1
|
Schrezenmeier E, Dörner T, Halleck F, Budde K. Cellular Immunobiology and Molecular Mechanisms in Alloimmunity-Pathways of Immunosuppression. Transplantation 2024; 108:148-160. [PMID: 37309030 DOI: 10.1097/tp.0000000000004646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
3
|
Ge H, Mao Y, Chen W, Li Z, Yu Y, Luo S, Wang D, Bai Y, Fan W, Wang Y, Zhen Q, Sun L. Stress aggravates imiquimod-induced psoriasiform inflammation by promoting M1 macrophage polarization. Int Immunopharmacol 2023; 124:110899. [PMID: 37688915 DOI: 10.1016/j.intimp.2023.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Psychological stress has long been considered to cause the aggravation and recurrence of psoriasis, but the underlying mechanism remains largely unknown. Here, we used a mouse model of restraint-induced stress and imiquimod (IMQ)-induced psoriasiform inflammation to investigate the crosstalk between stress and the skin immune system and their functions in the pathogenesis of psoriasis. We found that stress aggravated skin inflammation and elevated serum corticosterone (CORT) levels in mice. Stress also increased the number of macrophages and glucocorticoid receptor (GR) expression in IMQ-treated mouse skin. GR agonist CORT upregulated the phosphorylation of STAT1 to promote M1 macrophage polarization in vitro. Additionally, GR deletion in macrophages and pharmacologic inhibition of GR improved skin inflammation and reduced M1 macrophage polarization under stress. Taken together, these results indicate that stress aggravates psoriasiform inflammation by promoting CORT/GR signaling-induced M1 macrophage polarization, suggesting that blocking the GR signaling has great potential as an adjuvant treatment for psoriasis patients with chronic stress.
Collapse
Affiliation(s)
- Huiyao Ge
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yiwen Mao
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Zhuo Li
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yanxia Yu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Sihan Luo
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Daiyue Wang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yuanming Bai
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Wencheng Fan
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yirui Wang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Qi Zhen
- North China University of Science and Technology Affiliated Hospital, Tangshan, China; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan, China; School of Public Health, North China University of Science and Technology, Tangshan, China.
| | - Liangdan Sun
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Health Science Center, North China University of Science and Technology, Tangshan, China; North China University of Science and Technology Affiliated Hospital, Tangshan, China; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
4
|
Bojti I, Wang Q, Bojti T, Bojti F, Siegel PM, Heidt T, Moser M, Bode C, Westermann D, Peter K, Diehl P. An Activation-Specific Anti-Mac-1 Designed-Ankyrin-Repeat-Protein Attenuates Colitis in Mice. Life (Basel) 2023; 13:1464. [PMID: 37511839 PMCID: PMC10381548 DOI: 10.3390/life13071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Inflammatory bowel diseases are complex and multifactorial disorders of unknown etiology. The extravasation of activated leukocytes is a critical step in the pathogenesis of these diseases. Leukocyte integrin Mac-1 (αMβ2; CD11b/CD18) is crucial for the extravasation of myeloid cells, and a novel activation-specific anti-Mac-1 Designed Ankyrin Repeat protein (DARPin F7) is a promising therapeutic agent for inflammatory diseases. In its activated conformation, Mac-1 expresses the high-affinity binding site I-domain, which the DARPin F7 selectively targets. In our study, we aimed to explore the therapeutic potential of anti-Mac-1 DARPin F7 in murine dextrane sodium sulfate (DSS)-induced colitis. (2) Methods: C57BL/6J mice received 3% DSS drinking water for five days, followed by normal drinking water for one week. The mice were treated with DARPin F7 or a control substance daily via intraperitoneal injections. Disease activity index (DAI), colon length, myeloperoxidase (MPO) activity measurements, H&E staining, and qRT-PCR were conducted after euthanizing the mice on day 12. (3) Results: Treatment with DARPin F7 resulted in less pronounced colon shortening and significantly lower histological scores. The DARPin F7-treated animals experienced substantially less disease and myeloperoxidase (MPO) activity. Animals that received DARPin F7 treatment suffered less weight loss and recovered from the weight loss more efficiently. Treatment with DARPin F7 also led to significantly reduced mRNA expression of inflammatory cytokines. (4) Conclusion: Anti-Mac-1 treatment markedly reduced disease activity and inflammatory reaction accompanying DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Istvan Bojti
