1
|
Wang Z, Ranasinghe JC, Wu W, Chan DCY, Gomm A, Tanzi RE, Zhang C, Zhang N, Allen GI, Huang S. Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression. ACS NANO 2025; 19:15457-15473. [PMID: 40233205 DOI: 10.1021/acsnano.4c16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Optical spectroscopy, a noninvasive molecular sensing technique, offers valuable insights into material characterization, molecule identification, and biosample analysis. Despite the informativeness of high-dimensional optical spectra, their interpretation remains a challenge. Machine learning methods have gained prominence in spectral analyses, efficiently unveiling analyte compositions. However, these methods still face challenges in interpretability, particularly in generating clear feature importance maps that highlight the spectral features specific to each class of data. These limitations arise from feature noise, model complexity, and the lack of optimization for spectroscopy. In this work, we introduce a machine learning algorithm─logistic regression with peak-sensitive elastic-net regularization (PSE-LR)─tailored for spectral analysis. PSE-LR enables classification and interpretability by producing a peak-sensitive feature importance map, achieving an F1-score of 0.93 and a feature sensitivity of 1.0. Its performance is compared with other methods, including k-nearest neighbors (KNN), elastic-net logistic regression (E-LR), support vector machine (SVM), principal component analysis followed by linear discriminant analysis (PCA-LDA), XGBoost, and neural network (NN). Applying PSE-LR to Raman and photoluminescence (PL) spectra, we detected the receptor-binding domain (RBD) of SARS-CoV-2 spike protein in ultralow concentrations, identified neuroprotective solution (NPS) in brain samples, recognized WS2 monolayer and WSe2/WS2 heterobilayer, analyzed Alzheimer's disease (AD) brains, and suggested potential disease biomarkers. Our findings demonstrate PSE-LR's utility in detecting subtle spectral features and generating interpretable feature importance maps. It is beneficial for the spectral characterization of materials, molecules, and biosamples and applicable to other spectroscopic methods. This work also facilitates the development of nanodevices such as nanosensors and miniaturized spectrometers based on nanomaterials.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Jeewan C Ranasinghe
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wenjing Wu
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Dennis C Y Chan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Genevera I Allen
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Gallardo D, Steward O. Novel Approaches to Track Neurodegeneration in Murine Models of Alzheimer's Disease Reveal Previously Unknown Aspects of Extracellular Aggregate Deposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647232. [PMID: 40236040 PMCID: PMC11996464 DOI: 10.1101/2025.04.04.647232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
This paper describes a novel transgenic-based platform to track degeneration of specific populations of neurons in 5xFAD mice, a murine model of Alzheimer's disease. We created a new double transgenic model by crossing 5xFAD mice with Rosa tdT reporter mice. 5xFAD +/- /Rosa tdT mice received intra-spinal cord injections of AAV-retrograde (rg)/Cre at 2-3 months of age to permanently label corticospinal neurons (CSNs). Brains and spinal cords were retrieved 2-3 weeks post-injection or at 12-14 months of age. Immunohistochemical studies of transgene expression throughout the brain and spinal cord, using an antibody selective for hAPP, revealed age-dependent accumulation of hAPP in extracellular aggregates in regions containing hAPP expressing neuronal cell bodies and in regions containing axons and synaptic terminals from hAPP expressing neurons. Permanent labeling of CSNs with tdT confirmed extensive loss of CSNs in old mice. Surprisingly, we discovered that tdT expressed by CSNs accumulated in extracellular aggregates that persisted after the neurons that expressed tdT degenerated. Extracellular aggregates of tdT also contained hAPP and co-localized with other markers of AD pathology. Overall, deposition of hAPP in extracellular aggregates in areas containing axons and synaptic terminals from hAPP expressing neurons is a prominent feature of AD pathophysiology in 5xFAD mice. In addition, accumulation of hAPP and reporter proteins in extracellular aggregates provides a secondary measure to track neurodegeneration of identified populations of neurons in these mice. Highlights Characterization of a new double transgenic strain allowing Cre-dependent labeling of populations of neurons that degenerate in 5xFAD mice.Selective labeling of layer V corticospinal neurons (CSNs) via retrograde transduction with AAV-rg allows quantification of previously un-recognized aspects of age-dependent CSN degeneration.Age-dependent deposition of extracellular hAPP by axons and synaptic terminals revealed by immunohistochemistry for mutant human APP in 5xFAD micePetal-shaped clusters of hAPP originate mainly due to axonal degeneration and fragmentation.Surprisingly, tdTomato expressed by neurons that degenerate, persists in extracellular deposits that co-localize with extracellular deposits of hAPP.
Collapse
|
3
|
Mohd Murshid N, Mohd Sahardi NFN, Makpol S. Advancing Alzheimer's Disease Modelling by Developing a Refined Biomimetic Brain Microenvironment for Facilitating High-Throughput Screening of Pharmacological Treatment Strategies. Int J Mol Sci 2024; 26:241. [PMID: 39796097 PMCID: PMC11719782 DOI: 10.3390/ijms26010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease (AD) poses a significant worldwide health challenge, requiring novel approaches for improved models and treatment development. This comprehensive review emphasises the systematic development and improvement of a biomimetic brain environment to address the shortcomings of existing AD models and enhance the efficiency of screening potential drug treatments. We identify drawbacks in traditional models and emphasise the necessity for more physiologically accurate systems through an in-depth analysis of current literature. This review aims to study the development of an advanced AD model that accurately replicates key AD pathophysiological aspects using cutting-edge biomaterials and microenvironment design. Incorporating biomolecular elements like Tau proteins and beta-amyloid (Aβ) plaques improve the accuracy of illustrating disease mechanisms. The expected results involve creating a solid foundation for high-throughput screening with enhanced scalability, translational significance, and the possibility of speeding up drug discovery. Thus, this review fills the gaps in AD modelling and shows potential for creating precise and efficient drug treatments for AD.
Collapse
Affiliation(s)
- Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Fatin Nabilah Mohd Sahardi
- Secretariat of Research and Innovation, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
4
|
Liang Y, Sun Z, Chiu K, Hu Y. Effective identification of Alzheimer's disease in mouse models via deep learning and motion analysis. Heliyon 2024; 10:e39353. [PMID: 39687151 PMCID: PMC11647830 DOI: 10.1016/j.heliyon.2024.e39353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 12/18/2024] Open
Abstract
Spatial disorientation is an early symptom of Alzheimer's disease (AD). Detecting this impairment effectively in animal models can provide valuable insights into the disease and reduce experimental burdens. We have developed a markerless motion analysis system (MMAS) using deep learning techniques for the Morris water maze test. This system allows for precise analysis of behaviors and body movements from video recordings. Using the MMAS, we identified unilateral head-turning and tail-wagging preferences in AD mice, which distinguished them from wild-type mice with greater accuracy than traditional behavioral parameters. Furthermore, the cumulative turning and wagging angles were linearly correlated with escape latency and cognitive scores, demonstrating comparable effectiveness in differentiating AD mice. These findings underscore the potential of motion analysis as an advanced method for improving the effectiveness, sensitivity, and interpretability of AD mouse identification, ultimately aiding in disease diagnosis and drug development.
