1
|
Sharma S, Sundaram S, Kesavadas C, Thomas B. An Algorithmic Approach to MR Imaging of Hypomyelinating Leukodystrophies. J Magn Reson Imaging 2025; 61:1531-1551. [PMID: 39165110 DOI: 10.1002/jmri.29558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) are a heterogeneous group of white matter diseases characterized by permanent deficiency of myelin deposition in brain. MRI is instrumental in the diagnosis and recommending genetic analysis, and is especially useful as many patients have a considerable clinical overlap, with the primary presenting complains being global developmental delay with psychomotor regression. Hypomyelination is defined as deficient myelination on two successive MR scans, taken at least 6 months apart, one of which should have been obtained after 1 year of age. Due to subtle differences in MRI features, the need for a systematic imaging approach to diagnose and classify hypomyelinating disorders is reiterated. The presented article provides an explicit review of imaging features of a myriad of primary and secondary HLDs, using state of the art genetically proven MR cases. A systematic pattern-based approach using MR features and specific clinical clues is illustrated for a quick yet optimal diagnosis of common as well as rare hypomyelinating disorders. The major MR features helping to narrow the differential diagnosis include extent of involvement like diffuse or patchy hypomyelination with selective involvement or sparing of certain white matter structures like optic radiations, median lemniscus, posterior limb of internal capsule and periventricular white matter; cerebellar atrophy; brainstem, corpus callosal or basal ganglia involvement; T2 hypointense signal of the thalami; and presence of calcifications. The authors also discuss the genetic and pathophysiologic basis of HLDs and recent methods to quantify myelin in vivo using advanced neuroradiology tools. The proposed algorithmic approach provides an improved understanding of these rare yet important disorders, enhancing diagnostic precision and improving patient outcomes. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Smily Sharma
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Soumya Sundaram
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
2
|
Gavazzi F, Charsar B, Hamilton E, Erler JA, Patel V, Woidill S, Sevagamoorthy A, Helman G, Schmidt J, Pizzino A, Muirhead K, Takanohashi A, Bonkowsky JL, Meyerhoffer K, Simons C, Doi H, Satoko M, Matsumoto N, Delgado MR, Sanchez-Castillo M, Wang J, de Carvalho DR, Tournev I, Chamova T, Jordanova A, Clegg NJ, Nicita F, Bertini E, Teng M, Williams D, Tonduti D, Houlden H, Stellingwerff M, Wassmer E, Garcia-Cazorla A, Bernard G, Mirchi A, Toutounchi H, Wolf NI, van der Knaap MS, Shults J, Adang LA, Vanderver AL. The natural history of variable subtypes in pediatric-onset TUBB4A-related leukodystrophy. Mol Genet Metab 2025; 144:109048. [PMID: 39951964 PMCID: PMC11875891 DOI: 10.1016/j.ymgme.2025.109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
We establish the natural history of pediatric-onset TUBB4A-related leukodystrophy to improve clinical trial readiness through a medical record-based longitudinal study. An international cohort of 216 individuals with pediatric-onset TUBB4A-related leukodystrophy was included. Demographic information and medical events were extracted from medical records or publications. Retrospective scores (Gross Motor Function - Metachromatic Leukodystrophy [GMFC-MLD] and Communication Function Classification System [CFCS]) were applied to assess function. Survival analysis distinguished differences in longitudinal neurocognitive function and time to event outcomes between subtypes. A decision tree predicted independent ambulation from early motor milestones. Genotype (p.Asp249Asn vs non-p.Asp249Asn) and independent sitting by age 9 months predicted ambulation by 3 years, and stratification into three subgroups: early-infantile (non- sitting by 9 months), late-infantile (normal early milestones without the common p.Asp249Asn mutation), and a cohort of p.Asp249Asn late-infantile onset individuals. Median age at symptom onset was 0.71 years (interquartile range: [0.33, 1.50]). Common symptoms at onset include delayed development and tone abnormalities (n = 125, 66.5 % and n = 77, 43.0 %). The most common medical complications included scoliosis (N = 51/142), hip dislocation (N = 30/101), and seizures (N = 51/163). The early-infantile more severely affected cohort had a greater prevalence of G-tube placement, scoliosis, and seizure compared to the late-infantile form (p < 0.01). Peak motor and communication abilities were comparable between the p.Asp249Asn and the late infantile cohorts. Despite the acquisition of early milestones, individuals with p.Asp249Asn showed a more rapid decline of functional abilities compared to other late infantile forms (log-rank p = 0.0002). Better understanding of TUBB4A-related leukodystrophy subtypes will improve clinical care, allow targeted preventive interventions, and permit disease stratification for future disease-modifying clinical trials.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Brittany Charsar
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eline Hamilton
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Netherlands
| | - Jacqueline A Erler
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Virali Patel
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah Woidill
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anjana Sevagamoorthy
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guy Helman
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Johanna Schmidt
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amy Pizzino
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kayla Muirhead
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Asako Takanohashi
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, UT, USA
| | - Kelsee Meyerhoffer
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cas Simons
- Murdoch Childrens Research Institute, Melbourne, Australia
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miyatake Satoko
- Department of Human Genetics, Yokoama City University, Yokohama, Japan
| | | | - Mauricio R Delgado
- Department of Neurology, University of Texas Southwestern Medical Center, USA
| | | | - Jingming Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | - Ivailo Tournev
- Clinic of Nervous Diseases, University Hospital Aleksandrovska, Department of Neurology, Medical University-Sofia, Bulgaria; Department of Cognitive Science and Psychology, New Bulgarian University, Bulgaria
| | - Teodora Chamova
- Department of Neurology, University Hospital Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Albena Jordanova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University - Sofia, Sofia, Bulgaria; Molecular Neurogenomics Group, Center for Molecular Neurology, VIB, Antwerpen, Belgium; Molecular Neurogenomics Group, Center for Molecular Neurology, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Nancy J Clegg
- Division of Clinical Research, Department of Research, Scottish Rite for Children, Dallas, TX, USA
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | | | | | - Davide Tonduti
- Unit of Pediatric Neurology, C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, L. Sacco University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Henry Houlden
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Evangeline Wassmer
- Neurology Department, Birmingham Children's Hospital, Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | - Angeles Garcia-Cazorla
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Neurology Department, Neurometabolic Unit and Synaptic Metabolism Lab, Institut Pediàtric de Recerca, Hospital Sant Joan de Déu, metabERN and CIBERER-ISCIII, Barcelona, Spain
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Amytice Mirchi
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Helia Toutounchi
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands
| | - Justine Shults
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A Adang
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adeline L Vanderver
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Kaur N, do Rosario MC, Majethia P, Mascarenhas S, Rao LP, Nair KV, Hunakunti B, Prasannakumar AP, Naik R, Narayanan DL, Nayak SS, Bhat V, Sharma S, Ramesh Bhat Y, Yatheesha BL, Kulkarni R, Patil SJ, Nampoothiri S, Siddiqui S, Girisha KM, Bielas S, Shukla A. Neuroimaging to Genotype: Delineating the Spectrum of Disorders With Deficient Myelination in the Indian Population. Am J Med Genet A 2025; 197:e63914. [PMID: 39470296 PMCID: PMC7617591 DOI: 10.1002/ajmg.a.63914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Several genetic disorders are associated with either a permanent deficit or a delay in central nervous system myelination. We investigated 24 unrelated families (25 individuals) with deficient myelination after clinical and radiological evaluation. A combinatorial approach of targeting and/or genomic testing was employed. Molecular diagnosis was achieved in 22 out of 24 families (92%). Four families (4/9, 44%) were diagnosed with targeted testing and 18 families (18/23, 78%) were diagnosed using broad genomic testing. Overall, 14 monogenic disorders were identified. Twenty disease-causing variants were identified in 14 genes including PLP1, GJC2, POLR1C, TUBB4A, UFM1, NKX6-2, DEGS1, RNASEH2C, HEXA, ATP7A, SETBP1, GRIN2B, OCLN, and ZBTB18. Among these, nine (45%) variants are novel. Fourteen families (82%, 14/17) were diagnosed using proband-only exome sequencing (ES) complemented with deep phenotyping, thus highlighting the utility of singleton ES as a valuable diagnostic tool for identifying these disorders in resource-limited settings.