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Qianqi Wang
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Tibor Bojti
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Felicitas Bojti
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Patrick Malcolm Siegel
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Martin Moser
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3004, Australia
| | - Philipp Diehl
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| |
Collapse
|
5
|
Lackner K, Ebner S, Watschinger K, Maglione M. Multiple Shades of Gray-Macrophages in Acute Allograft Rejection. Int J Mol Sci 2023; 24:8257. [PMID: 37175964 PMCID: PMC10179242 DOI: 10.3390/ijms24098257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Long-term results following solid organ transplantation do not mirror the excellent short-term results achieved in recent decades. It is therefore clear that current immunosuppressive maintenance protocols primarily addressing the adaptive immune system no longer meet the required clinical need. Identification of novel targets addressing this shortcoming is urgently needed. There is a growing interest in better understanding the role of the innate immune system in this context. In this review, we focus on macrophages, which are known to prominently infiltrate allografts and, during allograft rejection, to be involved in the surge of the adaptive immune response by expression of pro-inflammatory cytokines and direct cytotoxicity. However, this active participation is janus-faced and unspecific targeting of macrophages may not consider the different subtypes involved. Under this premise, we give an overview on macrophages, including their origins, plasticity, and important markers. We then briefly describe their role in acute allograft rejection, which ranges from sustaining injury to promoting tolerance, as well as the impact of maintenance immunosuppressants on macrophages. Finally, we discuss the observed immunosuppressive role of the vitamin-like compound tetrahydrobiopterin and the recent findings that suggest the innate immune system, particularly macrophages, as its target.
Collapse
Affiliation(s)
- Katharina Lackner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Manuel Maglione
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
- Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Wang H, Cai Y, Jin M, Huang CQ, Ning C, Niu S, Fan L, Li B, Zhang M, Lu Z, Dong X, Luo Z, Zhong R, Li H, Zhu Y, Miao X, Yang X, Chang J, Li N, Tian J. Identification of specific susceptibility loci for the early-onset colorectal cancer. Genome Med 2023; 15:13. [PMID: 36869385 PMCID: PMC9983269 DOI: 10.1186/s13073-023-01163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND The incidence of early-onset colorectal cancer (EOCRC; patients < 50 years old) has been rising rapidly, whereas the EOCRC genetic susceptibility remains incompletely investigated. Here, we aimed to systematically identify specific susceptible genetic variants for EOCRC. METHODS Two parallel GWASs were conducted in 17,789 CRC cases (including 1490 EOCRC cases) and 19,951 healthy controls. A polygenic risk score (PRS) model was built based on identified EOCRC-specific susceptibility variants by using the UK Biobank cohort. We also interpreted the potential biological mechanisms of the prioritized risk variant. RESULTS We identified 49 independent susceptibility loci that were significantly associated with the susceptibility to EOCRC and the diagnosed age of CRC (both P < 5.0×10-4), replicating 3 previous CRC GWAS loci. There are 88 assigned susceptibility genes involved in chromatin assembly and DNA replication pathways, mainly associating with precancerous polyps. Additionally, we assessed the genetic effect of the identified variants by developing a PRS model. Compared to the individuals in the low genetic risk group, the individuals in the high genetic risk group have increased EOCRC risk, and these results were replicated in the UKB cohort with a 1.63-fold risk (95% CI: 1.32-2.02, P = 7.67×10-6). The addition of the identified EOCRC risk loci significantly increased the prediction accuracy of the PRS model, compared to the PRS model derived from the previous GWAS-identified loci. Mechanistically, we also elucidated that rs12794623 may contribute to the early stage of CRC carcinogenesis via allele-specific regulating the expression of POLA2. CONCLUSIONS These findings will broaden the understanding of the etiology of EOCRC and may facilitate the early screening and individualized prevention.
