acid (r = 0.849, p < 0.001), urine methylcitric acid (r = 0.693, p < 0.001), and serum homocysteine (r = 0.721, p < 0.001) concentrations, respectively. Additionally, higher levels of DBS methylmalonic acid and methylcitric acid may be associated with increased cumulative complication scores. Conclusion The LC-MS/MS method established in this study reliably detects methylmalonic acid, methylcitric acid, and homocysteine in DBS. These three DBS metabolites can be valuable for monitoring patients with MMA, PA, and homocysteinemia during follow-up. Further investigation is required to determine the significance of these DBS biomarkers in assessing disease burden over time.
Collapse
Affiliation(s)
- Yi Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Xue Ma
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Kang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Mengqiu Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Pajares-García S, González de Aledo-Castillo JM, Flores-Jiménez JE, Collado T, Pérez J, Paredes-Fuentes AJ, Argudo-Ramírez A, López-Galera RM, Prats B, García-Villoria J. Analysis of a second-tier test panel in dried blood spot samples using liquid chromatography-tandem mass spectrometry in Catalonia's newborn screening programme. Clin Chem Lab Med 2024; 62:493-505. [PMID: 37794778 DOI: 10.1515/cclm-2023-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES Acylcarnitine and amino acid analyses of dried blood spot (DBS) samples using tandem mass spectrometry in newborn screening (NBS) programmes can generate false positive (FP) results. Therefore, implementation of second-tier tests (2TTs) using DBS samples has become increasingly important to avoid FPs. The most widely used 2TT metabolites include methylmalonic acid, 3-hydroxypropionic acid, methylcitric acid, and homocysteine. METHODS We simultaneously measured 46 underivatised metabolites, including organic acids, acylglycine and acylcarnitine isomers, homocysteine, and orotic acid, in DBS samples using tandem mass spectrometry. To validate this method, we analysed samples from 147 healthy newborns, 160 patients with genetic disorders diagnosed via NBS, 20 patients with acquired vitamin B12 deficiency, 10 newborns receiving antibiotic treatment, and nine external quality control samples. RESULTS The validation study revealed that 31 metabolites showed good analytical performance. Furthermore, this method detected key metabolites for all diseases associated with increased levels of the following acylcarnitines: C3, C4, C5, C4DC/C5OH, and C5DC. The sensitivity of this method to detect all diseases was 100 %, and the specificity was 74-99 %, except for glutaric aciduria type 1. This method can also be used to diagnose mitochondrial fatty acid β-oxidation disorders (FAODs) and urea cycle defects (UCDs). CONCLUSIONS We have described a 2TT panel of 31 metabolites in DBS samples based on an easy and rapid method without derivatisation. Its implementation allowed us to distinguish between different organic acidurias, some FAODs, and UCDs. This new strategy has increased the efficiency of our NBS programme by reducing FP and false negative results, second sample requests, and the time required for diagnosis.
Collapse
Affiliation(s)
- Sonia Pajares-García
- Department of Biochemistry and Molecular Genetics, Section of Inborn Errors of Metabolism-IBC, Hospital Clinic, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain
| | | | - José Eduardo Flores-Jiménez
- Department of Biochemistry and Molecular Genetics, Section of Inborn Errors of Metabolism-IBC, Hospital Clinic, Barcelona, Spain
| | - Tatiana Collado
- Department of Biochemistry and Molecular Genetics, Section of Inborn Errors of Metabolism-IBC, Hospital Clinic, Barcelona, Spain
| | - Judit Pérez
- Department of Biochemistry and Molecular Genetics, Section of Inborn Errors of Metabolism-IBC, Hospital Clinic, Barcelona, Spain
| | - Abraham José Paredes-Fuentes
- Department of Biochemistry and Molecular Genetics, Section of Inborn Errors of Metabolism-IBC, Hospital Clinic, Barcelona, Spain
| | - Ana Argudo-Ramírez
- Department of Biochemistry and Molecular Genetics, Section of Inborn Errors of Metabolism-IBC, Hospital Clinic, Barcelona, Spain
| | - Rosa María López-Galera
- Department of Biochemistry and Molecular Genetics, Section of Inborn Errors of Metabolism-IBC, Hospital Clinic, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain
- Biomedical Research Institute, August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Blanca Prats
- Health Department, Maternal and Child Health Service, Public Health Agency of Catalonia, The Government of Catalonia, Barcelona, Spain
| | - Judit García-Villoria
- Department of Biochemistry and Molecular Genetics, Section of Inborn Errors of Metabolism-IBC, Hospital Clinic, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain
- Biomedical Research Institute, August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
8
|
Maier EM, Mütze U, Janzen N, Steuerwald U, Nennstiel U, Odenwald B, Schuhmann E, Lotz-Havla AS, Weiss KJ, Hammersen J, Weigel C, Thimm E, Grünert SC, Hennermann JB, Freisinger P, Krämer J, Das AM, Illsinger S, Gramer G, Fang-Hoffmann J, Garbade SF, Okun JG, Hoffmann GF, Kölker S, Röschinger W. Collaborative evaluation study on 18 candidate diseases for newborn screening in 1.77 million samples. J Inherit Metab Dis 2023; 46:1043-1062. [PMID: 37603033 DOI: 10.1002/jimd.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Analytical and therapeutic innovations led to a continuous but variable extension of newborn screening (NBS) programmes worldwide. Every extension requires a careful evaluation of feasibility, diagnostic (process) quality and possible health benefits to balance benefits and limitations. The aim of this study was to evaluate the suitability of 18 candidate diseases for inclusion in NBS programmes. Utilising tandem mass spectrometry as well as establishing specific diagnostic pathways with second-tier analyses, three German NBS centres designed and conducted an evaluation study for 18 candidate diseases, all of them inherited metabolic diseases. In total, 1 777 264 NBS samples were analysed. Overall, 441 positive NBS results were reported resulting in 68 confirmed diagnoses, 373 false-positive cases and an estimated cumulative prevalence of approximately 1 in 26 000 newborns. The positive predictive value ranged from 0.07 (carnitine transporter defect) to 0.67 (HMG-CoA lyase deficiency). Three individuals were missed and 14 individuals (21%) developed symptoms before the positive NBS results were reported. The majority of tested candidate diseases were found to be suitable for inclusion in NBS programmes, while multiple acyl-CoA dehydrogenase deficiency, isolated methylmalonic acidurias, propionic acidemia and malonyl-CoA decarboxylase deficiency showed some and carnitine transporter defect significant limitations. Evaluation studies are an important tool to assess the potential benefits and limitations of expanding NBS programmes to new diseases.
Collapse
Affiliation(s)
- Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Ulrike Mütze
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Nils Janzen
- Screening-Labor Hanover, Hanover, Germany
- Department of Clinical Chemistry, Hanover Medical School, Hanover, Germany
- Division of Laboratory Medicine, Centre for Children and Adolescents, Kinder- und Jugendkrankenhaus Auf der Bult, Hanover, Germany
| | | | - Uta Nennstiel
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Birgit Odenwald
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | - Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Katharina J Weiss
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Johanna Hammersen
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Corina Weigel
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Eva Thimm
- Department of General Pediatrics, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Julia B Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, Mainz University Medical Center, Mainz, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg, Reutlingen, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, Ulm University Medical School, Ulm, Germany
| | - Anibh M Das
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Sabine Illsinger
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Gwendolyn Gramer
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Hamburg, Germany
| | - Junmin Fang-Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Wulf Röschinger
- Laboratory Becker MVZ GbR, Newborn Screening Unit, Munich, Germany
| |
Collapse
|
9
|
Schnabel E, Kölker S, Gleich F, Feyh P, Hörster F, Haas D, Fang-Hoffmann J, Morath M, Gramer G, Röschinger W, Garbade SF, Hoffmann GF, Okun JG, Mütze U. Combined Newborn Screening Allows Comprehensive Identification also of Attenuated Phenotypes for Methylmalonic Acidurias and Homocystinuria. Nutrients 2023; 15:3355. [PMID: 37571294 PMCID: PMC10420807 DOI: 10.3390/nu15153355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.
Collapse
Affiliation(s)
- Elena Schnabel
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Patrik Feyh
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Friederike Hörster
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Dorothea Haas
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Junmin Fang-Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Marina Morath
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Gwendolyn Gramer
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
- Department for Inborn Metabolic Diseases, University Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wulf Röschinger
- Labor Becker MVZ GbR, Newborn Screening Unit, 81671 Munich, Germany
| | - Sven F. Garbade
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Georg F. Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Jürgen G. Okun
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| |
Collapse
|
10
|
Manoli I, Gebremariam A, McCoy S, Pass AR, Gagné J, Hall C, Ferry S, Van Ryzin C, Sloan JL, Sacchetti E, Catesini G, Rizzo C, Martinelli D, Spada M, Dionisi-Vici C, Venditti CP. Biomarkers to predict disease progression and therapeutic response in isolated methylmalonic acidemia. J Inherit Metab Dis 2023; 46:554-572. [PMID: 37243446 PMCID: PMC10330948 DOI: 10.1002/jimd.12636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Methylmalonic Acidemia (MMA) is a heterogenous group of inborn errors of metabolism caused by a defect in the methylmalonyl-CoA mutase (MMUT) enzyme or the synthesis and transport of its cofactor, 5'-deoxy-adenosylcobalamin. It is characterized by life-threatening episodes of ketoacidosis, chronic kidney disease, and other multiorgan complications. Liver transplantation can improve patient stability and survival and thus provides clinical and biochemical benchmarks for the development of hepatocyte-targeted genomic therapies. Data are presented from a US natural history protocol that evaluated subjects with different types of MMA including mut-type (N = 91), cblB-type (15), and cblA-type MMA (17), as well as from an Italian cohort of mut-type (N = 19) and cblB-type MMA (N = 2) subjects, including data before and after organ transplantation in both cohorts. Canonical metabolic markers, such as serum methylmalonic acid and propionylcarnitine, are variable and affected by dietary intake and renal function. We have therefore explored the use of the 1-13 C-propionate oxidation breath test (POBT) to measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]). Biomarker concentrations are higher in patients with the severe mut0 -type and cblB-type MMA, correlate with a decreased POBT, and show a significant response postliver transplant. Additional circulating and imaging markers to assess disease burden are necessary to monitor disease progression. A combination of biomarkers reflecting disease severity and multisystem involvement will be needed to help stratify patients for clinical trials and assess the efficacy of new therapies for MMA.
