1
|
Liu ZZ, Ji FH, Piao Y. Non-coding RNAs participate in interactions between senescence and gastrointestinal cancers. Front Genet 2025; 15:1461404. [PMID: 39831201 PMCID: PMC11739115 DOI: 10.3389/fgene.2024.1461404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Relationships between cellular senescence and gastrointestinal cancers have gained prominence in recent years. The currently accepted theory suggests that cellular senescence and cancer occurrence exhibit "double-edged sword" effects. Cellular senescence is related to cancer via four "meta-hallmarks" i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis, along with two "antagonistic hallmarks" i.e., telomere attrition and stem cell exhaustion. These relationships are characterized by both agonistic and antagonistic elements, but the existence of an intricate dynamic balance remains unknown. Non-coding RNAs (ncRNAs) have vital roles in post-transcriptional regulation, but how they participate in agonistic and antagonistic relationships between cellular senescence and gastrointestinal cancers remains to be fully investigated. In this article, we systematically review how ncRNAs (including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circularRNAs (circRNAs)) participate in interactions between cellular senescence and gastrointestinal cancers. Our aim is to elucidate a triangular relationship between "ncRNAs-senescence-gastrointestinal cancers" which considered these three elements as an equal important standing. We are keen to identify prognostic or therapeutic targets for gastrointestinal cancers from, i.e., aging-related ncRNAs, or discover novel strategies to treat and manage in the elderly. We seek to clarify complex relationships where ncRNAs participate in "senescence-gastrointestinal cancers" interactions.
Collapse
Affiliation(s)
| | | | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
2
|
Komitova KS, Dimitrov LD, Stancheva GS, Kyurkchiyan SG, Petkova V, Dimitrov SI, Skelina SP, Kaneva RP, Popov TM. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. Int J Mol Sci 2024; 25:13468. [PMID: 39769234 PMCID: PMC11676902 DOI: 10.3390/ijms252413468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma. Additionally, we attempt to allocate and organize these molecules according to their association with key pathways and oncogenes affected in laryngeal carcinoma. Finally, we critically analyze the common shortcomings and biases of the methodologies in some of the published papers in this area of research. A literature search was performed using the PubMed and MEDLINE databases with the keywords "laryngeal carcinoma" OR "laryngeal cancer" AND "microRNA" OR "miRNA" AND "prognostic marker" OR "prognosis". Only research articles written in English were included, without any specific restrictions on study type. We have found 43 articles that report 39 microRNAs with prognostic value associated with laryngeal carcinoma, and all of them are summarized along with the major characteristics and methodology of the respective studies. A second layer of the review is structural analysis of the outlined microRNAs and their association with oncogenes and pathways connected with the cell cycle (p53, CCND1, CDKN2A/p16, E2F1), RTK/RAS/PI3K cascades (EGFR, PI3K, PTEN), cell differentiation (NOTCH, p63, FAT1), and cell death (FADD, TRAF3). Finally, we critically review common shortcomings in the methodology of the papers and their possible effect on their results.
Collapse
Affiliation(s)
| | | | | | | | - Veronika Petkova
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | | | | | - Radka P. Kaneva
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | - Todor M. Popov
- Department of ENT, Medical University, 1000 Sofia, Bulgaria
| |
Collapse
|
3
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
4
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Doghish AS, El-Husseiny AA, Abdelmaksoud NM, El-Mahdy HA, Elsakka EGE, Abdel Mageed SS, Mahmoud AMA, Raouf AA, Elballal MS, El-Dakroury WA, AbdelRazek MMM, Noshy M, El-Husseiny HM, Abulsoud AI. The interplay of signaling pathways and miRNAs in the pathogenesis and targeted therapy of esophageal cancer. Pathol Res Pract 2023; 246:154529. [PMID: 37196470 DOI: 10.1016/j.prp.2023.154529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-β signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed M M AbdelRazek
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
6
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
8
|
Huldani H, Jasim SA, Sergeenva KN, Bokov DO, Abdelbasset WK, Turakulov R, Al-Gazally ME, Ahmadzadeh B, Jawhar ZH, Siahmansouri H. Mechanisms of cancer stem cells drug resistance and the pivotal role of HMGA2. Pathol Res Pract 2022; 234:153906. [PMID: 35468338 DOI: 10.1016/j.prp.2022.153906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, the focus of researchers is on perceiving the heterogeneity observed in a tumor. The researchers studied the role of a specific subset of cancer cells with high resistance to traditional treatments, recurrence, and unregulated metastasis. This small population of tumor cells that have stem-cell-like specifications was named Cancer Stem Cells (CSCs). The unique features that distinguish this type of cancer cell are self-renewing, generating clones of the tumor, plasticity, recurrence, and resistance to therapies. There are various mechanisms that contribute to the drug resistance of CSCs, such as CSCs markers, Epithelial mesenchymal transition, hypoxia, other cells, inflammation, and signaling pathways. Recent investigations have revealed the primary role of HMGA2 in the development and invasion of cancer cells. Importantly, HMGA2 also plays a key role in resistance to treatment through their function in the drug resistance mechanisms of CSCs and challenge it. Therefore, a deep understanding of this issue can provide a clearer perspective for researchers in the face of this problem.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Lambung Mangkurat University, Banjarmasin, South Borneo, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Klunko Nataliya Sergeenva
- Department of post-graduate and doctoral programs, Russian New University, Building 5, Radio Street, Moscow City, Russian Federation
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow 119991, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Rustam Turakulov
- Department of Internal diseases, Tashkent Medical Academy, Tashkent, Uzbekistan
| | | | - Behnam Ahmadzadeh
- Doctoral School of the University of Szczecin, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Wang L, Weng W, Yang S, Yang S, Du R. Circle RNA circ_0007331 promotes colorectal carcinoma by targeting miR-205-5p/high-mobility group A2 axis. Bioengineered 2022; 13:9312-9321. [PMID: 35400282 PMCID: PMC9161998 DOI: 10.1080/21655979.2022.2051857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract. CircRNAs have been reported to play regulatory roles in many cancers, including CRC. This study focuses on the role of circ_0007331 in CRC. Differentially expressed circRNAs in CRC were screened using the GEO database. RT-qPCR was used to analyze mRNA expression. StarBase and TargetScan were used to predict targeting relationships and then verified by the dual luciferase reporter assay along with the RNA pull-down assay. CCK-8 as well and transwell assays were used to measure cell viability, migration, and invasion. Protein levels were determined using western blotting. circ_0007331 is expressed more frequently in patients with CRC. The inhibition of circ_0007331 expression reduced the viability, colony formation, migration, and invasion of CRC cells. However, inhibition of miR-205-5p or elevation of high-mobility group A2 (HMGA2) can reverse the function of inhibited circ_0007331 in tumor cells. This study demonstrated that the circ_0007331/miR-205-5p/HMGA2 axis promotes CRC development. Thus, circ_0007331 may be a potential biomarker for CRC.
Collapse
Affiliation(s)
- Lihui Wang
- Department of Pathology, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| | - Weiming Weng
- Department of Gastrointestinal Surgery, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| | - Shuhui Yang
- Department of Pathology, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| | - Shasha Yang
- Department of Pathology, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| | - Richang Du
- Department of Pathology, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| |
Collapse
|
10
|
Zhang T, Wang LL, Guan J, Zhou Y, Cheng P, Zou L. MicroRNA-125a/b-5p promotes malignant behavior in multiple myeloma cells and xenograft tumor growth by targeting DIS3. Kaohsiung J Med Sci 2022; 38:574-584. [PMID: 35394705 DOI: 10.1002/kjm2.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy with a high prevalence and is characterized by the clonal expansion of malignant plasma cells. As a new tumor suppressor, defective in sister chromatid joining (DIS3) was reported to be a gene closely related to MM. This study elucidated the biological functions and underlying mechanisms of DIS3 in MM. DIS3 mRNA and protein levels were detected using RT-qPCR and western blotting, respectively. Methyl thiazolyl tetrazolium assays, flow cytometry analyses, Transwell assays, and wound healing assays were performed to detect the proliferation, apoptosis, invasion, and migration of MM cells. The binding relationship between miR-125a/b-5p and DIS3 was verified using luciferase reporter assays and RNA pulldown assays. Xenograft tumor models were established in nude mice to investigate the effects of miR-125a/b-5p and DIS3 on tumor growth in vivo. DIS3 levels were downregulated in MM cells, and DIS3 upregulation inhibited the malignant behaviors of MM cells. Mechanistically, miR-125a/b-5p directly targeted the 3' untranslated region of DIS3. The expression of miR-125a/b-5p was upregulated in MM cells, miR-125a/b-5p knockdown inhibited the malignant behaviors of MM cells, and the inhibitory effect was reversed by DIS3 downregulation. The results of in vivo experiments indicated that miR-125a/b-5p promoted tumor growth by downregulating DIS3. Overall, miR-125a/b-5p promotes MM cellular processes and xenograft tumor growth by targeting DIS3.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Lan-Lan Wang
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Jun Guan
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Ying Zhou
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Ping Cheng
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Liang Zou
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
11
|
MiR-125b-5p/TPD52 Axis Affects Proliferation, Migration and Invasion of Breast Cancer Cells. Mol Biotechnol 2022; 64:1003-1012. [PMID: 35320453 DOI: 10.1007/s12033-022-00475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Aberrant gene expression caused by miRNAs disorders plays a relevant role in multiple steps of tumorigenesis. In this attempt, we studied the functional role of miR-125b-5p and TPD52 in breast cancer. TPD52 mRNA and miR-125b-5p levels were assessed via qRT-PCR, and TPD52 protein level was analyzed via western blot. By performing CCK-8, transwell invasion and wound healing assays, the phenotype changes in breast cancer cells were assessed. miR-125b-5p was proven as an upstream miRNA of TPD52 in breast cancer via TargetScan database, luciferase activity, and western blot. MiR-125b-5p was prominently decreased while TPD52 was dramatically increased in breast cancer cells. Functional assays exhibited that forced level of TPD52 facilitated cell proliferation, invasion and migration in breast cancer. In the end, the rescue assay proved that miR-125b-5p was a cancer repressor and modulated breast cancer progression by targeting TPD52. All above offer potential biomarkers for breast cancer treatment.