Collapse
Affiliation(s)
- Haoxue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Meng Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Qun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyuan Niu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuesi Dong
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zilin Luo
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Canali MM, Guyot M, Simon T, Daoudlarian D, Chabry J, Panzolini C, Petit-Paitel A, Hypolite N, Nicolas S, Bourdely P, Schmid-Antomarchi H, Schmid-Alliana A, Soria J, Karimdjee Soilihi B, Hofman P, Prevost-Blondel A, Kato M, Mougneau E, Glaichenhaus N, Blancou P. Environmental signals perceived by the brain abate pro-metastatic monocytes by dampening glucocorticoids receptor signaling. Cancer Cell Int 2023; 23:15. [PMID: 36726173 PMCID: PMC9893572 DOI: 10.1186/s12935-023-02855-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
While positive social-behavioral factors predict longer survival in cancer patients, the underlying mechanisms are unknown. Since tumor metastasis are the major cancer mortality factor, we investigated how an enriched environment (EE) conductive to enhanced sensory, cognitive and motor stimulation impact metastatic progression in lungs following intravasation in the circulation. We find that mice housed in EE exhibited reduced number of lung metastatic foci compared to control mice housed in a standard environment (SE). Compared to SE mice, EE mice increased lung inflammation as early as 4 days after circulating tumor cells extravasation. The impact of environmental signals on lung metastasis is independent of adrenergic receptors signaling. By contrast, we find that serum corticosterone levels are lower in EE mice and that glucocorticoid receptor (GR) antagonist reduces the number of lung metastasis in SE mice. In addition, the difference of the number of lung metastasis between SE and EE mice is abolished when inflammatory monocytes are rendered deficient in GR signaling. This decreased GR signaling in inflammatory monocytes of SE mice results in an exacerbated inflammatory profile in the lung. Our study shows that not only EE reduces late stages of metastatic progression in lungs but disclose a novel anti-tumor mechanism whereby GR-dependent reprogramming of inflammatory monocytes can inhibit metastatic progression in lungs. Moreover, while inflammatory monocytes have been shown to promote cancer progression, they also have an anti-tumor effect, suggesting that their role is more complex than currently thought.
Collapse
Affiliation(s)
- María Magdalena Canali
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Mélanie Guyot
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Thomas Simon
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Douglas Daoudlarian
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Joelle Chabry
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Clara Panzolini
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Agnès Petit-Paitel
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Nicolas Hypolite
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Sarah Nicolas
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Pierre Bourdely
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Heidy Schmid-Antomarchi
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France
| | - Annie Schmid-Alliana
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France
| | - Javier Soria
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Babou Karimdjee Soilihi
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France ,Polyclinique Saint Jean, Cagnes sur mer, France
| | - Paul Hofman
- grid.410528.a0000 0001 2322 4179Laboratory of Clinical and Experimental Pathology and Biobank, Nice University Hospital, Nice, France ,grid.460782.f0000 0004 4910 6551Research Institute on Cancer and Aging, Université Côte d’Azur, CNRS, INSERM, 28 Avenue de Valombrose, Nice, France
| | - Armelle Prevost-Blondel
- grid.462098.10000 0004 0643 431XUniversité Paris Descartes, CNRS, INSERM, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| | - Masashi Kato
- grid.27476.300000 0001 0943 978XDepartment of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Evelyne Mougneau
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Nicolas Glaichenhaus
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Philippe Blancou
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| |
Collapse
|
8
|
Protective Effect of Dietary Polysaccharides from Yellow Passion Fruit Peel on DSS-Induced Colitis in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6298662. [PMID: 36285298 PMCID: PMC9588357 DOI: 10.1155/2022/6298662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/17/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex inflammatory disorder characterized by chronic and spontaneously relapsing inflammation of the gastrointestinal tract. IBD includes two idiopathic disorders: Crohn’s disease (CD) and ulcerative colitis (UC). In particular, UC causes inflammation and ulceration of the colon and rectum. There is no cure for UC. The pharmacological treatment is aimed at controlling and/or reducing the inflammatory process and promoting disease remission. The present study investigated the possible protective effects of soluble dietary fiber (SDF) isolated from yellow passion fruit peel in the dextran sulfate sodium- (DSS-) induced colitis model in mice, induced by 5% of DSS. The animals were treated with SDF (10, 30, or 100 mg/kg (po)), and the disease activity index was monitored. Colon tissues were collected, measured, and prepared for oxidative stress, inflammation, and histology analysis. SDF improved body weight loss, colon length, and disease activity index and prevented colonic oxidative stress by regulating GSH levels and SOD activity. Furthermore, SDF reduced colonic MPO activity, TNF-α, and IL-1β levels and increased IL-10 and IL-6 levels. As observed by histological analysis, SDF treatment preserved the colonic tissue, the mucus barrier, and reduced inflammatory cell infiltration. Although this is a preliminary study, taken together, our data indicate that SDF may improve the course of DSS-UC. More studies are needed to explore and understand how SDF promotes this protection.