Collapse
Affiliation(s)
- Irini Manoli
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Abigael Gebremariam
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Samantha McCoy
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexandra R. Pass
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jack Gagné
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Camryn Hall
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Susan Ferry
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Carol Van Ryzin
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jennifer L. Sloan
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elisa Sacchetti
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giulio Catesini
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Diego Martinelli
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Marco Spada
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Tranplantation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- European Research Network TransplantChild
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Charles P. Venditti
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
11
|
Forny P, Hörster F, Baumgartner MR, Kölker S, Boy N. How guideline development has informed clinical research for organic acidurias (et vice versa). J Inherit Metab Dis 2023; 46:520-535. [PMID: 36591944 DOI: 10.1002/jimd.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Organic acidurias, such as glutaric aciduria type 1 (GA1), methylmalonic (MMA), and propionic aciduria (PA) are a prominent group of inherited metabolic diseases involving accumulation of eponymous metabolites causing endogenous intoxication. For all three conditions, guidelines for diagnosis and management have been developed and revised over the last years, resulting in three revisions for GA1 and one revision for MMA/PA. The process of clinical guideline development in rare metabolic disorders is challenged by the scarcity and limited quality of evidence available. The body of literature is often fragmentary and where information is present, it is usually derived from small sample sizes. Therefore, the development of guidelines for GA1 and MMA/PA was initially confronted with a poor evidence foundation that hindered formulation of concrete recommendations in certain contexts, triggering specific research projects and initiation of longitudinal, prospective observational studies using patient registries. Reversely, these observational studies contributed to evaluate the value of newborn screening, phenotypic diversities, and treatment effects, thus significantly improving the quality of evidence and directly influencing formulation and evidence levels of guideline recommendations. Here, we present insights into interactions between guideline development and (pre)clinical research for GA1 and MMA/PA, and demonstrate how guidelines gradually improved from revision to revision. We describe how clinical studies help to unravel the relative impact of therapeutic interventions on outcome and conclude that despite new and better quality of research data over the last decades, significant shortcomings of evidence regarding prognosis and treatment remain. It appears that development of clinical guidelines can directly help to guide research, and vice versa.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Friederike Hörster
- Division of Neuropaediatrics and Metabolic Medicine, Department of General Paediatrics, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kölker
- Division of Neuropaediatrics and Metabolic Medicine, Department of General Paediatrics, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Nikolas Boy
- Division of Neuropaediatrics and Metabolic Medicine, Department of General Paediatrics, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Identification of potential interferents of methylmalonic acid: A previously unrecognized pitfall in clinical diagnostics and newborn screening. Clin Biochem 2023; 111:72-80. [PMID: 36202155 DOI: 10.1016/j.clinbiochem.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Determination of methylmalonic acid (MMA) from dried blood spots (DBS) is commonly performed in clinical diagnostics and newborn screening for propionic acidemia (PA) and methylmalonic acidemia. Isobaric compounds of MMA having the same mass can affect diagnostic reliability and quantitative results, which represents a previously unrecognized pitfall in clinical assays for MMA. We set out to identify interfering substances of MMA in DBS, serum and urine samples from confirmed patients with PA and methylmalonic acidemia. METHODS Techniques included quadrupole time-of-flight high-resolution mass spectrometry (QTOF HR-MS), nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography (LC) and tandem mass spectrometry (MS/MS). RESULTS The five isobaric metabolites detected in DBS, serum and urine from PA and methylmalonic acidemia patients were confirmed as 2-methyl-3-hydroxybutyrate, 3-hydroxyisovalerate, 2-hydroxyisovalerate, 3-hydroxyvalerate and succinate using a series of experiments. An additional unknown substance with low abundance remained unidentified. CONCLUSIONS The presented results facilitate the diagnostic and quantitative reliability of the MMA determination in clinical assays. Isobaric species should be investigated in assays for MMA to eliminate possible interference in a wide range of conditions including PA, methylmalonic acidemia, a vitamin B12 deficiency, ketosis and lactic acidosis.
Collapse
|
13
|
Vitamin B12 (Cobalamin): Its Fate from Ingestion to Metabolism with Particular Emphasis on Diagnostic Approaches of Acquired Neonatal/Infantile Deficiency Detected by Newborn Screening. Metabolites 2022; 12:metabo12111104. [DOI: 10.3390/metabo12111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Acquired vitamin B12 (vB12) deficiency (vB12D) of newborns is relatively frequent as compared with the incidence of inherited diseases included in newborn screening (NBS) of different countries across the globe. Infants may present signs of vB12D before 6 months of age with anemia and/or neurologic symptoms when not diagnosed in asymptomatic state. The possibility of identifying vitamin deficient mothers after their pregnancy during the breastfeeding period could be an additional benefit of the newborn screening. Vitamin supplementation is widely available and easy to administer. However, in many laboratories, vB12D is not included in the national screening program. Optimized screening requires either second-tier testing or analysis of new urine and blood samples combined with multiple clinical and laboratory follow ups. Our scope was to review the physiologic fate of vB12 and the pathobiochemical consequences of vB12D in the human body. Particular emphasis was put on the latest approaches for diagnosis and treatment of vB12D in NBS.
Collapse
|
14
|
Martín-Rivada Á, Cambra Conejero A, Martín-Hernández E, Moráis López A, Bélanger-Quintana A, Cañedo Villarroya E, Quijada-Fraile P, Bellusci M, Chumillas Calzada S, Bergua Martínez A, Stanescu S, Martínez-Pardo Casanova M, Ruíz-Sala P, Ugarte M, Pérez González B, Pedrón-Giner C. Newborn screening for propionic, methylmalonic acidemia and vitamin B12 deficiency. Analysis of 588,793 newborns. J Pediatr Endocrinol Metab 2022; 35:1223-1231. [PMID: 36112821 DOI: 10.1515/jpem-2022-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/13/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We present the results of our experience in the diagnosis and follow up of the positive cases for propionic, methylmalonic acidemias and cobalamin deficiencies (PA/MMA/MMAHC) since the Expanded Newborn Screening was implemented in Madrid Region. METHODS Dried blood samples were collected 48 h after birth. Amino acids and acylcarnitines were quantitated by MS/MS. Newborns with alterations were referred to the clinical centers for follow-up. Biochemical and molecular genetic studies for confirmation of a disease were performed. RESULTS In the period 2011-2020, 588,793 children were screened, being 953 of them were referred to clinical units for abnormal result (192 for elevated C3 levels). Among them, 88 were false positive cases, 85 maternal vitamin B12 deficiencies and 19 were confirmed to suffer an IEM (8 PA, 4 MMA, 7 MMAHC). Ten out 19 cases displayed symptoms before the NBS results (6 PA, 1 MMA, 3 MMAHC). C3, C16:1OH+C17 levels and C3/C2 and C3/Met ratios were higher in newborns with PA/MMA/MMAHC. Cases diagnosed with B12 deficiency had mean B12 levels of 187.6 ± 76.9 pg/mL and their mothers 213.7 ± 95.0; 5% of the mothers were vegetarian or had poor eating while 15% were diagnosed of pernicious anemia. Newborns and their mothers received treatment with B12 with different posology, normalizing their levels and the secondary alterations disappeared. CONCLUSIONS Elevated C3 are a frequent cause for abnormal result in newborn screening with a high rate of false positive cases. Presymptomatic diagnosis of most of PA and some MMA/MMAHC is difficult. Vitamin B12 deficiency secondary to maternal deprivation is frequent with an heterogenous clinical and biochemical spectrum.
Collapse
Affiliation(s)
- Álvaro Martín-Rivada
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Ana Cambra Conejero
- Laboratorio de Cribado Neonatal de la Comunidad de Madrid, Servicio de Bioquímica Clínica, Hospital General Universitario GregorioMarañón, Madrid, Spain
| | - Elena Martín-Hernández
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Ana Moráis López
- Unidad de Nutrición Infantil y Enfermedades Metabólicas, Hospital Universitario La Paz, Madrid, Spain
| | - Amaya Bélanger-Quintana
- Centro de Referencia Nacional (CSUR) en Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Elvira Cañedo Villarroya
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Pilar Quijada-Fraile
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Marcelo Bellusci
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Silvia Chumillas Calzada
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Ana Bergua Martínez
- Unidad de Nutrición Infantil y Enfermedades Metabólicas, Hospital Universitario La Paz, Madrid, Spain
| | - Sinziana Stanescu
- Centro de Referencia Nacional (CSUR) en Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Pedro Ruíz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IdiPAZ, CIBERER, Madrid, Spain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IdiPAZ, CIBERER, Madrid, Spain
| | - Belén Pérez González
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IdiPAZ, CIBERER, Madrid, Spain
| | - Consuelo Pedrón-Giner
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| |
Collapse
|
15
|
Reischl-Hajiabadi AT, Garbade SF, Feyh P, Weiss KH, Mütze U, Kölker S, Hoffmann GF, Gramer G. Maternal Vitamin B 12 Deficiency Detected by Newborn Screening-Evaluation of Causes and Characteristics. Nutrients 2022; 14:3767. [PMID: 36145143 PMCID: PMC9505342 DOI: 10.3390/nu14183767] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin B12 deficiency, mostly of maternal origin in newborns, is a well-treatable condition but can cause severe neurologic sequelae in infants. Early detection of vitamin B12 deficiency allows the pre-symptomatic treatment of affected children. This evaluation assesses the characteristics of maternal vitamin B12 deficiency detected by newborn screening. In a prospective single-center study, a systematic screening strategy for vitamin B12 deficiency using a combination of two second-tier strategies was applied. In addition to confirmatory diagnostics in children, the systematic work-up of vitamin B12 status was also performed for their mothers. Maternal characteristics were assessed including ethnic origin, diet, and vitamin supplementation during pregnancy. For affected mothers, a work-up by internal medicine was recommended. In total, 121 mother-infant couples were analyzed. 66% of mothers adhered to a balanced diet including meat. The cause of maternal vitamin B12 deficiency was unknown in 56% of cases, followed by dietary causes in 32%, and organic causes in 8%. All mothers following a vegan diet and most mothers with a vegetarian diet took vitamin preparations during pregnancy, whereas only 55.8% of mothers with a balanced diet took folic acid or other vitamins. Maternal vitamin B12, folic acid, and homocysteine levels were significantly correlated with the child's folic acid levels, and with homocysteine, methylmalonic, and methylcitric acid levels in first and second NBS dried blood spots. Most children had normal blood counts and showed normocytosis. Although 36.7% of mothers showed anemia, only one presented with macrocytosis. Adherence to vitamin supplementation in pregnancy is low despite the recommendation for supplementation of folic acid. Ideally, the evaluation of mothers for vitamin B12 levels and appropriate therapy should be initiated in early pregnancy. In infants detected through newborn screening, the multidisciplinary assessment and therapy of both children and mothers should be performed.
