1
|
Ly K, Italiano ML, Shivdasani MN, Tsai D, Zhang JY, Jiang C, Lovell NH, Dokos S, Guo T. Virtual human retina: Simulating neural signalling, degeneration, and responses to electrical stimulation. Brain Stimul 2025; 18:144-163. [PMID: 39827982 DOI: 10.1016/j.brs.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Current brain-based visual prostheses pose significant challenges impeding adoption such as the necessarily complex surgeries and occurrence of more substantial side effects due to the sensitivity of the brain. This has led to much effort toward vision restoration being focused on the more approachable part of the brain - the retina. Here we introduce a novel, parameterised simulation platform that enables study of human retinal degeneration and optimization of stimulation strategies. The platform bears immense potential for patient-specific tailoring and serves to enhance artificial vision solutions for individuals with visual impairments. MATERIAL AND METHOD Our virtual retina is developed using the software package, NEURON. This virtual retina platform supports large-scale simulations of over 10,000 neurons whilst upholding strong biological plausibility with multiple important visual pathways and detailed network properties. The comprehensive three-dimensional model includes photoreceptors, horizontal cells, bipolar cells, amacrine cells, and midget and parasol retinal ganglion cells, with comprehensive network connectivity across various eccentricities (1 mm-5 mm from the fovea) in the human retina. The model is constructed using electrophysiology, immunohistology, and optical coherence tomography imaging data from healthy and degenerate human retinas. We validated our model by replicating numerous experimental observations from human and primate retina, with a particular focus on retinal degeneration. RESULT We simulated interactions between diseased retinas and state-of-the-art retinal implants, shedding light on the limitations of commercial retinal prostheses. Our results suggested that appropriate stimulation settings with intraretinal prototype devices could leverage network-mediated activation to achieve activation mosaics more alike that of the retina's response to natural light, promoting the prospect of more naturalistic vision. Our study additionally highlights the importance of controlling inhibitory circuits in the retinal network to induce functionally relevant retinal activity. CONCLUSION This study demonstrates the potential of this software package and highlights its utility as a valuable tool for engineers, scientists, and clinicians in the design and optimization of retinal stimulation devices for both research and educational applications.
Collapse
Affiliation(s)
- Keith Ly
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia; Department of Ophthalmology, Stanford University, Stanford, CA, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA.
| | - Michael L Italiano
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia; Tyree Foundation Institute of Health Engineering (IHealthE), UNSW, Sydney, NSW, 2052, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia; Tyree Foundation Institute of Health Engineering (IHealthE), UNSW, Sydney, NSW, 2052, Australia
| | - David Tsai
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia; School of Electrical Engineering & Telecommunications, UNSW, Sydney, NSW, 2052, Australia
| | - Jia-Yi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, China; Department of Ophthalmology, Eye & ENT Hospital, Fudan University, China.
| | - Chunhui Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, China; Department of Ophthalmology, Eye & ENT Hospital, Fudan University, China
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia; Tyree Foundation Institute of Health Engineering (IHealthE), UNSW, Sydney, NSW, 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia; Tyree Foundation Institute of Health Engineering (IHealthE), UNSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Wang R, Ly K, Li J, Italiano ML, Shivdasani MN, Tsai D, Zhang JY, Lovell NH, Dokos S, Guo T. Probing the Impact of Inner Retinal Network Changes on Subretinal Electrical Stimulation Responses. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039004 DOI: 10.1109/embc53108.2024.10782307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
We investigated the influence of degenerated retinal networks on the efficacy of subretinal prosthetic devices in eliciting retinal neural responses. We present a computational model that incorporates intricate descriptions of retinal connectivity spanning neural layers, conductance-based cellular and synaptic parameters, and analytical formulas governing the electrical field. Our results suggest the possibility of selective modulation of functionally-distinct retinal pathways through subretinal stimulation, even in the absence of all photoreceptors. However, we observed a decreasing level of selectivity as inter-neuron synapse and gap junctions were progressively reduced. In addition, our model predicts a more pronounced influence of the integrity of the inner retinal network on electrically induced OFF compared to ON retinal ganglion cell activity. This phenomenon is ascribed to the unique inner retinal network properties of ON versus OFF pathways and changes in these properties upon photoreceptor loss. By precisely controlling the parametric values defining synaptic and gap junction connectivity in the inner retina, we can simulate the impact of different degrees of retinal degeneration on the retina's response to electrical stimulation. This model can assess the retinal network's response to remodeling events across different retinal degeneration stages, offering insights to guide the future development of retinal prosthetic devices and stimulation strategies. Such advancements hold promise for benefiting patients at various stages of retinal disease progression.