Collapse
|
9
|
Hases L, Birgersson M, Indukuri R, Archer A, Williams C. Colitis Induces Sex-Specific Intestinal Transcriptomic Responses in Mice. Int J Mol Sci 2022; 23:ijms231810408. [PMID: 36142324 PMCID: PMC9499483 DOI: 10.3390/ijms231810408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
There are significant sex differences in colorectal cancer (CRC), including in incidence, onset, and molecular characteristics. Further, while inflammatory bowel disease (IBD) is a risk factor for CRC in both sexes, men with IBD have a 60% higher risk of developing CRC compared to women. In this study, we investigated sex differences during colitis-associated CRC (CAC) using a chemically induced CAC mouse model. The mice were treated with azoxymethane (AOM) and dextran sodium sulfate (DSS) and followed for 9 and 15 weeks. We performed RNA-sequencing of colon samples from males (n = 15) and females (n = 15) to study different stages of inflammation and identify corresponding transcriptomic sex differences in non-tumor colon tissue. We found a significant transcriptome response to AOM/DSS treatment in both sexes, including in pathways related to inflammation and cell proliferation. Notably, we found a stronger response in males and that male-specific differentially expressed genes were involved in NFκB signaling and circadian rhythm. Further, an overrepresented proportion of male-specific gene regulations were predicted to be targets of Stat3, whereas for females, targets of the glucocorticoid receptor (Gr/Nr3c1) were overrepresented. At 15 weeks, the most apparent sex difference involved genes with functions in T cell proliferation, followed by the regulation of demethylases. The majority of sex differences were thus related to inflammation and the immune system. Our novel data, profiling the transcriptomic response to chemically induced colitis and CAC, indicate clear sex differences in CRC initiation and progression.
Collapse
Affiliation(s)
- Linnea Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Madeleine Birgersson
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Rajitha Indukuri
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Amena Archer
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Cecilia Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
- Correspondence:
| |
Collapse
|
10
|
Hu S, Shen P, Chen B, Tian SW, You Y. Apelin-13 reduces lipopolysaccharide-induced neuroinflammation and cognitive impairment via promoting glucocorticoid receptor expression and nuclear translocation (Manuscript-revision). Neurosci Lett 2022; 788:136850. [PMID: 36038029 DOI: 10.1016/j.neulet.2022.136850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
Neuroinflammation is usually associated with cognitive decline, which is involved in neurodegenerative diseases. Apelin, a neuropeptide, exerts various biological roles in central nervous system. Recent evidence showed that apelin-13, an active form of apelin, suppresses neuroinflammation and improves cognitive decline in diverse pathological processes. However, the underlying mechanism of apelin-13 in neuroinflammation remains largely unknown. The present study aimed to determine underlying mechanism of apelin-13 on neuroinflammation-related cognitive decline. The lipopolysaccharide (LPS) intracerebroventricular (i.c.v.) to is used to establish a rat model of neuroinflammation-related cognitive decline. The results showed that apelin-13 inhibits LPS-induced neuroinflammation and improves cognitive impairment. Apelin-13 upregulates the GR level and nuclear translocation in hippocampus of rats. Moreover, glucocorticoid receptor inhibitor RU486 prevents apelin-13-mediated neuroprotective actions on cognitive function. Taken together, apelin-13 could exert a protective effect in neuroinflammation-mediated cognitive impairment via the activation of GR expression and nuclear translocation.