Collapse
Affiliation(s)
- Yuanhao Liang
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Orthopedics Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- AI and Big Data Lab, The University of Hong Kong-Shenzhen Hospital, Shenzhen, G.D, 518053, China
| | - Zhongqing Sun
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Yong Hu
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Orthopedics Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- AI and Big Data Lab, The University of Hong Kong-Shenzhen Hospital, Shenzhen, G.D, 518053, China
| |
Collapse
|
5
|
Andrade-Guerrero J, Martínez-Orozco H, Villegas-Rojas MM, Santiago-Balmaseda A, Delgado-Minjares KM, Pérez-Segura I, Baéz-Cortés MT, Del Toro-Colin MA, Guerra-Crespo M, Arias-Carrión O, Diaz-Cintra S, Soto-Rojas LO. Alzheimer's Disease: Understanding Motor Impairments. Brain Sci 2024; 14:1054. [PMID: 39595817 PMCID: PMC11592238 DOI: 10.3390/brainsci14111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, profoundly impacts health and quality of life. While cognitive impairments-such as memory loss, attention deficits, and disorientation-predominate in AD, motor symptoms, though common, remain underexplored. These motor symptoms, including gait disturbances, reduced cardiorespiratory fitness, muscle weakness, sarcopenia, and impaired balance, are often associated with advanced stages of AD and contribute to increased mortality. Emerging evidence, however, suggests that motor symptoms may be present in earlier stages and can serve as predictive markers for AD in older adults. Despite a limited understanding of the underlying mechanisms driving these motor symptoms, several key pathways have been identified, offering avenues for further investigation. This review provides an in-depth analysis of motor symptoms in AD, discussing its progression, potential mechanisms, and therapeutic strategies. Addressing motor symptoms alongside cognitive decline may enhance patient functionality, improve quality of life, and support more comprehensive disease management strategies.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Humberto Martínez-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Karen M. Delgado-Minjares
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Mauricio T. Baéz-Cortés
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Miguel A. Del Toro-Colin
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Ciudad de México 14080, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| |
Collapse
|
6
|
Emmenegger TM, Seiler R, Unschuld PG, Freund P, Klohs J. Progressive cervical cord atrophy parallels cognitive decline in Alzheimer's disease. Sci Rep 2024; 14:21595. [PMID: 39284823 PMCID: PMC11405669 DOI: 10.1038/s41598-024-67389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/10/2024] [Indexed: 09/22/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive episodic memory dysfunction. A prominent hallmark of AD is gradual brain atrophy. Despite extensive research on brain pathology, the understanding of spinal cord pathology in AD and its association with cognitive decline remains understudied. We analyzed serial magnetic resonance imaging (MRI) scans from the ADNI data repository to assess whether progressive cord atrophy is associated with clinical worsening. Cervical cord morphometry was measured in 45 patients and 49 cognitively normal controls (CN) at two time points over 1.5 years. Regression analysis examined associations between cord atrophy rate and cognitive worsening. Cognitive and functional activity performance declined in patients during follow-up. Compared with controls, patients showed a greater rate of decline of the anterior-posterior width of the cross-sectional cord area per month (- 0.12%, p = 0.036). Worsening in the mini-mental state examination (MMSE), clinical dementia rating (CDR), and functional assessment questionnaire (FAQ) was associated with faster rates of cord atrophy (MMSE: r = 0.320, p = 0.037; CDR: r = - 0.361, p = 0.017; FAQ: r = - 0.398, p = 0.029). Progressive cord atrophy occurs in AD patients; its rate over time being associated with cognitive and functional activity decline.
Collapse
Affiliation(s)
- Tim M Emmenegger
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Raoul Seiler
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich, Switzerland
| | - Paul G Unschuld
- Department of Psychiatry, University of Geneva (UniGE), 1205, Geneva, Switzerland
- Division of Geriatric Psychiatry, University Hospitals of Geneva (HUG), 1226, Thônex, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Winterthurer Strasse 190, 8057, Zürich, Switzerland.
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Winterthurer Strasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
7
|
Mishra SK, Tiwari SP. Bioenergetics of Axon Integrity and Its Regulation by Oligodendrocytes and Schwann Cells. Mol Neurobiol 2024; 61:5928-5934. [PMID: 38252382 DOI: 10.1007/s12035-024-03950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Axons are long slender portions of neurons that transmit electrical impulses to maintain proper physiological functioning. Axons in the central nervous system (CNS) and peripheral nervous system (PNS) do not exist in isolation but are found to form a complex association with their surrounding glial cells, oligodendrocytes and Schwann cells. These cells not only myelinate them for faster nerve impulse conduction but are also known to provide metabolic support. Due to their incredible length, continuous growth, and distance from the cell body (where major energy synthesis takes place), axons are in high energetic demand. The stability and integrity of axons have long been associated with axonal energy levels. The current mini-review is thus focused on how axons accomplish their high energetic requirement in a cell-autonomous manner and how the surrounding glial cells help them in maintaining their integrity by fulfilling their energy demands (non-cell autonomous trophic support). The concept that adjacent glial cells (oligodendrocytes and Schwann cells) provide trophic support to axons and assist them in maintaining their integrity comes from the conditional knockout research and the studies in which the metabolic pathways controlling metabolism in these glial cells are modulated and its effect on axonal integrity is evaluated. In the later part of the mini-review, the current knowledge of axon-glial metabolic coupling during various neurodegenerative conditions was discussed, along with the potential lacunae in our current understanding of axon-glial metabolic coupling.
Collapse
Affiliation(s)
- Sandeep K Mishra
- Institute for Myelin and Glia Exploration, University at Buffalo, Buffalo, NY, 14203, USA.
- Faculty of Pharmacy, Kalinga University, Raipur, (C.G.), 492101, India.
| | | |
Collapse
|
8
|
O'Leary TP, Brown RE. Age-related changes in species-typical behaviours in the 5xFAD mouse model of Alzheimer's disease from 4 to 16 months of age. Behav Brain Res 2024; 465:114970. [PMID: 38531510 DOI: 10.1016/j.bbr.2024.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Alzheimer's disease (AD) patients show age-related decreases in the ability to perform activities of daily living and the decline in these activities is related to the severity of neurobiological deterioration underlying the disease. The 5xFAD mouse model of AD shows age-related impairments in sensory- motor and cognitive function, but little is known about changes in species-typical behaviours that may model activities of daily living in AD patients. Therefore, we examined species-typical behaviours used as indices of exploration (rearing) and compulsivity (grooming) across six tests of anxiety-like behaviour or motor function in female 5xFAD mice from 3 to 16 months of age. Robust decreases in rearing were found in 5xFAD mice across all tests after 9 months of age, although few differences were observed in grooming. A fine-scale analysis of grooming, however, revealed a previously unresolved and spatially restricted pattern of grooming in 5xFAD mice at 13-16 months of age. We then examined changes in species-typical behaviours in the home-cage, and show impaired nest building in 5xFAD mice at all ages tested. Lastly, we examined the relationship between reduced species typical behaviours in 5xFAD mice and the presentation of freezing behaviour, a commonly used measure of memory for conditioned fear. These results showed that along with cognitive and sensory-motor behaviour, 5xFAD mice have robust age-related impairments in species-typical behaviours. Therefore, species typical behaviours in 5xFAD mice may help to model the decline in activities of daily living observed in AD patients, and may provide useful behavioural phenotypes for evaluating the pre-clinical efficacy of novel therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
9
|
Liu SW, Ma XT, Yu S, Weng XF, Li M, Zhu J, Liu CF, Hu H. Bridging Reduced Grip Strength and Altered Executive Function: Specific Brain White Matter Structural Changes in Patients with Alzheimer's Disease. Clin Interv Aging 2024; 19:93-107. [PMID: 38250174 PMCID: PMC10799618 DOI: 10.2147/cia.s438782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Objective To investigate the correlation between specific fiber tracts and grip strength and cognitive function in patients with Alzheimer's disease (AD) by fixel-based analysis (FBA). Methods AD patients were divided into AD with low grip strength (AD-LGS, n=29) and AD without low grip strength (AD-nLGS, n=25), along with 31 normal controls (NC). General data, neuropsychological tests, grip strength and cranial magnetic resonance imaging (MRI) scans were collected. FBA evaluated white matter (WM) fiber metrics, including fiber density (FD), fiber cross-sectional (FC), and fiber density and cross-sectional area (FDC). The mean fiber indicators of the fiber tracts of interest (TOI) were extracted in cerebral region of significant statistical differences in FBA to further compare the differences between groups and analyze the correlation between fiber properties and neuropsychological test scores. Results Compared to AD-nLGS group, AD-LGS group showed significant reductions in FDC in several cerebral regions. In AD patients, FDC values of bilateral uncinate fasciculus and left superior longitudinal fasciculus were positively correlated with Clock Drawing Test scores, while FDC of splenium of corpus callosum, bilateral anterior cingulate tracts, forceps major, and bilateral inferior longitudinal fasciculus were positively correlated with the Executive Factor Score of Memory and Executive Screening scale scores. Conclusion Reduced grip strength in AD patients is associated with extensive impairment of WM structural integrity. Changes in FDC of specific WM fiber tracts related to executive function play a significant mediating role in the reduction of grip strength in AD patients.
