1
|
Ozaki T, Sugie T, Suzuki Y, Uchimura K, Suzui M, Sakamoto K, Shirane M, Kadomatsu K. Systemic administrations of protamine heal subacute spinal cord injury in mice. Neurosci Res 2025; 212:11-19. [PMID: 39638151 DOI: 10.1016/j.neures.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Spinal cord injury (SCI) results in damage to neural circuits that cause long-term locomotor and sensory disability. The objective of the present study is to evaluate whether a clinical drug, protamine, can be employed as a therapeutic agent for SCI. First, we examined the rescue effect of protamine on dystrophic endballs (DEs) cultured on a chondroitin sulfate (CS) gradient coating. Consequently, axons with DE, which are unable to grow through the CS barrier, resumed growth after protamine treatment and were able to pass through the barrier. In addition, we tested whether protamine resolves the DE phenotype, accumulation of autophagosomes. The results demonstrated that protamine has significantly reduced the density of LC3 in DEs. Subsequently, mice were administered 1 mg/kg protamine via the tail vein one week following a contusion injury to the thoracic spinal cord. The hindlimb movements of the mice were evaluated in order to assess the therapeutic effect of protamine. Eleven venous administrations of protamine improved the symptoms. The current study has demonstrated that protamine cancels the CS inhibitory effect on axonal regrowth. Administrations of protamine were observed to alleviate hindlimb motor dysfunction in SCI mice. Our results suggest an effective therapeutic agent for SCI and a possibility for drug repositioning. It would be of interest to see if protamine also exerts a therapeutic effect in brain injury.
Collapse
Affiliation(s)
- Tomoya Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 467-8603, Japan; Department of Neurotoxicology, Institute of Brain Science, Nagoya city University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takahiro Sugie
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuji Suzuki
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, Villeneuve-d'Ascq, France
| | - Masumi Suzui
- Department of Neurotoxicology, Institute of Brain Science, Nagoya city University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Michiko Shirane
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
2
|
Gupta SJ, Churchward MA, Todd KG, Winship IR. A dual role for pleiotrophin in modulating inflammation and myelination in the presence of chondroitin sulfate proteoglycans after nervous system injury. Front Cell Neurosci 2025; 19:1549433. [PMID: 40083634 PMCID: PMC11903471 DOI: 10.3389/fncel.2025.1549433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs), key components of the extracellular matrix and the glial scar that forms around central nervous system (CNS) injuries, are recognized for hindering neuronal regeneration. We previously demonstrated the potential of pleiotrophin (PTN) to induce neurite outgrowth even in the presence of inhibitory CSPGs. The effects of PTN on microglia and oligodendrocytes are not well described. Here, we examined how PTN administration alters the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes in the presence of CSPGs using in vitro cell culture model. Moreover, we explored the effects of PTN on the inflammatory activity of microglia with and without inflammatory stimulation (IFN-γ) in a CSPG-rich environment. The data showed that the CSPG matrix inhibited the differentiation of OPCs into mature oligodendrocytes. PTN induced dose-dependent differentiation of OPCs into mature oligodendrocytes, with an optimal effect at 10 nM PTN. Moreover, PTN modified the immunological response of microglia in the presence of CSPGs, with reduced proinflammatory activity that was further reduced by PTN administration, in contrast to the increased release of matrix metalloproteinases (MMP 9). However, when IFN-γ-activated microglia were treated with PTN, proinflammatory signaling was stimulated at higher PTN concentrations (10 nM and 100 nM). Overall, our results indicate that PTN can overcome the inhibitory effect of CSPGs on the differentiation of OPCs into oligodendrocytes and can modulate inflammation mediated by CSPGs from microglia. Collectively, these findings demonstrate that PTN can effectively counteract the inhibitory effects of CSPGs on the differentiation of OPCs into mature oligodendrocytes while also modulating microglial responses to reduce proinflammatory activity and increase MMP-9 release. Thus, PTN has great potential to improve remyelination and neuroprotective strategies in the treatment of demyelinating diseases or any injury.
Collapse
Affiliation(s)
- Somnath J. Gupta
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthew A. Churchward
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Kathryn G. Todd
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Bromley-Coolidge S, Iruegas D, Appel B. Cspg4 sculpts oligodendrocyte precursor cell morphology. Differentiation 2024; 140:100819. [PMID: 39566199 PMCID: PMC11637897 DOI: 10.1016/j.diff.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
The extracellular matrix (ECM) provides critical biochemical and structural cues that regulate neural development. Chondroitin sulfate proteoglycans (CSPGs), a major ECM component, have been implicated in modulating oligodendrocyte precursor cell (OPC) proliferation, migration, and maturation, but their specific roles in oligodendrocyte lineage cell (OLC) development and myelination in vivo remain poorly understood. Here, we use zebrafish as a model system to investigate the spatiotemporal dynamics of ECM deposition and CSPG localization during central nervous system (CNS) development, with a focus on their relationship to OLCs. We demonstrate that ECM components, including CSPGs, are dynamically expressed in distinct spatiotemporal patterns coinciding with OLC development and myelination. We found that zebrafish lacking cspg4 function produced normal numbers of OLCs, which appeared to undergo proper differentiation. However, OPC morphology in mutant larvae was aberrant. Nevertheless, the number and length of myelin sheaths produced by mature oligodendrocytes were unaffected. These data indicate that Cspg4 regulates OPC morphogenesis in vivo, supporting the role of the ECM in neural development.
