1
|
Zhang Y, Liang Z, Xing H, Yu C, Liang J, Xu Q, Song J, He Z. A model of pregnancy-associated malaria for inducing adverse pregnancy outcomes in ICR mouse. Exp Parasitol 2024; 257:108686. [PMID: 38158008 DOI: 10.1016/j.exppara.2023.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/08/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Based on understanding of placental pathological features and safe medication in pregnancy-associated malaria (PAM), establishment of a stable pregnant mouse infection model with Plasmodium was urgently needed. METHODS ICR mice with vaginal plugs detected were randomly divided into post-pregnancy infection (Malaria+) and uninfected pregnancy (Malaria-) cohorts. Age-matched mice that had not been mated were infected as pre-pregnancy infection group (Virgin control), which were subsequently mated with ICR males. All mice were inoculated with 1 × 106Plasmodium berghei ANKA-infected RBCs by intraperitoneal injection, and the same amount of saline was given to Malaria- group. We recorded the incidence of adverse pregnancy outcomes and the amounts of offspring in each group. RESULTS The Virgin group mice were unable to conceive normally, and vaginal bleeding, abortion, or stillbirth appeared in the Malaria+ group. The incidence of adverse pregnancy outcomes was extremely high and statistically significant compared with the control (Malaria-) group (P < 0.05), of which placenta exhibited pathological features associated with human gestational malaria. CONCLUSIONS The intraperitoneal injection of 1 × 106Plasmodium berghei ANKA-infected RBCs could establish a model of pregnancy-associated malaria in ICR mouse.
Collapse
Affiliation(s)
- Yingying Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhiming Liang
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Haoyu Xing
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuyi Yu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jianming Liang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhouqing He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| |
Collapse
|
2
|
Barateiro A, Junior ARC, Epiphanio S, Marinho CRF. Homeostasis Maintenance in Plasmodium-Infected Placentas: Is There a Role for Placental Autophagy During Malaria in Pregnancy? Front Immunol 2022; 13:931034. [PMID: 35898514 PMCID: PMC9309427 DOI: 10.3389/fimmu.2022.931034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria represents a significant public health burden to populations living in developing countries. The disease takes a relevant toll on pregnant women, who are more prone to developing severe clinical manifestations. Inflammation triggered in response to P. falciparum sequestration inside the placenta leads to physiological and structural changes in the organ, reflecting locally disrupted homeostasis. Altogether, these events have been associated with poor gestational outcomes, such as intrauterine growth restriction and premature delivery, contributing to the parturition of thousands of African children with low birth weight. Despite significant advances in the field, the molecular mechanisms that govern these outcomes are still poorly understood. Herein, we discuss the idea of how some housekeeping molecular mechanisms, such as those related to autophagy, might be intertwined with the outcomes of malaria in pregnancy. We contextualize previous findings suggesting that placental autophagy is dysregulated in P. falciparum-infected pregnant women with complementary research describing the importance of autophagy in healthy pregnancies. Since the functional role of autophagy in pregnancy outcomes is still unclear, we hypothesize that autophagy might be essential for circumventing inflammation-induced stress in the placenta, acting as a cytoprotective mechanism that attempts to ensure local homeostasis and better gestational prognosis in women with malaria in pregnancy.