Collapse
|
12
|
Kussainova A, Bulgakova O, Aripova A, Khalid Z, Bersimbaev R, Izzotti A. The Role of Mitochondrial miRNAs in the Development of Radon-Induced Lung Cancer. Biomedicines 2022; 10:428. [PMID: 35203638 PMCID: PMC8962319 DOI: 10.3390/biomedicines10020428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs are short, non-coding RNA molecules regulating gene expression by inhibiting the translation of messenger RNA (mRNA) or leading to degradation. The miRNAs are encoded in the nuclear genome and exported to the cytosol. However, miRNAs have been found in mitochondria and are probably derived from mitochondrial DNA. These miRNAs are able to directly regulate mitochondrial genes and mitochondrial activity. Mitochondrial dysfunction is the cause of many diseases, including cancer. In this review, we consider the role of mitochondrial miRNAs in the pathogenesis of lung cancer with particular reference to radon exposure.
Collapse
Affiliation(s)
- Assiya Kussainova
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
13
|
Kase-Kato I, Asai S, Minemura C, Tsuneizumi K, Oshima S, Koma A, Kasamatsu A, Hanazawa T, Uzawa K, Seki N. Molecular Pathogenesis of the Coronin Family: CORO2A Facilitates Migration and Invasion Abilities in Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:12684. [PMID: 34884487 PMCID: PMC8657730 DOI: 10.3390/ijms222312684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
In humans, the coronin family is composed of seven proteins containing WD-repeat domains that regulate actin-based cellular processes. Some members of the coronin family are closely associated with cancer cell migration and invasion. The Cancer Genome Atlas (TCGA) analysis revealed that CORO1C, CORO2A, and CORO7 were significantly upregulated in oral squamous cell carcinoma (OSCC) tissues (p < 0.05). Moreover, the high expression of CORO2A was significantly predictive of the 5-year survival rate of patients with OSCC (p = 0.0203). Overexpression of CORO2A was detected in OSCC clinical specimens by immunostaining. siRNA-mediated knockdown of CORO2A suppressed cancer cell migration and invasion abilities. Furthermore, we investigated the involvement of microRNAs (miRNAs) in the molecular mechanism underlying CORO2A overexpression in OSCC cells. TCGA analysis confirmed that tumor-suppressive miR-125b-5p and miR-140-5p were significantly downregulated in OSCC tissues. Notably, these miRNAs bound directly to the 3'-UTR of CORO2A and controlled CORO2A expression in OSCC cells. In summary, we found that aberrant expression of CORO2A facilitates the malignant transformation of OSCC cells, and that downregulation of tumor-suppressive miRNAs is involved in CORO2A overexpression. Elucidation of the interaction between genes and miRNAs will help reveal the molecular pathogenesis of OSCC.
Collapse
Affiliation(s)
- Ikuko Kase-Kato
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Kenta Tsuneizumi
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Sachi Oshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Ayaka Koma
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| |
Collapse
|
14
|
Klöhn M, Schrader JA, Brüggemann Y, Todt D, Steinmann E. Beyond the Usual Suspects: Hepatitis E Virus and Its Implications in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:5867. [PMID: 34831021 PMCID: PMC8616277 DOI: 10.3390/cancers13225867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus infections are the leading cause of viral hepatitis in humans, contributing to an estimated 3.3 million symptomatic cases and almost 44,000 deaths annually. Recently, HEV infections have been found to result in chronic liver infection and cirrhosis in severely immunocompromised patients, suggesting the possibility of HEV-induced hepatocarcinogenesis. While HEV-associated formation of HCC has rarely been reported, the expansion of HEV's clinical spectrum and the increasing evidence of chronic HEV infections raise questions about the connection between HEV and HCC. The present review summarizes current clinical evidence of the relationship between HEV and HCC and discusses mechanisms of virus-induced HCC development with regard to HEV pathogenesis. We further elucidate why the development of HEV-induced hepatocellular carcinoma has so rarely been observed and provide an outlook on possible experimental set-ups to study the relationship between HEV and HCC formation.
Collapse
Affiliation(s)
- Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
| | - Jil Alexandra Schrader
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
| | - Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
- German Centre for Infection Research (DZIF), External Partner Site, 44801 Bochum, Germany
| |
Collapse
|
15
|
Zhan Y, Zhu M, Liu S, Lu J, Ni Z, Cai H, Zhang W. MicroRNA‑93 inhibits the apoptosis and inflammatory response of tubular epithelial cells via the PTEN/AKT/mTOR pathway in acute kidney injury. Mol Med Rep 2021; 24:666. [PMID: 34296286 PMCID: PMC8335745 DOI: 10.3892/mmr.2021.12305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Renal tubular epithelial cell injury is the main cause of septic acute kidney injury (AKI), which is characterized by the excessive inflammatory response and apoptosis. Numerous studies have demonstrated that miRNAs are associated with inflammatory response and apoptosis in numerous diseases. The present study mainly focuses on investigating the association between microRNA (miRNA/miR) expression and inflammatory response and apoptosis in the pathogenesis of AKI. In vitro and in vivo models of AKI were simulated using Escherichia coli lipopolysaccharide (LPS)‑administrated kidney epithelial cells and mice, respectively. The miRNA expression profile was examined using miRNA microarray in kidney tissues. Next, the effects of miR‑93 upregulation on the apoptosis, cytokine expression and oxidative stress in the LPS‑stimulated TCMK‑1 were tested. The target genes of this miRNA were investigated, and the regulatory association between miR‑93 and the AKT/mTOR pathway was investigated. The results demonstrated that miR‑93 was the most downregulated miRNA in mice kidney. Furthermore, in LPS‑induced renal tubular epithelial cells (TECs) injury model, that upregulation of miR‑93 was found to attenuate the apoptosis and inflammatory response, as well as reactive oxygen species generation. Mechanistically, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was identified as a target of miR‑93. Further experiments revealed that LPS‑induced the decrease of phosphorylated (p)‑AKT and p‑mTOR protein expression in vitro are reversed by the overexpression of miR‑93. The results of the present study suggested that the protective effect of miR‑93 on AKI may be associated with the activation of PTEN/AKT/mTOR pathway. miR‑93 may serve as a potential therapeutic target in sepsis‑induced AKI.
Collapse
Affiliation(s)
- Yaping Zhan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Minxia Zhu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Shang Liu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Jiayue Lu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Hong Cai
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Weiming Zhang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| |
Collapse
|
16
|
Jin FE, Xie B, Xian HZ, Wang JH. Knockdown of miR-125b-5p inhibits the proliferation and invasion of gastric carcinoma cells by targeting RYBP. Kaohsiung J Med Sci 2021; 37:863-871. [PMID: 34337862 DOI: 10.1002/kjm2.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Gastric carcinoma, one of the most aggressive and lethal human malignancies, is associated with poor prognosis despite progress in therapeutic strategies. This study examined the potential function and mechanism of action of microRNA-125b-5p (miR-125b-5p) in the pathogenesis of gastric carcinoma. We recognized that miR-125b-5p was elevated in gastric carcinoma, and its decreased expression was associated with a better prognosis. Loss-of-function assays showed that miR-125b-5p suppression inhibited the proliferative and invasive abilities of gastric cancer cells. Furthermore, RING1 and YY1-binding protein (RYBP) was found to be target gene for miR-125b-5p action; miR-125b-5p negatively regulates RYBP expression. According to the results of rescue experiments, RYBP downregulation partially counteracted the miR-125b-5p silence-mediated inhibitory function in gastric cancer progression. Collectively, these data elucidated the molecular mechanisms of the miR-125b-5p/RYBP axis in gastric cancer invasion and growth.
Collapse
Affiliation(s)
- Fu-E Jin
- Department of Health Management, Qingdao Huangdao District Center Hospital, Qingdao, China
| | - Bo Xie
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, China
| | - Hong-Zhen Xian
- Department of Gastroenterology, Jimo People's Hospital of Qingdao City, Qingdao, China
| | - Ji-Hai Wang
- Surgery Staff Room, Shandong Medical College, Linyi, China
| |
Collapse
|
17
|
Divisato G, Piscitelli S, Elia M, Cascone E, Parisi S. MicroRNAs and Stem-like Properties: The Complex Regulation Underlying Stemness Maintenance and Cancer Development. Biomolecules 2021; 11:biom11081074. [PMID: 34439740 PMCID: PMC8393604 DOI: 10.3390/biom11081074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial-mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial-mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.
Collapse
|
18
|
Qin S, Xu J, Yi Y, Jiang S, Jin P, Xia X, Ma F. Transcription Factors and Methylation Drive Prognostic miRNA Dysregulation in Hepatocellular Carcinoma. Front Oncol 2021; 11:691115. [PMID: 34307154 PMCID: PMC8297977 DOI: 10.3389/fonc.2021.691115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Many dysregulated microRNAs (miRNAs) have been suggested to serve as oncogenes or tumor suppressors to act as diagnostic and prognostic factors for HCC patients. However, the dysregulated mechanisms of miRNAs in HCC remain largely unknown. Herein, we firstly identify 114 disordered mature miRNAs in HCC, 93 of them are caused by dysregulated transcription factors, and 10 of them are driven by the DNA methylation of their promoter regions. Secondly, we find that seven up-regulated miRNAs (miR-9-5p, miR-452-5p, miR-452-3p, miR-1180-3p, miR-4746-5p, miR-3677-3 and miR-4661-5p) can promote tumorigenesis via inhibiting multiple tumor suppressor genes participated in metabolism, which may act as oncogenes, and seven down-regulated miRNAs (miR-99-5p, miR-5589-5p, miR-5589-3p, miR-139-5p, miR-139-3p, miR-101-3p and miR-125b-5p) can suppress abnormal cell proliferation via suppressing a number of oncogenes involved in cancer-related pathways, which may serve as tumor suppressors. Thirdly, our findings reveal a mechanism that transcription factor and miRNA interplay can form various regulatory loops to synergistically control the occurrence and development of HCC. Finally, our results demonstrate that this key transcription factor FOXO1 can activate a certain number of tumor suppressor miRNAs to improve the survival of HCC patients, suggesting FOXO1 as an effective therapeutic target for HCC patients. Overall, our study not only reveals the dysregulated mechanisms of miRNAs in HCC, but provides several novel prognostic biomarkers and potential therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Shijie Qin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.,Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Jieyun Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yunmeng Yi
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Sizhu Jiang
- College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xinyi Xia
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
19
|
Zarrilli G, Galuppini F, Angerilli V, Munari G, Sabbadin M, Lazzarin V, Nicolè L, Biancotti R, Fassan M. miRNAs Involved in Esophageal Carcinogenesis and miRNA-Related Therapeutic Perspectives in Esophageal Carcinoma. Int J Mol Sci 2021; 22:3640. [PMID: 33807389 PMCID: PMC8037581 DOI: 10.3390/ijms22073640] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a pivotal role in many aspects of cell biology, including cancer development. Within esophageal cancer, miRNAs have been proved to be involved in all phases of carcinogenesis, from initiation to metastatic spread. Several miRNAs have been found to be dysregulated in esophageal premalignant lesions, namely Barrett's esophagus, Barrett's dysplasia, and squamous dysplasia. Furthermore, numerous studies have investigated the alteration in the expression levels of many oncomiRNAs and tumor suppressor miRNAs in esophageal squamous cell carcinoma and esophageal adenocarcinoma, thus proving how miRNAs are able modulate crucial regulatory pathways of cancer development. Considering these findings, miRNAs may have a role not only as a diagnostic and prognostic tool, but also as predictive biomarker of response to anti-cancer therapies and as potential therapeutic targets. This review aims to summarize several studies on the matter, focusing on the possible diagnostic-therapeutic implications.