Collapse
Affiliation(s)
- Anna T. Reischl-Hajiabadi
- Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Sven F. Garbade
- Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Patrik Feyh
- Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Karl Heinz Weiss
- Department of Internal Medicine IV, Gastroenterology and Hepatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ulrike Mütze
- Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Georg F. Hoffmann
- Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Gwendolyn Gramer
- Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, University Children’s Hospital, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
16
|
Mütze U, Mengler K, Boy N, Gleich F, Opladen T, Garbade SF, Kölker S. How longitudinal observational studies can guide screening strategy for rare diseases. J Inherit Metab Dis 2022; 45:889-901. [PMID: 35488475 DOI: 10.1002/jimd.12508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
Newborn screening (NBS) is an important secondary prevention program, aiming to shift the paradigm of medicine to the pre-clinical stage of a disease. Starting more than 50 years ago, technical advances, such as tandem mass spectrometry (MS/MS), paved the way to a continuous extension of NBS programs. However, formal evidence of the long-term clinical benefits in large cohorts and cost-effectiveness of extended NBS programs is still scarce. Although published studies confirmed important benefits of NBS programs, it also unraveled a significant number of limitations. These include an incompletely understood natural history and phenotypic diversity of some screened diseases, unreliable early and precise prediction of individual disease severity, uncertainty about case definition, risk stratification, and indication to treat, resulting in a diagnostic and treatment dilemma in individuals with ambiguous screening and confirmatory test results. Interoperable patient registries are multi-purpose tools that could help to close the current knowledge gaps and to inform further optimization of NBS strategy. Standing at the edge of introducing high throughput genetic technologies to NBS programs with the opportunity to massively extend NBS programs and with the risk of aggravating current limitations of NBS programs, it seems overdue to include mandatory long-term follow-up of NBS cohorts into the list of screening principles and to build an international collaborative framework that enables data collection and exchange in a protected environment, integrating the perspectives of patients, families, and the society.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Katharina Mengler
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Opladen
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
17
|
Venturoni LE, Venditti CP. Treatment of metabolic disorders using genomic technologies: Lessons from methylmalonic acidemia. J Inherit Metab Dis 2022; 45:872-888. [PMID: 35766386 DOI: 10.1002/jimd.12534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022]
Abstract
Hereditary methylmalonic acidemia (MMA) caused by deficiency of the enzyme methylmalonyl-CoA mutase (MMUT) is a relatively common and severe organic acidemia. The recalcitrant nature of the condition to conventional dietary and medical management has led to the use of elective liver and combined liver-kidney transplantation in some patients. However, liver transplantation is intrinsically limited by organ availability, the risks of surgery, procedural and life-long management costs, transplant comorbidities, and a remaining underlying risk of complications related to MMA despite transplantation. Here, we review pre-clinical studies that present alternative approaches to solid organ transplantation as a treatment for MMUT MMA, including adeno-associated viral gene addition therapy, mRNA therapy, and genome editing, with and without nuclease enhancement.
Collapse
Affiliation(s)
- Leah E Venturoni
- Metabolic Medicine Branch, Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles P Venditti
- Metabolic Medicine Branch, Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
19
|
Methylmalonic acid analysis using urine filter paper samples to screen for metabolic vitamin B 12 deficiency in older adults. Bioanalysis 2022; 14:615-626. [PMID: 35546317 DOI: 10.4155/bio-2022-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Methylmalonic acid (MMA) analysis in urine represents a noninvasive approach to screening for vitamin B12 deficiency in older adults. A method allowing the analysis of MMA/creatinine in fasting urine collected on filter paper was developed/validated. Method: Dry urine specimens were eluted using a solution containing internal standards, filtrated and analyzed by ultra-performance LC-MS/MS. Results: The method allowed the chromatographic separation of MMA from succinic acid. Dried urine samples were stable for 86 days at room temperature. The MMA/creatinine ratios measured in urine collected on filter paper were highly correlated with values derived from the corresponding liquid specimens. Conclusion: This robust filter paper method might greatly improve the accessibility and cost-effectiveness of vitamin B12 deficiency screening in older adults.
Collapse
|
20
|
Zaunseder E, Haupt S, Mütze U, Garbade SF, Kölker S, Heuveline V. Opportunities and challenges in machine learning-based newborn screening-A systematic literature review. JIMD Rep 2022; 63:250-261. [PMID: 35433168 PMCID: PMC8995842 DOI: 10.1002/jmd2.12285] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/06/2023] Open
Abstract
The development and continuous optimization of newborn screening (NBS) programs remains an important and challenging task due to the low prevalence of screened diseases and high sensitivity requirements for screening methods. Recently, different machine learning (ML) methods have been applied to support NBS. However, most studies only focus on single diseases or specific ML techniques making it difficult to draw conclusions on which methods are best to implement. Therefore, we performed a systematic literature review of peer-reviewed publications on ML-based NBS methods. Overall, 125 related papers, published in the past two decades, were collected for the study, and 17 met the inclusion criteria. We analyzed the opportunities and challenges of ML methods for NBS including data preprocessing, classification models and pattern recognition methods based on their underlying approaches, data requirements, interpretability on a modular level, and performance. In general, ML methods have the potential to reduce the false positive rate and identify so far unknown metabolic patterns within NBS data. Our analysis revealed, that, among the presented, logistic regression analysis and support vector machines seem to be valuable candidates for NBS. However, due to the variety of diseases and methods, a general recommendation for a single method in NBS is not possible. Instead, these methods should be further investigated and compared to other approaches in comprehensive studies as they show promising results in NBS applications.
Collapse
Affiliation(s)
- Elaine Zaunseder
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityHeidelbergGermany
- Data Mining and Uncertainty Quantification (DMQ)Heidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
| | - Saskia Haupt
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityHeidelbergGermany
- Data Mining and Uncertainty Quantification (DMQ)Heidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
| | - Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineHeidelberg University HospitalHeidelbergGermany
| | - Sven F. Garbade
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineHeidelberg University HospitalHeidelbergGermany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineHeidelberg University HospitalHeidelbergGermany
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityHeidelbergGermany
- Data Mining and Uncertainty Quantification (DMQ)Heidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
| |
Collapse
|
21
|
Gramer G, Hoffmann GF. Second-tier strategies in newborn screening - potential and limitations. MED GENET-BERLIN 2022; 34:21-28. [PMID: 38836011 PMCID: PMC11006380 DOI: 10.1515/medgen-2022-2117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/14/2022] [Indexed: 06/06/2024]
Abstract
Newborn screening (NBS) is a public health measure to identify children with treatable disorders within the first days of life allowing presymptomatic treatment. It is the most successful measure of secondary medical prevention and part of public health programs in many countries worldwide. Application of second-tier strategies in NBS allows for increased specificity and consecutively a higher positive predictive value. Second-tier strategies can include analysis of specific biomarkers for a target disorder or may be based on molecular genetic analyses. Improving the quality of NBS, for example by second-tier strategies, is of utmost importance to maintain the high acceptance of NBS by families - especially as an increasing number of target disorders is being consecutively included into NBS programs.
Collapse
Affiliation(s)
- Gwendolyn Gramer
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Martinistraße 52, 20246 Hamburg, Germany
| | - Georg F Hoffmann
- University Hospital Heidelberg, Center for Pediatric and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Longo N, Sass JO, Jurecka A, Vockley J. Biomarkers for drug development in propionic and methylmalonic acidemias. J Inherit Metab Dis 2022; 45:132-143. [PMID: 35038174 PMCID: PMC9303879 DOI: 10.1002/jimd.12478] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/13/2022]
Abstract
There is an unmet need for the development and validation of biomarkers and surrogate endpoints for clinical trials in propionic acidemia (PA) and methylmalonic acidemia (MMA). This review examines the pathophysiology and clinical consequences of PA and MMA that could form the basis for potential biomarkers and surrogate endpoints. Changes in primary metabolites such as methylcitric acid (MCA), MCA:citric acid ratio, oxidation of 13 C-propionate (exhaled 13 CO2 ), and propionylcarnitine (C3) have demonstrated clinical relevance in patients with PA or MMA. Methylmalonic acid, another primary metabolite, is a potential biomarker, but only in patients with MMA. Other potential biomarkers in patients with either PA and MMA include secondary metabolites, such as ammonium, or the mitochondrial disease marker, fibroblast growth factor 21. Additional research is needed to validate these biomarkers as surrogate endpoints, and to determine whether other metabolites or markers of organ damage could also be useful biomarkers for clinical trials of investigational drug treatments in patients with PA or MMA. This review examines the evidence supporting a variety of possible biomarkers for drug development in propionic and methylmalonic acidemias.
Collapse
Affiliation(s)
- Nicola Longo
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA)Bonn‐Rhein‐Sieg University of Applied SciencesRheinbachGermany
| | | | - Jerry Vockley
- Division Medical Genetics, Department of PediatricsUniversity of Pittsburgh, School of Medicine, Center for Rare Disease Therapy, UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
23
|
Held PK, Singh E, Scott Schwoerer J. Screening for Methylmalonic and Propionic Acidemia: Clinical Outcomes and Follow-Up Recommendations. Int J Neonatal Screen 2022; 8:ijns8010013. [PMID: 35225935 PMCID: PMC8883915 DOI: 10.3390/ijns8010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Wisconsin's newborn screening program implemented second-tier testing on specimens with elevated propionylcarnitine (C3) to aid in the identification of newborns with propionic and methylmalonic acidemias. The differential diagnosis for elevated C3 also includes acquired vitamin B12 deficiency, which is currently categorized as a false positive screen. The goal of this study was to summarize screening data and evaluate their effectiveness at establishing diagnoses and categorizing false positive cases. All Wisconsin newborns born between 2013 and 2019 with a positive first-tier screen for C3 were included in this study. For each case the first- and second-tier newborn screening data and confirmatory test results were compiled. The clinical determination for each case was reviewed and categorized into groups: inborn error of metabolism, maternal B12 deficiency, infant B12 deficiency, and false positive. A review of the screening data showed a significant overlap in the concentration of biomarkers for newborns with genetic versus acquired disease. Additionally, a review of confirmatory test results showed incomplete ascertainment of maternal vitamin B12 status. The Wisconsin newborn screening program recommended a confirmatory testing algorithm to aid in the diagnosis of inborn errors of metabolism and acquired vitamin B12 deficiency.