Collapse
Affiliation(s)
- Shan-Wen Liu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Xiao-Ting Ma
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Shuai Yu
- Department of Neurology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, People’s Republic of China
| | - Xiao-Fen Weng
- Department of Geriatric Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, People’s Republic of China
| | - Meng Li
- Department of Imaging, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Jiangtao Zhu
- Department of Imaging, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Chun-Feng Liu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Hua Hu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| |
Collapse
|
10
|
Ames S, Adams K, Geisen ME, Stirling DP. Ca 2+-induced myelin pathology precedes axonal spheroid formation and is mediated in part by store-operated Ca 2+ entry after spinal cord injury. Neural Regen Res 2023; 18:2720-2726. [PMID: 37449636 DOI: 10.4103/1673-5374.373656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The formation of axonal spheroid is a common feature following spinal cord injury. To further understand the source of Ca2+ that mediates axonal spheroid formation, we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca2+. We performed two-photon excitation imaging of spinal cords isolated from Thy1YFP+ transgenic mice and applied the lipophilic dye, Nile red, to record dynamic changes in dorsal column axons and their myelin sheaths respectively. We selectively released Ca2+ from internal stores using the Ca2+ ionophore ionomycin in the presence or absence of external Ca2+. We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 mM Ca2+ artificial cerebrospinal fluid. In contrast, removal of external Ca2+ significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment. Using mice that express a neuron-specific Ca2+ indicator in spinal cord axons, we confirmed that ionomycin induced significant increases in intra-axonal Ca2+, but not in the absence of external Ca2+. Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation. Pretreatment with YM58483 (500 nM), a well-established blocker of store-operated Ca2+ entry, significantly decreased myelin injury and axonal spheroid formation. Collectively, these data reveal that ionomycin-induced depletion of internal Ca2+ stores and subsequent external Ca2+ entry through store-operated Ca2+ entry contributes to pathological changes in myelin and axonal spheroid formation, providing new targets to protect central myelinated fibers.
Collapse
Affiliation(s)
- Spencer Ames
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Kia Adams
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Mariah E Geisen
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery; Anatomical Sciences and Neurobiology; Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
11
|
Sharma H, Chang KA, Hulme J, An SSA. Mammalian Models in Alzheimer's Research: An Update. Cells 2023; 12:2459. [PMID: 37887303 PMCID: PMC10605533 DOI: 10.3390/cells12202459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
A form of dementia distinct from healthy cognitive aging, Alzheimer's disease (AD) is a complex multi-stage disease that currently afflicts over 50 million people worldwide. Unfortunately, previous therapeutic strategies developed from murine models emulating different aspects of AD pathogenesis were limited. Consequently, researchers are now developing models that express several aspects of pathogenesis that better reflect the clinical situation in humans. As such, this review seeks to provide insight regarding current applications of mammalian models in AD research by addressing recent developments and characterizations of prominent transgenic models and their contributions to pathogenesis as well as discuss the advantages, limitations, and application of emerging models that better capture genetic heterogeneity and mixed pathologies observed in the clinical situation.
Collapse
Affiliation(s)
- Himadri Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
12
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
13
|
He S, Qiu S, Pan M, Palavicini JP, Wang H, Li X, Bhattacharjee A, Barannikov S, Bieniek KF, Dupree JL, Han X. Central nervous system sulfatide deficiency as a causal factor for bladder disorder in Alzheimer's disease. Clin Transl Med 2023; 13:e1332. [PMID: 37478300 PMCID: PMC10361545 DOI: 10.1002/ctm2.1332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Despite being a brain disorder, Alzheimer's disease (AD) is often accompanied by peripheral organ dysregulations (e.g., loss of bladder control in late-stage AD), which highly rely on spinal cord coordination. However, the causal factor(s) for peripheral organ dysregulation in AD remain elusive. METHODS The central nervous system (CNS) is enriched in lipids. We applied quantitative shotgun lipidomics to determine lipid profiles of human AD spinal cord tissues. Additionally, a CNS sulfatide (ST)-deficient mouse model was used to study the lipidome, transcriptome and peripheral organ phenotypes of ST loss. RESULTS We observed marked myelin lipid reduction in the spinal cord of AD subjects versus cognitively normal individuals. Among which, levels of ST, a myelin-enriched lipid class, were strongly and negatively associated with the severity of AD. A CNS myelin-specific ST-deficient mouse model was used to further identify the causes and consequences of spinal cord lipidome changes. Interestingly, ST deficiency led to spinal cord lipidome and transcriptome profiles highly resembling those observed in AD, characterized by decline of multiple myelin-enriched lipid classes and enhanced inflammatory responses, respectively. These changes significantly disrupted spinal cord function and led to substantial enlargement of urinary bladder in ST-deficient mice. CONCLUSIONS Our study identified CNS ST deficiency as a causal factor for AD-like lipid dysregulation, inflammation response and ultimately the development of bladder disorders. Targeting to maintain ST levels may serve as a promising strategy for the prevention and treatment of AD-related peripheral disorders.
Collapse
Affiliation(s)
- Sijia He
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Shulan Qiu
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Juan P. Palavicini
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Division of DiabetesDepartment of MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Hu Wang
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Xin Li
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Anindita Bhattacharjee
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Savannah Barannikov
- Department of PathologyGlenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Kevin F. Bieniek
- Department of PathologyGlenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Jeffrey L. Dupree
- Department of Anatomy and NeurobiologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Research DivisionMcGuire Veterans Affairs Medical CenterRichmondVirginiaUSA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Division of DiabetesDepartment of MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| |
Collapse
|
14
|
Björk L, Klingstedt T, Nilsson KPR. Thiophene-Based Ligands: Design, Synthesis and Their Utilization for Optical Assignment of Polymorphic-Disease-Associated Protein Aggregates. Chembiochem 2023; 24:e202300044. [PMID: 36891883 PMCID: PMC10404026 DOI: 10.1002/cbic.202300044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/10/2023]
Abstract
The development of ligands for detecting protein aggregates is of great interest, as these aggregated proteinaceous species are the pathological hallmarks of several devastating diseases, including Alzheimer's disease. In this regard, thiophene-based ligands have emerged as powerful tools for fluorescent assessment of these pathological entities. The intrinsic conformationally sensitive photophysical properties of poly- and oligothiophenes have allowed optical assignment of disease-associated protein aggregates in tissue sections, as well as real-time in vivo imaging of protein deposits. Herein, we recount the chemical evolution of different generations of thiophene-based ligands, and exemplify their use for the optical distinction of polymorphic protein aggregates. Furthermore, the chemical determinants for achieving a superior fluorescent thiophene-based ligand, as well as the next generation of thiophene-based ligands targeting distinct aggregated species are described. Finally, the directions for future research into the chemical design of thiophene-based ligands that can aid in resolving the scientific challenges around protein aggregation diseases are discussed.
Collapse
Affiliation(s)
- Linnea Björk
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
15
|
Brandt PJ, Stepanchuk AA, Andonegui G, Benediktsson H, Stys PK, Muruve DA. Detection and Typing of Renal Amyloidosis by Fluorescence Spectroscopy Using the Environmentally Sensitive Fluorophore K114. Mol Imaging Biol 2023; 25:221-227. [PMID: 35857157 DOI: 10.1007/s11307-022-01754-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE To demonstrate that spectral analysis using the K114 fluorophore can detect and differentiate AL and AA renal amyloidosis. PROCEDURES Kidney biopsies from patients with AL amyloidosis, AA amyloidosis, and normal samples with no evident pathology were stained with Congo Red and K114. The specimens were imaged on a spectral confocal microscope. RESULTS Congo Red displayed homogeneous spectra across the three tissue types while K114 chromatically distinguished between normal tissue, AL amyloid, and AA amyloid. Additionally, Congo Red displayed an increased risk of false positive staining compared to K114. Spectral phasors computed from K114-stained tissue sections quantitatively differentiated the three tissue types. K114-stained amyloid deposits displayed a significantly greater increase in brightness after 50 images acquired in rapid succession compared to normal tissue. Quantitative analysis of intensity changes in the background of diseased tissue also differentiated AL and AA amyloid samples, suggesting widespread amyloid deposition. Both amyloid and the backgrounds of diseased samples red-shifted while normal tissue blue-shifted in response to repeated imaging, supporting this theory. CONCLUSIONS K114 staining of renal biopsies is a promising technique to detect and differentiate types of renal amyloidosis. Due to the advantages this method has over traditional Congo Red staining, the techniques presented here warrant further development for potential use in clinical settings.