Collapse
Affiliation(s)
- Giovanni Zarrilli
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Francesca Galuppini
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Valentina Angerilli
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Giada Munari
- Veneto Institute of Oncology-IOV-IRCCS, 35128 Padua, Italy;
| | - Marianna Sabbadin
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Vanni Lazzarin
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Lorenzo Nicolè
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Rachele Biancotti
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Matteo Fassan
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
- Veneto Institute of Oncology-IOV-IRCCS, 35128 Padua, Italy;
| |
Collapse
|
20
|
LncRNA XIST promotes the progression of laryngeal squamous cell carcinoma via sponging miR-125b-5p to modulate TRIB2. Biosci Rep 2021; 40:222318. [PMID: 32149330 PMCID: PMC7146034 DOI: 10.1042/bsr20193172] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/19/2019] [Accepted: 01/22/2020] [Indexed: 01/11/2023] Open
Abstract
Objective: X inactivate-specific transcript (XIST) is an attractive long noncoding RNA (lncRNA) functioning as an indicator of various human tumors, including laryngeal squamous cell carcinoma (LSCC). The present study was conducted to explore a novel regulatory network of lncRNA XIST in LSCC cells. Materials and methods: Quantitative real-time polymerase chain reaction (QRT-PCR) was used to detect the expression levels of XIST, miR-125b-5p and TRIB2 in LSCC cells and tissues. Cell proliferation, apoptosis, migration and invasion were detected by Cell Counting Kit-8 (CCK-8), flow cytometry and Transwell assays, separately. The relationship among XIST, miR-125b-5p and tribbles homolog 2 (TRIB2) was predicted by starBase v2.0 or TargetScan and confirmed by Dual-luciferase reporter assay. The TRIB2 protein expression was quantified by Western blot assay. Murine xenograft model was utilized to validate the role of XIST in vivo. Results: XIST was notably up-regulated in LSCC tissues and cells, and the high level of XIST was associated with the low survival rate of LSCC patients. XIST knockdown markedly repressed cell proliferation, migration and invasion and promoted the apoptosis of LSCC cells and the effects were antagonized by loss of miR-125b-5p. MiR-125b-5p was a target of XIST in LSCC cells, and it could bind to TRIB2 as well. Moreover, XIST-loss-induced down-regulation of TRIB2 could be significantly reversed by miR-125b-5p knockdown. XIST promoted the growth of LSCC tumor in vivo. Conclusion: LncRNA XIST promoted the malignance of LSCC cells partly through competitively binding to miR-125b-5p, which in turn increased TRIB2 expression.
Collapse
|
21
|
Bioinformatics-based analysis of the lncRNA-miRNA-mRNA and TF regulatory networks reveals functional genes in esophageal squamous cell carcinoma. Biosci Rep 2021; 40:225786. [PMID: 32662828 PMCID: PMC7441485 DOI: 10.1042/bsr20201727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a 5-year survival rate unsatisfied malignancies. The study aimed to identify the novel diagnostic and prognostic targets for ESCC. Expression profiling (GSE89102, GSE97051, and GSE59973) data were downloaded from the GEO database. Then, differentially expressed (DE) lncRNAs, DEmiRNAs, and genes (DEGs) with P-values < 0.05, and |log2FC| ≥ 2, were identified using GEO2R. Functional enrichment analysis of miRNA-related mRNAs and lncRNA co-expressed mRNA was performed. LncRNA–miRNA–mRNA, protein–protein interaction of miRNA-related mRNAs and DEGs, co-expression, and transcription factors-hub genes network were constructed. The transcriptional data, the diagnostic and prognostic value of hub genes were estimated with ONCOMINE, receiver operating characteristic (ROC) analyses, and Kaplan–Meier plotter, respectively. Also, the expressions of hub genes were assessed through qPCR and Western blot assays. The CDK1, VEGFA, PRDM10, RUNX1, CDK6, HSP90AA1, MYC, EGR1, and SOX2 used as hub genes. And among them, PRDM10, RUNX1, and CDK6 predicted worse overall survival (OS) in ESCC patients. Our results showed that the hub genes were significantly up-regulated in ESCA primary tumor tissues and cell lines, and exhibited excellent diagnostic efficiency. These results suggest that the hub genes may server as potential targets for the diagnosis and treatment of ESCC.
Collapse
|
22
|
Cytotoxin-Associated Gene A-Positive Helicobacter pylori Promotes Autophagy in Colon Cancer Cells by Inhibiting miR-125b-5p. ACTA ACUST UNITED AC 2021; 2021:6622092. [PMID: 33791049 PMCID: PMC7984907 DOI: 10.1155/2021/6622092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Objectives To investigate the effects of cytotoxin-associated gene A- (CagA-) positive Helicobacter pylori on proliferation, invasion, autophagy, and expression of miR-125b-5p in colon cancer cells. Methods Colon cancer cells were cocultured with H. pylori (CagA+) to analyze the effects of H. pylori on miR-125b-5p and autophagy. Colon cancer cells infected with H. pylori (CagA+) were mimicked by transfection of CagA plasmid. The effects of CagA on the proliferation, invasion, and autophagy of colon cancer cells were analyzed. Cell counting kit-8 (CCK-8), clone formation, and Transwell assays were used to detect cell viability, proliferation, and invasion ability, respectively. Proteins and miRNAs were detected by western blotting and qPCR, respectively. Results H. pylori (CagA+) inhibited expression of miR-125b-5p and promoted autophagy in colon cancer cells. MiR-125 b-5p was underexpressed in colon cancer cells after CagA overexpression. CagA promoted colon cancer cell proliferation, invasion, and autophagy. Overexpression of miR-125b-5p inhibited the proliferation, invasion, and autophagy of colon cancer cells and reversed the effects of CagA. Conclusion H. pylori (CagA+) infection may promote the development and invasion of colon cancer by inhibiting miR-125b-5p.
Collapse
|
23
|
HMGA2 as a Critical Regulator in Cancer Development. Genes (Basel) 2021; 12:genes12020269. [PMID: 33668453 PMCID: PMC7917704 DOI: 10.3390/genes12020269] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The high mobility group protein 2 (HMGA2) regulates gene expression by binding to AT-rich regions of DNA. Akin to other DNA architectural proteins, HMGA2 is highly expressed in embryonic stem cells during embryogenesis, while its expression is more limited at later stages of development and in adulthood. Importantly, HMGA2 is re-expressed in nearly all human malignancies, where it promotes tumorigenesis by multiple mechanisms. HMGA2 increases cancer cell proliferation by promoting cell cycle entry and inhibition of apoptosis. In addition, HMGA2 influences different DNA repair mechanisms and promotes epithelial-to-mesenchymal transition by activating signaling via the MAPK/ERK, TGFβ/Smad, PI3K/AKT/mTOR, NFkB, and STAT3 pathways. Moreover, HMGA2 supports a cancer stem cell phenotype and renders cancer cells resistant to chemotherapeutic agents. In this review, we discuss these oncogenic roles of HMGA2 in different types of cancers and propose that HMGA2 may be used for cancer diagnostic, prognostic, and therapeutic purposes.
Collapse
|
24
|
Hu B, Yang XB, Yang X, Sang XT. LncRNA CYTOR affects the proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells by regulating the miR-125b-5p/KIAA1522 axis. Aging (Albany NY) 2020; 13:2626-2639. [PMID: 33318318 PMCID: PMC7880333 DOI: 10.18632/aging.202306] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/22/2020] [Indexed: 04/27/2023]
Abstract
We aimed to investigate whether lncRNA CYTOR could sponge miR-125b-5p to affect hepatocellular carcinoma (HCC) cells through targeting KIAA1522. The expression of CYTOR, miR-125b-5p and KIAA1522 in HCC cells was detected by Real-time quantitative polymerase chain reaction (RT-qPCR) analysis. KIAA1522 expression in HCC tissues was detected by immunohistochemistry. The proliferation, cell cycle and apoptosis of HCC cells after transfection were respectively detected by Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis, and related protein expression was determined by Western blot analysis. As a result, The Cancer Genome Atlas (TCGA) database indicated that expression of CYTOR and KIAA1522 was increased in HCC tissues and high expression of CYTOR and KIAA1522 was related to worse overall survival. MiR-125b-5p expression was decreased in HCC tissues, which was negatively correlated with the expression of CYTOR and KIAA1522. The proliferation and cell cycle of HCC cells were suppressed by CYTOR interference while promoted by miR-125b-5p interference and KIAA1522 overexpression. The apoptosis of HCC cells was promoted by CYTOR interference while inhibited by miR-125b-5p interference and KIAA1522 overexpression. In conclusion, CYTOR interference suppressed the proliferation and cell cycle, and promoted the apoptosis of HCC cells by regulating the miR-125b-5p/KIAA1522 axis.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
25
|
Liu G, Wan Q, Li J, Hu X, Gu X, Xu S. Silencing miR-125b-5p attenuates inflammatory response and apoptosis inhibition in mycobacterium tuberculosis-infected human macrophages by targeting DNA damage-regulated autophagy modulator 2 (DRAM2). Cell Cycle 2020; 19:3182-3194. [PMID: 33121314 DOI: 10.1080/15384101.2020.1838792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis is one of the most important infectious diseases worldwide and macrophage apoptosis is the major host defense mechanism against TB. We attempted to characterize the role of miRNA (miR)-125b-5p on mycobacterium tuberculosis (Mtb) infection and macrophages behaviors in vitro. According to fluorescence-activated cell separation (FACS), primary monocytes (CD14+) in TB patients were accumulated, and apoptotic monocytes were decreased. Peripheral blood mononuclear cells (PBMCs)-derived macrophages (MDMs) and monocytic cells THP-1-derived macrophage-like cells (TDMs) in vitro were used to be infected with H37Rv. After infection, colony-forming units assay revealed the increase of bacterial activity, FACS demonstrated the decrease of apoptosis rate of MDMs and TDMs, as well as promoted levels of IL-6, TNF-α, Bax, and Bim and suppressed levels of IL-10 and Bcl-2, examined by enzyme-linked immunosorbent assay (ELISA) and western blot assay. Expression of miR-125b-5p and DNA damage-regulated autophagy modulator 2 (DRAM2) was examined, and real-time PCR and western blot assay showed that miR-125b-5p was upregulated, whereas DRAM2 was downregulated in primary monocytes and H37Rv-infected macrophages (MDMs and TDMs). Moreover, blocking miR-125b-5p could attenuated H37Rv-induced bacterial activity and inflammatory response of MDMs and TDMs, accompanied with apoptosis inhibition. Whereas these effects of miR-125b-5p knockdown were abolished by downregulating DRAM2. In mechanism, DRAM2 was a downstream target of miR-125b-5p, as evidenced by dual-luciferase reporter assay. Collectively, silencing miR-125b-5p could protect human macrophages against Mtb infection through promoting apoptosis and inhibiting inflammatory response via targeting DRAM2, suggesting a novel target for Mtb eliminating. Abbreviations: TB: tuberculosis; PBMCs: peripheral blood mononuclear cells; Mtb: mycobacterium tuberculosis; AFB: acid fast bacilli; FITC: fluorescein isothiocyanate; MDMs: monocytes-derived macrophages; TDMs: THP-1-derived macrophage-like cells; ERFP: Mtb-enhanced red fluorescent protein; CFU: colony-forming units; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell separation; PI: propidium iodide; DRAM2: DNA damage-regulated autophagy modulator 2; Real-time PCR: real-time polymerase chain reaction; in-miR-125b-5p: miR-125b-5p inhibitor; si-DRAM2: siRNA against DRAM2.