Collapse
Affiliation(s)
- André Barateiro
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | | | - Sabrina Epiphanio
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, Brazil
| | - Claudio Romero Farias Marinho
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
- *Correspondence: Claudio Romero Farias Marinho,
| |
Collapse
|
3
|
Shao X, Yu W, Yang Y, Wang F, Yu X, Wu H, Ma Y, Cao B, Wang YL. The mystery of the life tree: the placenta. Biol Reprod 2022; 107:301-316. [PMID: 35552600 DOI: 10.1093/biolre/ioac095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta is the interface between the fetal and maternal environments during mammalian gestation, critically safeguarding the health of the developing fetus and the mother. Placental trophoblasts origin from embryonic trophectoderm that differentiates into various trophoblastic subtypes through villous and extravillous pathways. The trophoblasts actively interact with multiple decidual cells and immune cells at the maternal-fetal interface and thus construct fundamental functional units, which are responsible for blood perfusion, maternal-fetal material exchange, placental endocrine, immune tolerance, and adequate defense barrier against pathogen infection. Various pregnant complications are tightly associated with the defects in placental development and function maintenance. In this review, we summarize the current views and our recent progress on the mechanisms underlying the formation of placental functional units, the interactions among trophoblasts and various uterine cells, as well as the placental barrier against pathogen infections during pregnancy. The involvement of placental dysregulation in adverse pregnancy outcomes is discussed.
Collapse
Affiliation(s)
- Xuan Shao
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yun Yang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Feiyang Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Yu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yeling Ma
- Medical College, Shaoxing University, Shaoxing, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Kobia FM, Maiti K, Obimbo MM, Smith R, Gitaka J. Potential pharmacologic interventions targeting TLR signaling in placental malaria. Trends Parasitol 2022; 38:513-524. [DOI: 10.1016/j.pt.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
5
|
Megli CJ, Coyne CB. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol 2022; 20:67-82. [PMID: 34433930 PMCID: PMC8386341 DOI: 10.1038/s41579-021-00610-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/08/2023]
Abstract
Infections are a major threat to human reproductive health, and infections in pregnancy can cause prematurity or stillbirth, or can be vertically transmitted to the fetus leading to congenital infection and severe disease. The acronym 'TORCH' (Toxoplasma gondii, other, rubella virus, cytomegalovirus, herpes simplex virus) refers to pathogens directly associated with the development of congenital disease and includes diverse bacteria, viruses and parasites. The placenta restricts vertical transmission during pregnancy and has evolved robust mechanisms of microbial defence. However, microorganisms that cause congenital disease have likely evolved diverse mechanisms to bypass these defences. In this Review, we discuss how TORCH pathogens access the intra-amniotic space and overcome the placental defences that protect against microbial vertical transmission.
Collapse
Affiliation(s)
- Christina J Megli
- Division of Maternal-Fetal Medicine, Division of Reproductive Infectious Disease, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and the Magee Womens Research Institute, Pittsburgh, PA, USA.
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Yu W, Hu X, Cao B. Viral Infections During Pregnancy: The Big Challenge Threatening Maternal and Fetal Health. MATERNAL-FETAL MEDICINE 2022; 4:72-86. [PMID: 35187500 PMCID: PMC8843053 DOI: 10.1097/fm9.0000000000000133] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
Viral infections during pregnancy are associated with adverse pregnancy outcomes, including maternal and fetal mortality, pregnancy loss, premature labor, and congenital anomalies. Mammalian gestation encounters an immunological paradox wherein the placenta balances the tolerance of an allogeneic fetus with protection against pathogens. Viruses cannot easily transmit from mother to fetus due to physical and immunological barriers at the maternal-fetal interface posing a restricted threat to the fetus and newborns. Despite this, the unknown strategies utilized by certain viruses could weaken the placental barrier to trigger severe maternal and fetal health issues especially through vertical transmission, which was not fully understood until now. In this review, we summarize diverse aspects of the major viral infections relevant to pregnancy, including the characteristics of pathogenesis, related maternal-fetal complications, and the underlying molecular and cellular mechanisms of vertical transmission. We highlight the fundamental signatures of complex placental defense mechanisms, which will prepare us to fight the next emerging and re-emerging infectious disease in the pregnancy population.