Collapse
Affiliation(s)
- Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C. do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Purvi Majethia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Lakshmi Priya Rao
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Vijay Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Bhagesh Hunakunti
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Adarsh Pooradan Prasannakumar
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rohit Naik
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shalini S. Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vivekananda Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Y. Ramesh Bhat
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - B. L. Yatheesha
- Paediatric Neurology, Dheemahi Child Neurology and Development Center, Shimoga, India
| | - Rajesh Kulkarni
- Department of Paediatrics, Postgraduate Institute, Yashwantrao Chavan Memorial Hospital, Pune, India
| | - Siddaramappa J. Patil
- Division of Medical Genetics, Narayana Hrudayalaya Hospitals/Mazumdar-Shaw Medical Center, Bangalore, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, India
| | - Shahyan Siddiqui
- Department of Neuro and Vascular Interventional Radiology, Yashoda Hospitals, Hyderabad, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Tavasoli AR, Kaki A, Ganji M, Kahani SM, Radmehr F, Mohammadi P, Heidari M, Ashrafi MR, Lewis KS. Trichothiodystrophy due to ERCC2 Variants: Uncommon Contributor to Progressive Hypomyelinating Leukodystrophy. Mol Genet Genomic Med 2025; 13:e70067. [PMID: 39976384 PMCID: PMC11840839 DOI: 10.1002/mgg3.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/01/2025] [Accepted: 01/19/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Trichothiodystrophy (TTD) is caused by homozygous or compound heterozygous variants in genes associated with DNA repair. The ERCC2 gene encoded a protein, XPD, that is a subunit of the general transcription factor TFIIH and important in both DNA repair and transcription. Disease-causing variants in ERCC2 can partially inactivate these activities, giving rise to symptoms seen in TTD, Cockayne syndrome (CS) and xeroderma pigmentosa (XP). Although generalized cerebral white matter abnormalities is reported in TTD, myelination disorders specifically linked to ERCC2 gene variants are exceptionally uncommon. Here, we introduce a thorough investigation of a patient exhibiting classic TTD symptoms alongside progressive cerebral hypomyelination with ERCC2 variants. METHODS In a non-consanguineous family, we conducted Autism/ID gene Panel on a 5-year-old affected child who presented with microcephaly, failure to thrive, developmental delay, and progressive hypomyelination on three serial brain imaging over 5-years follow-up. Our investigation aimed to elucidate the genetic underpinnings of the observed phenotype. We also conducted a comprehensive review of the genetic profiles of all documented ERCC2-related patients exhibiting myelination disorders. RESULTS Autism/ID gene Panel identified a compound heterozygous variant in ERCC2 gene causing TTD. Clinical and paraclinical findings enabled differentiation of TTD from Cockayne syndrome and XP. Segregation analysis revealed that, the variation in the paternal allele was a splice junction loss (c.2190 + 1delG), and the other alteration in the maternal allele was a pathogenic variant (c.1479 + 2dupT). It has been noted that these variants were reported in previous studies in homozygous or compound heterozygous form in patients with TTD, but none of them exhibited hypomyelinating leukodystrophy. CONCLUSION The identification of hypomyelination in TTD due to ERCC2 sheds a light on the molecular diagnosis and contributing to the limited literature on ERCC2 variants and associated hypomyelinating leukodystrophy in patients with TTD.
Collapse
Affiliation(s)
- Ali Reza Tavasoli
- Neurology DivisionBarrow Neurological Institute, Phoenix Children'sPhoenixArizonaUSA
- Myelin Disorders Clinic, Children's Medical Center, Pediatric Center of ExcellenceTehran University of Medical SciencesTehranIran
| | - Arastoo Kaki
- Department of Medical Genetics, School of MedicineHamadan University of Medical SciencesHamadanIran
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research InstituteHamadan University of Medical SciencesHamadanIran
| | | | | | - Foozhan Radmehr
- Department of Molecular MedicineNational Institute of Genetic Engineering and BiotechnologyTehranIran
| | - Pouria Mohammadi
- Myelin Disorders Clinic, Children's Medical Center, Pediatric Center of ExcellenceTehran University of Medical SciencesTehranIran
- Department of Medical GeneticsTarbiat Modares UniversityTehranIran
| | - Morteza Heidari
- Myelin Disorders Clinic, Children's Medical Center, Pediatric Center of ExcellenceTehran University of Medical SciencesTehranIran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Children's Medical Center, Pediatric Center of ExcellenceTehran University of Medical SciencesTehranIran
| | - Kara S. Lewis
- Neurology DivisionBarrow Neurological Institute, Phoenix Children'sPhoenixArizonaUSA
| |
Collapse
|
5
|
Bettinger CM, Dulz S, Atiskova Y, Guerreiro H, Schön G, Guder P, Maier SL, Denecke J, Bley AE. Overview of Neuro-Ophthalmic Findings in Leukodystrophies. J Clin Med 2024; 13:5114. [PMID: 39274327 PMCID: PMC11396446 DOI: 10.3390/jcm13175114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Leukodystrophies are a group of rare genetic diseases that primarily affect the white matter of the central nervous system. The broad spectrum of metabolic and pathological causes leads to manifestations at any age, most often in childhood and adolescence, and a variety of symptoms. Leukodystrophies are usually progressive, resulting in severe disabilities and premature death. Progressive visual impairment is a common symptom. Currently, no overview of the manifold neuro-ophthalmologic manifestations and visual impact of leukodystrophies exists. Methods: Data from 217 patients in the Hamburg leukodystrophy cohort were analyzed retrospectively for neuro-ophthalmologic manifestations, age of disease onset, and magnetic resonance imaging, visual evoked potential, and optical coherence tomography findings and were compared with data from the literature. Results: In total, 68% of the patients suffered from neuro-ophthalmologic symptoms, such as optic atrophy, visual neglect, strabismus, and nystagmus. Depending on the type of leukodystrophy, neuro-ophthalmologic symptoms occurred early or late during the course of the disease. Magnetic resonance imaging scans revealed pathologic alterations in the visual tract that were temporally correlated with symptoms. Conclusions: The first optical coherence tomography findings in Krabbe disease and metachromatic leukodystrophy allow retinal assessments. Comprehensive literature research supports the results of this first overview of neuro-ophthalmologic findings in leukodystrophies.