Collapse
Affiliation(s)
- Paula J Brandt
- Department of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada
| | - Anastasiia A Stepanchuk
- Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Graciela Andonegui
- Department of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada
| | - Hallgrimur Benediktsson
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter K Stys
- Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel A Muruve
- Department of Medicine, University of Calgary, Calgary, AB, Canada. .,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada. .,Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada.
| |
Collapse
|
16
|
Chen SX, Xiao ZJ, Xie M, Chang YQ, Zhou GJ, Wen HM, He DQ, Xu CL, Chen YR, Li YH. Treatment of radiation-induced brain injury with bisdemethoxycurcumin. Neural Regen Res 2023; 18:416-421. [PMID: 35900439 PMCID: PMC9396486 DOI: 10.4103/1673-5374.346549] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radiation therapy is considered the most effective non-surgical treatment for brain tumors. However, there are no available treatments for radiation-induced brain injury. Bisdemethoxycurcumin (BDMC) is a demethoxy derivative of curcumin that has anti-proliferative, anti-inflammatory, and anti-oxidant properties. To determine whether BDMC has the potential to treat radiation-induced brain injury, in this study, we established a rat model of radiation-induced brain injury by administering a single 30-Gy vertical dose of irradiation to the whole brain, followed by intraperitoneal injection of 500 μL of a 100 mg/kg BDMC solution every day for 5 successive weeks. Our results showed that BDMC increased the body weight of rats with radiation-induced brain injury, improved learning and memory, attenuated brain edema, inhibited astrocyte activation, and reduced oxidative stress. These findings suggest that BDMC protects against radiation-induced brain injury.
Collapse
|
17
|
Pechlivanidou M, Kousiappa I, Angeli S, Sargiannidou I, Koupparis AM, Papacostas SS, Kleopa KA. Glial Gap Junction Pathology in the Spinal Cord of the 5xFAD Mouse Model of Early-Onset Alzheimer's Disease. Int J Mol Sci 2022; 23:15597. [PMID: 36555237 PMCID: PMC9779687 DOI: 10.3390/ijms232415597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Gap junctions (GJs) are specialized transmembrane channels assembled by two hemi-channels of six connexin (Cx) proteins that facilitate neuroglial crosstalk in the central nervous system (CNS). Previous studies confirmed the crucial role of glial GJs in neurodegenerative disorders with dementia or motor dysfunction including Alzheimer's disease (AD). The aim of this study was to examine the alterations in astrocyte and related oligodendrocyte GJs in association with Aβ plaques in the spinal cord of the 5xFAD mouse model of AD. Our analysis revealed abundant Aβ plaque deposition, activated microglia, and astrogliosis in 12-month-old (12M) 5xFAD mice, with significant impairment of motor performance starting from 3-months (3M) of age. Additionally, 12M 5xFAD mice displayed increased immunoreactivity of astroglial Cx43 and Cx30 surrounding Aβ plaques and higher protein levels, indicating upregulated astrocyte-to-astrocyte GJ connectivity. In addition, they demonstrated increased numbers of mature CC1-positive and precursor oligodendrocytes (OPCs) with higher immunoreactivity of Cx47-positive GJs in individual cells. Moreover, total Cx47 protein levels were significantly elevated in 12M 5xFAD, reflecting increased oligodendrocyte-to-oligodendrocyte Cx47-Cx47 GJ connectivity. In contrast, we observed a marked reduction in Cx32 protein levels in 12M 5xFAD spinal cords compared with controls, while qRT-PCR analysis revealed a significant upregulation in Cx32 mRNA levels. Finally, myelin deficits were found focally in the areas occupied by Aβ plaques, whereas axons themselves remained preserved. Overall, our data provide novel insights into the altered glial GJ expression in the spinal cord of the 5xFAD model of AD and the implicated role of GJ pathology in neurodegeneration. Further investigation to understand the functional consequences of these extensive alterations in oligodendrocyte-astrocyte (O/A) GJ connectivity is warranted.
Collapse
Affiliation(s)
- Maria Pechlivanidou
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Ioanna Kousiappa
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Stella Angeli
- Medical School, University of Nicosia, Nicosia 2414, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Andreas M. Koupparis
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Epilepsy Centre, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Dementia and Cognitive Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Savvas S. Papacostas
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Medical School, University of Nicosia, Nicosia 2414, Cyprus
- Epilepsy Centre, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Dementia and Cognitive Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
18
|
Sanchez-Varo R, Mejias-Ortega M, Fernandez-Valenzuela JJ, Nuñez-Diaz C, Caceres-Palomo L, Vegas-Gomez L, Sanchez-Mejias E, Trujillo-Estrada L, Garcia-Leon JA, Moreno-Gonzalez I, Vizuete M, Vitorica J, Baglietto-Vargas D, Gutierrez A. Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. Int J Mol Sci 2022; 23:5404. [PMID: 35628216 PMCID: PMC9142061 DOI: 10.3390/ijms23105404] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) constitutes the most prominent form of dementia among elderly individuals worldwide. Disease modeling using murine transgenic mice was first initiated thanks to the discovery of heritable mutations in amyloid precursor protein (APP) and presenilins (PS) genes. However, due to the repeated failure of translational applications from animal models to human patients, along with the recent advances in genetic susceptibility and our current understanding on disease biology, these models have evolved over time in an attempt to better reproduce the complexity of this devastating disease and improve their applicability. In this review, we provide a comprehensive overview about the major pathological elements of human AD (plaques, tauopathy, synaptic damage, neuronal death, neuroinflammation and glial dysfunction), discussing the knowledge that available mouse models have provided about the mechanisms underlying human disease. Moreover, we highlight the pros and cons of current models, and the revolution offered by the concomitant use of transgenic mice and omics technologies that may lead to a more rapid improvement of the present modeling battery.
Collapse
Affiliation(s)
- Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Marina Mejias-Ortega
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Jose Fernandez-Valenzuela
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Caceres-Palomo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Vegas-Gomez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Marisa Vizuete
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| |
Collapse
|
19
|
O'Leary TP, Brown RE. Visuo-spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer's disease: Effects of age, sex, albinism, and motor impairments. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12794. [PMID: 35238473 PMCID: PMC9744519 DOI: 10.1111/gbb.12794] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
The 5xFAD mouse model of Alzheimer's disease (AD) rapidly develops AD-related neuro-behavioral pathology. Learning and memory impairments in 5xFAD mice, however, are not always replicated and the size of impairments varies considerably across studies. To examine possible sources of this variability, we analyzed the effects of age, sex, albinism due to background genes (Tyrc , Oca2p ) and motor impairment on learning and memory performance of wild type and 5xFAD mice on the Morris water maze, from 3 to 15 months of age. The 5xFAD mice showed impaired learning at 6-9 months of age, but memory impairments were not detected with the test procedure used in this study. Performance of 5xFAD mice was profoundly impaired at 12-15 months of age, but was accompanied by slower swim speeds than wild-type mice and a frequent failure to locate the escape platform. Overall female mice performed worse than males, and reversal learning impairments in 5xFAD mice were more pronounced in females than males. Albino mice performed worse than pigmented mice, confirming that albinism can impair performance of 5xFAD mice independently of AD-related transgenes. Overall, these results show that 5xFAD mice have impaired learning performance at 6-9 months of age, but learning and memory performance at 12-15 months is confounded with motor impairments. Furthermore, sex and albinism should be controlled to provide an accurate assessment of AD-related transgenes on learning and memory. These results will help reduce variability across pre-clinical experiments with 5xFAD mice, and thus enhance the reliability of studies developing new therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P. O'Leary
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Richard E. Brown
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
20
|
Fertan E, Brown RE. Age-Related Deficits in Working Memory in 5xFAD Mice in the Hebb-Williams Maze. Behav Brain Res 2022; 424:113806. [DOI: 10.1016/j.bbr.2022.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/02/2022]
|
21
|
Zhou J, Zhang P, Zhang B, Kong Y. White Matter Damage in Alzheimer's Disease: Contribution of Oligodendrocytes. Curr Alzheimer Res 2022; 19:629-640. [PMID: 36281858 PMCID: PMC9982194 DOI: 10.2174/1567205020666221021115321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease seriously influencing the quality of life and is a global health problem. Many factors affect the onset and development of AD, but specific mechanisms underlying the disease are unclear. Most studies investigating AD have focused on neurons and the gray matter in the central nervous system (CNS) but have not led to effective treatments. Recently, an increasing number of studies have focused on white matter (WM). Magnetic resonance imaging and pathology studies have shown different degrees of WM abnormality during the progression of AD. Myelin sheaths, the main component of WM in the CNS, wrap and insulate axons to ensure conduction of the rapid action potential and axonal integrity. WM damage is characterized by progressive degeneration of axons, oligodendrocytes (OLs), and myelin in one or more areas of the CNS. The contributions of OLs to AD progression have, until recently, been largely overlooked. OLs are integral to myelin production, and the proliferation and differentiation of OLs, an early characteristic of AD, provide a promising target for preclinical diagnosis and treatment. However, despite some progress, the key mechanisms underlying the contributions of OLs to AD remain unclear. Given the heavy burden of medical treatment, a better understanding of the pathophysiological mechanisms underlying AD is vital. This review comprehensively summarizes the results on WM abnormalities in AD and explores the relationship between OL progenitor cells and the pathogenesis of AD. Finally, the underlying molecular mechanisms and potential future research directions are discussed.