Collapse
Affiliation(s)
- Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoqian Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
7
|
Qin XY, Shen HH, Zhou WJ, Mei J, Lu H, Tan XF, Zhu R, Zhou WH, Li DJ, Zhang T, Ye JF, Li MQ. Insight of Autophagy in Spontaneous Miscarriage. Int J Biol Sci 2022; 18:1150-1170. [PMID: 35173545 PMCID: PMC8771834 DOI: 10.7150/ijbs.68335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022] Open
Abstract
In some cases of spontaneous miscarriage (SM), the exact etiology cannot be determined. Autophagy, which is responsible for cellular survival under stress conditions, has also been implicated in many diseases. Recently, it is also surmised to be correlated with SM. However, the detailed mechanism remains elusive. In fact, there are several essential steps during pregnancy establishment and maintenance: trophoblasts invasion, placentation, decidualization, enrichment and infiltration of decidua immune cells (e.g., natural killer, macrophage and T cells). Accordingly, upstream molecules and downstream effects of autophagy are discussed in these processes, respectively. Of note, autophagy regulates the crosstalk between these cells at the maternal-fetal interface as well. Aberrant autophagy is found in villi, decidual stromal cells, peripheral blood mononuclear cells in SM patients, although the findings are inconsistent among different studies. Furthermore, potential treatments targeting autophagy are included, during which rapamycin and vitamin D are hot-spots in recent literatures. To conclude, a moderately activated autophagy is deeply involved in pregnancy, suggesting that autophagy should be a regulator and promising target for treating SM.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Han Lu
- Departments of Assisted Reproduction, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Xiao-Fang Tan
- Reproductive Medicine Centre, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226006, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, People's Republic of China
| | - Wen-Hui Zhou
- Medicine Centre for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jiang-Feng Ye
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, 229899, Singapore
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200080, People's Republic of China
| |
Collapse
|
8
|
Chua CLL, Khoo SKM, Ong JLE, Ramireddi GK, Yeo TW, Teo A. Malaria in Pregnancy: From Placental Infection to Its Abnormal Development and Damage. Front Microbiol 2021; 12:777343. [PMID: 34867919 PMCID: PMC8636035 DOI: 10.3389/fmicb.2021.777343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria remains a global health burden with Plasmodium falciparum accounting for the highest mortality and morbidity. Malaria in pregnancy can lead to the development of placental malaria, where P. falciparum-infected erythrocytes adhere to placental receptors, triggering placental inflammation and subsequent damage, causing harm to both mother and her infant. Histopathological studies of P. falciparum-infected placentas revealed various placental abnormalities such as excessive perivillous fibrinoid deposits, breakdown of syncytiotrophoblast integrity, trophoblast basal lamina thickening, increased syncytial knotting, and accumulation of mononuclear immune cells within intervillous spaces. These events in turn, are likely to impair placental development and function, ultimately causing placental insufficiency, intrauterine growth restriction, preterm delivery and low birth weight. Hence, a better understanding of the mechanisms behind placental alterations and damage during placental malaria is needed for the design of effective interventions. In this review, using evidence from human studies and murine models, an integrated view on the potential mechanisms underlying placental pathologies in malaria in pregnancy is provided. The molecular, immunological and metabolic changes in infected placentas that reflect their responses to the parasitic infection and injury are discussed. Finally, potential models that can be used by researchers to improve our understanding on the pathogenesis of malaria in pregnancy and placental pathologies are presented.
Collapse
Affiliation(s)
| | | | - Jun Long Ernest Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Tsin Wen Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Center for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Carvajal L, Gutiérrez J, Morselli E, Leiva A. Autophagy Process in Trophoblast Cells Invasion and Differentiation: Similitude and Differences With Cancer Cells. Front Oncol 2021; 11:637594. [PMID: 33937039 PMCID: PMC8082112 DOI: 10.3389/fonc.2021.637594] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Early human placental development begins with blastocyst implantation, then the trophoblast differentiates and originates the cells required for a proper fetal nutrition and placental implantation. Among them, extravillous trophoblast corresponds to a non-proliferating trophoblast highly invasive that allows the vascular remodeling which is essential for appropriate placental perfusion and to maintain the adequate fetal growth. This process involves different placental cell types as well as molecules that allow cell growth, cellular adhesion, tissular remodeling, and immune tolerance. Remarkably, some of the cellular processes required for proper placentation are common between placental and cancer cells to finally support tumor growth. Indeed, as in placentation trophoblasts invade and migrate, cancer cells invade and migrate to promote tumor metastasis. However, while these processes respond to a controlled program in trophoblasts, in cancer cells this regulation is lost. Interestingly, it has been shown that autophagy, a process responsible for the degradation of damaged proteins and organelles to maintain cellular homeostasis, is required for invasion of trophoblast cells and for vascular remodeling during placentation. In cancer cells, autophagy has a dual role, as it has been shown both as tumor promoter and inhibitor, depending on the stage and tumor considered. In this review, we summarized the similarities and differences between trophoblast cell invasion and cancer cell metastasis specifically evaluating the role of autophagy in both processes.