Collapse
Affiliation(s)
- Patrice K. Held
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA;
- Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
- Correspondence: ; Tel.: +1-608-265-5968
| | - Emily Singh
- Division of Genetics, Medical College of Wisconsin with Children’s Wisconsin, Milwaukee, WI 53226, USA;
| | - Jessica Scott Schwoerer
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA;
| |
Collapse
|
24
|
Zhou M, Deng L, Huang Y, Xiao Y, Wen J, Liu N, Zeng Y, Zhang H. Application of the Artificial Intelligence Algorithm Model for Screening of Inborn Errors of Metabolism. Front Pediatr 2022; 10:855943. [PMID: 35664874 PMCID: PMC9160361 DOI: 10.3389/fped.2022.855943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are strongly related to abnormal growth and development in newborns and can even result in death. In total, 94,648 newborns were enrolled for expanded newborn screening using tandem mass spectrometry (MS/MS) from 2016 to 2020 at the Neonatal Disease Screening Center of the Maternal and Child Health Hospital in Shaoyang City, China. A total of 23 confirmed cases were detected in our study with an incidence rate of 1:4,115. A total of 10 types of IEM were identified, and the most common IEMs were phenylalanine hydroxylase deficiency (PAHD; 1:15,775) and primary carnitine deficiency (PCD; 1:18,930). Mutations in phenylalanine hydroxylase (PAH) and SLC22A5 were the leading causes of IEMs. To evaluate the application effect of artificial intelligence (AI) in newborn screening, we used AI to retrospectively analyze the screening results and found that the false-positive rate could be decreased by more than 24.9% after using AI. Meanwhile, a missed case with neonatal intrahepatic cholestasis citrin deficiency (NICCD) was found, the infant had a normal citrulline level (31 μmol/L; cutoff value of 6-32 μmol/L), indicating that citrulline may not be the best biomarker of intrahepatic cholestasis citrin deficiency. Our results indicated that the use of AI in newborn screening could improve efficiency significantly. Hence, we propose a novel strategy that combines expanded neonatal IEM screening with AI to reduce the occurrence of false positives and false negatives.
Collapse
Affiliation(s)
- Muping Zhou
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Liyuan Deng
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Yan Huang
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Ying Xiao
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Jun Wen
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Na Liu
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Yingchao Zeng
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Hua Zhang
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| |
Collapse
|
25
|
Fingerhut R. The Editor's Choice for Issue 3, Volume 7. Int J Neonatal Screen 2021; 7:ijns7040084. [PMID: 34940054 PMCID: PMC8704320 DOI: 10.3390/ijns7040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Dear Readers: Choosing one paper from a total of 28 papers published in the third issue of Volume 7 was quite a challenge [...].
Collapse
Affiliation(s)
- Ralph Fingerhut
- SYNLAB MVZ Weiden, Zur Kesselschmiede 4, 92637 Weiden, Germany
| |
Collapse
|
26
|
Dubland JA, Rakić B, Vallance H, Sinclair G. Analysis of 2-methylcitric acid, methylmalonic acid, and total homocysteine in dried blood spots by LC-MS/MS for application in the newborn screening laboratory: A dual derivatization approach. J Mass Spectrom Adv Clin Lab 2021; 20:1-10. [PMID: 34820666 PMCID: PMC8601015 DOI: 10.1016/j.jmsacl.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Inborn errors of propionate, cobalamin and methionine metabolism are targets for Newborn Screening (NBS) in most programs world-wide, and are primarily screened by analyzing for propionyl carnitine (C3) and methionine in dried blood spot (DBS) cards using tandem mass spectrometry (MS/MS). Single-tier NBS approaches using C3 and methionine alone lack specificity, which can lead to an increased false-positive rate if conservative cut-offs are applied to minimize the risk of missing cases. Implementation of liquid chromatography tandem mass spectrometry (LC-MS/MS) second-tier testing for 2-methylcitric acid (MCA), methylmalonic acid (MMA), and homocysteine (HCY) from the same DBS card can improve disease screening performance by reducing the false-positive rate and eliminating the need for repeat specimen collection. However, DBS analysis of MCA, MMA, and HCY by LC-MS/MS is challenging due to limited specimen size and analyte characteristics leading to a combination of low MS/MS sensitivity and poor reverse-phase chromatographic retention. Sufficient MS response and analytical performance can be achieved for MCA by amidation using DAABD-AE and by butylation for MMA and HCY. Herein we describe the validation of a second-tier dual derivatization LC-MS/MS approach to detect elevated MCA, MMA, and HCY in DBS cards for NBS. Clinical utility was demonstrated by retrospective analysis of specimens, an interlaboratory method comparison, and assessment of external proficiency samples. Imprecision was <10.8% CV, with analyte recoveries between 90.2 and 109.4%. Workflows and analytical performance characteristics of this second-tier LC-MS/MS approach are amenable to implementation in the NBS laboratory.
Collapse
Key Words
- 2-Methylcitric acid
- C2, acetylcarnitine
- C3, propionylcarnitine
- CBS, cystathionine β-synthase
- Cbl, cobalamin
- DAABD-AE, 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole
- DBS, dried blood spot
- DMAP, 4-(dimethylamino)pyridine
- DTT, dithiothreitol
- EDC, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
- ESI, electrospray ionization
- FA, formic acid
- GC, gas chromatography
- GPCho’s, glycerophosphocholines
- HCY, homocysteine
- HCl, hydrochloric acid
- Homocysteine
- LC, liquid chromatography
- LLOD, lower limit of detection
- LLOQ, lower limit of quantitation
- MCA, 2-methylcitric acid
- MMA, methylmalonic acid
- MPs, mobile phases
- MRM, multiple reaction monitoring
- MS, mass spectrometry
- MS/MS, tandem mass spectrometry
- Mass spectrometry
- Met, methionine
- Methylmalonic acid
- NBS, newborn screening
- Newborn screening
- PPV, positive predictive value
- Phe, phenylalanine
- QC, quality control
- S/N, signal-to-noise
- Second-tier
- rpm, revolutions per minute
Collapse
Affiliation(s)
- Joshua A. Dubland
- Department of Pathology and Laboratory Medicine, British Columbia Children’s Hospital, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Corresponding author at: British Columbia Children’s Hospital, Department of Pathology and Laboratory Medicine, Room 2F17, 4500 Oak St, Vancouver, BC V6H 3N1, Canada.
| | - Bojana Rakić
- Department of Pathology and Laboratory Medicine, British Columbia Children’s Hospital, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hilary Vallance
- Department of Pathology and Laboratory Medicine, British Columbia Children’s Hospital, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Graham Sinclair
- Department of Pathology and Laboratory Medicine, British Columbia Children’s Hospital, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
27
|
|
28
|
Bai Y, Song Y, Zhang J, Fu S, Wu L, Xia C, Xu C. GC/MS and LC/MS Based Serum Metabolomic Analysis of Dairy Cows With Ovarian Inactivity. Front Vet Sci 2021; 8:678388. [PMID: 34490390 PMCID: PMC8417594 DOI: 10.3389/fvets.2021.678388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Metabolic disorders may lead to the inactive ovaries of dairy cows during early lactation. However, the detailed metabolic profile of dairy cows with inactive ovaries around 55 days postpartum has not been clearly elucidated. The objective of this study was to investigate the metabolic difference in cows with inactive ovaries and estrus from the perspective of serum metabolites. According to clinical manifestations, B-ultrasound scan, rectal examination, 15 cows were assigned to the estrus group (E; follicular diameter 15–20 mm) and 15 to the inactive ovary group (IO; follicular diameter <8 mm and increased <2 mm within 5 days over two examinations). The blood was collected from the tail vein of the cow to separate serum 55–60 days postpartum, and then milked and fasted in the morning. Serum samples were analyzed using gas chromatography time-of-flight mass spectrometry technology (GC-TOF-MS) and ultra-high-pressure liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS). Differences in serum metabolites were identified using multivariate statistical analysis and univariate analysis. Thirty differentially abundant metabolites were identified between the two groups. In cows with inactive ovaries compared with cows in estrus, 20 serum metabolites were significantly higher (beta-cryptoxanthin (p = 0.0012), 9-cis-retinal (p = 0.0030), oxamic acid (p = 0.0321), etc.) while 10 metabolites were significantly lower (monostearin (p = 0.0001), 3-hydroxypropionic acid (p = 0.0005), D-talose (p = 0.0018), etc.). Pathway analysis indicated that the serum differential metabolites of multiparous cows in estrus obtained by the two metabolomics techniques were mainly involved in β-alanine metabolism and steroid biosynthesis metabolism, while other involved metabolic pathways were related to metabolism of glyoxylate; dicarboxylate metabolism; fructose, mannose, glutathione, glycerolipid, glycine, serine, threonine, propanoate, retinol, and pyrimidine metabolism. This indicates that the abnormalities in glucose metabolism, lipid metabolism, amino acid metabolism, and glutathione metabolism of postpartum dairy cows obstructed follicular development.
Collapse
Affiliation(s)
- Yunlong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Yuxi Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Jiang Zhang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
| | - Shixin Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Ling Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, China
| |
Collapse
|
29
|
Yang Q, Shi BH, Tian GL, Niu QQ, Tang J, Linghu DD, He HQ, Wu BQ, Yang JT, Xu L, Yu RQ. GC–MS urinary metabolomics analysis of inherited metabolic diseases and stable metabolic biomarker screening by a comprehensive chemometric method. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Development of Second-Tier Liquid Chromatography-Tandem Mass Spectrometry Analysis for Expanded Newborn Screening in Japan. Int J Neonatal Screen 2021; 7:ijns7030044. [PMID: 34287228 PMCID: PMC8293176 DOI: 10.3390/ijns7030044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
To minimize false-positive cases in newborn screening by tandem mass spectrometry in Japan, practical second-tier liquid chromatography-tandem mass spectrometry analyses have been developed using a multimode ODS column with a single set of mobile phases and different gradient elution programs specific to the analysis of acylcarnitines, acylglycines, amino acids, and organic acids. Most analyses were performed using underivatized samples, except for analysis of methylcitric acid, and careful conditioning of the column was necessary for analyses of organic acids. Our second-tier tests enabled us to measure many metabolites useful for detection of target disorders, including allo-isoleucine, homocysteine, methylmalonic acid, and methylcitric acid. We found that accumulation of 3-hydroxyglutaric acid was specific to glutaric acidemia type I and that the ratio of 3-hydroxyisovaleric acid to 3-hydroxyisovalerylcarnitine was useful to detect newborns of mothers with 3-methylcrotonyl-CoA carboxylase deficiency. Data from the analysis of short-chain acylcarnitine and acylglycine were useful for differential diagnosis in cases positive for C5-OH-acylcarnitine or C5-acylcarnitine.