Collapse
Affiliation(s)
- Samantha Bromley-Coolidge
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80445, USA
| | - Diego Iruegas
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80445, USA
| | - Bruce Appel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80445, USA.
| |
Collapse
|
4
|
Nelson DW, Funnell JL, Cheung CH, Quinones GB, Mendoza CS, Bentley M, Gilbert RJ. In vitro assessment of protamine toxicity with neural cells, its therapeutic potential to counter chondroitin sulfate mediated neuron inhibition, and its effects on reactive astrocytes. ADVANCED THERAPEUTICS 2024; 7:2300242. [PMID: 39071184 PMCID: PMC11281232 DOI: 10.1002/adtp.202300242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 07/30/2024]
Abstract
Multiple therapies have been studied to ameliorate the neuroinhibitory cues present after traumatic injury to the central nervous system. Two previous in vitro studies have demonstrated the efficacy of the FDA-approved cardiovascular therapeutic, protamine (PRM), to overcome neuroinhibitory cues presented by chondroitin sulfates; however, the effect of a wide range of PRM concentrations on neuronal and glial cells has not been evaluated. In this study, we investigate the therapeutic efficacy of PRM with primary cortical neurons, hippocampal neurons, mixed glial cultures, and astrocyte cultures. We show the threshold for PRM toxicity to be at or above 10 μg/ml depending on the cell population, that 10 μg/ml PRM enables neurons to overcome the inhibitory cues presented by chondroitin sulfate type A, and that soluble PRM allows neurons to more effectively overcome inhibition compared to a PRM coating. We also assessed changes in gene expression of reactive astrocytes with soluble PRM and determined that PRM does not increase their neurotoxic phenotype and that PRM may reduce brevican production and serpin transcription in cortical and spinal cord astrocytes. This is the first study to thoroughly assess the toxicity threshold of PRM with neural cells and study astrocyte response after acute exposure to PRM in vitro.
Collapse
Affiliation(s)
- Derek W Nelson
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Jessica L Funnell
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Conrad H Cheung
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Geraldine B Quinones
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Christina S Mendoza
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Marvin Bentley
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States; Albany Stratton Veteran Affairs Medical Center, 113 Holland Ave. Albany, New York 12208, United States
| |
Collapse
|
5
|
Yang R, Zhang Y, Kang J, Zhang C, Ning B. Chondroitin Sulfate Proteoglycans Revisited: Its Mechanism of Generation and Action for Spinal Cord Injury. Aging Dis 2024; 15:153-168. [PMID: 37307832 PMCID: PMC10796098 DOI: 10.14336/ad.2023.0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 06/14/2023] Open
Abstract
Reactive astrocytes (RAs) produce chondroitin sulfate proteoglycans (CSPGs) in large quantities after spinal cord injury (SCI) and inhibit axon regeneration through the Rho-associated protein kinase (ROCK) pathway. However, the mechanism of producing CSPGs by RAs and their roles in other aspects are often overlooked. In recent years, novel generation mechanisms and functions of CSPGs have gradually emerged. Extracellular traps (ETs), a new recently discovered phenomenon in SCI, can promote secondary injury. ETs are released by neutrophils and microglia, which activate astrocytes to produce CSPGs after SCI. CSPGs inhibit axon regeneration and play an important role in regulating inflammation as well as cell migration and differentiation; some of these regulations are beneficial. The current review summarized the process of ET-activated RAs to generate CSPGs at the cellular signaling pathway level. Moreover, the roles of CSPGs in inhibiting axon regeneration, regulating inflammation, and regulating cell migration and differentiation were discussed. Finally, based on the above process, novel potential therapeutic targets were proposed to eliminate the adverse effects of CSPGs.
Collapse
Affiliation(s)
- Rui Yang
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jianning Kang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ce Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bin Ning
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
6
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
7
|
Pintér P, Alpár A. The Role of Extracellular Matrix in Human Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms231911085. [PMID: 36232390 PMCID: PMC9569603 DOI: 10.3390/ijms231911085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The dense neuropil of the central nervous system leaves only limited space for extracellular substances free. The advent of immunohistochemistry, soon followed by advanced diagnostic tools, enabled us to explore the biochemical heterogeneity and compartmentalization of the brain extracellular matrix in exploratory and clinical research alike. The composition of the extracellular matrix is critical to shape neuronal function; changes in its assembly trigger or reflect brain/spinal cord malfunction. In this study, we focus on extracellular matrix changes in neurodegenerative disorders. We summarize its phenotypic appearance and biochemical characteristics, as well as the major enzymes which regulate and remodel matrix establishment in disease. The specifically built basement membrane of the central nervous system, perineuronal nets and perisynaptic axonal coats can protect neurons from toxic agents, and biochemical analysis revealed how the individual glycosaminoglycan and proteoglycan components interact with these molecules. Depending on the site, type and progress of the disease, select matrix components can either proactively trigger the formation of disease-specific harmful products, or reactively accumulate, likely to reduce tissue breakdown and neuronal loss. We review the diagnostic use and the increasing importance of medical screening of extracellular matrix components, especially enzymes, which informs us about disease status and, better yet, allows us to forecast illness.