Collapse
Affiliation(s)
| | - Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Helena Guerreiro
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Gerhard Schön
- Center of Experimental Medicine, Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Philipp Guder
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sarah Lena Maier
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jonas Denecke
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Annette E Bley
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
6
|
Biglari S, Vahidnezhad H, Tabatabaiefar MA, Khorram Khorshid HR, Esmaeilzadeh E. RARS1-related hypomyelinating leukodystrophy-9 (HLD-9) in two distinct Iranian families: Case report and literature review. Mol Genet Genomic Med 2024; 12:e2435. [PMID: 38618971 PMCID: PMC11017294 DOI: 10.1002/mgg3.2435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Hypomyelinating leukodystrophy-9 (HLD-9) is caused by biallelic pathogenic variants in RARS1, which codes for the cytoplasmic tRNA synthetase for arginine (ArgRS). This study aims to evaluate the clinical, neuroradiological, and genetic characteristics of patients with RARS1-related disease and determine probable genotype-phenotype relationships. METHODS We identified three patients with RARS1 homozygous pathogenic variants. Furthermore, we performed a comprehensive review of the literature. RESULTS Homozygous variants of RARS1 (c.2T>C (p.Met1Thr)) were identified in three patients with HLD-9. Clinical symptoms were severe in all patients. Following the literature review, thirty HLD-9 cases from eight studies were found. The 33 patients' main symptoms were hypomyelination, language delay, and intellectual disability or developmental delay. The mean age of onset for HLD9 in the group of 33 patients with a known age of onset was 5.8 months (SD = 8.1). The interquartile range of age of onset was 0-10 months. Of the 25 variants identified, c.5A>G (p.Asp2Gly) was identified in 11 patients. CONCLUSION Pathogenic variants in RARS1 decrease ArgRS activity and cause a wide range of symptoms, from severe, early onset epileptic encephalopathy with brain atrophy to a mild condition with relatively maintained myelination. These symptoms include the classic hypomyelination presentation with nystagmus and spasticity. Furthermore, the pathogenicity of the variation c.2T>C (p.Met1Thr) has been shown.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Hassan Vahidnezhad
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of PediatricsUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | | | | |
Collapse
|
7
|
Ramanzini LG, Frare JM, Lopes TF, Fighera MR. Developmental Delay, Hypomyelination, and Nystagmus: Case and Approach. Neuroophthalmology 2024; 48:369-372. [PMID: 39145320 PMCID: PMC11321408 DOI: 10.1080/01658107.2024.2329120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 08/16/2024] Open
Abstract
Pelizaeus-Merzbacher-like disease (PMLD, OMIM #608804) is an autosomal recessive hypomyelinating leukodystrophy caused by homozygous variants in the GJC2 gene. It usually presents in the first months of life with nystagmus, developmental delay, and diffuse hypomyelination on brain magnetic resonance imaging (MRI). We report a case of a 3-year-old boy that presented with nystagmus and global developmental delay. MRI showed diffuse hypomyelination, including the cerebellum. Pelizaeus-Merzbacher disease (PMD) was suspected; however, no pathological variants of the PLP1 gene were found. Exome sequencing found variants in the GJC2 gene, leading to a diagnosis of PMLD. The combination of global developmental delay, hypomyelination, and nystagmus in a child should raise suspicion of PMD and PMLD. Unlike PMD, however, hypomyelination of the brainstem and cerebellum are frequently seen and brainstem auditory evoked potentials are usually normal in PMLD. The latter has an overall better prognosis than the former as well. Epidemiological studies on leukodystrophies have found conflicting results on which disease is more common. However, PMLD is a rare leukodystrophy and both PMLD and PMD should be considered in any child with developmental delay, hypomyelination, and nystagmus.
Collapse
Affiliation(s)
- L. G. Ramanzini
- Medical School, Department of Neuropsychiatry, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - J. M. Frare
- Graduated Program in Biological Science, Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - T. F. Lopes
- Medical School, Department of Neuropsychiatry, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - M. R. Fighera
- Medical School, Department of Neuropsychiatry, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
8
|
Theil AF, Häckes D, Lans H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair (Amst) 2023; 132:103568. [PMID: 37977600 DOI: 10.1016/j.dnarep.2023.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 11/19/2023]
Abstract
The heterodecameric transcription factor IIH (TFIIH) functions in multiple cellular processes, foremost in nucleotide excision repair (NER) and transcription initiation by RNA polymerase II. TFIIH is essential for life and hereditary mutations in TFIIH cause the devastating human syndromes xeroderma pigmentosum, Cockayne syndrome or trichothiodystrophy, or combinations of these. In NER, TFIIH binds to DNA after DNA damage is detected and, using its translocase and helicase subunits XPB and XPD, opens up the DNA and checks for the presence of DNA damage. This central activity leads to dual incision and removal of the DNA strand containing the damage, after which the resulting DNA gap is restored. In this review, we discuss new structural and mechanistic insights into the central function of TFIIH in NER. Moreover, we provide an elaborate overview of all currently known patients and diseases associated with inherited TFIIH mutations and describe how our understanding of TFIIH function in NER and transcription can explain the different disease features caused by TFIIH deficiency.