Collapse
Affiliation(s)
- Jinyu Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing-400042, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing-400010, China
| | - Bo Zhang
- Department of Basic Medicine, Chongqing Medical and Pharmaceutical College, Chongqing-401331, China
| | - Yuhan Kong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing-400042, China
| |
Collapse
|
22
|
Gupta M, Weaver DF. Microsecond molecular dynamics studies of cholesterol-mediated myelin sheath degeneration in early Alzheimer's disease. Phys Chem Chem Phys 2021; 24:222-239. [PMID: 34878462 DOI: 10.1039/d1cp03844c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol-mediated perturbations of membrane structural integrity are key early events in the molecular pathogenesis of Alzheimer's disease (AD). In AD, protein misfolding (proteopathy) and pro-inflammatory conditions (immunopathy) culminate in neuronal death, a process enabled by altered membrane biophysical properties which render neurons more susceptible to proteopathic and immunopathic cytotoxicities. Since cholesterol is a principal neuronal membrane lipid, normal cholesterol homeostasis is central to membrane health; also, since increased cholesterol composition is especially present in neuronal myelin sheath (i.e. brain "white matter"), recent studies have not surprisingly revealed that white matter atrophy precedes the conventional biomarkers of AD (amyloid plaques, tau tangles). Employing extensive microsecond all-atom molecular dynamics simulations, we investigated biophysical and mechanical properties of myelin sheath membrane as a function of cholesterol mole fraction (χCHL). Impaired χCHL modulates multiple bilayer properties, including surface area per lipid (APL), chain order, number and mass density profiles, area compressibility and bending moduli, bilayer thickness, lipid tilt angles, H-bonding interactions and tail interdigitation. The increased orientational ordering of both palmitoyl and oleoyl chains in model healthy myelin sheath (HMS) membranes illustrates the condensing effect of cholesterol. With an increase in χCHL, number density profiles of water tend to attain bulk water number density more quickly, indicating shrinkage in the interfacial region with increasing χCHL. The average tilt value is 11.5° for the C10-C13 angle in cholesterol and 64.2° for the P-N angle in POPC lipids in HMS. These calculations provide a molecular-level understanding of myelin sheath susceptibility to pathology as an early event in the pathogenesis of AD.
Collapse
Affiliation(s)
- Mayuri Gupta
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, M5T 0S8, Canada.
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, M5T 0S8, Canada. .,Departments of Chemistry, Medicine and Pharmaceutical Sciences, University of Toronto, Toronto, ON, M55 3H6, Canada
| |
Collapse
|
23
|
Stepanchuk AA, Barber PA, Lashley T, Joseph JT, Stys PK. Quantitative detection of grey and white matter amyloid pathology using a combination of K114 and CRANAD-3 fluorescence. Neurobiol Dis 2021; 161:105540. [PMID: 34751140 DOI: 10.1016/j.nbd.2021.105540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that exacts a huge toll on the patient, the healthcare system and society in general. Abundance and morphology of protein aggregates such as amyloid β plaques and tau tangles, along with cortical atrophy and gliosis are used as measures to assess the changes in the brain induced by the disease. Not all of these parameters have a direct correlation with cognitive decline. Studies have shown that only particular protein conformers can be the main drivers of disease progression, and conventional approaches are unable to distinguish different conformations of disease-relevant proteins. METHODS AND RESULTS Using the fluorescent amyloid probes K114 and CRANAD-3 and spectral confocal microscopy, we examined formalin-fixed paraffin-embedded brain samples from different control and AD cases. Based on the emission spectra of the probes used in this study, we found that certain spectral signatures can be correlated with different aggregates formed by different proteins. The combination of spectral imaging and advanced image analysis tools allowed us to detect variability of protein deposits across the samples. CONCLUSION Our proposed method offers a quicker and easier neuropathological assessment of tissue samples, as well as introducing an additional parameter by which protein aggregates can be discriminated.
Collapse
Affiliation(s)
- Anastasiia A Stepanchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada
| | - Philip A Barber
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Jeffrey T Joseph
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada; Department of Pathology and Laboratory Medicine, Alberta Health Services, Calgary, AB, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada.
| |
Collapse
|
24
|
Chen S, Wu L, He B, Zhou G, Xu Y, Zhu G, Xie J, Chen S, Yao L, Huang J, Wu H, Xiao Z. Artemisinin Facilitates Motor Function Recovery by Enhancing Motoneuronal Survival and Axonal Remyelination in Rats Following Brachial Plexus Root Avulsion. ACS Chem Neurosci 2021; 12:3148-3156. [PMID: 34465091 DOI: 10.1021/acschemneuro.1c00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Artemisinin (ART), a well-known antimalarial medicine originally isolated from the plant Artemisia annua, exerts neuroprotective effects in the nervous system owing to an antioxidant effect. Here, we determined whether ART is capable of inhibiting the oxidative stress to enhance motoneuronal (MN) survival to promote motor function recovery of rats following brachial plexus root avulsion (BPRA) with reimplantation surgery. Rats following BPRA and reimplantation were subcutaneously injected with 500 μL of PBS or 16 mg/mL ART once daily for 7 days after surgery. Terzis grooming test (TGT), histochemical staining, real-time polymerase chain reaction, and Western blot were conducted to determine the recovery of motor function of the upper limb, the survival rate of MNs, the oxidative stress levels in the ventral horn of the spinal cord, the morphology of abnormal musculocutaneous nerve fibers, the remyelination of axons in musculocutaneous nerves, and the degree of bicep atrophy. ART significantly increased TGT score, improved the survival of MNs, inhibited the oxidative stress, ameliorated the abnormal morphology of fibers in the musculocutaneous nerve, promoted the remyelination of axons, and alleviated muscle atrophy. Take together, ART can improve the survival of MNs and axonal remyelination to promote the motor function recovery via inhibiting oxidative stress, suggesting that ART may represent a new approach to the therapy of spinal root avulsion.
Collapse
Affiliation(s)
- Shuangxi Chen
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bing He
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guijuan Zhou
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yan Xu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guanghua Zhu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Xie
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuangqin Chen
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yao
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jianghua Huang
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Heng Wu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zijian Xiao
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
25
|
Chen JF, Liu K, Hu B, Li RR, Xin W, Chen H, Wang F, Chen L, Li RX, Ren SY, Xiao L, Chan JR, Mei F. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer's disease. Neuron 2021; 109:2292-2307.e5. [PMID: 34102111 DOI: 10.1016/j.neuron.2021.05.012] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Severe cognitive decline is a hallmark of Alzheimer's disease (AD). In addition to gray matter loss, significant white matter pathology has been identified in AD patients. Here, we characterized the dynamics of myelin generation and loss in the APP/PS1 mouse model of AD. Unexpectedly, we observed a dramatic increase in the rate of new myelin formation in APP/PS1 mice, reminiscent of the robust oligodendroglial response to demyelination. Despite this increase, overall levels of myelination are decreased in the cortex and hippocampus of APP/PS1 mice and postmortem AD tissue. Genetically or pharmacologically enhancing myelin renewal, by oligodendroglial deletion of the muscarinic M1 receptor or systemic administration of the pro-myelinating drug clemastine, improved the performance of APP/PS1 mice in memory-related tasks and increased hippocampal sharp wave ripples. Taken together, these results demonstrate the potential of enhancing myelination as a therapeutic strategy to alleviate AD-related cognitive impairment.