Collapse
|
31
|
Pajares S, Arranz JA, Ormazabal A, Del Toro M, García-Cazorla Á, Navarro-Sastre A, López RM, Meavilla SM, de Los Santos MM, García-Volpe C, de Aledo-Castillo JMG, Argudo A, Marín JL, Carnicer C, Artuch R, Tort F, Gort L, Fernández R, García-Villoria J, Ribes A. Implementation of second-tier tests in newborn screening for the detection of vitamin B 12 related acquired and genetic disorders: results on 258,637 newborns. Orphanet J Rare Dis 2021; 16:195. [PMID: 33931066 PMCID: PMC8086297 DOI: 10.1186/s13023-021-01784-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Alteration of vitamin B12 metabolism can be genetic or acquired, and can result in anemia, failure to thrive, developmental regression and even irreversible neurologic damage. Therefore, early diagnosis and intervention is critical. Most of the neonatal cases with acquired vitamin B12 deficiency have been detected by clinical symptoms and only few of them trough NBS programs. We aim to assess the usefulness of the second-tier test: methylmalonic acid (MMA), methylcitric acid (MCA) and homocysteine (Hcys) in our newborn screening program and explore the implications on the detection of cobalamin (vitamin B12) related disorders, both genetic and acquired conditions. METHODS A screening strategy using the usual primary markers followed by the analysis of MMA, MCA and Hcys as second tier-test in the first dried blood spot (DBS) was developed and evaluated. RESULTS During the period 2015-2018 a total of 258,637 newborns were screened resulting in 130 newborns with acquired vitamin B12 deficiency (incidence 1:1989), 19 with genetic disorders (incidence 1:13,613) and 13 were false positive. No false negatives were notified. Concerning the second-tier test, the percentage of cases with MMA above the cut-off levels, both for genetic and acquired conditions was very similar (58% and 60%, respectively). Interestingly, the percentage of cases with increased levels of Hcys was higher in acquired conditions than in genetic disorders (87% and 47%, respectively). In contrast, MCA was high only in 5% of the acquired conditions versus in 53% of the genetic disorders, and it was always very high in all patients with propionic acidemia. CONCLUSIONS When screening for methylmalonic acidemia and homocystinuria, differential diagnosis with acquired vitamin B12 deficiency should be done. The results of our strategy support the inclusion of this acquired condition in the NBS programs, as it is easily detectable and allows the adoption of corrective measures to avoid the consequences of its deficiency.
Collapse
Affiliation(s)
- Sonia Pajares
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain.,Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain
| | | | - Aida Ormazabal
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Inborn Errors of Metabolism Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mireia Del Toro
- Unit of Metabolic Diseases, Hospital Vall D'Hebrón, Barcelona, Spain
| | - Ángeles García-Cazorla
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Inborn Errors of Metabolism Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Aleix Navarro-Sastre
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain
| | - Rosa María López
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain.,Biomedical Research Institute, August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Camila García-Volpe
- Inborn Errors of Metabolism Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jose Manuel González de Aledo-Castillo
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain
| | - Ana Argudo
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain
| | - Jose Luís Marín
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain
| | - Clara Carnicer
- Unit of Metabolic Diseases, Hospital Vall D'Hebrón, Barcelona, Spain
| | - Rafael Artuch
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Inborn Errors of Metabolism Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Frederic Tort
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain.,Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Biomedical Research Institute, August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Gort
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain.,Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Biomedical Research Institute, August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Fernández
- Maternal and Child Health Service, Public Health Agency of Catalonia, Health Department, Government of Catalonia, Barcelona, Spain
| | - Judit García-Villoria
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain.,Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Biomedical Research Institute, August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonia Ribes
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain. .,Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain. .,Biomedical Research Institute, August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
32
|
Maternal vitamin deficiency mimicking multiple acyl-CoA dehydrogenase deficiency on newborn screening. Mol Genet Metab Rep 2021; 27:100738. [PMID: 33732619 PMCID: PMC7941148 DOI: 10.1016/j.ymgmr.2021.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background In infancy multiple acyl-CoA dehydrogenase deficiency (MADD) is commonly a severe inherited metabolic disease caused by genetic defects in electron transfer flavoprotein (ETF) or ETF ubiquinone oxidoreductase. Both enzymes require flavin adenine dinucleotide (FAD) as a cofactor. Riboflavin (vitamin B2) is a precursor in the synthesis of FAD. MADD can be detected by newborn screening (NBS) based on elevation of multiple acylcarnitines. Methods We present the results of two children whose NBS results and subsequent confirmatory testing resulted in a suspected diagnosis of MADD. In parallel in both children vitamin B12 deficiency was detected. Results Biochemical profiles normalized rapidly in both children under supplementation with riboflavin. After extensive work-up of both cases including molecular genetic studies there was no indication of MADD. Vitamin B12 deficiency in both children was caused by maternal vitamin B12 deficiency and was rapidly corrected by oral supplementation with vitamin B12 or (partial) formula feeding. As both vitamin B12 and riboflavin have similar food sources we postulate that in these cases positive NBS for MADD was caused by combined maternal vitamin B deficiencies. Conclusion The differential diagnosis of maternally caused vitamin B deficiencies should be considered in children with abnormal NBS results for MADD, especially in the presence of normal molecular genetic analysis or in case of associated findings of other maternal vitamin B deficiencies like vitamin B12 or folic acid deficiency.
Collapse
|
33
|
Cicalini I, Pieragostino D, Rizzo C, Verrocchio S, Semeraro D, Zucchelli M, Di Michele S, Dionisi-Vici C, Stuppia L, De Laurenzi V, Bucci I, Rossi C. Partial Biotinidase Deficiency Revealed Imbalances in Acylcarnitines Profile at Tandem Mass Spectrometry Newborn Screening. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041659. [PMID: 33572391 PMCID: PMC7916230 DOI: 10.3390/ijerph18041659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Biotinidase (BTD) deficiency is an autosomal recessive inherited neurocutaneous disorder. BTD recycles the vitamin biotin, a coenzyme essential for the function of four biotin-dependent carboxylases, including propionyl-CoA carboxylase, 3-methylcrotonyl-CoA carboxylase, pyruvate carboxylase, and acetyl-CoA carboxylase. Due to deficient activities of the carboxylases, BTD deficiency is also recognized as late-onset multiple carboxylase deficiency and is associated with secondary alterations in the metabolism of amino acids, carbohydrates, and fatty acids. BTD deficiency can be classified as "profound", with less than 10% of mean normal activity, and as "partial" with 10-30% of mean normal activity. Newborn screening (NBS) of BTD deficiency is performed in most countries and is able to detect both variants. Moreover, mild metabolic alterations related to carboxylase deficiency in profound BTD deficiency could result and possibly be revealed in the metabolic profile by tandem mass spectrometry (MS/MS) NBS. Here, we report the case of a newborn female infant with an initial suspected BTD deficiency at the NBS test, finally confirmed as a partial variant by molecular testing. Although BTD deficiency was partial, interestingly her metabolic profile at birth and during the follow-up tests revealed, for the first time, alterations in specific acylcarnitines as a possible result of the deficient activity of biotin-dependent carboxylases.
Collapse
Affiliation(s)
- Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (S.V.); (D.S.); (M.Z.); (L.S.); (V.D.L.); (I.B.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (S.V.); (D.S.); (M.Z.); (L.S.); (V.D.L.); (I.B.)
- Department of Innovative Technologies in Medicine & Dentistry, University ‘‘G. d’Annunzio’’ of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristiano Rizzo
- Metabolic Diseases Unit, Bambino Gesù Children Hospital and Research Institute, 00165 Rome, Italy; (C.R.); (C.D.-V.)
| | - Sara Verrocchio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (S.V.); (D.S.); (M.Z.); (L.S.); (V.D.L.); (I.B.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Daniela Semeraro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (S.V.); (D.S.); (M.Z.); (L.S.); (V.D.L.); (I.B.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirco Zucchelli
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (S.V.); (D.S.); (M.Z.); (L.S.); (V.D.L.); (I.B.)
- Department of Innovative Technologies in Medicine & Dentistry, University ‘‘G. d’Annunzio’’ of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Di Michele
- Department of Pediatrics, “Spirito Santo” Hospital, 65100 Pescara, Italy;
| | - Carlo Dionisi-Vici
- Metabolic Diseases Unit, Bambino Gesù Children Hospital and Research Institute, 00165 Rome, Italy; (C.R.); (C.D.-V.)
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (S.V.); (D.S.); (M.Z.); (L.S.); (V.D.L.); (I.B.)
- Department of Psychological, Health and Territory Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (S.V.); (D.S.); (M.Z.); (L.S.); (V.D.L.); (I.B.)
- Department of Innovative Technologies in Medicine & Dentistry, University ‘‘G. d’Annunzio’’ of Chieti-Pescara, 66100 Chieti, Italy
| | - Ines Bucci
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (S.V.); (D.S.); (M.Z.); (L.S.); (V.D.L.); (I.B.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudia Rossi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (D.P.); (S.V.); (D.S.); (M.Z.); (L.S.); (V.D.L.); (I.B.)
- Department of Psychological, Health and Territory Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0871-541596; Fax: +39-0871-541598
| |
Collapse
|
34
|
Cambra Conejero A, Martínez Figueras L, Ortiz Temprado A, Blanco Soto P, Martín Rivada Á, Palomino Pérez L, Cañedo Villarroya E, Pedrón Giner C, Quijada Fraile P, Martín-Hernández E, García Silva MT, Chumillas Calzada S, Bellusci M, Belanger-Quintana A, Stanescu S, Martínez-Pardo Casanova M, Moráis López A, Bergua Martínez A, Ruiz-Salas P, Pérez González B, Ugarte M, Ruano MLF. [Newborn Screening Program in the Community of Madrid: evaluation of positive cases.]. Rev Esp Salud Publica 2020; 94:e202012185. [PMID: 33372917 PMCID: PMC11582918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVE Tandem mass spectrometry (MS/MS) is being used for newborn screening since this laboratory testing technology increases the number of metabolic disorders that can be detected from dried blood-spot specimens. In the Community of Madrid, it was implemented in March 2011 and it includes 13 aminoacidopathies, fatty acid oxidation disorders and organic acidemias. The aim of this study was to describe our experience and evaluate the screening positive cases in a period of 9 years (2011-2019). METHODS During the period of the study, a total of 592.822 neonates were screened with this expanded program by MS/MS in the Community of Madrid. Amino acids, acylcarnitines, and succinylacetone were quantified in all samples that met the quality criteria. Means, medians, percentiles and standard deviation of the analytes and ratios of interest were calculated. RESULTS 901 patients (0,15 %) with a positive screening test were referred to clinical evaluation. 230 patients were diagnosed of 30 different inborn errors of metabolism (prevalence 1:2577), 11 of which were not included as a target in the Community of Madrid newborn screening program. The global positive predictive value was 25,6 %. During this period of time, two false negative cases were detected. The most prevalent disorders were phenylketonuria/hyperphenylalaninemia and medium chain acyl-CoA dehydrogenase deficiency (1:6444 and 1:13174 respectively). 93 % of the patients were detected in the presymptomatic stage. CONCLUSIONS During the last 9 years a large number of cases of IEM have been detected with an acceptable global positive predictive value. These results confirm the utility of inborn errors of metabolism newborn screening as a public health program.