Collapse
Affiliation(s)
- Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - David Häckes
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Wan L, Yu D, Li Z, Liu X, Liang Y, Yan H, Zhu G, Zhang B, Yang G. RARS1-related developmental and epileptic encephalopathy. Epilepsia Open 2023; 8:867-876. [PMID: 37186453 PMCID: PMC10472388 DOI: 10.1002/epi4.12751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE Biallelic variants of RARS1, a gene that encodes the cytoplasmic tRNA synthetase for arginine (ArgRS), are associated with central nervous system (CNS) manifestations, such as hypomyelinating leukodystrophy-9 and developmental and epileptic encephalopathy (DEE). This study aimed to better understand the RARS1 biallelic mutations and the associated phenotypes, particularly in patients with DEE. METHODS We identified two patients with RARS1 biallelic mutations and functionally validated these mutations in vitro. Furthermore, we performed a review of the literature. RESULTS Two patients with hypomyelinating leukodystrophy were found to have RARS1 biallelic variants (Patient 1: c.1535G>A (p.Arg512Gln) and c.1382G>A (p.Arg461His); Patient 2: homozygous variants c.5A>T (p.Asp2Val)). Patient 2 had a severe clinical manifestation of DEE. A review of the literature identified 27 patients from five studies. Among the 29 patients, intellectual disability, developmental delay, and hypomyelination were the common symptoms, while 13 of them exhibited DEE and malformations of cortical development. Of the 25 variants identified, c.5A>G (p.Asp2Gly) was identified in 10 patients. ArgRS protein expression and stability were substantially reduced in the two newly identified patients. SIGNIFICANCE Patients with RARS1 biallelic mutations frequently exhibit DEE, a severe phenotype, along with hypomyelinating leukodystrophy. Besides its effects on the white matter, this mutation also influences cortical development. Moreover, the variants c.5A>T (p.Asp2Val), c.1382G>A (p.Arg461His), and c.1535G>A (p.Arg512Gln) are pathogenic and affect the expression of ArgRS by reducing the protein stability.
Collapse
Affiliation(s)
- Lin Wan
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Dan Yu
- Department of PediatricsWest China Second Hospital of Sichuan UniversityChengduChina
| | - Zhichao Li
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Xinting Liu
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Yan Liang
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Huimin Yan
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Gang Zhu
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
| | - Bo Zhang
- Department of Neurology, ICCTR Biostatistics and Research Design Center, Boston Children's HospitalHarvard Medical SchoolMassachusettsBostonUSA
| | - Guang Yang
- Department of Pediatrics, The Seventh Medical Center of PLA General HospitalBeijingChina
- Department of Pediatrics, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of PediatricsMedical School of Chinese People’s Liberation ArmyBeijingChina
- Department of Pediatrics, The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
10
|
Abrams CK. Mechanisms of Diseases Associated with Mutation in GJC2/Connexin 47. Biomolecules 2023; 13:biom13040712. [PMID: 37189458 DOI: 10.3390/biom13040712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Connexins are members of a family of integral membrane proteins that provide a pathway for both electrical and metabolic coupling between cells. Astroglia express connexin 30 (Cx30)-GJB6 and Cx43-GJA1, while oligodendroglia express Cx29/Cx31.3-GJC3, Cx32-GJB1, and Cx47-GJC2. Connexins organize into hexameric hemichannels (homomeric if all subunits are identical or heteromeric if one or more differs). Hemichannels from one cell then form cell-cell channels with a hemichannel from an apposed cell. (These are termed homotypic if the hemichannels are identical and heterotypic if the hemichannels differ). Oligodendrocytes couple to each other through Cx32/Cx32 or Cx47/Cx47 homotypic channels and they couple to astrocytes via Cx32/Cx30 or Cx47/Cx43 heterotypic channels. Astrocytes couple via Cx30/Cx30 and Cx43/Cx43 homotypic channels. Though Cx32 and Cx47 may be expressed in the same cells, all available data suggest that Cx32 and Cx47 cannot interact heteromerically. Animal models wherein one or in some cases two different CNS glial connexins have been deleted have helped to clarify the role of these molecules in CNS function. Mutations in a number of different CNS glial connexin genes cause human disease. Mutations in GJC2 lead to three distinct phenotypes, Pelizaeus Merzbacher like disease, hereditary spastic paraparesis (SPG44) and subclinical leukodystrophy.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Bai H, Li D, Zheng Y, Jiang X. Case report: Biallelic variants in POLR3B gene lead to 4H leukodystrophy from the study of brother and sister. Medicine (Baltimore) 2022; 101:e30350. [PMID: 36042647 PMCID: PMC9410618 DOI: 10.1097/md.0000000000030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION 4H leukodystrophy, one of POLR3-related leukodystrophy, is a rare hereditary brain white matter disease caused by the pathogenic biallelic variations in POLR3A, POLR3B, or POLR1C. Hypomyelination, hypodontia, and hypogonadotropic hypogonadism is mainly presented in patients with 4H leukodystrophy. PATIENT CONCERNS Here, we reported the brother and the sister with new compound heterozygous (c.1615G>T and c.165-167del) with various degrees of phenotypes including dysbasia, myopia, dental abnormal, and hypogonadotropic hypogonadism. DIAGNOSIS The brother and sister were diagnosed with 4H leukodystrophy. INTERVENTIONS Gonadotrophins treatment of the brother could significantly improve the development of secondary sexual characteristics and genitalia. OUTCOMES This study showed that the same genotype of POLR3B may have variable clinical phenotypes in the brother and sister. CONCLUSION The exploration of molecular functions and genetic counseling are crucial for further diagnosis and treatment of POLR3-related leukodystrophy.