Collapse
Affiliation(s)
- Guangming Liu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China.,Department of Internal Medicine, Tacheng Municipality People's Hospital , Xinjiang, China
| | - Qiufeng Wan
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China
| | - Jingwen Li
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China
| | - Xinying Hu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China
| | - Xingli Gu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China
| | - Sicheng Xu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China
| |
Collapse
|
26
|
Hu Y, Zhao M, Li L, Ding J, Gui YM, Wei TW. miR-491-3p is Downregulated in Retinoblastoma and Inhibit Tumor Cells Growth and Metastasis by Targeting SNN. Biochem Genet 2020; 59:453-474. [PMID: 33098307 PMCID: PMC7946698 DOI: 10.1007/s10528-020-10007-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Retinoblastoma (Rb) is the most common pediatric malignant tumor of the eyes. Previous studies demonstrated that miR-491-3p is downregulated in various cancers. However, its function in Rb remains unknown. A total of 15 pairs of primary Rb tissues and adjacent noncancerous tissues were collected. Quantitative real-time PCR (qRT-PCR) was used to investigate the expression profiles of miR-491-3p. qRT-PCR, western blotting and in situ immunocytochemistry were performed to investigate the expression profiles of epithelial–mesenchymal transition-related proteins (E-cadherin, Vimentin and N-cadherin) in Rb tissues and Rb cell lines as well as cell morphology. Cell proliferation was estimated by MTS and colony formation assays. Apoptosis was determined by FACS, cell migration and invasion were analyzed using transwell chambers. MiR-491-3p’s target genes were predicted using target gene prediction databases. The interplay between miR-491-3p and SNN was evaluated through dual luciferase reporter gene assay. MiR-491-3p was significantly downregulated in mixed collection of 15 pairs of Rb tissues and Rb cell lines. Overexpression of miR-491-3p enhanced apoptosis, and significantly suppressed proliferation, migration and invasion of Rb cells. In contrast, the present of miR-491-3p inhibitor showed reversed results which apoptosis decreased, while cell proliferation of ARPE-19 cells increased. In addition, miR-491-3p increased the expression of E-cadherin, and dramatically decreased the expression of Vimentin and N-cadherin in Rb tissues and Rb cell lines, noticeable changes in morphology, too, as cells became less cohesive and more adhering. We found out that SNN was the pairing target of miR-491-3p and result showed that miR-491-3p and SNN interacted with each other. We also found out that the effects of miR-491-3p were in Rb cells were almost entirely canceled out at the overexpression of SNN. Our findings collectively suggest that miR-491-3p is an important tumor suppressor in Rb, which inhibits tumor growth and metastasis in Rb. These implicate it may be explored as a new therapeutic target in Rb.
Collapse
Affiliation(s)
- Yang Hu
- Department of Ophthalmology, Puren Hospital of Wuhan University of Science and Technology, No.1 Benxi Road, Qingshan District, Wuhan, 430080, Hubei Province, People's Republic of China.
| | - Ming Zhao
- Department of Ophthalmology, Puren Hospital of Wuhan University of Science and Technology, No.1 Benxi Road, Qingshan District, Wuhan, 430080, Hubei Province, People's Republic of China
| | - Li Li
- Department of Ophthalmology, Puren Hospital of Wuhan University of Science and Technology, No.1 Benxi Road, Qingshan District, Wuhan, 430080, Hubei Province, People's Republic of China
| | - Jie Ding
- Department of Ophthalmology, Puren Hospital of Wuhan University of Science and Technology, No.1 Benxi Road, Qingshan District, Wuhan, 430080, Hubei Province, People's Republic of China
| | - Yu-Min Gui
- Department of Ophthalmology, Puren Hospital of Wuhan University of Science and Technology, No.1 Benxi Road, Qingshan District, Wuhan, 430080, Hubei Province, People's Republic of China
| | - Tan-Wei Wei
- Department of Ophthalmology, Puren Hospital of Wuhan University of Science and Technology, No.1 Benxi Road, Qingshan District, Wuhan, 430080, Hubei Province, People's Republic of China
| |
Collapse
|
27
|
Luo Z, Yang Y, Li D, Yu L, Liu N, Li L, Ma Y. Circular RNA 0086996 regulates growth and migration of osteosarcoma cells via miR-125b-5p. Pathol Res Pract 2020; 216:153230. [PMID: 33053498 DOI: 10.1016/j.prp.2020.153230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022]
Abstract
Circular RNAs (CircRNAs) have been found to be critical in tumorigenesis; however, the role of CircRNAs in osteosarcoma is to be further studied. In this study, we preliminarily identified the up-expressed CircRNAs and its downstream microRNA in osteosarcoma and investigated its potential regulation mechanism. Hsa_circ_0086996 (Circ_0086996) was found to upregulated in tumor tissue compared to adjacent tissue. Circ_0086996 was significantly overexpressed in osteosarcoma tissue, as well as in osteosarcoma cell lines of SAOS2 and MG-63. Circ_0086996 knockdown significantly suppressed cell proliferation, migration, and invasion. Circ_0086996 knockdown also induced cell cycle arrest in G0/G1 phaseand promoted cell apoptosis in SAOS2 and MG-63 cells. Bioinformatics analysis revealed that miR-125b-5p might be of complementary binding region with Circ_0086996, which was confirmed by dual-luciferase reporter assay. Moreover, Circ_0086996 could reverse the effect of miR-125b-5p, as knockdown of Circ_0086996 or application of miR-125b-5p both can inhibit cell proliferation, migration, invasion and promote cell apoptosis and cell cycle arrest. Our study discovers that Circ_0086996 acts as miR-125b-5p sponge to mediate the tumorigenicity, which could act as a potential biomarker for the osteosarcoma and provides a novel insight for the mechanism in osteosarcoma.
Collapse
Affiliation(s)
- Zhanpeng Luo
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Yi Yang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Dawei Li
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Long Yu
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Ning Liu
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Litao Li
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Yuanzheng Ma
- Department of Orthopedic, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China.
| |
Collapse
|
28
|
Zhang Z, Tang Y, Song X, Xie L, Zhao S, Song X. Tumor-Derived Exosomal miRNAs as Diagnostic Biomarkers in Non-Small Cell Lung Cancer. Front Oncol 2020; 10:560025. [PMID: 33178588 PMCID: PMC7592397 DOI: 10.3389/fonc.2020.560025] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background Delayed diagnosis is the main obstacle to improve prognosis of non-small cell lung cancer (NSCLC). Novel biomarkers for the diagnosis of NSCLC are urgently needed. This study aimed to identify the specific exosomal miRNAs with diagnostic and prognostic potential in NSCLC patients. Materials and Methods Transmission electron microscopy (TEM), qNano and western blots were used to characterize the exosomes isolated from the serum of NSCLC patients (n=330) and healthy donors (n=312) by ultracentrifugation. Exosomal miRNAs were profiled by miRNA microarrays and verified by quantitative PCR (qPCR). The diagnostic accuracy was determined by receiver operating characteristic (ROC) analysis. Results A total of differential 22 miRNAs were screened out based on P < 0.05 and fold difference>2.0 by miRNA microarrays, among which, exosomal miR-5684 and miR-125b-5p were significantly down-regulated in NSCLC patients compared to healthy donors, processing favorable diagnostic efficiency for (early) NSCLC. Importantly, the exosomal miR-125b-5p were associated with metastasis (P < 0.0001), chemotherapeutic effect (P=0.007) and survival (P=0.008). Conclusion Exosomal miR-5684 and miR-125b-5p levels are significantly down-regulated in NSCLC patients, and serve as the promising diagnostic and prognostic biomarkers for NSCLC.
Collapse
Affiliation(s)
- Zhijun Zhang
- Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Youyong Tang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xingguo Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuping Zhao
- Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
29
|
Fattahi F, Kiani J, Khosravi M, Vafaei S, Mohammadi A, Madjd Z, Najafi M. Enrichment of Up-regulated and Down-regulated Gene Clusters Using Gene Ontology, miRNAs and lncRNAs in Colorectal Cancer. Comb Chem High Throughput Screen 2020; 22:534-545. [PMID: 31654507 DOI: 10.2174/1386207321666191010114149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/28/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023]
Abstract
AIM AND OBJECTIVE It is interesting to find the gene signatures of cancer stages based on the omics data. The aim of study was to evaluate and to enrich the array data using gene ontology and ncRNA databases in colorectal cancer. METHODS The human colorectal cancer data were obtained from the GEO databank. The downregulated and up-regulated genes were identified after scoring, weighing and merging of the gene data. The clusters with high-score edges were determined from gene networks. The miRNAs related to the gene clusters were identified and enriched. Furthermore, the long non-coding RNA (lncRNA) networks were predicted with a central core for miRNAs. RESULTS Based on cluster enrichment, genes related to peptide receptor activity (1.26E-08), LBD domain binding (3.71E-07), rRNA processing (2.61E-34), chemokine (4.58E-19), peptide receptor (1.16E-19) and ECM organization (3.82E-16) were found. Furthermore, the clusters related to the non-coding RNAs, including hsa-miR-27b-5p, hsa-miR-155-5p, hsa-miR-125b-5p, hsa-miR-21-5p, hsa-miR-30e-5p, hsa-miR-588, hsa-miR-29-3p, LINC01234, LINC01029, LINC00917, LINC00668 and CASC11 were found. CONCLUSION The comprehensive bioinformatics analyses provided the gene networks related to some non-coding RNAs that might help in understanding the molecular mechanisms in CRC.