Collapse
|
3
|
Vėbraitė I, Bar-Haim C, David-Pur M, Hanein Y. Bi-directional electrical recording and stimulation of the intact retina with a screen-printed soft probe: a feasibility study. Front Neurosci 2024; 17:1288069. [PMID: 38264499 PMCID: PMC10804455 DOI: 10.3389/fnins.2023.1288069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Electrophysiological investigations of intact neural circuits are challenged by the gentle and complex nature of neural tissues. Bi-directional electrophysiological interfacing with the retina, in its intact form, is particularly demanding and currently there is no feasible approach to achieve such investigations. Here we present a feasibility study of a novel soft multi-electrode array suitable for bi-directional electrophysiological study of the intact retina. Methods Screen-printed soft electrode arrays were developed and tested. The soft probes were designed to accommodate the curvature of the retina in the eye and offer an opportunity to study the retina in its intact form. Results For the first time, we show both electrical recording and stimulation capabilities from the intact retina. In particular, we demonstrate the ability to characterize retina responses to electrical stimulation and reveal stable, direct, and indirect responses compared with ex-vivo conditions. Discussion These results demonstrate the unique performances of the new probe while also suggesting that intact retinas retain better stability and robustness than ex-vivo retinas making them more suitable for characterizing retina responses to electrical stimulation.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chen Bar-Haim
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moshe David-Pur
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Ahn J, Yoo Y, Goo YS. Multiple consecutive-biphasic pulse stimulation improves spatially localized firing of retinal ganglion cells in the degenerate retina. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:541-553. [PMID: 37884286 PMCID: PMC10613570 DOI: 10.4196/kjpp.2023.27.6.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 10/28/2023]
Abstract
Retinal prostheses have shown some clinical success in restoring vision in patients with retinitis pigmentosa. However, the post-implantation visual acuity does not exceed that of legal blindness. The reason for the poor visual acuity might be that (1) degenerate retinal ganglion cells (RGCs) are less responsive to electrical stimulation than normal RGCs, and (2) electrically-evoked RGC spikes show a more widespread not focal response. The single-biphasic pulse electrical stimulation, commonly used in artificial vision, has limitations in addressing these issues. In this study, we propose the benefit of multiple consecutive-biphasic pulse stimulation. We used C57BL/6J mice and C3H/HeJ (rd1) mice for the normal retina and retinal degeneration model. An 8 × 8 multi-electrode array was used to record electrically-evoked RGC spikes. We compared RGC responses when increasing the amplitude of a single biphasic pulse versus increasing the number of consecutive biphasic pulses at the same stimulus charge. Increasing the amplitude of a single biphasic pulse induced more RGC spike firing while the spatial resolution of RGC populations decreased. For multiple consecutive-biphasic pulse stimulation, RGC firing increased as the number of pulses increased, and the spatial resolution of RGC populations was well preserved even up to 5 pulses. Multiple consecutive-biphasic pulse stimulation using two or three pulses in degenerate retinas induced as much RGC spike firing as in normal retinas. These findings suggest that the newly proposed multiple consecutive-biphasic pulse stimulation can improve the visual acuity in prosthesis-implanted patients.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Yongseok Yoo
- School of Computer Science and Engineering, Soongsil University, Seoul 06978, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
5
|
Ahn J, Jeong Y, Cha S, Lee JY, Yoo Y, Goo YS. High amplitude pulses on the same charge condition efficiently elicit bipolar cell-mediated retinal ganglion cell responses in the degenerate retina. Biomed Eng Lett 2023; 13:129-140. [PMID: 37124107 PMCID: PMC10130300 DOI: 10.1007/s13534-023-00260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