Collapse
Affiliation(s)
- Panka Pintér
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Correspondence:
| |
Collapse
|
8
|
Kulesskaya N, Mugantseva E, Minkeviciene R, Acosta N, Rouhiainen A, Kuja-Panula J, Kislin M, Piirainen S, Paveliev M, Rauvala H. Low-Molecular Weight Protamine Overcomes Chondroitin Sulfate Inhibition of Neural Regeneration. Front Cell Dev Biol 2022; 10:865275. [PMID: 35547817 PMCID: PMC9084902 DOI: 10.3389/fcell.2022.865275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Protamine is an arginine-rich peptide that replaces histones in the DNA-protein complex during spermatogenesis. Protamine is clinically used in cardiopulmonary bypass surgery to neutralize the effects of heparin that is required during the treatment. Here we demonstrate that protamine and its 14–22 amino acid long fragments overcome the neurite outgrowth inhibition by chondroitin sulfate proteoglycans (CSPGs) that are generally regarded as major inhibitors of regenerative neurite growth after injuries of the adult central nervous system (CNS). Since the full-length protamine was found to have toxic effects on neuronal cells we used the in vitro neurite outgrowth assay to select a protamine fragment that retains the activity to overcome the neurite outgrowth inhibition on CSPG substrate and ended up in the 14 amino acid fragment, low-molecular weight protamine (LMWP). In contrast to the full-length protamine, LMWP displays very low or no toxicity in our assays in vitro and in vivo. We therefore started studies on LMWP as a possible drug lead in treatment of CNS injuries, such as the spinal cord injury (SCI). LMWP mimicks HB-GAM (heparin-binding growth-associated molecule; pleiotrophin) in that it overcomes the CSPG inhibition on neurite outgrowth in primary CNS neurons in vitro and inhibits binding of protein tyrosine phosphatase (PTP) sigma, an inhibitory receptor in neurite outgrowth, to its CSPG ligand. Furthermore, the chondroitin sulfate (CS) chains of the cell matrix even enhance the LMWP-induced neurite outgrowth on CSPG substrate. In vivo studies using the hemisection and hemicontusion SCI models in mice at the cervical level C5 revealed that LMWP enhances recovery when administered through intracerebroventricular or systemic route. We suggest that LMWP is a promising drug lead to develop therapies for CNS injuries.
Collapse
Affiliation(s)
- Natalia Kulesskaya
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ekaterina Mugantseva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Rimante Minkeviciene
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Natalia Acosta
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ari Rouhiainen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Juha Kuja-Panula
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikhail Kislin
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sami Piirainen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikhail Paveliev
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heikki Rauvala
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Yellajoshyula D, Pappas SS, Dauer WT. Oligodendrocyte and Extracellular Matrix Contributions to Central Nervous System Motor Function: Implications for Dystonia. Mov Disord 2022; 37:456-463. [PMID: 34989453 PMCID: PMC11152458 DOI: 10.1002/mds.28892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
The quest to elucidate nervous system function and dysfunction in disease has focused largely on neurons and neural circuits. However, fundamental aspects of nervous system development, function, and plasticity are regulated by nonneuronal elements, including glial cells and the extracellular matrix (ECM). The rapid rise of genomics and neuroimaging techniques in recent decades has highlighted neuronal-glial interactions and ECM as a key component of nervous system development, plasticity, and function. Abnormalities of neuronal-glial interactions have been understudied but are increasingly recognized to play a key role in many neurodevelopmental disorders. In this report, we consider the role of myelination and the ECM in the development and function of central nervous system motor circuits and the neurodevelopmental disease dystonia. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Simulate SubQ: The Methods and the Media. J Pharm Sci 2021; 112:1492-1508. [PMID: 34728176 DOI: 10.1016/j.xphs.2021.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
For decades, there has been a growing interest in injectable subcutaneous formulations to improve the absorption of drugs into the systemic circulation and to prolong their release over a longer period. However, fluctuations in the blood plasma levels together with bioavailability issues often limit their clinical success. This warrants a closer look at the performance of long-acting depots, for example, and their dependence on the complex interplay between the dosage form and the physiological microenvironment. For this, biopredictive performance testing is used for a thorough understanding of the biophysical processes affecting the absorption of compounds from the injection site in vivo and their simulation in vitro. In the present work, we discuss in vitro methodologies including methods and media developed for the subcutaneous route of administration on the background of the most relevant absorption mechanisms. Also, we highlight some important knowledge gaps and shortcomings of the existing methodologies to provide the reader with a better understanding of the scientific evidence underlying these models.