Collapse
Affiliation(s)
- Lorena Carvajal
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Gutiérrez
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Autophagy Research Center, Santiago, Chile
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| |
Collapse
|
10
|
Chua CLL, Hasang W, Rogerson SJ, Teo A. Poor Birth Outcomes in Malaria in Pregnancy: Recent Insights Into Mechanisms and Prevention Approaches. Front Immunol 2021; 12:621382. [PMID: 33790894 PMCID: PMC8005559 DOI: 10.3389/fimmu.2021.621382] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Pregnant women in malaria-endemic regions are susceptible to malaria in pregnancy, which has adverse consequences on birth outcomes, including having small for gestational age and preterm babies. These babies are likely to have low birthweights, which predisposes to infant mortality and lifelong morbidities. During malaria in pregnancy, Plasmodium falciparum-infected erythrocytes express a unique variant surface antigen, VAR2CSA, that mediates sequestration in the placenta. This process may initiate a range of host responses that contribute to placental inflammation and dysregulated placental development, which affects placental vasculogenesis, angiogenesis and nutrient transport. Collectively, these result in the impairment of placental functions, affecting fetal development. In this review, we provide an overview of malaria in pregnancy and the different pathological pathways leading to malaria in pregnancy-associated low birthweight. We also discuss current prevention and management strategies for malaria in pregnancy, and some potential therapeutic interventions that may improve birth outcomes. Lastly, we outline some priorities for future research that could bring us one step closer to reducing this health burden.
Collapse
Affiliation(s)
| | - Wina Hasang
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Teo
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Sena-dos-Santos C, Braga-da-Silva C, Marques D, Azevedo dos Santos Pinheiro J, Ribeiro-dos-Santos Â, Cavalcante GC. Unraveling Cell Death Pathways during Malaria Infection: What Do We Know So Far? Cells 2021; 10:479. [PMID: 33672278 PMCID: PMC7926694 DOI: 10.3390/cells10020479] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a parasitic disease (caused by different Plasmodium species) that affects millions of people worldwide. The lack of effective malaria drugs and a vaccine contributes to this disease, continuing to cause major public health and socioeconomic problems, especially in low-income countries. Cell death is implicated in malaria immune responses by eliminating infected cells, but it can also provoke an intense inflammatory response and lead to severe malaria outcomes. The study of the pathophysiological role of cell death in malaria in mammalians is key to understanding the parasite-host interactions and design prophylactic and therapeutic strategies for malaria. In this work, we review malaria-triggered cell death pathways (apoptosis, autophagy, necrosis, pyroptosis, NETosis, and ferroptosis) and we discuss their potential role in the development of new approaches for human malaria therapies.