Collapse
Affiliation(s)
- Hengzhou Bai
- Andrology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dingming Li
- Andrology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zheng
- Andrology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - XiaoHui Jiang
- Andrology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: XiaoHui Jiang, Andrology, West China Second University Hospital, Sichuan University, No. 1416, Section 1, Cheng Long Avenue, Chengdu, Sichuan 610011, China (e-mail: )
| |
Collapse
|
12
|
Fellner A, Goldberg Y, Lev D, Basel-Salmon L, Shor O, Benninger F. In-silico phenotype prediction by normal mode variant analysis in TUBB4A-related disease. Sci Rep 2022; 12:58. [PMID: 34997144 PMCID: PMC8741991 DOI: 10.1038/s41598-021-04337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022] Open
Abstract
TUBB4A-associated disorder is a rare condition affecting the central nervous system. It displays a wide phenotypic spectrum, ranging from isolated late-onset torsion dystonia to a severe early-onset disease with developmental delay, neurological deficits, and atrophy of the basal ganglia and cerebellum, therefore complicating variant interpretation and phenotype prediction in patients carrying TUBB4A variants. We applied entropy-based normal mode analysis (NMA) to investigate genotype–phenotype correlations in TUBB4A-releated disease and to develop an in-silico approach to assist in variant interpretation and phenotype prediction in this disorder. Variants included in our analysis were those reported prior to the conclusion of data collection for this study in October 2019. All TUBB4A pathogenic missense variants reported in ClinVar and Pubmed, for which associated clinical information was available, and all benign/likely benign TUBB4A missense variants reported in ClinVar, were included in the analysis. Pathogenic variants were divided into five phenotypic subgroups. In-silico point mutagenesis in the wild-type modeled protein structure was performed for each variant. Wild-type and mutated structures were analyzed by coarse-grained NMA to quantify protein stability as entropy difference value (ΔG) for each variant. Pairwise ΔG differences between all variant pairs in each structural cluster were calculated and clustered into dendrograms. Our search yielded 41 TUBB4A pathogenic variants in 126 patients, divided into 11 partially overlapping structural clusters across the TUBB4A protein. ΔG-based cluster analysis of the NMA results revealed a continuum of genotype–phenotype correlation across each structural cluster, as well as in transition areas of partially overlapping structural clusters. Benign/likely benign variants were integrated into the genotype–phenotype continuum as expected and were clearly separated from pathogenic variants. We conclude that our results support the incorporation of the NMA-based approach used in this study in the interpretation of variant pathogenicity and phenotype prediction in TUBB4A-related disease. Moreover, our results suggest that NMA may be of value in variant interpretation in additional monogenic conditions.
Collapse
Affiliation(s)
- Avi Fellner
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel. .,Department of Neurology, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.
| | - Yael Goldberg
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Dorit Lev
- Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, 58220, Holon, Israel.,Rina Mor Institute of Medical Genetics, Wolfson Medical Center, 58220, Holon, Israel
| | - Lina Basel-Salmon
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Felsenstein Medical Research Center, 49100, Petah Tikva, Israel
| | - Oded Shor
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Felsenstein Medical Research Center, 49100, Petah Tikva, Israel
| | - Felix Benninger
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Felsenstein Medical Research Center, 49100, Petah Tikva, Israel
| |
Collapse
|
13
|
Duan R, Li L, Yan H, He M, Gao K, Xing S, Ji H, Wang J, Cao B, Li D, Xie H, Zhao S, Wu Y, Jiang Y, Xiao J, Gu Q, Li M, Zheng X, Chen L, Wang J. Novel Insight into the Potential Pathogenicity of Mitochondrial Dysfunction Resulting from PLP1 Duplication Mutations in Patients with Pelizaeus-Merzbacher Disease. Neuroscience 2021; 476:60-71. [PMID: 34506833 DOI: 10.1016/j.neuroscience.2021.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
Among the hypomyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) is a representative disorder. The disease is caused by different types of PLP1 mutations, among which PLP1 duplication accounts for ∼70% of the mutations. Previous studies have shown that PLP1 duplications lead to PLP1 retention in the endoplasmic reticulum (ER); in parallel, recent studies have demonstrated that PLP1 duplication can also lead to mitochondrial dysfunction. As such, the respective roles and interactions of the ER and mitochondria in the pathogenesis of PLP1 duplication are not clear. In both PLP1 patients' and healthy fibroblasts, we measured mitochondrial respiration with a Seahorse XF Extracellular Analyzer and examined the interactions between the ER and mitochondria with super-resolution microscopy (spinning-disc pinhole-based structured illumination microscopy, SD-SIM). For the first time, we demonstrated that PLP1 duplication mutants had closer ER-mitochondrion interfaces mediated through structural and morphological changes in both the ER and mitochondria-associated membranes (MAMs). These changes in both the ER and mitochondria then led to mitochondrial dysfunction, as reported previously. This work highlights the roles of MAMs in bridging PLP1 expression in the ER and pathogenic dysfunction in mitochondria, providing novel insight into the pathogenicity of mitochondrial dysfunction resulting from PLP1 duplication. These findings suggest that interactions between the ER and mitochondria may underlie pathogenic mechanisms of hypomyelinating leukodystrophies diseases at the organelle level.
Collapse
Affiliation(s)
- Ruoyu Duan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Huifang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Miao He
- Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Shijia Xing
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Haoran Ji
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jianyong Wang
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Binbin Cao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Dongxiao Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Han Xie
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Shiqun Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Qiang Gu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Ming Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Xiaolu Zheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China; Institute of Biomedical Engineering, Beijing Institute of Collaborative Innovation (BICI), Beijing 100094, China.
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China.
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100034, China; Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing 100083, China.
| |
Collapse
|
14
|
Abstract
Leukodystrophies are a group of genetically determined disorders that affect development or maintenance of central nervous system myelin. Leukodystrophies have an incidence of at least 1 in 4700 live births and significant morbidity and elevated risk of early death. This report includes a discussion of the types of leukodystrophies; their prevalence, clinical presentation, symptoms, and diagnosis; and current and future treatments. Leukodystrophies can present at any age from infancy to adulthood, with variability in disease progression and clinical presentation, ranging from developmental delay to seizures to spasticity. Diagnosis is based on a combination of history, examination, and radiologic and laboratory findings, including genetic testing. Although there are few cures, there are significant opportunities for care and improvements in patient well-being. Rapid advances in imaging and diagnosis, the emergence of and requirement for timely treatments, and the addition of leukodystrophy screening to newborn screening, make an understanding of the leukodystrophies necessary for pediatricians and other care providers for children.
Collapse
Affiliation(s)
- Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, University of Utah and Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah
| | | | | |
Collapse
|
15
|
Rha AK, Maguire AS, Martin DR. GM1 Gangliosidosis: Mechanisms and Management. Appl Clin Genet 2021; 14:209-233. [PMID: 33859490 PMCID: PMC8044076 DOI: 10.2147/tacg.s206076] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
The lysosomal storage disorder, GM1 gangliosidosis (GM1), is a neurodegenerative condition resulting from deficiency of the enzyme β-galactosidase (β-gal). Mutation of the GLB1 gene, which codes for β-gal, prevents cleavage of the terminal β-1,4-linked galactose residue from GM1 ganglioside. Subsequent accumulation of GM1 ganglioside and other substrates in the lysosome impairs cell physiology and precipitates dysfunction of the nervous system. Beyond palliative and supportive care, no FDA-approved treatments exist for GM1 patients. Researchers are critically evaluating the efficacy of substrate reduction therapy, pharmacological chaperones, enzyme replacement therapy, stem cell transplantation, and gene therapy for GM1. A Phase I/II clinical trial for GM1 children is ongoing to evaluate the safety and efficacy of adeno-associated virus-mediated GLB1 delivery by intravenous injection, providing patients and families with hope for the future.