Collapse
|
11
|
Volland A, Lohmüller M, Heilmann E, Kimpel J, Herzog S, von Laer D. Heparan sulfate proteoglycans serve as alternative receptors for low affinity LCMV variants. PLoS Pathog 2021; 17:e1009996. [PMID: 34648606 PMCID: PMC8547738 DOI: 10.1371/journal.ppat.1009996] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/26/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
Members of the Old World Arenaviruses primarily utilize α-dystroglycan (α-DAG1) as a cellular receptor for infection. Mutations within the glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV) reduce or abrogate the binding affinity to α-DAG1 and thus influence viral persistence, kinetics, and cell tropism. The observation that α-DAG1 deficient cells are still highly susceptible to low affinity variants, suggests the use of an alternative receptor(s). In this study, we used a genome-wide CRISPR Cas9 knockout screen in DAG1 deficient 293T cells to identify host factors involved in α-DAG1-independent LCMV infection. By challenging cells with vesicular stomatitis virus (VSV), pseudotyped with the GP of LCMV WE HPI (VSV-GP), we identified the heparan sulfate (HS) biosynthesis pathway as an important host factor for low affinity LCMV infection. These results were confirmed by a genetic approach targeting EXTL3, a key factor in the HS biosynthesis pathway, as well as by enzymatic and chemical methods. Interestingly, a single point mutation within GP1 (S153F or Y155H) of WE HPI is sufficient for the switch from DAG1 to HS binding. Furthermore, we established a simple and reliable virus-binding assay, using directly labelled VSV-GP by intramolecular fusion of VSV-P and mWasabi, demonstrating the importance of HS for virus attachment but not entry in Burkitt lymphoma cells after reconstitution of HS expression. Collectively, our study highlights the essential role of HS for low affinity LCMV infection in contrast to their high affinity counterparts. Residual LCMV infection in double knockouts indicate the use of (a) still unknown entry receptor(s).
Collapse
Affiliation(s)
- André Volland
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail: (AV); (DVL)
| | - Michael Lohmüller
- Division of Developmental Immunology, Medical University of Innsbruck, Innsbruck, Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Herzog
- Division of Developmental Immunology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail: (AV); (DVL)
| |
Collapse
|
12
|
THAP1 modulates oligodendrocyte maturation by regulating ECM degradation in lysosomes. Proc Natl Acad Sci U S A 2021; 118:2100862118. [PMID: 34312226 DOI: 10.1073/pnas.2100862118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oligodendrocyte lineage. Here, we demonstrate that THAP1 modulates the extracellular matrix (ECM) composition by regulating glycosaminoglycan (GAG) catabolism within oligodendrocyte progenitor cells (OPCs). Thap1 -/- OPCs accumulate and secrete excess GAGs, inhibiting their maturation through an autoinhibitory mechanism. THAP1 controls GAG metabolism by binding to and regulating the GusB gene encoding β-glucuronidase, a GAG-catabolic lysosomal enzyme. Applying GAG-degrading enzymes or overexpressing β-glucuronidase rescues Thap1 -/- OL maturation deficits in vitro and in vivo. Our studies establish lysosomal GAG catabolism within OPCs as a critical mechanism regulating oligodendrocyte development.
Collapse
|
13
|
Hughes EG, Stockton ME. Premyelinating Oligodendrocytes: Mechanisms Underlying Cell Survival and Integration. Front Cell Dev Biol 2021; 9:714169. [PMID: 34368163 PMCID: PMC8335399 DOI: 10.3389/fcell.2021.714169] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
In the central nervous system, oligodendrocytes produce myelin sheaths that enwrap neuronal axons to provide trophic support and increase conduction velocity. New oligodendrocytes are produced throughout life through a process referred to as oligodendrogenesis. Oligodendrogenesis consists of three canonical stages: the oligodendrocyte precursor cell (OPC), the premyelinating oligodendrocyte (preOL), and the mature oligodendrocyte (OL). However, the generation of oligodendrocytes is inherently an inefficient process. Following precursor differentiation, a majority of premyelinating oligodendrocytes are lost, likely due to apoptosis. If premyelinating oligodendrocytes progress through this survival checkpoint, they generate new myelinating oligodendrocytes in a process we have termed integration. In this review, we will explore the intrinsic and extrinsic signaling pathways that influence preOL survival and integration by examining the intrinsic apoptotic pathways, metabolic demands, and the interactions between neurons, astrocytes, microglia, and premyelinating oligodendrocytes. Additionally, we will discuss similarities between the maturation of newly generated neurons and premyelinating oligodendrocytes. Finally, we will consider how increasing survival and integration of preOLs has the potential to increase remyelination in multiple sclerosis. Deepening our understanding of premyelinating oligodendrocyte biology may open the door for new treatments for demyelinating disease and will help paint a clearer picture of how new oligodendrocytes are produced throughout life to facilitate brain function.