Collapse
Affiliation(s)
- Camille Sena-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Cíntia Braga-da-Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Diego Marques
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Jhully Azevedo dos Santos Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
- Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66.075-110, Brazil
| | - Giovanna C. Cavalcante
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| |
Collapse
|
12
|
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR) is considered as a critical regulatory enzyme involved in essential signaling pathways affecting cell growth, cell proliferation, protein translation, regulation of cellular metabolism, and cytoskeletal structure. Also, mTOR signaling has crucial roles in cell homeostasis via processes such as autophagy. Autophagy prevents many pathogen infections and is involved on immunosurveillance and pathogenesis. Immune responses and autophagy are therefore key host responses and both are linked by complex mTOR regulatory mechanisms. In recent years, the mTOR pathway has been highlighted in different diseases such as diabetes, cancer, and infectious and parasitic diseases including leishmaniasis, toxoplasmosis, and malaria. The current review underlines the implications of mTOR signals and intricate networks on pathogen infections and the modulation of this master regulator by parasites. Parasitic infections are able to induce dynamic metabolic reprogramming leading to mTOR alterations in spite of many other ways impacting this regulatory network. Accordingly, the identification of parasite effects and interactions over such a complex modulation might reveal novel information regarding the biology of the abovementioned parasites and might allow the development of therapeutic strategies against parasitic diseases. In this sense, the effects of inhibiting the mTOR pathways are also considered in this context in the light of their potential for the prevention and treatment of parasitic diseases.
Collapse
|
13
|
Abstract
Purpose of Review Placental malaria is the primary mechanism through which malaria in pregnancy causes adverse perinatal outcomes. This review summarizes recent work on the significance, pathogenesis, diagnosis, and prevention of placental malaria. Recent Findings Placental malaria, characterized by the accumulation of Plasmodium-infected red blood cells in the placental intervillous space, leads to adverse perinatal outcomes such as stillbirth, low birth weight, preterm birth, and small-for-gestational-age neonates. Placental inflammatory responses may be primary drivers of these complications. Associated factors contributing to adverse outcomes include maternal gravidity, timing of perinatal infection, and parasite burden. Summary Placental malaria is an important cause of adverse birth outcomes in endemic regions. The main strategy to combat this is intermittent preventative treatment in pregnancy; however, increasing drug resistance threatens the efficacy of this approach. There are studies dissecting the inflammatory response to placental malaria, alternative preventative treatments, and in developing a vaccine for placental malaria.
Collapse
|
14
|
Sengupta A, Mukherjee S, Ghosh S, Keswani T, Sarkar S, Majumdar G, Das M, Bhattacharyya A. Partial impairment of late-stage autophagic flux in murine splenocytes leads to sqstm1/p62 mediated nrf2-keap1 antioxidant pathway activation and induced proteasome-mediated degradation in malaria. Microb Pathog 2020; 147:104289. [PMID: 32693118 DOI: 10.1016/j.micpath.2020.104289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023]
Abstract
Splenomegaly, a major symptom in Plasmodium infection, is extensively studied for its immunopathological role in mice malaria model infected with Plasmodium berghei ANKA. The status of autophagic regulation in hosts in malaria pathogenesis remains unreported till date. This study demonstrated the autophagy, proteasomal degradation and NRF2-KEAP1 antioxidant pathway status in the host during Plasmodium infection taking murine spleen as our organ of interest. Initial staining and autophagic gene expression indicate a possibility of autophagic pathway activation. Although the conversion of LC3A to LC3B and lysosome-autophagosome fusion increases, the final degradation step remains incomplete. Resultant upregulation of p62 and its altered phosphorylated status enhances its binding to keap1 causing NRF2 translocation to the nucleus. NRF2 act as transcription factor upregulating p62 level itself leading to an autoinduction loop of p62 expression. Interestingly, enhancement of P62 interaction with proteasome subunit RPT1 indicates a possible role in transporting ubiquitinated cargo to proteasome complex. Ubiquitination level increased with subsequent upregulation of all three modes of proteasomal degradation i.e trypsin-like, caspase-like and especially chymotrypsin-like. Sqstm1/p62 plays a critical central role in regulating autophagy, proteasomal degradation, and NRF2-KEAP1 pathway. The incomplete autophagic flux in the final step may be a key therapeutic target, as autophagic degradation and subsequent pathogenic peptide presentation is of utmost necessity for downstream immune response.