Collapse
Affiliation(s)
- Ana Cambra Conejero
- Laboratorio de Cribado Neonatal de la Comunidad de Madrid. Servicio de Bioquímica Clínica. Hospital General Universitario Gregorio Marañón. Madrid. España
| | - Laura Martínez Figueras
- Laboratorio de Cribado Neonatal de la Comunidad de Madrid. Servicio de Bioquímica Clínica. Hospital General Universitario Gregorio Marañón. Madrid. España
| | - Alicia Ortiz Temprado
- Laboratorio de Cribado Neonatal de la Comunidad de Madrid. Servicio de Bioquímica Clínica. Hospital General Universitario Gregorio Marañón. Madrid. España
| | - Paula Blanco Soto
- Laboratorio de Cribado Neonatal de la Comunidad de Madrid. Servicio de Bioquímica Clínica. Hospital General Universitario Gregorio Marañón. Madrid. España
| | - Álvaro Martín Rivada
- Sección de Gastroenterología y Nutrición. Hospital Infantil Universitario Niño Jesús. Madrid. España
| | - Laura Palomino Pérez
- Sección de Gastroenterología y Nutrición. Hospital Infantil Universitario Niño Jesús. Madrid. España
| | - Elvira Cañedo Villarroya
- Sección de Gastroenterología y Nutrición. Hospital Infantil Universitario Niño Jesús. Madrid. España
| | - Consuelo Pedrón Giner
- Sección de Gastroenterología y Nutrición. Hospital Infantil Universitario Niño Jesús. Madrid. España
| | - Pilar Quijada Fraile
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias. Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas. Hospital Universitario 12 de Octubre. Madrid. España
| | - Elena Martín-Hernández
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias. Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas. Hospital Universitario 12 de Octubre. Madrid. España
| | - María Teresa García Silva
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias. Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas. Hospital Universitario 12 de Octubre. Madrid. España
| | - Silvia Chumillas Calzada
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias. Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas. Hospital Universitario 12 de Octubre. Madrid. España
| | - Marcello Bellusci
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias. Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas. Hospital Universitario 12 de Octubre. Madrid. España
| | - Amaya Belanger-Quintana
- Centro de Referencia Nacional (CSUR) en Enfermedades Metabólicas. Hospital Universitario Ramón y Cajal. Madrid. España
| | - Sinziana Stanescu
- Centro de Referencia Nacional (CSUR) en Enfermedades Metabólicas. Hospital Universitario Ramón y Cajal. Madrid. España
| | | | - Ana Moráis López
- Unidad de Nutrición Infantil y Enfermedades Metabólicas. Hospital Universitario La Paz. Madrid. España
| | - Ana Bergua Martínez
- Unidad de Nutrición Infantil y Enfermedades Metabólicas. Hospital Universitario La Paz. Madrid. España
| | - Pedro Ruiz-Salas
- Centro de Diagnóstico de Enfermedades Moleculares. Universidad Autónoma de Madrid. IdiPAZ. CIBERER. Madrid. España
| | - Belén Pérez González
- Centro de Diagnóstico de Enfermedades Moleculares. Universidad Autónoma de Madrid. IdiPAZ. CIBERER. Madrid. España
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares. Universidad Autónoma de Madrid. IdiPAZ. CIBERER. Madrid. España
| | - Miguel L F Ruano
- Laboratorio de Cribado Neonatal de la Comunidad de Madrid. Servicio de Bioquímica Clínica. Hospital General Universitario Gregorio Marañón. Madrid. España
| |
Collapse
|
35
|
Pajares García S, López Galera RM, Marín Soria JL, Argudo Ramírez A, González de Aledo-Castillo JM, Ribes Rubió A, Prats Viedma B, Asso Ministral L, García-Villoria J. [Impact of the inclusion of second-tier tests in the newborn screening program of Catalonia and in other international programs.]. Rev Esp Salud Publica 2020; 94:e202012158. [PMID: 33323922 PMCID: PMC11583059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVE Newborn screening programmes (NBSP) have experienced a qualitative breakthrough due to the implementation of tandem mass spectrometry. However, the tests used give rise to false positives (FP) generating an excessive request for second samples with the consequent anxiety of the families. In order to avoid this problem several programmes have developed second-tier tests (2TT). METHODS This article presents our experience in the implementation of 2TT in the NBSP of Catalonia, as well as in other international programmes. RESULTS From 2004 to the present, 2TT tests have been developed for more than 30 diseases. The use of 2TT helps to decrease the FP rate and increase the positive predictive value (PPV). In the NBSP of Catalonia, the implementation of 2TT for the detection of methylmalonic and propionic acidemias, homocystinurias, maple syrup disease and citrulinaemia, has managed to increase the PPV to 95% and decrease the PF rate to less than 0.01%. In cystic fibrosis, the application of 2TT slightly increases PPV but with a significant decrease in the request for second samples and in the number of cases referred to clinical units. CONCLUSIONS The introduction of 2TT in the NBSP allows to reduce considerably the FP, decreases the number of requested samples, as well as both anxiety and stress of the families, at the same time that the hospital costs are reduced and the PPV is increased, improving notably the efficiency of the NBSP.
Collapse
Affiliation(s)
- Sonia Pajares García
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
- Ciber de Enfermedades Raras (CIBERER). España
| | - Rosa Mª López Galera
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Barcelona. España
| | - Jose Luis Marín Soria
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
| | - Ana Argudo Ramírez
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
| | | | - Antonia Ribes Rubió
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
- Ciber de Enfermedades Raras (CIBERER). España
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Barcelona. España
| | - Blanca Prats Viedma
- Servicio de Salud Maternoinfantil. Subdirección General de Promoción de la Salud. Agencia de Salud Pública de Cataluña. Departamento de Salud. Generalitat de Catalunya. Barcelona. España
| | - Laia Asso Ministral
- Servicio de Salud Maternoinfantil. Subdirección General de Promoción de la Salud. Agencia de Salud Pública de Cataluña. Departamento de Salud. Generalitat de Catalunya. Barcelona. España
| | - Judit García-Villoria
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
- Ciber de Enfermedades Raras (CIBERER). España
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Barcelona. España
| |
Collapse
|
36
|
Maines E, Catesini G, Boenzi S, Mosca A, Candusso M, Dello Strologo L, Martinelli D, Maiorana A, Liguori A, Olivieri G, Taurisano R, Piemonte F, Rizzo C, Spada M, Dionisi-Vici C. Plasma methylcitric acid and its correlations with other disease biomarkers: The impact in the follow up of patients with propionic and methylmalonic acidemia. J Inherit Metab Dis 2020; 43:1173-1185. [PMID: 32681732 DOI: 10.1002/jimd.12287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Methylcitric acid (MCA) analysis has been mainly utilized for the diagnosis of propionate disorders or as a second-tier test in newborn screening, but its utility for patients monitoring still needs to be established. We explored the potential contribution of MCA in the long-term management of organic acidurias. We prospectively evaluated plasma MCA and its relationship with disease biomarkers, clinical status, and disease burden in 22 patients, 13 with propionic acidemia (PA) and nine with methylmalonic acidemia (MMA) on standard treatment and/or after transplantation. Samples were collected at scheduled routine controls or during episodes of metabolic decompensation (MD), 10 patients were evaluated after transplantation (six liver, two combined liver and kidney, 2 kidney). MCA levels were higher in PA compared to MMA and its levels were not influenced by the clinical status (MD vs well state). In MMA, MCA was higher in elder patients and, along with fibroblast growth factor 21 (FGF21) and plasma methylmalonic acid, negatively correlated with GFR. In both diseases, MCA correlated with ammonia, glycine, lysine, C3, and the C3/C2, C3/C16 ratios. The disease burden showed a direct correlation with MCA and FGF21, for both diseases. All transplanted patients showed a significant reduction of MCA in comparison to baseline values, with some differences dependent on the type of transplantation. Our study provided new insights in understanding the disease pathophysiology, showing similarities between MCA and FGF21 in predicting disease burden, long-term complications and in evaluating the impact of organ transplantation.
Collapse
Affiliation(s)
- Evelina Maines
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giulio Catesini
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Boenzi
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Antonella Mosca
- Division of Hepatology, Gastroenterology and Nutrition, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Manila Candusso
- Division of Hepatology, Gastroenterology and Nutrition, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Arianna Maiorana
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandra Liguori
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giorgia Olivieri
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Roberta Taurisano
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Marco Spada
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
37
|
Yang Q, Tian GL, Qin JW, Wu BQ, Tan L, Xu L, Wu SZ, Yang JT, Jiang JH, Yu RQ. Coupling bootstrap with synergy self-organizing map-based orthogonal partial least squares discriminant analysis: Stable metabolic biomarker selection for inherited metabolic diseases. Talanta 2020; 219:121370. [DOI: 10.1016/j.talanta.2020.121370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
|
38
|
Vitamin B 12 Deficiency in Newborns and their Mothers-Novel Approaches to Early Detection, Treatment and Prevention of a Global Health Issue. Curr Med Sci 2020; 40:801-809. [PMID: 33123894 DOI: 10.1007/s11596-020-2260-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Vitamin B12 deficiency, mostly of maternal origin in newborns, is a well treatable condition but can cause severe neurologic sequelae. In women of childbearing age and pregnant women worldwide vitamin B12 deficiency has been reported with frequencies of 10%-50%. Children with vitamin B12 deficiency are asymptomatic at birth but may develop severe multisystemic symptoms, including irreversible developmental impairment in the second half-year of life. Early detection of vitamin B12 deficiency allows for presymptomatic treatment. This article provides an overview over the function of vitamin B12 and discusses causes and frequency of vitamin B12 deficiency in newborns, infants, and women of childbearing age. It describes novel successful approaches to newborn screening (NBS) for vitamin B12 deficiency and results of a pilot study which performed systematic NBS for vitamin B12 deficiency using so-called second-tier strategies by measuring homocysteine and methylmalonic acid in dried blood spots. Recommendations for diagnostics in mothers of children with vitamin B12 deficiency are described as well as results of systematic work-up in mothers and treatment and follow-up of children with vitamin B12 deficiency detected by NBS. Treatment options of vitamin B12 deficiency are presented including a newly developed standardized supplementation scheme with exclusively oral vitamin B12 supplementation. Recommendations for preventive approaches to vitamin B12 deficiency for children and mothers are stated. Many children worldwide could benefit from systematic inclusion of vitamin B12 deficiency into NBS panels. In addition, preventive approaches to maternal vitamin B12 deficiency should be implemented systematically during maternal care.