Retinal pigmentosa (RP) patients lose vision due to the loss of photoreceptors. Retinal prostheses bypass the dead photoreceptors by electrically stimulating surviving retinal neurons, such as bipolar cells or retinal ganglion cells (RGCs). In previous studies, stimulus charge has been mainly optimized to maximize the RGC response to electrical stimulation. This study aimed to investigate the effect of amplitude and duration even under the same charge condition on eliciting RGC spikes in the wild-type and degenerate retinas. Wild-type (WT) Sprague-Dawley rats were used as the normal retinal model, and Pde6b knockout rats were used as a retinal degeneration (RD) model. Electrically-evoked RGC spikes were recorded from isolated rat retinas using an 8 × 8 multielectrode array. The same charge was maintained (10 or 20 nC), and electrical stimulation was applied to WT and RD retinas, adjusting the amplitude and duration of the 1st phase of biphasic pulses. In the pulse modulation of the 1st phase, high amplitude (short duration) pulses induced more RGC spikes than low amplitude (long duration) pulses. Both WT and RD retinas showed a significant reduction in the number of RGC spikes upon stimulation with lower amplitude (longer duration) pulses. In clinical trials where stimulus charges are delivered to the degenerate retina of blind patients, high amplitude (short duration) pulses would help elicit more RGC spikes.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Yurim Jeong
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yongseok Yoo
- School of Computer Science and Engineering, Soongsil University, Seoul, South Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| |
Collapse
|
6
|
Carleton M, Oesch NW. Differences in the spatial fidelity of evoked and spontaneous signals in the degenerating retina. Front Cell Neurosci 2022; 16:1040090. [PMID: 36419935 PMCID: PMC9676928 DOI: 10.3389/fncel.2022.1040090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/20/2022] [Indexed: 07/01/2024] Open
Abstract
Vision restoration strategies aim to reestablish vision by replacing the function of lost photoreceptors with optoelectronic hardware or through gene therapy. One complication to these approaches is that retinal circuitry undergoes remodeling after photoreceptor loss. Circuit remodeling following perturbation is ubiquitous in the nervous system and understanding these changes is crucial for treating neurodegeneration. Spontaneous oscillations that arise during retinal degeneration have been well-studied, however, other changes in the spatiotemporal processing of evoked and spontaneous activity have received less attention. Here we use subretinal electrical stimulation to measure the spatial and temporal spread of both spontaneous and evoked activity during retinal degeneration. We found that electrical stimulation synchronizes spontaneous oscillatory activity, over space and through time, thus leading to increased correlations in ganglion cell activity. Intriguingly, we found that spatial selectivity was maintained in rd10 retina for evoked responses, with spatial receptive fields comparable to wt retina. These findings indicate that different biophysical mechanisms are involved in mediating feed forward excitation, and the lateral spread of spontaneous activity in the rd10 retina, lending support toward the possibility of high-resolution vision restoration.
Collapse
Affiliation(s)
- Maya Carleton
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
| | - Nicholas W. Oesch
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
- Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States
- The Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Caravaca-Rodriguez D, Gaytan SP, Suaning GJ, Barriga-Rivera A. Implications of Neural Plasticity in Retinal Prosthesis. Invest Ophthalmol Vis Sci 2022; 63:11. [PMID: 36251317 DOI: 10.1167/iovs.63.11.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Retinal degenerative diseases such as retinitis pigmentosa cause a progressive loss of photoreceptors that eventually prevents the affected person from perceiving visual sensations. The absence of a visual input produces a neural rewiring cascade that propagates along the visual system. This remodeling occurs first within the retina. Then, subsequent neuroplastic changes take place at higher visual centers in the brain, produced by either the abnormal neural encoding of the visual inputs delivered by the diseased retina or as the result of an adaptation to visual deprivation. While retinal implants can activate the surviving retinal neurons by delivering electric current, the unselective activation patterns of the different neural populations that exist in the retinal layers differ substantially from those in physiologic vision. Therefore, artificially induced neural patterns are being delivered to a brain that has already undergone important neural reconnections. Whether or not the modulation of this neural rewiring can improve the performance for retinal prostheses remains a critical question whose answer may be the enabler of improved functional artificial vision and more personalized neurorehabilitation strategies.