Collapse
Affiliation(s)
- Ethan G Hughes
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Michael E Stockton
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
14
|
Pantazou V, Roux T, Oliveira Moreira V, Lubetzki C, Desmazières A. Interaction between Neurons and the Oligodendroglial Lineage in Multiple Sclerosis and Its Preclinical Models. Life (Basel) 2021; 11:231. [PMID: 33799653 PMCID: PMC7999210 DOI: 10.3390/life11030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a complex central nervous system inflammatory disease leading to demyelination and associated functional deficits. Though endogenous remyelination exists, it is only partial and, with time, patients can enter a progressive phase of the disease, with neurodegeneration as a hallmark. Though major therapeutic advances have been made, with immunotherapies reducing relapse rate during the inflammatory phase of MS, there is presently no therapy available which significantly impacts disease progression. Remyelination has been shown to favor neuroprotection, and it is thus of major importance to better understand remyelination mechanisms in order to promote them and hence preserve neurons. A crucial point is how this process is regulated through the neuronal crosstalk with the oligodendroglial lineage. In this review, we present the current knowledge on neuron interaction with the oligodendroglial lineage, in physiological context as well as in MS and its experimental models. We further discuss the therapeutic possibilities resulting from this research field, which might allow to support remyelination and neuroprotection and thus limit MS progression.
Collapse
Affiliation(s)
- Vasiliki Pantazou
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Service de Neurologie, Centre Hospitalier Universitaire Vaudois, 46 Rue du Bugnon, 1011 Lausanne, Switzerland
| | - Thomas Roux
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Assistance Publique-Hôpitaux de Paris, Neurology Department, Pitié Salpêtrière University Hospital, 75013 Paris, France
| | - Vanessa Oliveira Moreira
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
| | - Catherine Lubetzki
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Assistance Publique-Hôpitaux de Paris, Neurology Department, Pitié Salpêtrière University Hospital, 75013 Paris, France
| | - Anne Desmazières
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
| |
Collapse
|
15
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
16
|
Dynamics of Central Remyelination and Treatment Evolution in a Model of Multiple Sclerosis with Optic Coherence Tomography. Int J Mol Sci 2021; 22:ijms22052440. [PMID: 33671012 PMCID: PMC7957639 DOI: 10.3390/ijms22052440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 01/03/2023] Open
Abstract
The need for remyelinating drugs is essential for healing disabling diseases such as multiple sclerosis (MS). One of the reasons for the lack of this class of therapies is the impossibility to monitor remyelination in vivo, which is of utmost importance to perform effective clinical trials. Here, we show how optical coherence tomography (OCT), a cheap and non-invasive technique commonly used in ophthalmology, may be used to assess remyelination in vivo in MS patients. Our pioneer approach validates OCT as a technique to study remyelination of the optic nerve and reflects what is occurring in non-accessible central nervous system (CNS) structures, like the spinal cord. In this study we used the orally bioavailable small molecule VP3.15, confirming its therapeutical potential as a neuroprotective, anti-inflammatory, and probably remyelinating drug for MS. Altogether, our results confirm the usefulness of OCT to monitor the efficacy of remyelinating therapies in vivo and underscore the relevance of VP3.15 as a potential disease modifying drug for MS therapy.
Collapse
|
17
|
Pu A, Mishra MK, Dong Y, Ghorbanigazar S, Stephenson EL, Rawji KS, Silva C, Kitagawa H, Sawcer S, Yong VW. The glycosyltransferase EXTL2 promotes proteoglycan deposition and injurious neuroinflammation following demyelination. J Neuroinflammation 2020; 17:220. [PMID: 32703234 PMCID: PMC7379813 DOI: 10.1186/s12974-020-01895-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background Chondroitin sulfate proteoglycans (CSPGs) are potent inhibitors of axonal regrowth and remyelination. More recently, they have also been highlighted as a modulator of macrophage infiltration into the central nervous system in experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. Methods We interrogated results from single nucleotide polymorphisms (SNPs) lying in or close to genes regulating CSPG metabolism in the summary results from two publicly available systematic studies of multiple sclerosis (MS) genetics. A demyelinating injury model in the spinal cord of exostosin-like 2 deficient (EXTL2-/-) mice was used to investigate the effects of dysregulation of EXTL2 on remyelination. Cell cultures of bone marrow-derived macrophages and primary oligodendrocyte precursor cells and neurons were supplemented with purified CSPGs or conditioned media to assess potential mechanisms of action. Results The strongest evidence for genetic association was seen for SNPs mapping to the region containing the glycosyltransferase exostosin-like 2 (EXTL2), an enzyme that normally suppresses CSPG biosynthesis. Six of these SNPs showed genome-wide significant evidence for association in one of the studies with concordant and nominally significant effects in the second study. We then went on to show that a demyelinating injury to the spinal cord of EXTL2−/− mice resulted in excessive deposition of CSPGs in the lesion area. EXTL2−/− mice had exacerbated axonal damage and myelin disruption relative to wild-type mice, and increased representation of microglia/macrophages within lesions. In tissue culture, activated bone marrow-derived macrophages from EXTL2−/− mice overproduce tumor necrosis factor α (TNFα) and matrix metalloproteinases (MMPs). Conclusions These results emphasize CSPGs as a prominent modulator of neuroinflammation and they highlight CSPGs accumulating in lesions in promoting axonal injury.