Collapse
Affiliation(s)
- Jing-Fei Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Kun Liu
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Bo Hu
- Department of Physiology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Rong-Rong Li
- Department of Physiology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Wendy Xin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Lin Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Rui-Xue Li
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Shu-Yu Ren
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China.
| | - Jonah R Chan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
26
|
|
27
|
Kim HB, Kim D, Kim H, Kim W, Chung S, Lee SH, Kim HR, Oh SB. Aβ Accumulation in Vmo Contributes to Masticatory Dysfunction in 5XFAD Mice. J Dent Res 2021; 100:960-967. [PMID: 33719684 DOI: 10.1177/00220345211000263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD) shows various symptoms that reflect cognitive impairment and loss of neural circuit integrity. Sensory dysfunctions such as olfactory and ocular pathology are also observed and used as indicators for early detection of AD. Although mastication is suggested to correlate with AD progression, changes in the masticatory system have yet to be established in transgenic animal models of AD. In the present study, we have assessed pathologic hallmarks of AD with the masticatory behavior of 5XFAD mice. We found that masticatory efficiency and maximum biting force were decreased in 5XFAD mice, with no significant change in general motor function. Immunohistochemical analysis revealed significant accumulation of Aβ (amyloid β), increased microglia number, and cell death in Vmo (trigeminal motor nucleus) as compared with other cranial motor nuclei that innervate the orofacial region. Masseter muscle weight and muscle fiber size were also decreased in 5XFAD mice. Taken together, our results demonstrate that Aβ accumulation in Vmo contributes to masticatory dysfunction in 5XFAD mice, suggesting a close association between masticatory dysfunction and dementia.
Collapse
Affiliation(s)
- H B Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - D Kim
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - H Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Republic of Korea
| | - W Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - S Chung
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - S H Lee
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - H R Kim
- College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - S B Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.,Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Cao S, Fisher DW, Rodriguez G, Yu T, Dong H. Comparisons of neuroinflammation, microglial activation, and degeneration of the locus coeruleus-norepinephrine system in APP/PS1 and aging mice. J Neuroinflammation 2021; 18:10. [PMID: 33407625 PMCID: PMC7789762 DOI: 10.1186/s12974-020-02054-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The role of microglia in Alzheimer's disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. METHODS In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. RESULTS Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. CONCLUSION These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563002, Guizhou, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington Medical Center, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Tian Yu
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563002, Guizhou, China
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
29
|
Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, Chan ER, Wang Q, Xu R, Flanagan ME, Pieper AA, Qi X. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eabb8680. [PMID: 33277246 PMCID: PMC7717916 DOI: 10.1126/sciadv.abb8680] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/21/2020] [Indexed: 05/05/2023]
Abstract
Myelin degeneration and white matter loss resulting from oligodendrocyte (OL) death are early events in Alzheimer's disease (AD) that lead to cognitive deficits; however, the underlying mechanism remains unknown. Here, we find that mature OLs in both AD patients and an AD mouse model undergo NLR family pyrin domain containing 3 (NLRP3)-dependent Gasdermin D-associated inflammatory injury, concomitant with demyelination and axonal degeneration. The mature OL-specific knockdown of dynamin-related protein 1 (Drp1; a mitochondrial fission guanosine triphosphatase) abolishes NLRP3 inflammasome activation, corrects myelin loss, and improves cognitive ability in AD mice. Drp1 hyperactivation in mature OLs induces a glycolytic defect in AD models by inhibiting hexokinase 1 (HK1; a mitochondrial enzyme that initiates glycolysis), which triggers NLRP3-associated inflammation. These findings suggest that OL glycolytic deficiency plays a causal role in AD development. The Drp1-HK1-NLRP3 signaling axis may be a key mechanism and therapeutic target for white matter degeneration in AD.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rihua Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xiaoyan Sun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kathleen Lundberg
- Center for Proteomics and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ernest R Chan
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Quanqiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
30
|
Chu TH, Cummins K, Stys PK. Traumatic Injury Reduces Amyloid Plaque Burden in the Transgenic 5xFAD Alzheimer's Mouse Spinal Cord. J Alzheimers Dis 2020; 77:1315-1330. [PMID: 32925040 DOI: 10.3233/jad-200387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Axonal injury has been implicated in the development of amyloid-β in experimental brain injuries and clinical cases. The anatomy of the spinal cord provides a tractable model for examining the effects of trauma on amyloid deposition. OBJECTIVE Our goal was to examine the effects of axonal injury on plaque formation and clearance using wild type and 5xFAD transgenic Alzheimer's disease mice. METHODS We contused the spinal cord at the T12 spinal level at 10 weeks, an age at which no amyloid plaques spontaneously accumulate in 5xFAD mice. We then explored plaque clearance by impacting spinal cords in 27-week-old 5xFAD mice where amyloid deposition is already well established. We also examined the cellular expression of one of the most prominent amyloid-β degradation enzymes, neprilysin, at the lesion site. RESULTS No plaques were found in wild type animals at any time points examined. Injury in 5xFAD prevented plaque deposition rostral and caudal to the lesion when the cords were examined at 2 and 4 months after the impact, whereas age-matched naïve 5xFAD mice showed extensive amyloid plaque deposition. A massive reduction in the number of plaques around the lesion was found as early as 7 days after the impact, preceded by neprilysin upregulation in astrocytes at 3 days after injury. At 7 days after injury, the majority of amyloid was found inside microglia/macrophages. CONCLUSION These observations suggest that the efficient amyloid clearance after injury in the cord may be driven by the orchestrated efforts of astroglial and immune cells.
Collapse
Affiliation(s)
- Tak-Ho Chu
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen Cummins
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter K Stys
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Ferreira S, Pitman KA, Wang S, Summers BS, Bye N, Young KM, Cullen CL. Amyloidosis is associated with thicker myelin and increased oligodendrogenesis in the adult mouse brain. J Neurosci Res 2020; 98:1905-1932. [PMID: 32557778 PMCID: PMC7540704 DOI: 10.1002/jnr.24672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
In Alzheimer's disease, amyloid plaque formation is associated with the focal death of oligodendrocytes and soluble amyloid β impairs the survival of oligodendrocytes in vitro. However, the response of oligodendrocyte progenitor cells (OPCs) to early amyloid pathology remains unclear. To explore this, we performed a histological, electrophysiological, and behavioral characterization of transgenic mice expressing a pathological form of human amyloid precursor protein (APP), containing three single point mutations associated with the development of familial Alzheimer's disease (PDGFB‐APPSw.Ind, also known as J20 mice). PDGFB‐APPSw.Ind transgenic mice had impaired survival from weaning, were hyperactive by 2 months of age, and developed amyloid plaques by 6 months of age, however, their spatial memory remained intact over this time course. Hippocampal OPC density was normal in P60‐P180 PDGFB‐APPSw.Ind transgenic mice and, by performing whole‐cell patch‐clamp electrophysiology, we found that their membrane properties, including their response to kainate (100 µM), were largely normal. However, by P100, the response of hippocampal OPCs to GABA was elevated in PDGFB‐APPSw.Ind transgenic mice. We also found that the nodes of Ranvier were shorter, the paranodes longer, and the myelin thicker for hippocampal axons in young adult PDGFB‐APPSw.Ind transgenic mice compared with wildtype littermates. Additionally, oligodendrogenesis was normal in young adulthood, but increased in the hippocampus, entorhinal cortex, and fimbria of PDGFB‐APPSw.Ind transgenic mice as pathology developed. As the new oligodendrocytes were not associated with a change in total oligodendrocyte number, these cells are likely required for cell replacement.
Collapse
Affiliation(s)
- Solène Ferreira
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Shiwei Wang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin S Summers
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Bye
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
32
|
O'Leary TP, Stover KR, Mantolino HM, Darvesh S, Brown RE. Intact olfactory memory in the 5xFAD mouse model of Alzheimer's disease from 3 to 15 months of age. Behav Brain Res 2020; 393:112731. [PMID: 32522622 DOI: 10.1016/j.bbr.2020.112731] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes profound cognitive dysfunction. Deficits in olfactory memory occur in early stages of AD and may be useful in AD diagnosis. The 5xFAD mouse is a commonly used model of AD, as it develops neuropathology, cognitive and sensori-motor dysfunctions similar to those seen in AD. However, olfactory memory dysfunction has not been studied adequately or in detail in 5xFAD mice. Furthermore, despite sex differences in AD prevalence and symptom presentation, few studies using 5xFAD mice have examined sex differences in learning and memory. Therefore, we tested olfactory memory in male and female 5xFAD mice from 3 to 15 months of age using a conditioned odour preference task. Olfactory memory was not impaired in male or female 5xFAD mice at any age tested, nor were there any sex differences. Because early-onset impairments in very long-term (remote) memory have been reported in 5xFAD mice, we trained a group of mice at 3 months of age and tested olfactory memory 90 days later. Very long-term olfactory memory in 5xFAD mice was not impaired, nor was their ability to perform the discrimination task with new odourants. Examination of brains from 5xFAD mice confirmed extensive Aβ-plaque deposition spanning the olfactory memory system, including the olfactory bulb, hippocampus, amygdala and piriform cortex. Overall this study indicates that male and female 5xFAD mice do not develop olfactory memory deficits, despite extensive Aβ deposition within the olfactory-memory regions of the brain.