Collapse
Affiliation(s)
- Allisandra K Rha
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
| | - Anne S Maguire
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| |
Collapse
|
16
|
Fu H, Wang Q, Liu H. Novel Mutations in NPC1 are Associated with Pelizaeus-Merzbacher-Like Disease: A Case Report. Int J Gen Med 2021; 14:797-803. [PMID: 33727856 PMCID: PMC7955759 DOI: 10.2147/ijgm.s293675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Pelizaeus-Merzbacher-like disease (PMLD) is an autosomal recessive hypomyelinating leukodystrophy with clinical symptoms and imaging manifestations similar to those of Pelizaeus-Merzbacher disease (PMD), an X-linked recessive hypomyelinating leukodystrophy. Typical manifestations of PMLD are nystagmus, dysmyotonia, ataxia, progressive motor dysfunction, and diffuse leukodystrophy on magnetic resonance imaging (MRI). This report identified novel mutations in NCP1 causing PMLD. A 7-month-old male patient was referred to our hospital because he could not lift his head until that time. He had symptoms including congenital nystagmus, hypotonia, and developmental delay. According to the MRI scan, there were signs of leukodystrophy. According to the clinical manifestations and the results of whole-exome sequencing (compound heterozygote mutations in NPC1 (p. G911S, c2731G>A and p. D128H, c382G>C)), the diagnosis of PMLD was considered, and his parents were determined to be carriers of mutant genes. He began rehabilitation training at the age of 1 year old. After 5 years of training, he was still experiencing global developmental delay, equivalent to the developmental level of a nine-month-old child. PMLD is a disease that seriously affects the quality of life of children and can result from mutations in different genes. In this report, we expand the gene spectrum of PMLD and suggest early genetic counselling for suspected patients and their patients.
Collapse
Affiliation(s)
- Hongling Fu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defect and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qiu Wang
- Key Laboratory of Birth Defect and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defect and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
17
|
Yan H, Ji H, Kubisiak T, Wu Y, Xiao J, Gu Q, Yang Y, Xie H, Ji T, Gao K, Li D, Xiong H, Shi Z, Li M, Zhang Y, Duan R, Bao X, Jiang Y, Burmeister M, Wang J. Genetic analysis of 20 patients with hypomyelinating leukodystrophy by trio-based whole-exome sequencing. J Hum Genet 2021; 66:761-768. [PMID: 33597727 PMCID: PMC8310791 DOI: 10.1038/s10038-020-00896-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 12/02/2022]
Abstract
Hypomyelinating leukodystrophies (HLDs) are a rare group of disorders characterized by myelin deficit of the brain-based on MRI. Here, we studied 20 patients with unexplained HLD to uncover their genetic etiology through whole-exome sequencing (WES). Trio-based WES was performed for 20 unresolved HLDs families after genetic tests for the PLP1 duplication and a panel of 115 known leukodystrophy-related genes. Variants in both known genes that related to HLDs and promising candidate genes were analyzed. Minigene splicing assay was conducted to confirm the effect of splice region variant. All 20 patients were diagnosed with HLDs clinically based on myelin deficit on MRI and impaired motor ability. Through WES, in 11 of 20 trios, 15 causative variants were detected in seven genes TUBB4A, POLR1C, POLR3A, SOX10, TMEM106B, DEGS1, and TMEM63A. The last three genes have just been discovered. Of 15 variants, six were novel. Using minigene splicing assay, splice variant POLR3A c.1770 + 5 G > C was proved to disrupt the normal splicing of intron 13 and led to a premature stop codon at position 618 (p.(P591Vfs*28)). Our analysis determined the molecular diagnosis of 11 HLDs patients. It emphasizes the heterogenicity of HLDs, the diagnostic power of trio-based WES for HLDs. Comprehensive analysis including a focus on candidate genes helps to discover novel disease-causing genes, determine the diagnosis for the first time, and improve the yield of WES. Moreover, novel mutations identified in TUBB4A, POLR3A, and POLR1C expand the mutation spectrum of these genes.
Collapse
Affiliation(s)
- Huifang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.,Joint International Research Center of Translational and Clinical Research, Beijing, China
| | - Haoran Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Thomas Kubisiak
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Qiang Gu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Han Xie
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dongxiao Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhen Shi
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ming Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ruoyu Duan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Joint International Research Center of Translational and Clinical Research, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA. .,Departments of Computational Medicine & Bioinformatics, Psychiatry and Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China. .,Joint International Research Center of Translational and Clinical Research, Beijing, China. .,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
| |
Collapse
|
18
|
Zheng X, Duan R, Li L, Xing S, Ji H, Yan H, Gao K, Wang J, Wang J, Chen L. Live-cell superresolution pathology reveals different molecular mechanisms of pelizaeus-merzbacher disease. Sci Bull (Beijing) 2020; 65:2061-2064. [PMID: 36732956 DOI: 10.1016/j.scib.2020.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Xiaolu Zheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Ruoyu Duan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Shijia Xing
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Haoran Ji
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Huifang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jianyong Wang
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100034, China; Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Peking University First Hospital, Beijing 100083, China.
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China.
| |
Collapse
|
19
|
Calame DG, Hainlen M, Takacs D, Ferrante L, Pence K, Emrick LT, Chao HT. EIF2AK2-related Neurodevelopmental Disorder With Leukoencephalopathy, Developmental Delay, and Episodic Neurologic Regression Mimics Pelizaeus-Merzbacher Disease. NEUROLOGY-GENETICS 2020; 7:e539. [PMID: 33553620 PMCID: PMC7862097 DOI: 10.1212/nxg.0000000000000539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
Objective To demonstrate that de novo missense single nucleotide variants (SNVs) in EIF2AK2 cause a neurodevelopmental disorder with leukoencephalopathy resembling Pelizaeus-Merzbacher disease (PMD). Methods A retrospective chart review was performed of 2 unrelated males evaluated at a single institution with de novo EIF2AK2 SNVs identified by clinical exome sequencing (ES). Clinical and radiographic data were reviewed and summarized. Results Both individuals presented in the first year of life with concern for seizures and developmental delay. Common clinical findings included horizontal and/or pendular nystagmus during infancy, axial hypotonia, appendicular hypertonia, spasticity, and episodic neurologic regression with febrile viral illnesses. MRI of the brain demonstrated severely delayed myelination in infancy. A hypomyelinating pattern was confirmed on serial imaging at age 4 years for proband 1. In proband 2, repeat imaging at age 13 months confirmed persistent delayed myelination. These clinical and radiographic features led to a strong suspicion of PMD. However, neither PLP1 copy number variants nor pathogenic SNVs were detected by chromosomal microarray and trio ES, respectively. Reanalysis of trio ES identified heterozygous de novo EIF2AK2 missense variant c.290C>T (p.Ser97Phe) in proband 1 and c.326C>T (p.Ala109Val) in proband 2. Conclusions The autosomal dominant EIF2AK2-related leukoencephalopathy, developmental delay, and episodic neurologic regression syndrome should be considered in the differential diagnosis for PMD and other hypomyelinating leukodystrophies (HLDs). A characteristic history of developmental regression with febrile illnesses may help distinguish it from other HLDs.