Collapse
Affiliation(s)
- Sheng Hu
- The Second Affiliated Hospital of Hainan Medical University, Department of Neurology, Haikou, Hainan, 570216, China; Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, 571199, China; International Center for Aging and Cancer (ICAC), Hainan Medical University, 571199, China
| | - Pei Shen
- Department of Neurology, The First People's Hospital of Changde City, Changde, Hunan, 415000, China
| | - Bin Chen
- The Second Affiliated Hospital of Hainan Medical University, Department of Neurology, Haikou, Hainan, 570216, China; Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, 571199, China; International Center for Aging and Cancer (ICAC), Hainan Medical University, 571199, China
| | - Shao-Wen Tian
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi, 541001, China.
| | - Yong You
- The Second Affiliated Hospital of Hainan Medical University, Department of Neurology, Haikou, Hainan, 570216, China; Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, 571199, China; International Center for Aging and Cancer (ICAC), Hainan Medical University, 571199, China.
| |
Collapse
|
11
|
Song HY, Han JM, Kim WS, Lee JH, Park WY, Byun EB, Byun EH. Deinococcus radiodurans R1 Lysate Induces Tolerogenic Maturation in Lipopolysaccharide-Stimulated Dendritic Cells and Protects Dextran Sulfate Sodium-Induced Colitis in Mice. J Microbiol Biotechnol 2022; 32:835-843. [PMID: 35719091 PMCID: PMC9628914 DOI: 10.4014/jmb.2203.03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022]
Abstract
Deinococcus radiodurans is an extremophilic bacterium that can thrive in harsh environments. This property can be attributed to its unique metabolites that possess strong antioxidants and other pharmacological properties. To determine the potential of D. radiodurans R1 lysate (DeinoLys) as a pharmacological candidate for inflammatory bowel disease (IBD), we investigated the anti-inflammatory activity of DeinoLys in bone marrow-derived dendritic cells (BMDCs) and a colitis mice model. Lipopolysaccharide (LPS)-stimulated BMDCs treated with DeinoLys exhibited alterations in their phenotypic and functional properties by changing into tolerogenic DCs, including strongly inhibited proinflammatory cytokines (TNF-α and IL-12p70) and surface molecule expression and activated DC-induced T cell proliferation/activation with high IL-10 production. These phenotypic and functional changes in BMDCs induced by DeinoLys in the presence of LPS were abrogated by IL-10 neutralization. Furthermore, oral administration of DeinoLys significantly reduced clinical symptoms against dextran sulfate sodium-induced colitis, including body weight loss, disease activity index, histological severity in colon tissue, and lower myeloperoxidase level in mice. Our results establish DeinoLys as a potential anti-inflammatory candidate for IBD therapy.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea,Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ji Hee Lee
- Division of Pathogen Resource Management, Center for Vaccine Development Support, National Institute of Infectious Disease, National Institute of Health (NIH), Korea Disease Control and Prevention Agency, Cheongju, 28160, Republic of Korea
| | - Woo Yong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea,Corresponding authors E.-B. Byun Phone: +82-63-570-3245 Fax: +82-63-570-3371 E-mail:
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan, 32439, Republic of Korea,
E.-H. Byun Phone: +82-41-330-1481 Fax: +82-41-330-1489 E-mail:
| |
Collapse
|
12
|
Distinct Patterns of GR Transcriptional Regulation in Liver and Muscle of LPS-Challenged Weaning Piglets. Int J Mol Sci 2022; 23:ijms23158072. [PMID: 35897645 PMCID: PMC9331734 DOI: 10.3390/ijms23158072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid receptor (GR), which is ubiquitously expressed in nearly all cell types of various organs, mediates the tissue-specific metabolic and immune responses to maintain homeostasis and ensure survival under stressful conditions or pathological challenges. The neonatal period is metabolically demanding, and piglets are subjected to multiple stressors in modern intensive farms, especially around weaning. The liver is more responsive to LPS challenge compared to muscle, which is indicated by significantly increased TLR4 and p-p65, TNF-α, and IL-6 levels in association with GR down-regulation at both mRNA and protein levels. GR binding to the putative nGRE on TNF-α and IL-6 gene promoters decreased in the liver, but not muscle, upon LPS stimulation. The transcriptional regulation of GR also showed striking differences between liver and muscle. GR exon 1 mRNA variants 1–4, 1–5, and 1–6 were down-regulated in both liver and muscle, but a significant up-regulation of GR exon 1–9/10 mRNA variants abolished the change of total GR mRNA in the muscle in response to LPS stimulation. The significant down-regulation of GR in the liver corresponded with significantly decreased binding of p-GR and diminished histone acetylation in GR gene promoters. These results indicate that tissue-specific GR transcriptional regulation is involved in the differential inflammation responses between liver and muscle.