Collapse
Affiliation(s)
- T P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - K R Stover
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - H M Mantolino
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - S Darvesh
- Department of Medicine (Neurology) and Medical Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - R E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
33
|
Ferrer I, Andrés-Benito P. White matter alterations in Alzheimer's disease without concomitant pathologies. Neuropathol Appl Neurobiol 2020; 46:654-672. [PMID: 32255227 PMCID: PMC7754505 DOI: 10.1111/nan.12618] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
Aims Most individuals with AD neuropathological changes have co‐morbidities which have an impact on the integrity of the WM. This study analyses oligodendrocyte and myelin markers in the frontal WM in a series of AD cases without clinical or pathological co‐morbidities. Methods From a consecutive autopsy series, 206 cases had neuropathological changes of AD; among them, only 33 were AD without co‐morbidities. WM alterations were first evaluated in coronal sections of the frontal lobe in every case. Then, RT‐qPCR and immunohistochemistry were carried out in the frontal WM of AD cases without co‐morbidities to analyse the expression of selected oligodendrocyte and myelin markers. Results WM demyelination was more marked in AD with co‐morbidities when compared with AD cases without co‐morbidities. Regarding the later, mRNA expression levels of MBP, PLP1, CNP, MAG, MAL, MOG and MOBP were preserved at stages I–II/0–A when compared with middle‐aged (MA) individuals, but significantly decreased at stages III–IV/0–C. This was accompanied by reduced expression of NG2 and PDGFRA mRNA, reduced numbers of NG2‐, Olig2‐ and HDAC2‐immunoreactive cells and reduced glucose transporter immunoreactivity. Partial recovery of some of these markers occurred at stages V–VI/B–C. Conclusions The present observations demonstrate that co‐morbidities have an impact on WM integrity in the elderly and in AD, and that early alterations in oligodendrocytes and transcription of genes linked to myelin proteins in WM occur in AD cases without co‐morbidities. These are followed by partial recovery attempts at advanced stages. These observations suggest that oligodendrocytopathy is part of AD.
Collapse
Affiliation(s)
- I Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - P Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
34
|
Lorenzi RM, Palesi F, Castellazzi G, Vitali P, Anzalone N, Bernini S, Cotta Ramusino M, Sinforiani E, Micieli G, Costa A, D’Angelo E, Gandini Wheeler-Kingshott CAM. Unsuspected Involvement of Spinal Cord in Alzheimer Disease. Front Cell Neurosci 2020; 14:6. [PMID: 32082122 PMCID: PMC7002560 DOI: 10.3389/fncel.2020.00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Brain atrophy is an established biomarker for dementia, yet spinal cord involvement has not been investigated to date. As the spinal cord is relaying sensorimotor control signals from the cortex to the peripheral nervous system and vice-versa, it is indeed a very interesting question to assess whether it is affected by atrophy due to a disease that is known for its involvement of cognitive domains first and foremost, with motor symptoms being clinically assessed too. We, therefore, hypothesize that in Alzheimer's disease (AD), severe atrophy can affect the spinal cord too and that spinal cord atrophy is indeed an important in vivo imaging biomarker contributing to understanding neurodegeneration associated with dementia. Methods: 3DT1 images of 31 AD and 35 healthy control (HC) subjects were processed to calculate volume of brain structures and cross-sectional area (CSA) and volume (CSV) of the cervical cord [per vertebra as well as the C2-C3 pair (CSA23 and CSV23)]. Correlated features (ρ > 0.7) were removed, and the best subset identified for patients' classification with the Random Forest algorithm. General linear model regression was used to find significant differences between groups (p ≤ 0.05). Linear regression was implemented to assess the explained variance of the Mini-Mental State Examination (MMSE) score as a dependent variable with the best features as predictors. Results: Spinal cord features were significantly reduced in AD, independently of brain volumes. Patients classification reached 76% accuracy when including CSA23 together with volumes of hippocampi, left amygdala, white and gray matter, with 74% sensitivity and 78% specificity. CSA23 alone explained 13% of MMSE variance. Discussion: Our findings reveal that C2-C3 spinal cord atrophy contributes to discriminate AD from HC, together with more established features. The results show that CSA23, calculated from the same 3DT1 scan as all other brain volumes (including right and left hippocampi), has a considerable weight in classification tasks warranting further investigations. Together with recent studies revealing that AD atrophy is spread beyond the temporal lobes, our result adds the spinal cord to a number of unsuspected regions involved in the disease. Interestingly, spinal cord atrophy explains also cognitive scores, which could significantly impact how we model sensorimotor control in degenerative diseases with a primary cognitive domain involvement. Prospective studies should be purposely designed to understand the mechanisms of atrophy and the role of the spinal cord in AD.
Collapse
Affiliation(s)
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neuroradiology Unit, Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Gloria Castellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Paolo Vitali
- Neuroradiology Unit, Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Sara Bernini
- Laboratory of Neuropsychology, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Cotta Ramusino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Elena Sinforiani
- Laboratory of Neuropsychology, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuseppe Micieli
- Department of Emergency Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center (BCC), IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
35
|
Gatt A, Whitfield DR, Ballard C, Doherty P, Williams G. Alzheimer's Disease Progression in the 5×FAD Mouse Captured with a Multiplex Gene Expression Array. J Alzheimers Dis 2019; 72:1177-1191. [PMID: 31683485 DOI: 10.3233/jad-190805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable complex neurodegenerative condition with no new therapies licensed in the past 20 years. AD progression is characterized by the up- and downregulation of distinct biological processes that can be followed through the expression level changes of associated genes and gene networks. OBJECTIVE Our study aims to establish a multiplex gene expression tracking platform to follow disease progression in an animal model facilitating the study of treatment paradigms. METHODS We have established a multiplex platform covering 47 key genes related to immunological, neuronal, mitochondrial, and autophagy cell types and processes that capture disease progression in the 5×FAD mouse model. RESULTS We show that the immunological response is the most pronounced change in aged 5×FAD mice (8 months and above), and in agreement with early stage human disease samples, observe an initial downregulation of microglial genes in one-month-old animals. The less dramatic downregulation of neuronal and mitochondrial gene sets is also reported. CONCLUSION This study provides the basis for a quantitative multi-dimensional platform to follow AD progression and monitor the efficacy of treatments in an animal model.
Collapse
Affiliation(s)
- Ariana Gatt
- Wolfson Centre for Age-Related Diseases, King's College London, London Bridge, London, UK
| | - David R Whitfield
- Wolfson Centre for Age-Related Diseases, King's College London, London Bridge, London, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, King's College London, London Bridge, London, UK
| | - Gareth Williams
- Wolfson Centre for Age-Related Diseases, King's College London, London Bridge, London, UK
| |
Collapse
|
36
|
Xie Q, Zhao WJ, Ou GY, Xue WK. An Overview of Experimental and Clinical Spinal Cord Findings in Alzheimer's Disease. Brain Sci 2019; 9:E168. [PMID: 31319495 PMCID: PMC6681410 DOI: 10.3390/brainsci9070168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that occurs mainly in the elderly and presenile life stages. It is estimated that by the year 2050, 135 million people will be affected by AD worldwide, representing a huge burden to society. The pathological hallmarks of AD mainly include intracellular neurofibrillary tangles (NFTs) caused by hyperphosphorylation of tau protein, formation of extracellular amyloid plaques, and massive neural cell death in the affected nervous system. The pathogenesis of AD is very complicated, and recent scientific research on AD is mainly concentrated on the cortex and hippocampus. Although the spinal cord is a pivotal part of the central nervous system, there are a limited number of studies focusing on the spinal cord. As an extension of the brain, the spinal cord functions as the bridge between the brain and various parts of the body. However, pathological changes in the spinal cord in AD have not been comprehensively and systematically studied at present. We here review the existing progress on the pathological features of AD in the spinal cord.