Collapse
Affiliation(s)
- Daniel G Calame
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Meagan Hainlen
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Danielle Takacs
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Leah Ferrante
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Kayla Pence
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Lisa T Emrick
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Hsiao-Tuan Chao
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| |
Collapse
|
20
|
Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197354. [PMID: 33027950 PMCID: PMC7582320 DOI: 10.3390/ijms21197354] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are particularly susceptible to microtubule (MT) defects and deregulation of the MT cytoskeleton is considered to be a common insult during the pathogenesis of neurodegenerative disorders. Evidence that dysfunctions in the MT system have a direct role in neurodegeneration comes from findings that several forms of neurodegenerative diseases are associated with changes in genes encoding tubulins, the structural units of MTs, MT-associated proteins (MAPs), or additional factors such as MT modifying enzymes which modulating tubulin post-translational modifications (PTMs) regulate MT functions and dynamics. Efforts to use MT-targeting therapeutic agents for the treatment of neurodegenerative diseases are underway. Many of these agents have provided several benefits when tested on both in vitro and in vivo neurodegenerative model systems. Currently, the most frequently addressed therapeutic interventions include drugs that modulate MT stability or that target tubulin PTMs, such as tubulin acetylation. The purpose of this review is to provide an update on the relevance of MT dysfunctions to the process of neurodegeneration and briefly discuss advances in the use of MT-targeting drugs for the treatment of neurodegenerative disorders.
Collapse
|
21
|
Lopez-Juarez A, Gonzalez-Vega A, Kleinert-Altamirano A, Piazza V, Garduno-Robles A, Alata M, Villaseñor-Mora C, Eguibar JR, Cortes C, Padierna LC, Hernandez VH. Auditory impairment in H-ABC tubulinopathy. J Comp Neurol 2020; 529:957-968. [PMID: 32681585 DOI: 10.1002/cne.24990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a neurodegenerative disease due to mutations in TUBB4A. Patients suffer from extrapyramidal movements, spasticity, ataxia, and cognitive deficits. Magnetic resonance imaging features are hypomyelination and atrophy of the striatum and cerebellum. A correlation between the mutations and their cellular, tissue and organic effects is largely missing. The effects of these mutations on sensory functions have not been described so far. We have previously reported a rat carrying a TUBB4A (A302T) mutation and sharing most of the clinical and radiological signs with H-ABC patients. Here, for the first time, we did a comparative study of the hearing function in an H-ABC patient and in this mutant model. By analyzing hearing function, we found that there are no significant differences in the auditory brainstem response (ABR) thresholds between mutant rats and WT controls. Nevertheless, ABRs show longer latencies in central waves (II-IV) that in some cases disappear when compared to WT. The patient also shows abnormal AEPs presenting only Waves I and II. Distortion product of otoacoustic emissions and immunohistochemistry in the rat show that the peripheral hearing function and morphology of the organ of Corti are normal. We conclude that the tubulin mutation severely impairs the central hearing pathway most probably by progressive central white matter degeneration. Hearing function might be affected in a significant fraction of patients with H-ABC; therefore, screening for auditory function should be done on patients with tubulinopathies to evaluate hearing support therapies.
Collapse
Affiliation(s)
| | - Arturo Gonzalez-Vega
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Angeles Garduno-Robles
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico.,Center of Research in Optics, Leon, Mexico
| | | | | | - Jose R Eguibar
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Carmen Cortes
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Luis Carlos Padierna
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | - Victor H Hernandez
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
22
|
Urbik VM, Schmiedel M, Soderholm H, Bonkowsky JL. Expanded Phenotypic Definition Identifies Hundreds of Potential Causative Genes for Leukodystrophies and Leukoencephalopathies. Child Neurol Open 2020; 7:2329048X20939003. [PMID: 32704519 PMCID: PMC7359642 DOI: 10.1177/2329048x20939003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Background: The genes responsible for genetic white matter disorders (GWMD; leukodystrophies and leukoencephalopathies) are incompletely known. Our goal was to revise the list of genes considered to cause GWMD. We considered a GWMD to consist of any genetic disease causing T2 signal white matter changes in magnetic resonance images. Methods and Results: Using a systematic review of PubMed, Google, published literature reviews, and commercial gene panels, we identified 399 unique genes meeting the GWMD definition. Of this, 87 (22%) genes were hypomyelinating. Only 3 genes had contrast enhancement on magnetic resonance imaging (MRI): ABCD1, GFAP, and UNC13D. Conclusions: A significantly greater number of genes than previously recognized, 399, are associated with white matter signal changes on T2 MRI. This expansion of GWMD genes can be useful in analysis and interpretation of next-generation sequencing results for GWMD diagnosis, and for understanding shared pathophysiological mechanisms of GWMDs.
Collapse
Affiliation(s)
| | | | - Haille Soderholm
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Brain and Spine Center, Primary Children's Hospital, Salt Lake City, UT, USA.,Primary Children's Center for Personalized Medicine, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Malik P, Muthusamy K, Mankad K, Shroff M, Sudhakar S. Solving the hypomyelination conundrum - Imaging perspectives. Eur J Paediatr Neurol 2020; 27:9-24. [PMID: 32418752 DOI: 10.1016/j.ejpn.2020.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022]
Abstract
Hypomyelinating Leukodystrophies (HLDs) are a genetically heterogeneous, clinically overlapping group of disorders with the unifying MR imaging appearance of myelin deficit in the brain. In fact, it is the MRI phenotype that typically raises the diagnostic suspicion in this single largest group of undiagnosed leukodystrophies and guides gene testing for confirmation. This article reviews the neurobiology of myelination, focussing on the complex interplay of molecular genetic pathways and presents a practical clinico-radiological diagnostic algorithm based on the neuroimaging patterns of the common hypomyelinating disorders. The authors also address the current controversies about the definition and use of the term 'hypomyelination'.