Collapse
|
13
|
Rocamora-Reverte L, Villunger A, Wiegers GJ. Cell-Specific Immune Regulation by Glucocorticoids in Murine Models of Infection and Inflammation. Cells 2022; 11:cells11142126. [PMID: 35883569 PMCID: PMC9324070 DOI: 10.3390/cells11142126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids (GC) are highly potent negative regulators of immune and inflammatory responses. Effects of GC are primarily mediated by the glucocorticoid receptor (GR) which is expressed by all cell types of the immune system. It is, therefore, difficult to elucidate how endogenous GC mediate their effects on immune responses that involve multiple cellular interactions between various immune cell subsets. This review focuses on endogenous GC targeting specific cells of the immune system in various animal models of infection and inflammation. Without the timed release of these hormones, animals infected with various microbes or challenged in inflammatory disease models succumb as a consequence of overshooting immune and inflammatory responses. A clearer picture is emerging that endogenous GC thereby act in a cell-specific and disease model-dependent manner, justifying the need to develop techniques that target GC to individual immune cell types for improved clinical application.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - G. Jan Wiegers
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
- Correspondence:
| |
Collapse
|
14
|
Cerantola S, Faggin S, Caputi V, Bosi A, Banfi D, Rambaldo A, Porzionato A, Di Liddo R, De Caro R, Savarino EV, Giaroni C, Giron MC. Small intestine neuromuscular dysfunction in a mouse model of dextran sulfate sodium-induced ileitis: Involvement of dopaminergic neurotransmission. Life Sci 2022; 301:120562. [PMID: 35487304 DOI: 10.1016/j.lfs.2022.120562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
AIMS Anomalies in dopaminergic machinery have been shown in inflammatory bowel disease (IBD) patients and preclinical models of IBD. Thus, we aimed to evaluate the impact of dextran sodium sulfate (DSS)-induced ileitis on enteric dopaminergic pathways. MATERIALS AND METHODS Male C57/Bl6 mice (10 ± 2 weeks old) received 2% DSS in drinking water for 5 days and were then switched to regular drinking water for 3 days. To measure ileitis severity inflammatory cytokines (IL-1β, TNFα, IL-6) levels were assessed. Changes in ileal muscle tension were isometrically recorded following: 1) cumulative addition of dopamine on basal tone (0.1-1000 μM); ii) 4-Hz electric field stimulation (EFS) in the presence of 30 μM dopamine with/without 10 μM SCH-23390 (dopamine D1 receptor (D1R) antagonist) or 10 μM sulpiride (D2R antagonist). Immunofluorescence distribution of the neuronal HuC/D protein, glial S100β marker, D1R, and dopamine transporter (DAT) were determined in longitudinal-muscle-myenteric plexus whole-mounts (LMMPs) by confocal microscopy. D1R and D2R mRNA transcripts were evaluated by qRT-PCR. KEY FINDINGS DSS caused an inflammatory process in the small intestine associated to dysmotility and altered barrier permeability, as suggested by decreased fecal output and enhanced stool water content. DSS treatment caused a significant increase of DAT and D1R myenteric immunoreactivity as well as of D1R and D2R mRNA levels, accompanied by a significant reduction of dopamine-mediated relaxation, involving primarily D1-like receptors. SIGNIFICANCE Mouse ileitis affects enteric dopaminergic neurotransmission mainly involving D1R-mediated responses. These findings provide novel information on the participation of dopaminergic pathways in IBD-mediated neuromuscular dysfunction.
Collapse
Affiliation(s)
- Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sofia Faggin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy; Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Anna Rambaldo
- Department of Neuroscience, University of Padova, Padova, Italy
| | | | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Edoardo V Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy; IRCCS San Camillo Hospital, 30126 Venice, Italy.
| |
Collapse
|
15
|
Hao L, Alkry LT, Alattar A, Faheem M, Alshaman R, Shah FA, Li S. Ibrutinib attenuated DSS-induced ulcerative colitis, oxidative stress, and the inflammatory cascade by modulating the PI3K/Akt and JNK/NF-κB pathways. Arch Med Sci 2022; 18:805-815. [PMID: 35591835 PMCID: PMC9103379 DOI: 10.5114/aoms/146792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Liangliang Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Lina Tariq Alkry
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
16
|
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, Reichardt HM. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021; 10:cells10112921. [PMID: 34831143 PMCID: PMC8616489 DOI: 10.3390/cells10112921] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.