Collapse
Affiliation(s)
- Qing Xie
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China.
| | - Guan-Yong Ou
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | - Wei-Kang Xue
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| |
Collapse
|
37
|
Wagner JM, Sichler ME, Schleicher EM, Franke TN, Irwin C, Löw MJ, Beindorff N, Bouter C, Bayer TA, Bouter Y. Analysis of Motor Function in the Tg4-42 Mouse Model of Alzheimer's Disease. Front Behav Neurosci 2019; 13:107. [PMID: 31156407 PMCID: PMC6533559 DOI: 10.3389/fnbeh.2019.00107] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common form of dementia. Hallmarks of AD are memory impairments and cognitive deficits, but non-cognitive impairments, especially motor dysfunctions are also associated with the disease and may even precede classic clinical symptoms. With an aging society and increasing hospitalization of the elderly, motor deficits are of major interest to improve independent activities in daily living. Consistent with clinical findings, a variety of AD mouse models develop motor deficits as well. We investigated the motor function of 3- and 7-month-old Tg4-42 mice in comparison to wild-type controls and 5XFAD mice and discuss the results in context with several other AD mouse model. Our study shows impaired balance and motor coordination in aged Tg4-42 mice in the balance beam and rotarod test, while general locomotor activity and muscle strength is not impaired at 7 months. The cerebellum is a major player in the regulation and coordination of balance and locomotion through practice. Particularly, the rotarod test is able to detect cerebellar deficits. Furthermore, supposed cerebellar impairment was verified by 18F-FDG PET/MRI. Aged Tg4-42 mice showed reduced cerebellar glucose metabolism in the 18F-FDG PET. Suggesting that, deficits in coordination and balance are most likely due to cerebellar impairment. In conclusion, Tg4-42 mice develop motor deficits before memory deficits, without confounding memory test. Thus, making the Tg4-42 mouse model a good model to study the effects on cognitive decline of therapies targeting motor impairments.
Collapse
Affiliation(s)
- Jannek M. Wagner
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Marius E. Sichler
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Eva M. Schleicher
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Timon N. Franke
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Maximilian Johannes Löw
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center, Charité – University Medicine Berlin, Berlin, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Thomas A. Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| |
Collapse
|
38
|
Motor deficits in 16-month-old male and female 3xTg-AD mice. Behav Brain Res 2019; 356:305-313. [DOI: 10.1016/j.bbr.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/22/2022]
|
39
|
Mot AI, Depp C, Nave KA. An emerging role of dysfunctional axon-oligodendrocyte coupling in neurodegenerative diseases. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936768 PMCID: PMC6436955 DOI: 10.31887/dcns.2018.20.4/amot] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myelin is made by highly specialized glial cells and enables fast axonal impulse propagation. Recent studies show that oligodendrocytes in the central nervous system are, in addition to myelination, required for the integrity and survival of axons, independent of the presence or absence of myelin itself. The underlying mechanism of this support is given by glycolytic oligodendrocytes which provide axons with energy-rich metabolites. These findings represent a paradigm shift for the physiological function of axon-associated glia, and open the intriguing possibility that oligodendrocytes are important contributors to neurodegenerative diseases in which myelinated axons are lost, such as in Alzheimer disease, amyotrophic lateral sclerosis, and multiple system atrophy. Understanding the role of axon-oligodendrocyte coupling in neurodegenerative diseases may pave the way for the development of metabolism-based therapeutic approaches.
Collapse
Affiliation(s)
- Alexandra I Mot
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Constanze Depp
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| |
Collapse
|
40
|
Butt AM, De La Rocha IC, Rivera A. Oligodendroglial Cells in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:325-333. [PMID: 31583593 DOI: 10.1007/978-981-13-9913-8_12] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oligodendrocytes form the myelin that ensheaths CNS axons, which is essential for rapid neuronal signalling and underpins the massive computing power of the human brain. Oligodendrocytes and myelin also provide metabolic and trophic support for axons and their disruption results in axonal demise and neurodegeneration, which are key features of Alzheimer's disease (AD). Notably, the brain has a remarkable capacity for regenerating oligodendrocytes, which is the function of adult oligodendrocyte progenitor cells (OPCs) or NG2-glia. White matter loss is often among the earliest brain changes in AD, preceding the tangles and plaques that characterize neuronal deficits. The underlying causes of myelin loss include oxidative stress, neuroinflammation and excitotoxicity, associated with accumulation of Aβ and tau hyperphosphorylation, pathological hallmarks of AD. Moreover, there is evidence that NG2-glia are disrupted in AD, which may be associated with disruption of synaptic signalling. This has led to the hypothesis that a vicious cycle of myelin loss and failure of regeneration from NG2-glia plays a key role in AD. Therapies that target NG2-glia are likely to have positive effects on myelination and neuroprotection in AD.
Collapse
Affiliation(s)
- Arthur M Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Sawn Road, Portsmouth, PO1 2DT, UK.
| | - Irene Chacon De La Rocha
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Sawn Road, Portsmouth, PO1 2DT, UK
| | - Andrea Rivera
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Sawn Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
41
|
O'Leary TP, Mantolino HM, Stover KR, Brown RE. Age-related deterioration of motor function in male and female 5xFAD mice from 3 to 16 months of age. GENES BRAIN AND BEHAVIOR 2018; 19:e12538. [PMID: 30426678 DOI: 10.1111/gbb.12538] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that leads to age-related cognitive and sensori-motor dysfunction. There is an increased understanding that motor dysfunction contributes to overall AD severity, and a need to ameliorate these impairments. The 5xFAD mouse develops the neuropathology, cognitive and motor impairments observed in AD, and thus may be a valuable animal model to study motor deficits in AD. Therefore, we assessed age-related changes in motor ability of male and female 5xFAD mice from 3 to 16 months of age, using a battery of behavioral tests. At 9-10 months, 5xFAD mice showed reduced body weight, reduced rearing in the open-field and impaired performance on the rotarod compared to wild-type controls. At 12-13 months, 5xFAD mice showed reduced locomotor activity on the open-field, and impaired balance on the balance beam. At 15-16 months, impairments were also seen in grip strength. Although sex differences were observed at specific ages, the development of motor dysfunction was similar in male and female mice. Given the 5xFAD mouse is commonly on a C57BL/6 × SJL hybrid background, a subset of mice may be homozygous recessive for the Dysf im mutant allele, which leads to muscular weakness in SJL mice and may exacerbate motor dysfunction. We found small effects of Dysf im on motor function, suggesting that Dysf im contributes little to motor dysfunction in 5xFAD mice. We conclude that the 5xFAD mouse may be a useful model to study mechanisms that produce motor dysfunction in AD, and to assess the efficacy of therapeutics on ameliorating motor impairment.
Collapse
Affiliation(s)
- Timothy P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hector M Mantolino
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kurt R Stover
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
42
|
Activation of neutral sphingomyelinase 2 by starvation induces cell-protective autophagy via an increase in Golgi-localized ceramide. Cell Death Dis 2018; 9:670. [PMID: 29867196 PMCID: PMC5986760 DOI: 10.1038/s41419-018-0709-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is essential for optimal cell function and survival, and the entire process accompanies membrane dynamics. Ceramides are produced by different enzymes at different cellular membrane sites and mediate differential signaling. However, it remains unclear which ceramide-producing pathways/enzymes participate in autophagy regulation under physiological conditions such as nutrient starvation, and what the underlying mechanisms are. In this study, we demonstrate that among ceramide-producing enzymes, neutral sphingomyelinase 2 (nSMase2) plays a key role in autophagy during nutrient starvation. nSMase2 was rapidly and stably activated upon starvation, and the enzymatic reaction in the Golgi apparatus facilitated autophagy through the activation of p38 MAPK and inhibition of mTOR. Moreover, nSMase2 played a protective role against cellular damage depending on autophagy. These findings suggest that nSMase2 is a novel regulator of autophagy and provide evidence that Golgi-localized ceramides participate in cytoprotective autophagy against starvation.
Collapse
|
43
|
Wang SS, Zhang Z, Zhu TB, Chu SF, He WB, Chen NH. Myelin injury in the central nervous system and Alzheimer's disease. Brain Res Bull 2018; 140:162-168. [PMID: 29730417 DOI: 10.1016/j.brainresbull.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
Myelin is a membrane wrapped around the axon of the nerve cell, which is composed of the mature oligodendrocytes. The role of myelin is to insulate and prevent the nerve electrical impulses from the axon of the neurons to the axons of the other neurons, which is essential for the proper functioning of the nervous system. Minor changes in myelin thickness could lead to substantial changes in conduction speed and may thus alter neural circuit function. Demyelination is the myelin damage, which characterized by the loss of nerve sheath and the relative fatigue of the neuronal sheath and axon. Studies have shown that myelin injury may be closely related to neurodegenerative diseases and may be an early diagnostic criteria and therapeutic target. Thus this review summarizes the recent result of pathologic effect and signal pathways of myelin injury in neurodegenerative diseases, especially the Alzheimer's disease to provide new and effective therapeutic targets.
Collapse
Affiliation(s)
- Sha-Sha Wang
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Bi Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen-Bin He
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Nai-Hong Chen
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|