Collapse
Affiliation(s)
- Daniel Caravaca-Rodriguez
- Department of Applied Physics III, Technical School of Engineering, Universidad de Sevilla, Sevilla, Spain
| | - Susana P Gaytan
- Department of Physiology, Universidad de Sevilla, Sevilla, Spain
| | - Gregg J Suaning
- School of Biomedical Engineering, University of Sydney, Sydney, Australia
| | - Alejandro Barriga-Rivera
- Department of Applied Physics III, Technical School of Engineering, Universidad de Sevilla, Sevilla, Spain.,School of Biomedical Engineering, University of Sydney, Sydney, Australia
| |
Collapse
|
8
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
9
|
Gu L, Kwong JM, Caprioli J, Piri N. DNA and RNA oxidative damage in the retina is associated with ganglion cell mitochondria. Sci Rep 2022; 12:8705. [PMID: 35610341 PMCID: PMC9130135 DOI: 10.1038/s41598-022-12770-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
This study examines retinas from a rat glaucoma model for oxidized nucleosides 8OHdG and 8OHG, biomarkers for oxidative damage of DNA and RNA, respectively. Immunohistochemical data indicate a predominant localization of 8OHdG/8OHG in retinal ganglion cells (RGCs). The levels for these oxidized DNA/RNA products were 3.2 and 2.8 fold higher at 1 and 2 weeks after intraocular pressure elevation compared to control retinas, respectively. 8OHdG/8OHG were almost exclusively associated with mitochondrial DNA/RNA: ~ 65% of 8OHdG/8OHG were associated with RNA isolated from mitochondrial fraction and ~ 35% with DNA. Furthermore, we analyzed retinas of the rd10 mouse, a model for retinitis pigmentosa, with severe degeneration of photoreceptors to determine whether high levels of 8OHdG/8OHG staining intensity in RGCs of control animals is related to the high level of mitochondrial oxidative phosphorylation necessary to support light-evoked RGC activity. No significant difference in 8OHdG/8OHG staining intensity between control and rd10 mouse retinas was observed. The results of this study suggest that high levels of 8OHdG/8OHG in RGCs of wild-type animals may lead to cell damage and progressive loss of RGCs observed during normal aging, whereas ocular hypertension-induced increase in the level of oxidatively damaged mitochondrial DNA/RNA could contribute to glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Lei Gu
- Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Jacky M Kwong
- Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Joseph Caprioli
- Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Natik Piri
- Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA. .,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Deepak CS, Krishnan A, Narayan KS. Light Controlled Signaling Initiated by Subretinal Semiconducting-Polymer Layer in Developing-Blind-Retina Mimics the Response of the Neonatal Retina. J Neural Eng 2022; 19. [PMID: 35561667 DOI: 10.1088/1741-2552/ac6f80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Optoelectronic semiconducting polymer material interfaced with a blind-developing chick-retina (E13-E18) in subretinal configuration reveals a response to full-field flash stimulus that resembles an elicited response from natural photoreceptors in a mature chick retina. The response manifests as evoked-firing of action potentials was recorded using a multi-electrode array in contact with the retinal ganglion layer. Characteristics of increasing features in the signal unfold during different retina-development stages and highlight the emerging network mediated pathways typically present in the vision process of the artificial photoreceptor interfaced retina.
Collapse
Affiliation(s)
- C S Deepak
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Molecular Electronics Lab, Bangalore, Karnataka, 560064, INDIA
| | - Abhijith Krishnan
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Molecular Electronics Lab, Bangalore, Karnataka, 560064, INDIA
| | - K S Narayan
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), JNCASR, Bangalore, Karnataka, 560064, INDIA
| |
Collapse
|
11
|
Ahn J, Cha S, Choi KE, Kim SW, Yoo Y, Goo YS. Correlated Activity in the Degenerate Retina Inhibits Focal Response to Electrical Stimulation. Front Cell Neurosci 2022; 16:889663. [PMID: 35602554 PMCID: PMC9114441 DOI: 10.3389/fncel.2022.889663] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Retinal prostheses have shown some clinical success in patients with retinitis pigmentosa and age-related macular degeneration. However, even after the implantation of a retinal prosthesis, the patient’s visual acuity is at best less than 20/420. Reduced visual acuity may be explained by a decrease in the signal-to-noise ratio due to the spontaneous hyperactivity of retinal ganglion cells (RGCs) found in degenerate retinas. Unfortunately, abnormal retinal rewiring, commonly observed in degenerate retinas, has rarely been considered for the development of retinal prostheses. The purpose of this study was to investigate the aberrant retinal network response to electrical stimulation in terms of the spatial distribution