Collapse
Affiliation(s)
- Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Khosravi
- Medicine Biochemistry, Qom Branch, Islamic Azad University, Qom, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Mohammadi
- Biochemistry Department, Tarbiat Modares University, Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Chen X, Cao R, Liu H, Zhang T, Yuan X, Xu S. MicroRNA‑15a‑5p‑targeting oncogene YAP1 inhibits cell viability and induces cell apoptosis in cervical cancer cells. Int J Mol Med 2020; 46:1301-1310. [PMID: 32945353 PMCID: PMC7447307 DOI: 10.3892/ijmm.2020.4704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have been reported to have important regulatory roles in the progression of several types of cancer, including cervical cancer (CC). However, the biological roles and regulatory mechanisms of miRNAs in CC remain to be fully elucidated. The aim of the present study was to examine the functions of miRNAs in CC and the possible mechanisms. Using a microarray, it was identified that miRNA-15a-5p (miR-15a-5p) was one of the most down-regulated miRNAs in CC tissues compared with adjacent noncancerous tissues. The low expression of miR-15a-5p was observed in CC tumor tissues with distant metastasis and in CC cell lines. In addition, the effects of miR-15a-5p upregulation on cell viability, apoptosis, invasion and migration of CC cells were investigated using CCK-8, flow cytometry, Transwell and wound healing assays, respectively. It was demonstrated that upregulation of miR-15a-5p significantly suppressed the viability, migration and invasion, and promoted the apoptosis of SiHa and C-33A cells. Furthermore, yes-associated protein 1 (YAP1), a well-known oncogene, was confirmed to be directly targeted by miR-15a-5p and was found to be negatively regulated by miR-15a-5p. Further correlation analysis indicated that miR-15a-5p expression was negatively correlated with YAP1 expression in CC tissues. Notably, overexpression of YAP1 abrogated the tumor suppressive effects of miR-15a-5p in CC cells. Taken together, these present findings indicated that the miR-15a-5p/YAP1 axis may provide a novel strategy for the clinical treatment of CC.
Collapse
Affiliation(s)
- Xu Chen
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| | - Ruiqin Cao
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| | - Haifang Liu
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| | - Tuanying Zhang
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xinrong Yuan
- Department of Obstetrics and Gynaecology, No.1 Hospital of Naval Force of Southern Theater Command, PLA, Zhanjiang, Guangdong 524005, P.R. China
| | - Shuxiang Xu
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
31
|
Zong Y, Zhang Y, Hou D, Xu J, Cui F, Qin Y, Sun X. The lncRNA XIST promotes the progression of breast cancer by sponging miR-125b-5p to modulate NLRC5. Am J Transl Res 2020; 12:3501-3511. [PMID: 32774715 PMCID: PMC7407728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
X-inactivation-specific transcript (XIST) is a long noncoding RNA (lncRNA) that functions as an indicator of various human tumors, including those of breast cancer. This study was conducted to characterize a novel regulatory network involving XIST in breast cancer cells. The mRNAs of XIST, miR-125b-5p, and NOD-like receptor family CARD domain containing 5 (NLRC5) in breast cancer cells and tissues were analyzed using quantitative real-time polymerase chain reaction. Cell proliferation, apoptosis, migration, and invasion were separately detected via cell counting kit-8, flow cytometry, and Transwell assays. The relationships between XIST, miR-125b-5p, and NLRC5 were predicted and then confirmed using the dual-luciferase reporter assay. NLRC5 protein expression was quantitated using western blot assays. XIST was found to be overexpressed in breast cancer tissues and cells, which was accompanied by miR-125b-5p downregulation and NLRC5 upregulation. XIST knockdown significantly repressed cell proliferation, anti-apoptosis, migration, and invasion activities in breast cancer cells, and the loss of miR-125b-5p had a similar effect. XIST was shown to sponge miR-125b-5p, which in turn targeted NLRC5. NLRC5, a breast cancer promotor, is negatively regulated by miR-125b-5p. Moreover, the downregulation of NLRC5 induced by the loss of XIST was significantly reversed by miR-125b-5p knockdown. In conclusion, the lncRNA XIST promotes the malignancy of breast cancer cells partly by competitively binding to miR-125b-5p, which then led to increased NLRC5 expression. Our study suggests that targeting XIST may be a possible treatment for breast cancer.
Collapse
Affiliation(s)
- Yuanyuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021, Shandong, PR China
| | - Yazhou Zhang
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021, Shandong, PR China
| | - Dongsheng Hou
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021, Shandong, PR China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021, Shandong, PR China
| | - Fengyun Cui
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021, Shandong, PR China
| | - Yejun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021, Shandong, PR China
| | - Xichao Sun
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021, Shandong, PR China
| |
Collapse
|
32
|
Huang SP, Jiang YF, Yang LJ, Yang J, Liang MT, Zhou HF, Luo J, Yang DP, Mo WJ, Chen G, Shi L, Gan TQ. Downregulation of miR-125b-5p and Its Prospective Molecular Mechanism in Lung Squamous Cell Carcinoma. Cancer Biother Radiopharm 2020; 37:125-140. [PMID: 32614608 DOI: 10.1089/cbr.2020.3657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: To explore the clinical significance of miR-125b-5p and its potential mechanisms in lung squamous cell carcinoma (LUSC). Materials and Methods: An integrated analysis of data from in-house quantitative real-time polymerase chain reaction (qRT-PCR), microRNA-sequencing, and microarray assays to appraise the expression level of miR-125b-5p in LUSC tissues compared to adjacent noncancerous controls. The authors identified the candidate targets of miR-125b-5p and conducted functional analysis using computational biology strategies from gene ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, disease ontology (DO), and protein-protein interaction (PPI) network analyses to investigate the prospective mechanisms. Results: According to qRT-PCR results, the expression level of miR-125b-5p was markedly decreased in LUSC tissues compared to noncancerous control tissues. Receiver operating characteristic and summary receiver operating characteristic analyses showed that miR-125b-5p had good specificity and sensitivity for distinguishing LUSC tissue from noncancerous lung tissue. The standard mean difference revealed that men and women with lower expression levels of miR-125b-5p may have a higher risk for LUSC. KEGG analysis and DO analysis intimated that target genes were evidently enriched in pyrimidine metabolism and pancreatic carcinoma. The PPI network of the top assembled KEGG pathway indicated that RRM2, UMPS, UCK2, and CTPS1 were regarded as crucial target genes for miR-125b-5p, and RRM2 was eventually deemed a key target. Conclusions: The authors' findings implicate a low expression level of miR-125b-5p in LUSC. A tumor-suppressive role of miR-125b-5p is proposed, based on its effects on LUSC tumor growth, clinical stage progression, and lymph node metastasis.
Collapse
Affiliation(s)
- Shu-Ping Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Fan Jiang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Mei-Ting Liang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jiao Luo
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Da-Ping Yang
- Department of Pathology, Guigang People's Hospital of Guangxi/The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Wei-Jia Mo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
33
|
Zhang Y, Zhou K, Wu L, Gu H, Huang Z, Xu J. Downregulation of microRNA‑143 promotes osteogenic differentiation of human adipose‑derived mesenchymal stem cells through the k‑Ras/MEK/ERK signaling pathway. Int J Mol Med 2020; 46:965-976. [PMID: 32582994 PMCID: PMC7388841 DOI: 10.3892/ijmm.2020.4651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are known to have regulatory roles in the osteogenic differentiation of various mesenchymal stem cells (MSCs), although their regulatory role on human adipose‑derived mesenchymal stem cells (hADSCs) remains unclear. The aim of the present study was to investigate the biological function and underlying molecular mechanism of miRNAs in regulating the osteogenic differentiation of hADSCs using microarray assay. hADSCs differentiated into osteoblasts under culture with osteogenic medium, with an increase observed in calcium deposits and alkaline phosphatase activity. The mRNA levels of bone sialoprotein, osteopontin and osteocalcin increased, whereas Runt‑related transcription factor‑2 expression decreased during osteogenic differentiation. In addition, miR‑143 was markedly downregulated during osteogenic differentiation, while miR‑143 overexpression inhibited and miR‑143 knockdown enhanced this process. miR‑143 overexpression also blocked extracellular signal‑regulated kinase 1/2 (ERK1/2) pathway activation, while miR‑143 inhibition enhanced it. The promoting effects of miR‑143 knockdown on the osteogenic differentiation of hADSCs were partly diminished by the mitogen‑activated protein kinase (MEK) inhibitors U0126 and PD98059. Bioinformatics analysis further revealed that miR‑143 targets k‑Ras and directly binds to the 3'‑untranslated region of its mRNA. Inhibition of miR‑143 enhanced the activation of the k‑Ras/MEK/ERK pathway during osteogenic differentiation, whereas miR‑143 overexpression had the opposite effect. Collectively, these results demonstrated that miR‑143 negatively regulates the osteogenic differentiation of hADSCs through the k‑Ras/MEK/ERK pathway, providing further insight into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Kaifeng Zhou
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Liang Wu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Zhongyue Huang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Jun Xu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
34
|
Xia T, Dong S, Tian J. miR‑29b promotes the osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue via the PTEN/AKT/β‑catenin signaling pathway. Int J Mol Med 2020; 46:709-717. [PMID: 32468003 PMCID: PMC7307813 DOI: 10.3892/ijmm.2020.4615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/10/2020] [Indexed: 01/02/2023] Open
Abstract
Accumulating evidence has documented that microRNAs (miRNAs or miRs) function as important post-transcriptional regulators of the differentiation of mesenchymal stem cells (MSCs), including human adipose-derived mesenchymal stem cells (hADSCs); however, their roles in hADSC osteogenic differentiation require further investigation. The present study aimed to investigate the role of miRNAs in the osteogenic differentiation of hADSCs and to elucidate the underlying molecular mechanisms. Using an miRNA microarray, it was found that 24 miRNAs were upregulated and 14 miRNAs were downregulated compared with the undifferentiated cells, and miR-29b-3p (miR-29b) was selected for further experiments. Functional experiments revealed that the upregulation of miR-29b by agomir-29b significantly enhanced alkaline phosphatase (ALP) activity and the mineralization of extracellular matrix (ECM), and led to an increase in the mRNA and protein levels of osteogenic marker genes, including runt-related transcription factor 2 (Runx2), osteopontin (OPN), osteocalcin (OCN) and bone sialoprotein (BSP), whereas the knockdown of miR-29b suppressed these processes. In addition, phosphatase and tensin homolog (PTEN), a negative regulator of the AKT/β-catenin pathway, was identified as a direct target of miR-29b in the hADSCs. Moreover, it was observed that the overexpression of miR-29b activated the AKT/β-catenin signaling pathway by inhibiting PTEN expression in the hADSCs. Most importantly, it was also found that the overexpression of PTEN reversed the promoting effects of miR-29b on osteogenic differentiation. On the whole, these findings suggest that miR-29b promotes the osteogenic differentiation of hADSCs by modulating the PTEN/AKT/β-catenin signaling pathway. Thus, this miRNA may be a promising target for the active modulation of hADSC-derived osteogenesis.