Collapse
Affiliation(s)
- Anirban Sengupta
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Tarun Keswani
- Department of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Gargi Majumdar
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
15
|
Mao Q, Chu S, Shapiro S, Yao H, De Paepe ME. Discordant placental oxygenation and autophagy in twin anemia-polycythemia sequence (TAPS). Placenta 2020; 90:9-17. [PMID: 32056557 PMCID: PMC7912434 DOI: 10.1016/j.placenta.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/07/2019] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND (Macro)autophagy is an important process of self-degradation of macromolecules and organelles that ensures cellular homeostasis and energy preservation during stressful conditions. Dysregulated placental autophagy has been implicated in a wide range of pregnancy complications. Recent studies identified hypoxia as a key regulator of trophoblast autophagy in vitro; however, its effects on placental autophagy in vivo remain incompletely understood. In this study, we evaluated the monochorionic twin anemia-polycythemia sequence (TAPS) placenta as model of discordant placental oxygenation to determine the effects of hypoxia on placental autophagy in utero. METHODS We performed a retrospective comparative analysis of tissue oxygenation and autophagy in anemic and polycythemic territories of TAPS placentas (N = 12). Archival tissues were subjected to immunohistochemical, immunofluorescence and Western blot analyses of carbonic anhydrase (CA) IX (hypoxia marker) and key autophagy/lysosomal markers. RESULTS CAIX protein levels were significantly higher in anemic twin territories than in corresponding polycythemic territories, consistent with relative tissue hypoxia. Anemic placental shares further displayed significantly higher levels of LC3I/II (autophagosome markers) and LAMP1/2 (lysosome markers), associated with upregulated expression of lysosome/autophagosome activity-associated markers, transcription factor EB and cathepsin D. The accumulation of autophagosomes and lysosomes in anemic shares was accompanied by elevated p62 protein expression, suggestive of inhibition of the downstream autophagy pathway. CONCLUSIONS TAPS placentas display striking intertwin discordance in tissue oxygenation and autophagic activity and may provide a suitable model for study of the interrelationship between hypoxia, autophagy, and pregnancy outcome in a monochorionic twin setting.
Collapse
Affiliation(s)
- Quanfu Mao
- From the Department of Pathology, Women and Infants Hospital, The Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, and the Department of Molecular Biology, Cell Biology and Biochemistry, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sharon Chu
- From the Department of Pathology, Women and Infants Hospital, The Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, and the Department of Molecular Biology, Cell Biology and Biochemistry, Alpert Medical School of Brown University, Providence, RI, USA
| | - Svetlana Shapiro
- From the Department of Pathology, Women and Infants Hospital, The Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, and the Department of Molecular Biology, Cell Biology and Biochemistry, Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- From the Department of Pathology, Women and Infants Hospital, The Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, and the Department of Molecular Biology, Cell Biology and Biochemistry, Alpert Medical School of Brown University, Providence, RI, USA
| | - Monique E De Paepe
- From the Department of Pathology, Women and Infants Hospital, The Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, and the Department of Molecular Biology, Cell Biology and Biochemistry, Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
16
|
Morffy Smith CD, Russ BN, Andrew AK, Cooper CA, Moore JM. A novel murine model for assessing fetal and birth outcomes following transgestational maternal malaria infection. Sci Rep 2019; 9:19566. [PMID: 31862902 PMCID: PMC6925284 DOI: 10.1038/s41598-019-55588-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/24/2019] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum infection during pregnancy is a major cause of severe maternal illness and neonatal mortality. Mouse models are important for the study of gestational malaria pathogenesis. When infected with Plasmodium chabaudi chabaudi AS in early gestation, several inbred mouse strains abort at midgestation. We report here that outbred Swiss Webster mice infected with P. chabaudi chabaudi AS in early gestation carry their pregnancies to term despite high parasite burden and malarial hemozoin accumulation in the placenta at midgestation, with the latter associated with induction of heme oxygenase 1 expression. Infection yields reduced fetal weight and viability at term and a reduction in pup number at weaning, but does not influence postnatal growth prior to weaning. This novel model allows for the exploration of malaria infection throughout pregnancy, modeling chronic infections observed in pregnant women prior to the birth of underweight infants and enabling the production of progeny exposed to malaria in utero, which is critical for understanding the postnatal repercussions of gestational malaria. The use of outbred mice allows for the exploration of gestational malaria in a genetically diverse model system, better recapitulating the diversity of infection responses observed in human populations.