Collapse
|
39
|
Tang Y, Zhu Y, Sang S. A Novel LC-MS Based Targeted Metabolomic Approach to Study the Biomarkers of Food Intake. Mol Nutr Food Res 2020; 64:e2000615. [PMID: 32997396 DOI: 10.1002/mnfr.202000615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/27/2020] [Indexed: 12/25/2022]
Abstract
SCOPE In this work, an integrated strategy is developed for rapid discovery, precise identification, and automated quantification for the biomarkers of food intake (BFIs) for specific food exposure using an ultra-high-pressure liquid chromatography-high-resolution mass spectrometry (MS) based targeted metabolomics approach. METHODS AND RESULTS Using whole grain (WG) wheat intake as an example, the combination of paired mass distance networking and parallel reaction monitoring analysis is applied to selectively extract and identify WG metabolites in human urine samples. As a result, a total of 76 wheat phytochemical-derived metabolites, including 17 alkylresorcinol metabolites, 20 benzoxazinoid derivatives, and 39 phenolic acid metabolites are identified. Subsequently, a MS spectral database consisting of the identified metabolites is created by mzVault. The characteristics of identified metabolites from the database are incorporated into the TraceFinder software to establish a quantification platform. Using a standardized urine sample, the authors are able to simultaneously quantify both free and conjugated (sulfate and glucuronide) WG wheat metabolites in real samples without further enzymatic hydrolysis, which is validated by using authentic standards to quantify these metabolites. CONCLUSION This novel strategy opens the window to study the biomarkers of specific food intake and make it feasible to validate the BFIs in large-scale human studies.
Collapse
Affiliation(s)
- Yao Tang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Yingdong Zhu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| |
Collapse
|
40
|
Vitamin-B12-Mangel im Neugeborenen- und Säuglingsalter – Ursachen, Früherkennung, Diagnostik und Vorstellung eines primär oralen Behandlungsschemas. Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-01008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zusammenfassung
Hintergrund
Ein Vitamin‑B12-Mangel ist bei Neugeborenen meist bedingt durch einen mütterlichen Vitamin‑B12-Mangel. Beim Kind führt ein schwerer, unerkannter Vitamin‑B12-Mangel zu irreversiblen neurologischen Schädigungen und einer dauerhaften Entwicklungsstörung, die meist erst im zweiten Lebenshalbjahr klinisch erkannt wird. Eine Früherkennung durch das Neugeborenenscreening wird derzeit in Pilotprojekten evaluiert.
Fragestellung
Der vorliegende Beitrag gibt einen Überblick über mögliche Ursachen eines Vitamin‑B12-Mangels und präsentiert erfolgreiche Ansätze zur Früherkennung durch das Neugeborenenscreening sowie Empfehlungen zur Diagnostik bei Mutter und Kind. Für die Behandlung des Vitamin‑B12-Mangels im Neugeborenen- und Säuglingsalter wird bislang häufig zunächst eine intramuskuläre Applikation von Vitamin B12 verwendet. Als Alternative wird von den Autoren ein ausschließlich orales Supplementationsschema mit Vitamin B12 vorgestellt.
Ergebnisse
Im Rahmen des Pilotprojektes „Neugeborenenscreening 2020“ am Screeningzentrum Heidelberg wurde für die Behandlung von Kindern mit Vitamin‑B12-Mangel nach Detektion über das Neugeborenenscreening ein standardisiertes ausschließlich orales Supplementationsschema mit Vitamin B12 entwickelt und erfolgreich angewendet. Dieses besteht in der Verabreichung von Vitamin B12 0,5 mg/Tag p.o. über 3 Tage in Form eines Flüssigpräparates, gefolgt von 0,1 mg/Tag p.o. Über die erste Woche erfolgt zusätzlich die Gabe von 0,4 mg Folsäure pro Tag p.o. Nach Normalisierung aller Parameter des Vitamin‑B12-Haushaltes (einschließlich der funktionellen Marker Homozystein und Methylmalonsäure) erfolgt während der Stillzeit eine Vitamin‑B12-Supplementation in Erhaltungsdosis von 5 µg/Tag p.o. bis zur sicheren Einführung fleischhaltiger Beikost bzw. von Vitamin‑B12-haltiger Nahrung.
Schlussfolgerung
Das hier dargestellte rein orale Behandlungsschema für den Vitamin‑B12-Mangel stellt eine effektive, kostengünstige, schmerzlose und damit besonders kinderfreundliche Behandlung dar.
Collapse
|
41
|
González-Irazabal Y, Hernandez de Abajo G, Martínez-Morillo E. Identifying and overcoming barriers to harmonize newborn screening programs through consensus strategies. Crit Rev Clin Lab Sci 2020; 58:29-48. [PMID: 32692303 DOI: 10.1080/10408363.2020.1781778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The benefits of newborn screening (NBS) programs have been widely demonstrated after more than 50 years since first established. NBS enables the detection of the disease before the child shows clinical symptoms, allowing clinicians to act early and facilitating appropriate interventions to prevent or improve adverse outcomes. Delay or lack of medical intervention in these infants may lead to developmental delay, severe disability, or premature death. NBS programs have grown exponentially both in the number of diseases screened and in complexity, creating controversy. New technological advances, as well as the emergence of new therapies that require early disease detection, have allowed for the inclusion of new diseases in NBS screening programs. However, different countries and even different regions have in turn adopted very diverse strategies and diagnostic algorithms when it comes to NBS. There are many factors responsible for these differences, such as the health care system, available funds, local politics, professional groups, and others that depend on the position taken by policymakers. These differences in NBS have led to discrepancies in detection opportunities between countries or regions, which has led to many varied attempts to harmonize NBS programs but not all have been equally satisfactory. Some countries have achieved good results, but always within their borders. Therefore, there are still many differences between NBS programs at the international level that must be overcome. These advances have also brought considerable uncertainty regarding ethical aspects and balance between benefits and harms. For this reason, and so that the situation of disparity in the global NBS programs can be minimized, health authorities must work to develop uniform criteria for decision-making and to take a further step toward harmonization. To do so, it is necessary to identify the crucial factors that lead to the adoption of different NBS programs worldwide, in order to analyze their influence and find ways to overcome them.
Collapse
|
42
|
Hu Z, Yang J, Lin Y, Wang J, Hu L, Zhang C, Zhang Y, Huang X. Determination of methylmalonic acid, 2-methylcitric acid, and total homocysteine in dried blood spots by liquid chromatography-tandem mass spectrometry: A reliable follow-up method for propionylcarnitine-related disorders in newborn screening. J Med Screen 2020; 28:93-99. [PMID: 32615850 DOI: 10.1177/0969141320937725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Determination of methylmalonic acid, 2-methylcitric acid, and total homocysteine in dried blood spots by liquid chromatography-tandem mass spectrometry has usually been used as a second-tier test to improve performance of newborn screening for propionylcarnitine-related disorders. However, factors that potentially affect its detection results have not been investigated, and we aimed to evaluate these influencing factors and explore their potential utility in newborn screening and initial follow-up for propionylcarnitine-related disorders. METHODS This study comprised a prospective group (1998 healthy infants, to establish cutoff values and investigate the influencing factors) and a retrospective group (804 suspected positive cases screened from 381, 399 newborns for propionylcarnitine-related disorders by tandem mass spectrometry, to evaluate the performance of newborn screening and initial follow-up). RESULTS Cutoff values for methylmalonic acid, 2-methylcitric acid, and total homocysteine were 2.12, 0.70, and 10.05 µmol/l, respectively. Concentration of methylmalonic acid, 2-methylcitric acid, and total homocysteine in dried blood spots is not impacted by sex, age, birth weight, gestational age, or dried blood spot storage time. A total of 75 of 804 cases were screened positive by combined tandem mass spectrometry and liquid chromatography-tandem mass spectrometry, thus eliminating 90% of the false positives without compromising sensitivity. Eighteen propionylcarnitine-related disorders were successfully identified, including one CblX case missed in the initial follow-up by tandem mass spectrometry. CONCLUSIONS Methylmalonic acid, 2-methylcitric acid, and total homocysteine detected in dried blood spots by liquid chromatography-tandem mass spectrometry is a reliable, specific, and sensitive approach for identifying propionylcarnitine-related disorders. We recommend this assay should be performed rather than tandem mass spectrometry in follow-up for propionylcarnitine-related disorders besides second-tier tests in newborn screening.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianbin Yang
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Junjuan Wang
- Department of Epidemiology and Bio-Statistics, 535300Zhejiang University School of Public Health, Hangzhou, China.,Zhejiang BiosanBiochemical Technologies Co. Ltd, Hangzhou, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Zhang
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yu Zhang
- Zhejiang BiosanBiochemical Technologies Co. Ltd, Hangzhou, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
43
|
Iijima H, Ishige N, Kubota M. Clinical Application of Liquid Chromatography Tandem Mass Spectrometry Using Dried Blood Spot as a More Rapid Method for Determination of Methylmalonic Acid, Propionylcarnitine, and Total Homocysteine. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2020. [DOI: 10.1590/2326-4594-jiems-2019-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Gramer G, Fang-Hoffmann J, Feyh P, Klinke G, Monostori P, Mütze U, Posset R, Weiss KH, Hoffmann GF, Okun JG. Newborn Screening for Vitamin B 12 Deficiency in Germany-Strategies, Results, and Public Health Implications. J Pediatr 2020; 216:165-172.e4. [PMID: 31604629 DOI: 10.1016/j.jpeds.2019.07.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate a systematic newborn screening (NBS) strategy for vitamin B12 deficiency. STUDY DESIGN In a prospective single-center NBS study, a systematic screening strategy for vitamin B12 deficiency was developed and evaluated. Tandem-mass spectrometry screening was complemented by 2 second-tier strategies, measuring methylmalonic/3-OH-propionic/methylcitric acid, and homocysteine from dried blood spots. RESULTS In a cohort of 176 702 children screened over 27 months, 33 children were detected by NBS in whom (maternal) vitamin B12 deficiency was confirmed. Homocysteine was the most sensitive marker for vitamin B12 deficiency, but only combination with a second-tier strategy evaluating methylmalonic acid allowed for detection of all 33 children. Mothers were of various ethnic origins, and 89% adhered to a balanced diet. Treatment in children was performed predominantly by oral vitamin B12 supplementation (84%), and all children remained without clinical symptoms at short-term follow-up. CONCLUSIONS Vitamin B12 deficiency is a treatable condition but can cause severe neurologic sequelae in infants if untreated. The proposed screening strategy is feasible and effective to identify moderate and severe cases of vitamin B12 deficiency. With an incidence of 1:5355 newborns, vitamin B12 deficiency is more frequent than inborn errors of metabolism included in NBS panels. Treatment of vitamin B12 deficiency is easy, and additional benefits can be achieved for previously undiagnosed affected mothers. This supports inclusion of vitamin B12 deficiency into NBS but also stresses the need for increased awareness of vitamin B12 deficiency in caregivers of pregnant women.