of the electrically evoked RGC population. An 8 × 8 multielectrode array was used to measure the spiking activity of the RGC population. RGC spikes were recorded in wild-type [C57BL/6J; P56 (postnatal day 56)], rd1 (P56), rd10 (P14 and P56) mice, and macaque [wild-type and drug-induced retinal degeneration (RD) model] retinas. First, we performed a spike correlation analysis between RGCs to determine RGC connectivity. No correlation was observed between RGCs in the control group, including wild-type mice, rd10 P14 mice, and wild-type macaque retinas. In contrast, for the RD group, including rd1, rd10 P56, and RD macaque retinas, RGCs, up to approximately 400–600 μm apart, were significantly correlated. Moreover, to investigate the RGC population response to electrical stimulation, the number of electrically evoked RGC spikes was measured as a function of the distance between the stimulation and recording electrodes. With an increase in the interelectrode distance, the number of electrically evoked RGC spikes decreased exponentially in the control group. In contrast, electrically evoked RGC spikes were observed throughout the retina in the RD group, regardless of the inter-electrode distance. Taken together, in the degenerate retina, a more strongly coupled retinal network resulted in the widespread distribution of electrically evoked RGC spikes. This finding could explain the low-resolution vision in prosthesis-implanted patients.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Kwang-Eon Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
- *Correspondence: Seong-Woo Kim,
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon, South Korea
- Yongseok Yoo,
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
- Yong Sook Goo,
| |
Collapse
|
12
|
Vėbraitė I, Hanein Y. In the Eye of the Storm: Bi-Directional Electrophysiological Investigation of the Intact Retina. Front Neurosci 2022; 16:829323. [PMID: 35281487 PMCID: PMC8914158 DOI: 10.3389/fnins.2022.829323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Electrophysiological investigations reveal a great deal about the organization and function of the retina. In particular, investigations of explanted retinas with multi electrode arrays are widely used for basic and applied research purposes, offering high-resolution and detailed information about connectivity and structure. Low-resolution, non-invasive approaches are also widely used. Owing to its delicate nature, high-resolution electrophysiological investigations of the intact retina until now are sparse. In this Mini Review, we discuss progress, challenges and opportunities for electrode arrays suitable for high-resolution, multisite electrophysiological interfacing with the intact retina. In particular, existing gaps in achieving bi-directional electrophysiological investigation of the intact retina are discussed.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Yael Hanein,
| |
Collapse
|
13
|
Rincón Montes V, Gehlen J, Ingebrandt S, Mokwa W, Walter P, Müller F, Offenhäusser A. Development and in vitro validation of flexible intraretinal probes. Sci Rep 2020; 10:19836. [PMID: 33199768 PMCID: PMC7669900 DOI: 10.1038/s41598-020-76582-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/28/2020] [Indexed: 12/01/2022] Open
Abstract
The efforts to improve the treatment efficacy in blind patients with retinal degenerative diseases would greatly benefit from retinal activity feedback, which is lacking in current retinal implants. While the door for a bidirectional communication device that stimulates and records intraretinally has been opened by the recent use of silicon-based penetrating probes, the biological impact induced by the insertion of such rigid devices is still unknown. Here, we developed for the first time, flexible intraretinal probes and validated in vitro the acute biological insertion impact in mouse retinae compared to standard silicon-based probes. Our results show that probes based on flexible materials, such as polyimide and parylene-C, in combination with a narrow shank design 50 µm wide and 7 µm thick, and the use of insertion speeds as high as 187.5 µm/s will successfully penetrate the retina, reduce the footprint of the insertion to roughly 2 times the cross-section of the probe, and induce low dead cell counts, while keeping the vitality of the tissue and recording the neural activity at different depths.
Collapse
Affiliation(s)
- V Rincón Montes
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - J Gehlen
- Molecular and Cellular Physiology, Institute of Biological Information Processing-1, Forschungszentrum Jülich, Jülich, Germany
| | - S Ingebrandt
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - W Mokwa
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - P Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - F Müller
- Molecular and Cellular Physiology, Institute of Biological Information Processing-1, Forschungszentrum Jülich, Jülich, Germany
| | - A Offenhäusser
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany.
- RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
14
|
Gehlen J, Esser S, Schaffrath K, Johnen S, Walter P, Müller F. Blockade of Retinal Oscillations by Benzodiazepines Improves Efficiency of Electrical Stimulation in the Mouse Model of RP, rd10. Invest Ophthalmol Vis Sci 2020; 61:37. [PMID: 33252632 PMCID: PMC7705397 DOI: 10.1167/iovs.61.13.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Purpose In RP, photoreceptors degenerate. Retinal prostheses are considered a suitable strategy to restore vision. In animal models of RP, a pathologic rhythmic activity seems to compromise the efficiency of retinal ganglion cell stimulation by an electrical prosthesis. We, therefore, strove to eliminate this pathologic activity. Methods Electrophysiologic recordings of local field potentials and spike activity of retinal ganglion cells were obtained in vitro from retinae of wild-type and rd10 mice using multielectrode arrays. Retinae were stimulated electrically. Results The efficiency of electrical stimulation was lower in rd10 retina than in wild-type retina and this was highly correlated with the presence of oscillations in retinal activity. Glycine and GABA, as well as the benzodiazepines diazepam, lorazepam, and flunitrazepam, abolished retinal oscillations and, most important, increased the efficiency of electrical stimulation to values similar to those in wild-type retina. Conclusions Treatment of patients with these benzodiazepines may offer a way to improve the performance of retinal implants in cases with poor implant proficiency. This study may open the way to a therapy that supports electrical stimulation by prostheses with pharmacologic treatment.
Collapse
Affiliation(s)
- Jana Gehlen
- Institute of Biological Information Processing, Molecular and Cellular Physiology, IBI-1, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stefan Esser
- Institute of Biological Information Processing, Molecular and Cellular Physiology, IBI-1, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kim Schaffrath
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Sandra Johnen
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Frank Müller
- Institute of Biological Information Processing, Molecular and Cellular Physiology, IBI-1, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
15
|
Meer AMVD, Berger T, Müller F, Foldenauer AC, Johnen S, Walter P. Establishment and Characterization of a Unilateral UV-Induced Photoreceptor Degeneration Model in the C57Bl/6J Mouse. Transl Vis Sci Technol 2020; 9:21. [PMID: 32879777 PMCID: PMC7443125 DOI: 10.1167/tvst.9.9.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 01/10/2023] Open
Abstract
Purpose To investigate whether UV irradiation of the mouse eye can induce photoreceptor degeneration, producing a phenotype reminiscent of the rd10 mouse, left eyes of female C57Bl/6J mice were irradiated with a UV LED array (370 nm). A lens was placed between the cornea and LED, allowing illumination of about one-third of the retina. The short-term and long-term effects on the retina were evaluated. Methods First, a dose escalation study, in which corneal dosages between 2.8 and 9.3 J/cm2 were tested, was performed. A dosage of 7.5 J/cm2 was chosen for the following characterization study. Before and after irradiation slit-lamp examinations, full-field electroretinography, spectral domain optical coherence tomography and macroscopy were performed. After different time spans (5 days to 12 weeks) the animals were sacrificed and the retinae used for immunohistochemistry or multielectrode array testing. Right eyes served as untreated controls. Results In treated eyes, spectral domain optical coherence tomography revealed a decrease in retinal thickness to 53%. Full-field electroretinography responses decreased significantly from day 5 on in treated eyes. Multielectrode array recordings revealed oscillatory potentials with a mean frequency of 5.2 ± 0.6 Hz in the illuminated area. Structural changes in the retina were observed in immunohistochemical staining. Conclusions UV irradiation proved to be efficient in inducing photoreceptor degeneration in the mouse retina, while leaving the other retinal layers largely intact. The irradiated area of treated eyes can be identified easily in spectral domain optical coherence tomography and in explanted retinae. Translational Relevance This study provides information on anatomic and functional changes in UV-treated retina, enabling the use of this model for retinitis pigmentosa-like diseases in animals suited for experimental retinal surgery.
Collapse
Affiliation(s)
| | - Tanja Berger
- Department of Medical Statistics, RWTH Aachen University, Aachen, Germany
| | - Frank Müller
- Institute of Complex Systems, Cellular Biophysics, ICS-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ann Christina Foldenauer
- Department of Medical Statistics, RWTH Aachen University, Aachen, Germany.,Department of Clinical Research Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) Branch for Translational Medicine and Pharmacology (TMP), Frankfurt, Germany
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
16
|
Kosta P, Loizos K, Lazzi G. Stimulus waveform design for decreasing charge and increasing stimulation selectivity in retinal prostheses. Healthc Technol Lett 2020; 7:66-71. [PMID: 32754340 PMCID: PMC7353818 DOI: 10.1049/htl.2019.0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 02/03/2023] Open
Abstract
Retinal degenerative diseases, such as retinitis pigmentosa, begin with damage to the photoreceptor layer of the retina. In the absence of presynaptic input from photoreceptors, networks of electrically coupled AII amacrine and cone bipolar cells have been observed to exhibit oscillatory behaviour and result in spontaneous firing of ganglion cells. This ganglion cell activity could interfere with external stimuli provided by retinal prosthetic devices and potentially degrade their performance. In this work, the authors computationally investigate stimulus waveform designs, which can improve the performance of retinal prostheses by suppressing undesired spontaneous firing of ganglion cells and generating precise temporal spiking patterns. They utilise a multi-scale computational model for electrical stimulation of degenerated retina based on the admittance method and NEURON simulation environments. They present a class of asymmetric biphasic pulses that can generate precise ganglion cell firing patterns with up to 55% lower current requirements compared to traditional symmetric biphasic pulses. This lower current results in activation of only proximal ganglion cells, provides more focused stimulation and lowers the risk of tissue damage.