Collapse
Affiliation(s)
- Tian Xia
- Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Shuanghai Dong
- Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Jiwei Tian
- Department of Orthopedics, Shanghai Jiahui International Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
35
|
Cao Y, Lv W, Ding W, Li J. Sevoflurane inhibits the proliferation and invasion of hepatocellular carcinoma cells through regulating the PTEN/Akt/GSK‑3β/β‑catenin signaling pathway by downregulating miR‑25‑3p. Int J Mol Med 2020; 46:97-106. [PMID: 32319540 PMCID: PMC7255470 DOI: 10.3892/ijmm.2020.4577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022] Open
Abstract
Sevoflurane (Sevo) is one of the most frequently used volatile anesthetic agents in surgical oncology and has various effects on tumors, including inhibiting tumor growth, recurrence, and metastases; however, the molecular mechanisms are unknown. This study tried to investigate the influence of Sevo on hepatocellular carcinoma (HCC) cells and its possible mechanisms of action. The present study found that Sevo suppressed both the proliferative and invasive capabilities of both HCCLM3 and Huh7 cells in a dose-dependent manner. Moreover, 53 differentially expressed microRNAs (miRNAs/miRs) in HCC cells that resulted from Sevo were screened out using miRNA microarray assay. In particular, miR-25-3p displayed a significant decrease in response to Sevo treatment. Further studies showed that Sevo's inhibitory actions on HCC cells were attenuated by overexpression of miR-25-3p but enhanced by its inhibitor. Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN), a tumor suppressor gene, was directly targeted by miR-25-3p and its expression was upregulated by Sevo. In addition, Sevo suppressed the expression of phosphorylated-protein kinase B (p-Akt) (S473), glycogen synthase kinase (GSK) 3β (p-GSK3β) (S9), β-catenin, c-Myc and matrix metalloproteinase 9; whereas these inhibitory effects were reversed by miR-25-3p overexpression. More importantly, Sevo's tumor-suppressive effects were enhanced by LY294002 (a PI3-kinase inhibitor) but weakened by insulin growth factor-1 (an agonist of the Akt signaling pathway). These data suggest that Sevo's antitumor effects on HCC could be explained, in part, by Sevo inhibiting the miR-25-3p/PTEN/Akt/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yinghao Cao
- Department of Anesthesiology, Beijing Youan Hospital, Capital Medical University, Beijing 100048, P.R. China
| | - Wenfei Lv
- Department of Anesthesiology, Beijing Youan Hospital, Capital Medical University, Beijing 100048, P.R. China
| | - Wan Ding
- Department of Anesthesiology, No. 6 Medical Center, General Hospital of PLA, Beijing 100048, P.R. China
| | - Jun Li
- Department of Anesthesiology, No. 6 Medical Center, General Hospital of PLA, Beijing 100048, P.R. China
| |
Collapse
|
36
|
Vashishtha A, Lee TJ, Sharma A, Wallbillich JJ. Changes in microRNA expression associated with metastasis and survival in patients with uveal melanoma. Oncotarget 2020; 11:1435-1447. [PMID: 32363001 PMCID: PMC7185062 DOI: 10.18632/oncotarget.27559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma (UM) is a major intraocular cancer that is molecularly distinct from cutaneous melanoma. Approximately half of patients with UM eventually develop metastasis. The prognosis of metastatic UM is poor, with a median overall survival (OS) of less than a year. In this study, we sought to identify microRNAs (miRNAs) associated with metastasis and OS in UM. We analyzed the miRNA expression and clinical outcomes data from The Cancer Genome Atlas (TCGA) dataset for UM. Differential expression analyses were conducted for each miRNA with respect ever-development of metastasis. Multiple survival analyses were done, using the Cox proportional hazards model, to evaluate interactions between miRNA expression, metastasis, and OS. A total of 22 miRNAs (3 upregulated and 19 downregulated) were differentially expressed between patients with vs. without metastatic UM. These 22 miRNAs could be grouped into four clusters based on similarities in expression patterns. Of the 22 miRNAs differentially expressed with respect to metastasis, 21 were significantly associated with OS. The expression of multiple miRNAs was significantly associated with metastasis and overall survival in patients with UM. Further investigation of these miRNAs as biomarkers and/or therapeutic targets is warranted in the push to improve outcomes for patients with metastatic UM.
Collapse
Affiliation(s)
- Ayushi Vashishtha
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John J Wallbillich
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Current address: Department of Oncology, Wayne State University College of Medicine, Detroit, MI, USA
| |
Collapse
|
37
|
Chen Y, Ding Y. LINC00467 enhances head and neck squamous cell carcinoma progression and the epithelial-mesenchymal transition process via miR-299-5p/ubiquitin specific protease-48 axis. J Gene Med 2020; 22:e3184. [PMID: 32159247 DOI: 10.1002/jgm.3184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) has attracted the attention of researchers as a result of its high incidence around the world. This malignancy occurs in the oral cavity, pharynx and larynx in most cases. A number of lncRNAs have been revealed to regulate the malignant neoplasia of several cancers. Nevertheless, the effects of lncRNA LINC00467 in HNSCC have not yet been reported. METHODS The expression of LINC00467, miR-299-5p and ubiquitin specific protease-48 (USP48) in HNSCC cells was quantified by a quantitative reverse transcriptase-polymerase chain reaction. The influences of LINC00467 deficiency on HNSCC progression were reflected by cell counting kit-8, colony formation, ethynyl-2-deoxyuridine, wound healing and western blot assays. RIP and luciferase reporter assays were conducted to confirm the interaction among LINC00467, miR-299-5p and USP48. RESULTS LINC00467 was considerably upregulated in HNSCC cells, and an absence of LINC00467 suppressed cell growth, cell migration and the epithelial-mesenchymal process in HNSCC. In addition, miR-299-5p expression was notably downregulated in HNSCC cells, and miR-299-5p could bind with LINC00467. Furthermore, USP48 was conspicuously overexpressed in HNSCC cells and capable of binding with miR-299-5p. LINC00467 could upregulate USP48 expression via sponging miR-299-5p. Finally, rescue assays proved that USP48 overexpression could compensate for the suppressive effects on HNSCC progression mediated by LINC00467 deficiency. CONCLUSIONS LINC00467 enhances HNSCC progression by serving as a sponge of miR-299-5p to increase USP48 expression.
Collapse
Affiliation(s)
- Ye Chen
- Department of Stomatology, The Affiliated Hanyang Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Yiying Ding
- Department of Outpatient Service, the Affiliated Hanyang Hospital of Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Harms D, Choi M, Allers K, Wang B, Pietsch H, Papp CP, Hanisch L, Kurreck J, Hofmann J, Bock CT. Specific circulating microRNAs during hepatitis E infection can serve as indicator for chronic hepatitis E. Sci Rep 2020; 10:5337. [PMID: 32210284 PMCID: PMC7093451 DOI: 10.1038/s41598-020-62159-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) genotypes 3 and 4 (HEV-3, HEV-4) infections are an emerging public health issue in industrialized countries. HEV-3 and -4 are usually self-limiting but can progress to chronic hepatitis E in immunocompromised individuals. The molecular mechanisms involved in persistent infections are poorly understood. Micro RNAs (miRNAs) can regulate viral pathogenesis and can serve as novel disease biomarkers. We aimed to explore the modulation of serum miRNAs in patients with acute (AHE) and chronic (CHE) hepatitis E. Both AHE- and CHE-patients exhibited high viral loads (median 3.23E + 05 IU/mL and 2.11E + 06 IU/mL, respectively) with HEV-3c being the predominant HEV-genotype. Expression analysis of liver-specific serum miRNAs was performed using real-time PCR. miR-99a-5p, miR-122-5p, and miR-125b-5p were upregulated in AHE (4.70-5.28 fold) and CHE patients (2.28-6.34 fold), compared to HEV-negative controls. Notably, miR-192-5p was increased 2.57 fold while miR-125b-5p was decreased 0.35 fold in CHE but not in AHE patients. Furthermore, decreased miR-122-5p expression significantly correlates with reduced liver transaminases in CHE patients. To our knowledge, this marks the first investigation concerning the regulation of circulating liver-specific miRNAs in acute and chronic HEV infections. We found that miR-125b-5p, miR-192-5p, and miR-99a-5p may prove useful in the diagnosis of chronic hepatitis E.