Collapse
Affiliation(s)
- Catherine D Morffy Smith
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Brittany N Russ
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Alicer K Andrew
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Caitlin A Cooper
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Julie M Moore
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States. .,Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
17
|
Lima FA, Barateiro A, Dombrowski JG, de Souza RM, Costa DDS, Murillo O, Epiphanio S, Gonçalves LA, Marinho CRF. Plasmodium falciparum infection dysregulates placental autophagy. PLoS One 2019; 14:e0226117. [PMID: 31805150 PMCID: PMC6894763 DOI: 10.1371/journal.pone.0226117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/18/2019] [Indexed: 11/18/2022] Open
Abstract
Plasmodium (P.) falciparum malaria during pregnancy has been frequently associated with severe consequences such as maternal anemia, abortion, premature birth, and reduced birth weight. Placental damage promotes disruption of the local homeostasis; though, the mechanisms underlying these events are still to be elucidated. Autophagy is a fundamental homeostatic mechanism in the natural course of pregnancy by which cells self-recycle in order to survive in stressful environments. Placentas from non-infected and P. falciparum-infected women during pregnancy were selected from a previous prospective cohort study conducted in the Brazilian Amazon (Acre, Brazil). Newborns from infected women experienced reduced birth weight (P = 0.0098) and placental immunopathology markers such as monocyte infiltrate (P < 0.0001) and IL-10 production (P = 0.0122). The placentas were evaluated for autophagy-related molecules. As a result, we observed reduced mRNA levels of ULK1 (P = 0.0255), BECN1 (P = 0.0019), and MAP1LC3B (P = 0.0086) genes in placentas from P. falciparum-infected, which was more striking in those diagnosed with placental malaria. Despite the protein levels of these genes followed the same pattern, the observed reduction was not statistically significant in placentas from P. falciparum-infected women. Nevertheless, our data suggest that chronic placental immunopathology due to P. falciparum infection leads to autophagy dysregulation, which might impair local homeostasis during malaria in pregnancy that may result in poor pregnancy outcomes.
Collapse
Affiliation(s)
- Flávia Afonso Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - André Barateiro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Douglas de Sousa Costa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Oscar Murillo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lígia Antunes Gonçalves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
18
|
Morffy Smith CD, Gong M, Andrew AK, Russ BN, Ge Y, Zadeh M, Cooper CA, Mohamadzadeh M, Moore JM. Composition of the gut microbiota transcends genetic determinants of malaria infection severity and influences pregnancy outcome. EBioMedicine 2019; 44:639-655. [PMID: 31160271 PMCID: PMC6606560 DOI: 10.1016/j.ebiom.2019.05.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Malaria infection in pregnancy is a major cause of maternal and foetal morbidity and mortality worldwide. Mouse models for gestational malaria allow for the exploration of the mechanisms linking maternal malaria infection and poor pregnancy outcomes in a tractable model system. The composition of the gut microbiota has been shown to influence susceptibility to malaria infection in inbred virgin mice. In this study, we explore the ability of the gut microbiota to modulate malaria infection severity in pregnant outbred Swiss Webster mice. METHODS In Swiss Webster mice, the composition of the gut microbiota was altered by disrupting the native gut microbes through broad-spectrum antibiotic treatment, followed by the administration of a faecal microbiota transplant derived from mice possessing gut microbes reported previously to confer susceptibility or resistance to malaria. Female mice were infected with P. chabaudi chabaudi AS in early gestation, and the progression of infection and pregnancy were tracked throughout gestation. To assess the impact of maternal infection on foetal outcomes, dams were sacrificed at term to assess foetal size and viability. Alternatively, pups were delivered by caesarean section and fostered to assess neonatal survival and pre-weaning growth in the absence of maternal morbidity. A group of dams was also euthanized at mid-gestation to assess infection and pregnancy