Collapse
Affiliation(s)
- Annie Pu
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, T2N 4 N1, Calgary, Canada
| | - Manoj K Mishra
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, T2N 4 N1, Calgary, Canada
| | - Yifei Dong
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, T2N 4 N1, Calgary, Canada
| | - Samira Ghorbanigazar
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, T2N 4 N1, Calgary, Canada
| | - Erin L Stephenson
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, T2N 4 N1, Calgary, Canada
| | - Khalil S Rawji
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, T2N 4 N1, Calgary, Canada
| | - Claudia Silva
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, T2N 4 N1, Calgary, Canada
| | | | | | - V Wee Yong
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, T2N 4 N1, Calgary, Canada. .,University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T3A 4X9, Canada.
| |
Collapse
|
18
|
Liu Q, Lv HW, Yang S, He YQ, Ma QR, Liu J. NEP1-40 alleviates behavioral phenotypes and promote oligodendrocyte progenitor cell differentiation in the hippocampus of cuprizone-induced demyelination mouse model. Neurosci Lett 2020; 725:134872. [PMID: 32112820 DOI: 10.1016/j.neulet.2020.134872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies have demonstrated that the failure of oligodendrocyte precursor cells (OPCs) differentiation as a major cause of remyelination failure in demyelinating disease. The reasons for this failure are not completely understood. We hypothesized that the present of myelin debris in CNS play an important role in poor OPCs differentiation in the mouse model of demyelinating disease. METHODS Mice were fed by the food mixed with normal or 0.2 % cuprizone (CPZ) for 6 weeks. Then the learning and memory impairment were tested by Morris water maze test. The spontaneous alternation behavior and depression-like symptoms were assessed by tail suspension test and open filed test. The number of OPCs and oligodendrocytes were counted by immunofluorescence. After exposed to CPZ for 6 weeks, the mice were then receiving stereotactic injection of NEP1-40 into the CA3 of hippocampus. The behavioral, learning and memory changes were assessed by tail suspension test and open field test. The differentiation of OPCs were detected by immunofluorescence and western blot. RESULTS The mice in CPZ group are more likely to show signs of depression and they showed impairment of long-term learning and memory function. The differentiation of OPCs were impaired in CPZ group. We found that mice treated with NEP1-40 showed less depression-like symptom in TST and higher locomotor activity in the OFT than the mice treated with PBS. CONCLUSIONS Our study suggest that NEP1-40 can promote OPC differentiation and survival. Further study should focus on the effect of NEP1-40 on the differentiation and survival of OPCs in vitro.
Collapse
Affiliation(s)
- Qiang Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Hao-Wen Lv
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu Yang
- Department of Histology and Embryology, Capital Medical University, Beijing, China
| | - Yu-Qing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Quan-Rui Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
19
|
Gorter RP, Baron W. Matrix metalloproteinases shape the oligodendrocyte (niche) during development and upon demyelination. Neurosci Lett 2020; 729:134980. [PMID: 32315713 DOI: 10.1016/j.neulet.2020.134980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The oligodendrocyte lineage cell is crucial to proper brain function. During central nervous system development, oligodendrocyte progenitor cells (OPCs) migrate and proliferate to populate the entire brain and spinal cord, and subsequently differentiate into mature oligodendrocytes that wrap neuronal axons in an insulating myelin layer. When damage occurs to the myelin sheath, OPCs are activated and recruited to the demyelinated site, where they differentiate into oligodendrocytes that remyelinate the denuded axons. The process of OPC attraction and differentiation is influenced by a multitude of factors from the cell's niche. Matrix metalloproteinases (MMPs) are powerful and versatile enzymes that do not only degrade extracellular matrix proteins, but also cleave cell surface receptors, growth factors, signaling molecules, proteases and other precursor proteins, leading to their activation or degradation. MMPs are markedly upregulated during brain development and upon demyelinating injury, where their broad functions influence the behavior of neural progenitor cells (NPCs), OPCs and oligodendrocytes. In this review, we focus on the role of MMPs in (re)myelination. We will start out in the developing brain with describing the effects of MMPs on NPCs, OPCs and eventually oligodendrocytes. Then, we will outline their functions in oligodendrocyte process extension and developmental myelination. Finally, we will review their potential role in demyelination, describe their significance in remyelination and discuss the evidence for a role of MMPs in remyelination failure, focusing on multiple sclerosis. In conclusion, MMPs shape the oligodendrocyte (niche) both during development and upon demyelination, and thus are important players in directing the fate and behavior of oligodendrocyte lineage cells throughout their life cycle.
Collapse
Affiliation(s)
- Rianne P Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
20
|
Tran AP, Warren PM, Silver J. Regulation of autophagy by inhibitory CSPG interactions with receptor PTPσ and its impact on plasticity and regeneration after spinal cord injury. Exp Neurol 2020; 328:113276. [PMID: 32145250 DOI: 10.1016/j.expneurol.2020.113276] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs), extracellular matrix molecules that increase dramatically following a variety of CNS injuries or diseases, have long been known for their potent capacity to curtail cell migrations as well as axon regeneration and sprouting. The inhibition can be conferred through binding to their major cognate receptor, Protein Tyrosine Phosphatase Sigma (PTPσ). However, the precise mechanisms downstream of receptor binding that mediate growth inhibition have remained elusive. Recently, CSPGs/PTPσ interactions were found to regulate autophagic flux at the axon growth cone by dampening the autophagosome-lysosomal fusion step. Because of the intense interest in autophagic phenomena in the regulation of a wide variety of critical cellular functions, we summarize here what is currently known about dysregulation of autophagy following spinal cord injury, and highlight this critical new mechanism underlying axon regeneration failure. Furthermore, we review how CSPGs/PTPσ interactions influence plasticity through autophagic regulation and how PTPσ serves as a switch to execute either axon outgrowth or synaptogenesis. This has exciting implications for the role CSPGs play not only in axon regeneration failure after spinal cord injury, but also in neurodegenerative diseases where, again, inhibitory CSPGs are upregulated.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Seattle Children's Hospital Research Institute, Integrative Center for Brain Research, Seattle, Washington, USA
| | - Philippa Mary Warren
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Guy's Campus, London Bridge, London, UK
| | - Jerry Silver
- Case Western Reserve University, School of Medicine, Department of Neurosciences, Cleveland, OH, USA.