Collapse
Affiliation(s)
- Dominik Harms
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Mira Choi
- Medical Department, Division of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kristina Allers
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology (including Nutritional Medicine), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bo Wang
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Heiko Pietsch
- Department of Cardiology, Campus Rudolf Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - C-Patrick Papp
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Lina Hanisch
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Jens Kurreck
- Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
| | - Jörg Hofmann
- Institute of Medical Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Labor Berlin, Charité-Vivantes GmbH, Berlin, Germany
| | - C-Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
39
|
Wang Y, Zeng G, Jiang Y. The Emerging Roles of miR-125b in Cancers. Cancer Manag Res 2020; 12:1079-1088. [PMID: 32104088 PMCID: PMC7024862 DOI: 10.2147/cmar.s232388] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, noncoding, single-stranded RNA molecules of 22 nucleotides in length. MiRNAs have both tumor-suppressive properties and oncogenic properties that can control critical processes in tumors. Mature miR-125b originates from miR-125b-1 and miR-125b-2 and leads to the degradation of target mRNAs or the inhibition of translation through binding to the 3′ untranslated regions (3′-UTR) of target mRNAs. Importantly, miR-125b is involved in regulating NF-κB, p53, PI3K/Akt/mTOR, ErbB2, Wnt, and another signaling pathways, thereby controlling cell proliferation, differentiation, metabolism, apoptosis, drug resistance and tumor immunity. This review aims to summarize the recent literature on the role of miR-125b in the regulation of tumorigenesis and to explore its potential clinical application in the diagnosis, prognosis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Ying Wang
- Department of Oncology, The Fifth People's Hospital of Chengdu, Chengdu, People's Republic of China
| | - Guilin Zeng
- Department of Oncology, The Fifth People's Hospital of Chengdu, Chengdu, People's Republic of China
| | - Yicheng Jiang
- Department of Oncology, The People's Hospital of Chongqing Hechuan, Chongqing, People's Republic of China
| |
Collapse
|
40
|
Liu S, Huang M, Chen Z, Chen J, Chao Q, Yin X, Quan M. FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13. Exp Cell Res 2020; 389:111894. [PMID: 32035950 DOI: 10.1016/j.yexcr.2020.111894] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
FTO, a demethylase for N6-methyladenosine (m6A) modification, has been implicated in multiple tumors. However, its roles in esophageal squamous cell carcinoma (ESCC) remain uncovered. This study aims to evaluate the clinical relevance and functional roles in this disease. Through immunohistochemistry, qRT-PCR and Western blot analyses, we found FTO expression in ESCC tissues was stronger than that in adjacent normal tissues, and the survival curves displayed high FTO expression had a trend toward poor prognosis. Functionally, silencing of FTO inhibited ESCC cell growth and migration in CCK8, EdU, colony formation and transwell assays and FTO overexpression showed the opposite results. Furthermore, FTO was also required for the tumorigenicity of ESCC cells in nude mice. The data from RNA-seq analysis revealed that MMP13 expression was significantly affected by FTO knockdown. qRT-PCR and Western blot assays confirmed that MMP13 was positively regulated by FTO in both mRNA and protein levels. Additionally, the functional link between FTO and MMP13 was explored by CCK8 and transwell chamber approaches. These findings suggest that FTO is up-regulated and plays oncogenic roles in ESCC. MMP13 may function as a downstream target of FTO.
Collapse
Affiliation(s)
- Shenxiang Liu
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, 225009, China
| | - Mei Huang
- Department of Oncology, Yancheng Third People's Hospital/the Affiliated Yancheng Hospital of Southeast University Medical College, Jiangsu, 224001, China
| | - Zhiqin Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jingde Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qian Chao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xudong Yin
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, 225009, China
| | - Ming Quan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
41
|
High Mobility Group A (HMGA): Chromatin Nodes Controlled by a Knotty miRNA Network. Int J Mol Sci 2020; 21:ijms21030717. [PMID: 31979076 PMCID: PMC7038092 DOI: 10.3390/ijms21030717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
High mobility group A (HMGA) proteins are oncofoetal chromatin architectural factors that are widely involved in regulating gene expression. These proteins are unique, because they are highly expressed in embryonic and cancer cells, where they play a relevant role in cell proliferation, stemness, and the acquisition of aggressive tumour traits, i.e., motility, invasiveness, and metastatic properties. The HMGA protein expression levels and activities are controlled by a connected set of events at the transcriptional, post-transcriptional, and post-translational levels. In fact, microRNA (miRNA)-mediated RNA stability is the most-studied mechanism of HMGA protein expression modulation. In this review, we contribute to a comprehensive overview of HMGA-targeting miRNAs; we provide detailed information regarding HMGA gene structural organization and a comprehensive evaluation and description of HMGA-targeting miRNAs, while focusing on those that are widely involved in HMGA regulation; and, we aim to offer insights into HMGA-miRNA mutual cross-talk from a functional and cancer-related perspective, highlighting possible clinical implications.
Collapse
|
42
|
Zhang C, Wan X, Tang S, Li K, Wang Y, Liu Y, Sha Q, Zha X, Liu Y. miR-125b-5p/STAT3 Pathway Regulated by mTORC1 Plays a Critical Role in Promoting Cell Proliferation and Tumor Growth. J Cancer 2020; 11:919-931. [PMID: 31949495 PMCID: PMC6959016 DOI: 10.7150/jca.33696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of the mammalian target of rapamycin complex 1 (mTORC1) plays a critical role in tumorigenesis. However, the precise underlying mechanism is still not fully understood. Although accumulating evidence suggests that mTORC1 signaling is regulated by microRNAs (miRNAs), whether miRNAs are involved in the tumorigenesis mediated by mTORC1 dysregulation remains largely unclear. In our study, the comparison between tuberous sclerosis complex 1 (Tsc1) -/- or Tsc2-/- mouse embryonic fibroblasts (MEFs) and the control cells revealed the involvement of microRNA-125b-5p (miR-125b-5p) in the tumorigenesis driven by mTORC1 activation. Our study also showed that loss of TSC1 or TSC2 led to significant downregulation of miR-125b-5p and upregulation of signal transducer and activator of transcription 3 (STAT3) via mTORC1 activation. Overexpression of miR-125b-5p inhibited the proliferation of the cells with hyperactivated mTORC1 both in vitro and in vivo. Furthermore, we demonstrated that STAT3 is a direct target of miR-125b-5p. Depletion of STAT3 mimicked the effect of ectopic expression of miR-125b-5p, and reintroduction of STAT3 rescued the compromised cell proliferation driven by miR-125b-5p overexpression in Tsc1-/- or Tsc2-/- MEFs. We conclude that the miR-125b-5p/STAT3 pathway plays a crucial role in hyperactivated mTORC1-mediated tumorigenesis and miR-125b-5p is a potential therapeutic target.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaofeng Wan
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Sisi Tang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Kun Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yani Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yujie Liu
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Quan Sha
- Department of Immunology & Allergy and Immunology Research Center, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
43
|
Zhao YC, Jiao Y, Li YQ, Fu Z, Yang ZY, He M. Elevated high mobility group A2 expression in liver cancer predicts poor patient survival. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020; 112:27-33. [PMID: 31823639 DOI: 10.17235/reed.2019.6365/2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND liver cancer is a malignant tumor with a high morbidity and mortality that endangers human health. High mobility group A2 (HMGA2) is a chromosome associated protein that participates in embryogenesis, tissue development, tumorigenesis and development. OBJECTIVE to explore the relationship between HMGA2 expression and the clinicopathological parameters and survival of liver cancer patients using The Cancer Genome Atlas Liver Hepatocellular Carcinoma (HCC) data. METHODS RNA-sequencing data and the corresponding clinical characteristics of the patients were downloaded from the Atlas database. The Chi-squared test was used to assess the relationship between HMGA2 expression and clinical variables. Cox regression analysis was used to compare survival rates between the high- and low-expressing groups; the p-values and Kaplan-Meier survival curves were compared using the log-rank test. RESULTS RNA-seq data from 373 cases of liver cancer cases were analyzed. HMGA2 was overexpressed in liver cancer and significantly associated with gender (p = 0.0357), T classification (p = 0.0063), clinical classification (p = 0.0026) and overall survival (p = 0.0386). According to the multivariate analysis, HMGA2 could independently predict overall survival in liver cancer. CONCLUSIONS HMGA2 independently predicts poor prognosis in liver cancer and serves as a molecular marker to determine disease prognosis.
Collapse
Affiliation(s)
- Yue-Chen Zhao
- Radiation Oncology, The Second Hospital of Jilin University, China
| | - Yan Jiao
- Department of hepatobiliary and pancreatic surgery, Jilin University
| | - Yan-Qing Li
- Pathophysiology, College of Basic Medical Sciences, Jilin University, China
| | - Zhuo Fu
- Hand and Foot Surgery, The First Hospital of Jilin University
| | - Zhao-Ying Yang
- Breast Surgery, China-Japan Union Hospital of Jilin University, China
| | - Miao He
- Anesthesia, The Second Hospital of Jilin University, China
| |
Collapse
|
44
|
Emerging Role of Non-Coding RNAs in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2019; 21:ijms21010258. [PMID: 31905958 PMCID: PMC6982002 DOI: 10.3390/ijms21010258] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly prevalent tumor and is associated with ethnicity, genetics, and dietary intake. Non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) have been reported as functional regulatory molecules involved in the development of many human cancers, including ESCC. Recently, several ncRNAs have been detected as oncogenes or tumor suppressors in ESCC progression. These ncRNAs influence the expression of specific genes or their associated signaling pathways. Moreover, interactions of ncRNAs are evident in ESCC, as miRNAs regulate the expression of lncRNAs, and further, lncRNAs and circRNAs function as miRNA sponges to compete with the endogenous RNAs. Here, we discuss and summarize the findings of recent investigations into the role of ncRNAs (miRNAs, lncRNAs, and circRNAs) in the development and progression of ESCC and how their interactions regulate ESCC development.
Collapse
|
45
|
Yang D, Wang X, Gao H, Chen B, Si C, Wang S. Downregulation of miR-155-5p facilitates enterovirus 71 replication through suppression of type I IFN response by targeting FOXO3/IRF7 pathway. Cell Cycle 2019; 19:179-192. [PMID: 31856677 DOI: 10.1080/15384101.2019.1704512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Enterovirus 71 (EV71), the major cause of hand-foot-and-mouth disease (HFMD), has evolved diverse strategies to counter the type I interferon (IFN-I) response during infection. Recently, microRNAs have regulatory roles in host innate immune responses to viral infections; however, whether EV71 escapes the IFN-I antiviral response through regulation of miRNAs remains unclear. Using a microarray assay, microRNA-155-5p (miR-155-5p) was found to be significantly up-regulated in serum from patients with EV71 infection and the increased expression of miR-155-5p was further confirmed in vivo and in vitro in response to EV71 infection. miR-155-5p overexpression suppressed EV71 titers and VP1 protein level, while miR-155-5p inhibition had an opposite result. Moreover, we found that miR-155-5p overexpression enhanced EV71 triggered IFN I production and the expressions of IFN-stimulated genes (ISGs), while inhibition of miR-155-5p suppressed these processes. Furthermore, bioinformatics analysis and luciferase reporter assay demonstrated that miR-155-5p directly targeted forkhead box protein O3 (FOXO3) and negatively regulated FOXO3/IRF7 axis, an important regulatory pathway for type I IFN production during EV71 infection. Inhibition of FOXO3 reversed the effects of miR-155-5p inhibitor on EV71 replication and the type I IFN production. Importantly, in EV71 infection mice, agomir-155-5p injection resulted in a significant reduction of viral VP1 protein expressions in brain and lung tissues, increased IFN-α/β production and increased mice survival rate. In contrast, antagomir-155-5p enhanced EV71 induced these effects. Collectively, our study indicates that weaken miR-155-5p facilitates EV71 replication through suppression of type I IFN response by FOXO3/IRF7 pathway, thereby suggesting a novel strategy for developing effective antiviral therapy.