outcomes. FINDINGS Susceptibility to infection varied significantly as a function of source of transplanted gut microbes. Parasite burden was negatively correlated with the abundance of five specific OTUs, including Akkermansia muciniphila and OTUs classified as Allobaculum, Lactobacillus, and S24-7 species. Reduced parasite burden was associated with reduced maternal morbidity and improved pregnancy outcomes. Pups produced by dams with high parasite burdens displayed a significant reduction in survival in the first days of life relative to those from malaria-resistant dams when placed with foster dams. At midgestation, plasma cytokine levels were similar across all groups, but expression of IFNγ in the conceptus was elevated in infected dams, and IL-10 only in susceptible dams. In the latter, transcriptional and microscopic evidence of monocytic infiltration was observed with high density infection; likewise, accumulation of malaria haemozoin was enhanced in this group. These responses, combined with reduced vascularization of the placenta in this group, may contribute to poor pregnancy outcomes. Thus, high maternal parasite burden and associated maternal responses, potentially dictated by the gut microbial community, negatively impacts term foetal health and survival in the early postnatal period. INTERPRETATION The composition of the gut microbiota in Plasmodium chabaudi chabaudi AS-infected pregnant Swiss Webster mice transcends the outbred genetics of the Swiss Webster mouse stock as a determinant of malaria infection severity, subsequently influencing pregnancy outcomes in malaria-exposed progeny. FUND: Research reported in this manuscript was supported by the University of Florida College of Veterinary Medicine (JMM, MM, and MG), the National Institute of Allergy and Infectious Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award numbers T32AI060546 (to CDMS), R01HD46860 and R21AI111242 (to JMM), and R01 DK109560 (to MM). MG was supported by Department of Infectious Diseases and Immunology and University of Florida graduate assistantships. AA was supported by the 2017-2019 Peach State LSAMP Bridge to the Doctorate Program at the University of Georgia (National Science Foundation, Award # 1702361). The content is solely the responsibility of the authors and does not necessarily represent official views of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institute of Allergy and Infectious Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases, or the National Institutes of Health.
Collapse
Affiliation(s)
- Catherine D Morffy Smith
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Minghao Gong
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Alicer K Andrew
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Brittany N Russ
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Yong Ge
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Mojgan Zadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Caitlin A Cooper
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Julie M Moore
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States.
| |
Collapse
|
19
|
Finken MJJ, van der Steen M, Smeets CCJ, Walenkamp MJE, de Bruin C, Hokken-Koelega ACS, Wit JM. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr Rev 2018; 39:851-894. [PMID: 29982551 DOI: 10.1210/er.2018-00083] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022]
Abstract
Children born small for gestational age (SGA), defined as a birth weight and/or length below -2 SD score (SDS), comprise a heterogeneous group. The causes of SGA are multifactorial and include maternal lifestyle and obstetric factors, placental dysfunction, and numerous fetal (epi)genetic abnormalities. Short-term consequences of SGA include increased risks of hypothermia, polycythemia, and hypoglycemia. Although most SGA infants show catch-up growth by 2 years of age, ∼10% remain short. Short children born SGA are amenable to GH treatment, which increases their adult height by on average 1.25 SD. Add-on treatment with a gonadotropin-releasing hormone agonist may be considered in early pubertal children with an expected adult height below -2.5 SDS. A small birth size increases the risk of later neurodevelopmental problems and cardiometabolic diseases. GH treatment does not pose an additional risk.
Collapse
Affiliation(s)
- Martijn J J Finken
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Carolina C J Smeets
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Marie J E Walenkamp
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|