Collapse
|
24
|
Garduno-Robles A, Alata M, Piazza V, Cortes C, Eguibar JR, Pantano S, Hernandez VH. MRI Features in a Rat Model of H-ABC Tubulinopathy. Front Neurosci 2020; 14:555. [PMID: 32581692 PMCID: PMC7284052 DOI: 10.3389/fnins.2020.00555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
Tubulinopathies are a group of recently described diseases characterized by mutations in the tubulin genes. Mutations in TUBB4A produce diseases such as dystonia type 4 (DYT4) and hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC), which are clinically diagnosed by magnetic resonance imaging (MRI). We propose the taiep rat as the first animal model for tubulinopathies. The spontaneous mutant suffers from a syndrome related to a central leukodystrophy and characterized by tremor, ataxia, immobility, epilepsy, and paralysis. The pathological signs presented by these rats and the morphological changes we found by our longitudinal MRI study are similar to those of patients with mutations in TUBB4A. The diffuse atrophy we found in brain, cerebellum and spinal cord is related to the changes detectable in many human tubulinopathies and in particular in H-ABC patients, where myelin degeneration at the level of putamen and cerebellum is a clinical trademark of the disease. We performed Tubb4a exon analysis to corroborate the genetic defect and formulated hypotheses about the effect of amino acid 302 change on protein physiology. Optical microscopy of taiep rat cerebella and spinal cord confirmed the optical density loss in white matter associated with myelin loss, despite the persistence of neural fibers.
Collapse
Affiliation(s)
- Angeles Garduno-Robles
- Departament of Chemical, Electronic and Biomedical Engineering, DCI, University of Guanajuato, Guanajuato, Mexico.,Center of Research in Optics, Leon, Mexico
| | | | | | - Carmen Cortes
- Institute of Physiology, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Jose R Eguibar
- Institute of Physiology, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico.,Research Office of the Vice-rectory of Research and Postgraduate Studies, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Sergio Pantano
- Group of Biomolecular Simulations, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Victor H Hernandez
- Departament of Chemical, Electronic and Biomedical Engineering, DCI, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
25
|
Matsumoto N, Watanabe N, Iibe N, Tatsumi Y, Hattori K, Takeuchi Y, Oizumi H, Ohbuchi K, Torii T, Miyamoto Y, Yamauchi J. Hypomyelinating leukodystrophy-associated mutation of RARS leads it to the lysosome, inhibiting oligodendroglial morphological differentiation. Biochem Biophys Rep 2019; 20:100705. [PMID: 31737794 PMCID: PMC6849085 DOI: 10.1016/j.bbrep.2019.100705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/16/2019] [Accepted: 10/30/2019] [Indexed: 01/25/2023] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a central nervous system (CNS) demyelinating disease in human, currently known as prototypic hypomyelinating leukodystrophy 1 (HLD1). The gene responsible for HLD1 encodes proteolipid protein 1 (PLP1), which is the major myelin protein produced by oligodendrocytes. HLD9 is an autosomal recessive disorder responsible for the gene differing from the plp1 gene. The hld9 gene encodes arginyl-tRNA synthetase (RARS), which belongs to a family of cytoplasmic aminoacyl-tRNA synthetases. Herein we show that HLD9-associated missense mutation of Ser456-to-Leu (S456L) localizes RARS proteins as aggregates into the lysosome but not into the endoplasmic reticulum (ER) and the Golgi body. In contrast, wild-type proteins indeed distribute throughout the cytoplasm. Expression of S456L mutant constructs in cells decreases lysosome-related signaling through ribosomal S6 protein phosphorylation, which is known to be required for myelin formation. Cells harboring the S456L mutant constructs fail to exhibit phenotypes with myelin web-like structures following differentiation in FBD-102b cells, as part of the mammalian oligodendroglial cell model, whereas parental cells exhibit them. Collectively, HLD9-associated RARS mutant proteins are specifically localized in the lysosome with downregulation of S6 phosphorylation involved in myelin formation, inhibiting differentiation in FBD-102b cells. These results present some of the molecular and cellular pathological mechanisms for defect in myelin formation underlying HLD9.
Collapse
Affiliation(s)
- Naoto Matsumoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Natsumi Watanabe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Noriko Iibe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yuriko Tatsumi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kohei Hattori
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yu Takeuchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Tomohiro Torii
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|
26
|
Owczarek-Lipska M, Mulahasanovic L, Obermaier CD, Hörtnagel K, Neubauer BA, Korenke GC, Biskup S, Neidhardt J. Novel mutations in the GJC2 gene associated with Pelizaeus–Merzbacher-like disease. Mol Biol Rep 2019; 46:4507-4516. [DOI: 10.1007/s11033-019-04906-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
|
27
|
Feng Y, Huang Y, Zhao X, Sheng H, Feng Y, Zhang W, Liu L. Clinical and molecular characteristics of 11 Chinese probands with GM1 gangliosidosis. Metab Brain Dis 2018; 33:2051-2057. [PMID: 30267299 DOI: 10.1007/s11011-018-0315-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
Abstract
GM1 gangliosidosis is an autosomal recessive lysosomal storage disease caused by the deficiency of β-galactosidase activity, precisely due to mutations in the GLB1 gene. To explore the clinical and molecular characteristics of GM1 gangliosidosis patients from China, GLB1 gene were analyzed in 11 probands with GM1 gangliosidosis by exploiting direct Sanger-sequencing. Among them, five patients were classified as the infantile type and the remaining six as the late-infantile or juvenile type. In these probands, eight novel mutations p.Y50N, p.Y237C, p.S267F, p.G453R, p.K578 N, c.618delC, c.475_478delGACA and c.1979_1980insG have been identified. Among them, three novel missense mutations p.Y50N, p.S267F and p.G453R were transiently transfected in COS-7 cells by plasmid system for functional verification. In vitro GLB1 activities carrying the aforesaid missense mutants p.Y50N, p.S267F and p.G453R were 0.11%, 0 and 0.55% of wild-type, respectively. Mutation c.495_497delTCT and p.S149F accounted for 22.7 and 13.6% of the mutant alleles, respectively. Our results expand the spectrum of GLB1 gene, provide new insights into the clinical and molecular characteristics of GM1 gangliosidosis in China.
Collapse
Affiliation(s)
- Yuyu Feng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, 510623, China
| | - Yonglan Huang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, 510623, China.
| | - Xiaoyuan Zhao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, 510623, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, 510623, China
| | - Yi Feng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, 510623, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, 510623, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|