Collapse
Affiliation(s)
- Daokun Yang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xinwei Wang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Haili Gao
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baoxin Chen
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Changyun Si
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Shasha Wang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
46
|
He R, Wang J, Ye K, Du J, Chen J, Liu W. Reduced miR-203 predicts metastasis and poor survival in esophageal carcinoma. Aging (Albany NY) 2019; 11:12114-12130. [PMID: 31844033 PMCID: PMC6949080 DOI: 10.18632/aging.102543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
Abstract
We analyzed data from two non-coding RNA profiling arrays made available by the Gene Expression Omnibus (GEO) and found 17 miRNAs with remarkable differential expression between malignant and normal esophageal tissue. Correlation analysis between expression of these 17 miRNAs and patients’ clinicopathological characteristics showed that miR-203 was down-regulated in esophageal carcinoma (EC) tissues and was significantly associated with lymph node metastasis and poor overall survival. Overexpression of miR-203 significantly attenuated cellular proliferation, migration and invasion by EC cells in culture. Additionally, gene expression profiles and bioinformatics analysis revealed KIF5C to be a direct target of miR-203, and KIF5C overexpression partially counteracted the tumor inhibitory effects of miR-203 on EC cells. We also observed that miR-203, reduced KIFC5 protein levels, promoted cytoplasmic accumulation of Axin2, and reversed the invasive phenotype of EC cells. Taken together, these data demonstrate that miR-203 is a tumor suppressor in EC cells and its expression level could potentially be used as a prognostic indicator for EC patient outcomes.
Collapse
Affiliation(s)
- Rongqi He
- First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, P.R. China
| | - Jintian Wang
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Kai Ye
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Jiabin Du
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Junxing Chen
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Weinan Liu
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| |
Collapse
|
47
|
Li Z, Tan H, Zhao W, Xu Y, Zhang Z, Wang M, Zhou X. Integrative analysis of DNA methylation and gene expression profiles identifies MIR4435-2HG as an oncogenic lncRNA for glioma progression. Gene 2019; 715:144012. [PMID: 31357021 DOI: 10.1016/j.gene.2019.144012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 02/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play an important role in tumor biogenesis and prognosis. The glioma is a grade classified cancer, however, we still lack the knowledge on their function during glioma progression. While previous studies have shown how lncRNAs regulate protein-coding gene epigenetically, it is still unclear how lncRNAs are regulated epigenetically. In this study, we firstly analyzed the RNA-seq data systematically across grades II, IV, and IV of glioma samples. We identified 60 lncRNAs that are significantly differentially expressed over disease progression (DElncRNA), including well-known PVT1, HOTAIR, H19 and rarely studied CARD8-AS, MIR4435-2HG. Secondly, by integrating HM450K methylation microarray data, we demonstrated that some of the lncRNAs are epigenetically regulated by methylation. Thirdly, we developed a DESeq2-GSEA-ceRNA-survival analysis strategy to investigate their functions. Particularly, MIR4435-2HG is highly expressed in high-grade glioma and may have an impact on EMT and TNFα signaling pathway by functioning as a miRNA sponge of miR-125a-5p and miR-125b-5p to increase the expression of CD44. Our results revealed the dynamic expression of lncRNAs in glioma progression and their epigenetic regulation mechanism.
Collapse
Affiliation(s)
- Zhijin Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hua Tan
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weiling Zhao
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yungang Xu
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhigang Zhang
- School of Information Management and Statistics, Hubei University of Economics, Wuhan, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA; McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
48
|
Zheng Y, Cai B, Li X, Li D, Yin G. MiR-125b-5p and miR-181b-5p inhibit keratinocyte proliferation in skin by targeting Akt3. Eur J Pharmacol 2019; 862:172659. [PMID: 31518563 DOI: 10.1016/j.ejphar.2019.172659] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/10/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) have been widely accepted to play important roles in the regulation of keratinocyte functions. Here, we aimed to further explore the role and underlying mechanism of miR-125b-5p and miR-181b-5p in psoriasis. The expression levels of miR-125b-5p, miR-181b-5p and Akt3 mRNA were detected by qRT-PCR assay. Cell proliferation ability was determined by MTT assay and BrdU incorporation assay. Dual-luciferase reporter assay and RNA Immunoprecipitation assay were used to confirm the targeted interaction between miR-125b-5p or miR-181b-5p and Akt3 in human epidermal keratinocytes (HEKs). The levels of ki-67, Akt3 protein, Akt, p-Akt, mTOR and p-mTOR were measured by Western blot. Our study indicated that miR-125b-5p and miR-181b-5p were downregulated (about 61.3% with miR-125b-5p and 60.4% with miR-181b-5p) and Akt3 was upregulated (about 2.68-fold) in psoriasis. Upregulation of miR-125b-5p or miR-181b-5p resulted in about a 33% or 40% reduction of HEKs proliferation in vitro, while Akt3 overexpression triggered a 1.3-fold enhancement on HEKs proliferation. Akt3 was a direct target of miR-125b-5p or miR-181b-5p. Moreover, HEKs proliferation ability in cotransfection of miR-125b-5p mimics (or miR-181-5p mimics) and vector-Akt3 group was about 2-fold (or 1.98-fold) that in the miR-125b-5p mimics (or miR-181-5p mimics) alone group. Akt/mTOR signaling was involved in miR-125b-5p mimics- or miR-181b-5p mimics-mediated inhibition effect on HEKs proliferation. Our study suggested that the upregulation of miR-125b-5p or miR-181b-5p inhibited HEKs proliferation at least partly by targeting Akt3, providing novel mechanisms of miRNAs involved in psoriasis.
Collapse
Affiliation(s)
- Yunpeng Zheng
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052, China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052, China
| | - Xuyang Li
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052, China
| | - Dongqin Li
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052, China
| | - Guangwen Yin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052, China.
| |
Collapse
|
49
|
Guo R, Wu Z, Wang J, Li Q, Shen S, Wang W, Zhou L, Wang W, Cao Z, Guo Y. Development of a Non-Coding-RNA-based EMT/CSC Inhibitory Nanomedicine for In Vivo Treatment and Monitoring of HCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801885. [PMID: 31065520 PMCID: PMC6498119 DOI: 10.1002/advs.201801885] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/30/2019] [Indexed: 05/17/2023]
Abstract
The objective of this study is to improve the overall prognosis of patients with hepatocellular carcinoma (HCC); therefore, new therapeutic methods that can be used in vivo are urgently needed. In this study, the relationship between the quantities of microRNA (miR)-125b-5p in clinical specimens and clinicopathological parameters is analyzed. A folate-conjugated nanocarrier is used to transfect miR-125b-5p in vivo and to observe the therapeutic effect on HCC. The inhibitory effect and mechanism of miR-125b-5p on hepatoma cells are also studied. Data from clinical specimens and in vitro experiments confirm that the miR-125b-5p quantity is negatively correlated with progression, and the target protein that regulates the epithelial-mesenchymal transition (EMT)/cancer stem cells (CSC) potential in HCC is STAT3. The miR-125b-5p/STAT3 axis inhibits the invasion, migration, and growth of HCC via inactivation of the wnt/β-Catenin pathway. miR-125b-5p-loaded nanomedicine effectively inhibits the EMT/CSC potential of hepatoma cells in vivo together with their magnetic resonance imaging (MRI) visualization characteristics. An HCC-therapeutic and MRI-visible nanomedicine platform that achieves noninvasive treatment effect monitoring and timely individualized treatment course adjustment is developed.
Collapse
Affiliation(s)
- Ruomi Guo
- Department of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
- Department of Radiology and VIP Medical CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| | - Zhiqiang Wu
- Department of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin300060China
| | - Jing Wang
- Department of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
- Department of Obstetrics and Gynecology and Medical UltrasonicsThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
| | - Qingling Li
- Department of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
- Department of Radiology and VIP Medical CenterThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| | - Shunli Shen
- Department of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
| | - Weiwei Wang
- Department of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
- School of Biomedical EngineeringSun Yat‐Sen UniversityGuangzhou510006China
| | - Luyao Zhou
- Department of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
- Department of Obstetrics and Gynecology and Medical UltrasonicsThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
| | - Wei Wang
- Department of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
- Department of Obstetrics and Gynecology and Medical UltrasonicsThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
| | - Zhong Cao
- Department of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
- School of Biomedical EngineeringSun Yat‐Sen UniversityGuangzhou510006China
| | - Yu Guo
- Department of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
50
|
Zhu X, Luo X, Feng G, Huang H, He Y, Ma W, Zhang C, Zeng M, Liu H. CENPE expression is associated with its DNA methylation status in esophageal adenocarcinoma and independently predicts unfavorable overall survival. PLoS One 2019; 14:e0207341. [PMID: 30716092 PMCID: PMC6361429 DOI: 10.1371/journal.pone.0207341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Centrosome-associated protein E (CENPE) is a plus end-directed kinetochore motor protein, which plays a critical role in mitosis. In this in silico study, using data from the Cancer Genome Atlas-Esophageal Carcinoma (TCGA-ESCA), we analyzed the expression profile of CENPE mRNA in esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EA), its independent prognostic value and the potential mechanisms of its dysregulation in EA. Results showed that both ESCC and EA tissues had significantly elevated CENPE expression compared with their respective adjacent normal tissues. However, Kaplan-Meier survival curves showed that high CENPE was associated with unfavorable OS in EA. Univariate and multivariate analysis confirmed that CENPE expression was an independent indicator of unfavorable OS in EA patients, as a continuous variable (HR: 1.861, 95%CI: 1.235–2.806, p = 0.003) or as categorical variables (HR: 2.550, 95%CI: 1.294–5.025, p = 0.007). However, CENPE expression had no prognostic value in ESCC. Compared with the methylation status in normal samples, 3 CpG sites were hypomethylated (cg27388036, cg27443373, and cg24651824) in EA, among which two sites (cg27443373 and cg24651824) showed moderately negative correlation with CENPE expression. In addition, we also found that although heterozygous loss (-1) was frequent in EA (50/88, 56.8%), it was not necessarily associated with decreased CENPE expression compared with the copy neutral (0) cases. The methylation of the -1 group was significantly lower than that of the +1/0 group (p = 0.04). Based on these findings, we infer that CENPE upregulation in EA might serve as a valuable indicator of unfavorable OS. The methylation status of cg27443373 and cg24651824 might play a critical role in modulating CENPE expression.
Collapse
Affiliation(s)
- Xueqiang Zhu
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing Luo
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Feng
- Division of Thoracic Surgery, Department of Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Huang
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangke He
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen Ma
- Department of Tumor Center, Gansu Provincial People's Hospital, Lanzhou, China
| | - Changqing Zhang
- Department of Tumor Center, Gansu Provincial People's Hospital, Lanzhou, China
| | - Ming Zeng
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Liu
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- * E-mail:
| |
Collapse
|