| |
Collapse
|
21
|
Marangon D, Boccazzi M, Lecca D, Fumagalli M. Regulation of Oligodendrocyte Functions: Targeting Lipid Metabolism and Extracellular Matrix for Myelin Repair. J Clin Med 2020; 9:E470. [PMID: 32046349 PMCID: PMC7073561 DOI: 10.3390/jcm9020470] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
: Myelin is an essential structure that protects axons, provides metabolic support to neurons and allows fast nerve transmission. Several neurological diseases, such as multiple sclerosis, are characterized by myelin damage, which is responsible of severe functional impairment. Myelin repair requires the timely recruitment of adult oligodendrocyte precursor cells (OPCs) at the lesion sites, their differentiation and maturation into myelinating oligodendrocytes. As a consequence, OPCs undergo profound changes in their morphology, functions, and interactions with other cells and extracellular environment, thus requiring the reorganization of both their lipid metabolism and their membrane composition, which is substantially different compared to other plasma membranes. Despite the growing knowledge in oligodendroglia biology and in the mechanisms involved in OPC-mediated regeneration, the identification of strategies to promote remyelination still remains a challenge. Here, we describe how altered lipid metabolism in oligodendrocytes influences the pathogenesis of demyelination, and we show that several FDA-approved drugs with a previously unknown remyelination potential do act on cholesterol and lipid biosynthetic pathways. Since the interplay between myelin lipids and axons is strictly coordinated by the extracellular matrix (ECM), we also discuss the role of different ECM components, and report the last findings on new ECM-modifiers able to foster endogenous remyelination.
Collapse
|
22
|
LIU H, HUANG W. The Association between Genes Polymorphisms of Heparan Sulfate Proteoglycan 2 ( HSPG2) and Chondroitin Sulfate Proteoglycan 2 ( CSPG2) and Intracranial Aneurysm Susceptibility: A Meta-Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:1945-1951. [PMID: 31970092 PMCID: PMC6961182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND We aimed to investigate whether the polymorphisms of gene heparan sulfate proteoglycan 2 (HSPG2) and chondroitin sulfate proteoglycan 2 (CSPG2) are associated with increased risk of intracranial aneurysms (IAs) susceptibility. METHODS The Cochrane Library, Medline, PubMed, and Embase databases were carefully searched for potential researches before Mar 30, 2018. The title, abstract, and full text were assessed to determine whether the paper was suitable for inclusion. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were presented to assess the associations between CSPG2 and HSPG2 polymorphisms and IAs susceptibility. RESULTS We enrolled 7 papers, 4 matched single nucleotide polymorphisms (SNPs) of CSPG2 (rs173686, rs251124) or HSPG2 (rs173686, rs251124), and a total of 8651 participations (3674 with IAs and 4977 for control). For the rs251124 polymorphism of CSPG2, the quantitative synthesis from 5 studies showed significant difference in the gene allele comparison of T vs. C (OR, 1.129; 95% CI, 1.029, 1.238; P=0.01). Similar results were found for rs3767137 of HSPG2 (A vs. G, OR, 0.842, 95% CI=0.759-0.935, P=0.001). However, for the rs173686 polymorphism of CSPG2 and rs7556412 polymorphism of HSPG2, no significant difference was found (P=0.259 and P=0.474, respectively). CONCLUSION The SNPs rs251124 of CSPG2 and rs3767137 of HSPG2 had statistically significant associations with IAs susceptibility. The minor allele T of rs251124 demonstrated a harmful effect but the minor allele A of rs3767137 demonstrated a protective role with regard to the risk of IAs. However, no such associations were found in the SNPs rs173686 of CSPG2 and rs7556412 of HSPG2.