Collapse
Affiliation(s)
- Pragya Kosta
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle Loizos
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Gianluca Lazzi
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
17
|
Im M, Kim SW. Neurophysiological and medical considerations for better-performing microelectronic retinal prostheses. J Neural Eng 2020; 17:033001. [PMID: 32329755 DOI: 10.1088/1741-2552/ab8ca9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maesoon Im
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | | |
Collapse
|
18
|
Rincón Montes V, Gehlen J, Lück S, Mokwa W, Müller F, Walter P, Offenhäusser A. Toward a Bidirectional Communication Between Retinal Cells and a Prosthetic Device - A Proof of Concept. Front Neurosci 2019; 13:367. [PMID: 31114470 PMCID: PMC6502975 DOI: 10.3389/fnins.2019.00367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/01/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Significant progress toward the recovery of useful vision in blind patients with severe degenerative retinal diseases caused by photoreceptor death has been achieved with the development of visual prostheses that stimulate the retina electrically. However, currently used prostheses do not provide feedback about the retinal activity before and upon stimulation and do not adjust to changes during the remodeling processes in the retina. Both features are desirable to improve the efficiency of the electrical stimulation (ES) therapy offered by these devices. Accordingly, devices that not only enable ES but at the same time provide information about the retinal activity are beneficial. Given the above, a bidirectional communication strategy, in which inner retinal cells are stimulated and the output neurons of the retina, the ganglion cells, are recorded using penetrating microelectrode arrays (MEAs) is proposed. Methods: Custom-made penetrating MEAs with four silicon-based shanks, each one with three or four iridium oxide electrodes specifically designed to match retinal dimensions were used to record the activity of light-adapted wildtype mice retinas and degenerated retinas from rd10 mice in vitro. In addition, responses to high potassium concentration and to light stimulation in wildtype retinas were examined. Furthermore, voltage-controlled ES was performed. Results: The spiking activity of retinal ganglion cells (RGCs) was recorded at different depths of penetration inside the retina. Physiological responses during an increase of the extracellular potassium concentration and phasic and tonic responses during light stimulation were captured. Moreover, pathologic rhythmic activity was recorded from degenerated retinas. Finally, ES of the inner retina and simultaneous recording of the activity of RGCs was accomplished. Conclusion: The access to different layers of the retina with penetrating electrodes while recording at the same time the spiking activity of RGCs broadens the use and the field of action of multi-shank and multi-site penetrating MEAs for retinal applications. It enables a bidirectional strategy to stimulate inner retinal cells electrically and to record from the spiking RGCs simultaneously (BiMEA). This opens the possibility of a feedback loop system to acknowledge the success of ES carried out by retinal prostheses.
Collapse
Affiliation(s)
- Viviana Rincón Montes
- Bioelectronics, Institute of Complex Systems-8, Forschungszentrum Jülich, Jülich, Germany
| | - Jana Gehlen
- Cellular Biophysics, Institute of Complex Systems-4, Forschungszentrum Jülich, Jülich, Germany
| | - Stefan Lück
- Department of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - Wilfried Mokwa
- Department of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - Frank Müller
- Cellular Biophysics, Institute of Complex Systems-4, Forschungszentrum Jülich, Jülich, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Andreas Offenhäusser
- Bioelectronics, Institute of Complex Systems-8, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
19
|
Rathbun DL, Ghorbani N, Shabani H, Zrenner E, Hosseinzadeh Z. Spike-triggered average electrical stimuli as input filters for bionic vision—a perspective. J Neural Eng 2018; 15:063002. [DOI: 10.1088/1741-2552/aae493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|