Collapse
Affiliation(s)
- Gwendolyn Gramer
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - Junmin Fang-Hoffmann
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Patrik Feyh
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Glynis Klinke
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Monostori
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Mütze
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Roland Posset
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Karl Heinz Weiss
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
45
|
Prodan Žitnik I, Černe D, Mancini I, Simi L, Pazzagli M, Di Resta C, Podgornik H, Repič Lampret B, Trebušak Podkrajšek K, Sipeky C, van Schaik R, Brandslund I, Vermeersch P, Schwab M, Marc J. Personalized laboratory medicine: a patient-centered future approach. Clin Chem Lab Med 2019; 56:1981-1991. [PMID: 29990304 DOI: 10.1515/cclm-2018-0181] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/11/2018] [Indexed: 12/12/2022]
Abstract
In contrast to population-based medical decision making, which emphasizes the use of evidence-based treatment strategies for groups of patients, personalized medicine is based on optimizing treatment at the level of the individual patient. The creation of molecular profiles of individual patients was made possible by the advent of "omics" technologies, based on high throughput instrumental techniques in combination with biostatistics tools and artificial intelligence. The goal of personalized laboratory medicine is to use advanced technologies in the process of preventive, curative or palliative patient management. Personalized medicine does not rely on changes in concentration of a single molecular marker to make a therapeutic decision, but rather on changes of a profile of markers characterizing an individual patient's status, taking into account not only the expected response to treatment of the disease but also the expected response of the patient. Such medical approach promises a more effective diagnostics with more effective and safer treatment, as well as faster recovery and restoration of health and improved cost effectiveness. The laboratory medicine profession is aware of its key role in personalized medicine, but to empower the laboratories, at least an enhancement in cooperation between disciplines within laboratory medicine will be necessary.
Collapse
Affiliation(s)
| | - Darko Černe
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Irene Mancini
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Lisa Simi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Mario Pazzagli
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Chiara Di Resta
- Vita-Salute San Raffaele University and Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Helena Podgornik
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Barbka Repič Lampret
- Unit for Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Unit for Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Csilla Sipeky
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ron van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, TheNetherlands
| | - Ivan Brandslund
- Biochemistry Department, University of Southern Denmark and Vejle Hospital, Vejle, Denmark
| | | | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Janja Marc
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
46
|
Rossi C, Cicalini I, Cufaro MC, Agnifili L, Mastropasqua L, Lanuti P, Marchisio M, De Laurenzi V, Del Boccio P, Pieragostino D. Multi-Omics Approach for Studying Tears in Treatment-Naïve Glaucoma Patients. Int J Mol Sci 2019; 20:ijms20164029. [PMID: 31426571 PMCID: PMC6721157 DOI: 10.3390/ijms20164029] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Primary open-angle glaucoma (POAG) represents the leading cause of irreversible blindness worldwide and is a multifactorial, chronic neurodegenerative disease characterized by retinal ganglion cell and visual field loss. There are many factors that are associated with the risk of developing POAG, with increased intraocular pressure being one of the most prevalent. Due to the asymptomatic nature of the disease, the diagnosis of POAG often occurs too late, which necessitates development of new effective screening strategies for early diagnosis of the disease. However, this task still remains unfulfilled. In order to provide further insights into the pathophysiology of POAG, we applied a targeted metabolomics strategy based on a high-throughput screening method for the determination of tear amino acids, free carnitine, acylcarnitines, succinylacetone, nucleosides, and lysophospholipids in naïve to therapy glaucomatous patients and normal controls. Also, we conducted proteomic analyses of the whole lacrimal fluid and purified extracellular vesicles obtained from POAG patients and healthy subjects. This multi-omics approach allowed us to conclude that POAG patients had lower levels of certain tear amino acids and lysophospholipids compared with controls. These targeted analyses also highlighted the low amount of acetylcarnitine (C2) in POAG patient which correlated well with proteomics data. Moreover, POAG tear proteins seemed to derive from extracellular vesicles, which carried a specific pro-inflammatory protein cargo.
Collapse
Affiliation(s)
- Claudia Rossi
- Center for Advanced Studies and Technology (CAST), University ''G. d'Annunzio'' of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University ''G. d'Annunzio'' of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), University ''G. d'Annunzio'' of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), University ''G. d'Annunzio'' of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University ''G. d'Annunzio'' of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Agnifili
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Opthalmic Clinic, Ss Annunziata Hospital, 66100 Chieti, Italy
| | - Leonardo Mastropasqua
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Opthalmic Clinic, Ss Annunziata Hospital, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), University ''G. d'Annunzio'' of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University ''G. d'Annunzio'' of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University ''G. d'Annunzio'' of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University ''G. d'Annunzio'' of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), University ''G. d'Annunzio'' of Chieti-Pescara, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences, University ''G. d'Annunzio'' of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
47
|
Gramer G, Fang-Hoffmann J, Feyh P, Klinke G, Monostori P, Okun JG, Hoffmann GF. High incidence of maternal vitamin B 12 deficiency detected by newborn screening: first results from a study for the evaluation of 26 additional target disorders for the German newborn screening panel. World J Pediatr 2018; 14:470-481. [PMID: 29948967 DOI: 10.1007/s12519-018-0159-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/04/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Newborn screening (NBS) in Germany currently includes 15 target disorders. Recent diagnostic improvements suggest an extension of the screening panel. METHODS Since August 2016, a prospective study evaluating 26 additional target disorders (25 metabolic disorders and vitamin B12-deficiency) in addition to the German screening panel is performed at the Newborn Screening Center Heidelberg. First-tier results from tandem-MS screening are complemented by second-tier strategies for 15 of the additional target disorders. NBS results of seven patients diagnosed symptomatically with one of the additional target disorders by selective screening since August 2016 are retrospectively evaluated. RESULTS Over a 13-month period, 68,418 children participated in the study. Second-tier analyses were performed in 5.4% of samples. Only 59 (0.1%) of study participants had abnormal screening results for one of the additional target disorders. Target disorders from the study panel were confirmed in 12 children: 1 3-hydroxy-3-methylglutaryl coenzyme A (CoA)-lyase deficiency, 1 citrullinemia type I, 1 multiple acyl-CoA dehydrogenase-deficiency, 1 methylenetetrahydrofolate reductase-deficiency, and 8 children with maternal vitamin B12-deficiency. In addition, six of seven patients diagnosed symptomatically outside the study with one of the target disorders would have been identified by the study strategy in their NBS sample. CONCLUSIONS Within 13 months, the study "Newborn Screening 2020" identified additional 12 children with treatable conditions while only marginally increasing the recall rate by 0.1%. Maternal vitamin B12-deficiency was the most frequent finding. Even more children could benefit from screening for the additional target disorders by extending the NBS panel for Germany and/or other countries.
Collapse
Affiliation(s)
- Gwendolyn Gramer
- Division of Neuropediatric and Metabolic Medicine, Department of General Pediatrics, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | - Junmin Fang-Hoffmann
- Division of Neuropediatric and Metabolic Medicine, Department of General Pediatrics, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Patrik Feyh
- Division of Neuropediatric and Metabolic Medicine, Department of General Pediatrics, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Glynis Klinke
- Division of Neuropediatric and Metabolic Medicine, Department of General Pediatrics, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Peter Monostori
- Division of Neuropediatric and Metabolic Medicine, Department of General Pediatrics, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Jürgen G Okun
- Division of Neuropediatric and Metabolic Medicine, Department of General Pediatrics, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Neuropediatric and Metabolic Medicine, Department of General Pediatrics, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| |
Collapse
|
48
|
Al Dhahouri N, Langhans CD, Al Hammadi Z, Okun JG, Hoffmann GF, Al-Jasmi F, Al-Dirbashi OY. Quantification of methylcitrate in dried urine spots by liquid chromatography tandem mass spectrometry for the diagnosis of propionic and methylmalonic acidemias. Clin Chim Acta 2018; 487:41-45. [PMID: 30217751 DOI: 10.1016/j.cca.2018.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023]
Abstract
Accumulation of methylcitrate is a biochemical hallmark of inborn errors of propionate metabolism, a group of disorders that include propionic acidemia, methylmalonic aciduria and cobalamin defects. In clinical laboratories, this analyte is measured without quantification by gas chromatography mass spectrometry as part of urine organic acids. Here we describe a simple, sensitive and specific method to quantify methylcitrate in dried urine spots by liquid chromatography tandem mass spectrometry. Methylcitrate is extracted and derivatized with 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole in a single step. A derivatization mixture was added to 3.2 mm disc of dried urine spots, incubated at 65 °C for 45 min and 4 μl of the reaction mixture were analyzed. Separation was achieved on C18 column with methylcitrate eluting at 3.8 min. Intraday and interday imprecision (n = 17) were ≤20.9%. The method was applied on dried urine spots from established patients and controls. In controls (n = 135), methylcitrate reference interval of 0.4-3.4 mmol/mol creatinine. In patients, methylcitrate ranged between 8.3 and 591 mmol/mol creatinine. Quantification of methylcitrate provides important diagnostic clues for propionic acidemia, methylmalonic aciduria and cobalamin disorders. The potential utilization of methylcitrate as monitoring biomarker of patients under treatment and whether it correlates with the clinical status has yet to be established.
Collapse
Affiliation(s)
- Nahid Al Dhahouri
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Claus-Dieter Langhans
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Jürgen G Okun
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Fatma Al-Jasmi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates; Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Osama Y Al-Dirbashi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates; Research Institute, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 5B2, Canada; Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
49
|
Maines E, Di Palma A, Burlina A. Food triggers and inherited metabolic disorders: a challenge to the pediatrician. Ital J Pediatr 2018; 44:18. [PMID: 29368648 PMCID: PMC5784653 DOI: 10.1186/s13052-018-0456-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022] Open
Abstract
Several disorders should be considered in the case of newborns and infants experiencing acute or recurrent symptoms after food ingestion. Immune-mediated adverse food reactions are the most frequent and always to be considered. Nevertheless, in the extensive differential diagnosis, clinicians should also include inherited metabolic disorders (IMDs). This review reports clinical features and diagnostic aspects of the most common IMDs that may present with acute manifestations triggered by food intake. Major focus will be amino acid and protein metabolism defects and carbohydrate disorders. Nowadays, for many of these disorders the risk of an acute presentation triggered by food has been decreased by the introduction of expanded newborn screening (NBS). Nevertheless, clinical suspicion remains essential because some IMDs do not have still reliable markers for NBS and a false negative screening result may occur. The aim of this review is to help pediatricians to take these rare inherited disorders into account in the differential diagnosis of acute or recurrent gastrointestinal symptoms related to food intake, which may avoid delayed diagnosis and potentially life-threatening consequences.
Collapse
Affiliation(s)
- Evelina Maines
- FDepartment of Women's and Children's Healthses, Department of Women's and Children's Health, Azienda Provinciale per i Servizi Sanitari, 38122, Trento, Italy.
| | - Annunziata Di Palma
- FDepartment of Women's and Children's Healthses, Department of Women's and Children's Health, Azienda Provinciale per i Servizi Sanitari, 38122, Trento, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women's and Children's Health, University Hospital, Padova, Italy
| |
Collapse
|