Collapse
|
23
|
Galloway DA, Gowing E, Setayeshgar S, Kothary R. Inhibitory milieu at the multiple sclerosis lesion site and the challenges for remyelination. Glia 2019; 68:859-877. [PMID: 31441132 DOI: 10.1002/glia.23711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/26/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
Regeneration of myelin, following injury, can occur within the central nervous system to reinstate proper axonal conductance and provide trophic support. Failure to do so renders the axons vulnerable, leading to eventual degeneration, and neuronal loss. Thus, it is essential to understand the mechanisms by which remyelination or failure to remyelinate occur, particularly in the context of demyelinating and neurodegenerative disorders. In multiple sclerosis, oligodendrocyte progenitor cells (OPCs) migrate to lesion sites to repair myelin. However, during disease progression, the ability of OPCs to participate in remyelination diminishes coincident with worsening of the symptoms. Remyelination is affected by a broad range of cues from intrinsic programming of OPCs and extrinsic local factors to the immune system and other systemic elements including diet and exercise. Here we review the literature on these diverse inhibitory factors and the challenges they pose to remyelination. Results spanning several disciplines from fundamental preclinical studies to knowledge gained in the clinic will be discussed.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Elizabeth Gowing
- Neurosciences Department, Faculty of Medicine, Centre de recherche du CHUM, Université de Montreal, Montreal, Quebec, Canada
| | - Solmaz Setayeshgar
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, Department of Biochemistry, Microbiology and Immunology, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Tanga N, Kuboyama K, Kishimoto A, Kiyonari H, Shiraishi A, Suzuki R, Watanabe T, Fujikawa A, Noda M. The PTN-PTPRZ signal activates the AFAP1L2-dependent PI3K-AKT pathway for oligodendrocyte differentiation: Targeted inactivation of PTPRZ activity in mice. Glia 2019; 67:967-984. [PMID: 30667096 DOI: 10.1002/glia.23583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Protein tyrosine phosphatase receptor type Z (PTPRZ) maintains oligodendrocyte precursor cells (OPCs) in an undifferentiated state. The inhibition of PTPase by its ligand pleiotrophin (PTN) promotes OPC differentiation; however, the substrate molecules of PTPRZ involved in the differentiation have not yet been elucidated in detail. We herein demonstrated that the tyrosine phosphorylation of AFAP1L2, paxillin, ERBB4, GIT1, p190RhoGAP, and NYAP2 was enhanced in OPC-like OL1 cells by a treatment with PTN. AFAP1L2, an adaptor protein involved in the PI3K-AKT pathway, exhibited the strongest response to PTN. PTPRZ dephosphorylated AFAP1L2 at tyrosine residues in vitro and in HEK293T cells. In OL1 cells, the knockdown of AFAP1L2 or application of a PI3K inhibitor suppressed cell differentiation as well as the PTN-induced phosphorylation of AKT and mTOR. We generated a knock-in mouse harboring a catalytically inactive Cys to Ser (CS) mutation in the PTPase domain. The phosphorylation levels of AFAP1L2, AKT, and mTOR were higher, and the expression of oligodendrocyte markers, including myelin basic protein (MBP) and myelin regulatory factor (MYRF), was stronger in CS knock-in brains than in wild-type brains on postnatal day 10; however, these differences mostly disappeared in the adult stage. Adult CS knock-in mice exhibited earlier remyelination after cuprizone-induced demyelination through the accelerated differentiation of OPCs. These phenotypes in CS knock-in mice were similar to those in Ptprz-deficient mice. Therefore, we conclude that the PTN-PTPRZ signal stimulates OPC differentiation partly by enhancing the tyrosine phosphorylation of AFAP1L2 in order to activate the PI3K-AKT pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carrier Proteins/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cuprizone/toxicity
- Cytokines/metabolism
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/diagnostic imaging
- Disease Models, Animal
- HEK293 Cells
- Humans
- Immunoprecipitation
- In Situ Nick-End Labeling
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microfilament Proteins/metabolism
- Myelin Proteins/metabolism
- Oligodendroglia/physiology
- Proto-Oncogene Proteins c-akt
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
- Signal Detection, Psychological/drug effects
- Signal Detection, Psychological/physiology
- Signal Transduction/physiology
- Transfection
- X-Ray Microtomography
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Naomi Tanga
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Kazuya Kuboyama
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
| | - Ayako Kishimoto
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Aki Shiraishi
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ryoko Suzuki
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Research Center for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
25
|
Xia Z, Ouyang D, Li Q, Li M, Zou Q, Li L, Yi W, Zhou E. The Expression, Functions, Interactions and Prognostic Values of PTPRZ1: A Review and Bioinformatic Analysis. J Cancer 2019; 10:1663-1674. [PMID: 31205522 PMCID: PMC6548002 DOI: 10.7150/jca.28231] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
Available studies demonstrate that receptor-type tyrosine-protein phosphatase zeta (PTPRZ1) is expressed in different tumor tissues, and functions in cell proliferation, cell adhesion and migration, epithelial-to-mesenchymal transition, cancer stem cells and treatment resistance by interacting with or binding to several molecules. These included pleiotrophin (PTN), midkine, interleukin-34, β-catenin, VEGF, NF-κB, HIF-2, PSD-95, MAGI-3, contactin and ErbB4. PTPRZ1 was involved in survival signaling and could predict the prognosis of several tumors. This review discusses: the current knowledge about PTPRZ1, its expression, co-receptors, ligands, functions, signaling pathway, prognostic values and therapeutic agents that target PTPRZ1.
Collapse
Affiliation(s)
- Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dengjie Ouyang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianying Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Moyun Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lun Li
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Enxiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury. Neural Plast 2018; 2018:2952386. [PMID: 29849554 PMCID: PMC5932463 DOI: 10.1155/2018/2952386] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 11/17/2022] Open
Abstract
The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury.
Collapse
|