Collapse
Affiliation(s)
- Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +49-551-3963365
| |
Collapse
|
17
|
Pu J, Zhou X, Liu J, Hou P, Ji M. Therapeutic potential and deleterious effect of glucocorticoids on azoxymethane/dextran sulfate sodium-induced colorectal cancer in mice. Am J Cancer Res 2021; 11:4866-4883. [PMID: 34765297 PMCID: PMC8569368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023] Open
Abstract
Glucocorticoids (GCs) are widely used in the treatment of various autoimmune and inflammatory diseases, including inflammatory bowel disease (IBD). However, the effect of GCs on the progression of colitis-associated colorectal cancer (CAC) has not been well explored. In this study, we first established a colorectal cancer model induced by azoxymethane and dextran sulfate sodium (AOM/DSS) and a colitis model induced by DSS in mice. Dexamethasone (DEX) was then administered at different periods of time to determine its effect on tumorigenesis and tumor progression. Meanwhile, body weight, stool property and fecal blood of mice were recorded. At the end of this study, the number and load of tumors were evaluated, and the expression of proteins associated with cell proliferation was analyzed. To evaluate the inflammation in colon, we detected the level of pro-inflammatory cytokine TNFα, and the mucosal infiltration of inflammatory cells. Our results revealed that AOM injection followed by three cycles of drinking water containing 1.5% DSS successfully induced multiple tumor formation in mouse colon and rectum. Both early and late DEX intervention suppressed tumor growth in mouse colorectum, and downregulated the expression of PCNA and cyclin D1. Moreover, DEX treatment significantly inhibited TNFα production, mucosal infiltration of inflammatory cells, and the activity of MAPK/JNK pathway, particularly early DEX intervention. However, we also found that DEX treatment deteriorated the general state of mouse manifested by greater loss of body weight and rectal bleeding. In summary, both early and late DEX interventions significantly ameliorate colonic inflammation and inhibit the progression of AOM/DSS-induced colorectal cancer, at least partly due to the inhibition of MAPK/JNK pathway. It is noteworthy that the deleterious effect on the general condition of mouse may limit the duration of GCs treatment.
Collapse
Affiliation(s)
- Jun Pu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Xinrui Zhou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Jiaxin Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| |
Collapse
|
18
|
Vettorazzi S, Nalbantoglu D, Gebhardt JCM, Tuckermann J. A guide to changing paradigms of glucocorticoid receptor function-a model system for genome regulation and physiology. FEBS J 2021; 289:5718-5743. [PMID: 34213830 DOI: 10.1111/febs.16100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The glucocorticoid receptor (GR) is a bona fide ligand-regulated transcription factor. Cloned in the 80s, the GR has become one of the best-studied and clinically most relevant members of the nuclear receptor superfamily. Cooperative activity of GR with other transcription factors and a plethora of coregulators contribute to the tissue- and context-specific response toward the endogenous and pharmacological glucocorticoids (GCs). Furthermore, nontranscriptional activities in the cytoplasm are emerging as an additional function of GR. Over the past 40 years, the concepts of GR mechanisms of action had been constantly changing. Different methodologies in the pregenomic and genomic era of molecular biological research and recent cutting-edge technology in single-cell and single-molecule analysis are steadily evolving the views, how the GR in particular and transcriptional regulation in general act in physiological and pathological processes. In addition to the development of technologies for GR analysis, the use of model organisms provides insights how the GR in vivo executes GC action in tissue homeostasis, inflammation, and energy metabolism. The model organisms, namely the mouse, but also rats, zebrafish, and recently fruit flies carrying mutations of the GR became a major driving force to analyze the molecular function of GR in disease models. This guide provides an overview of the exciting research and paradigm shifts in the GR field from past to present with a focus on GR transcription factor networks, GR DNA-binding and single-cell analysis, and model systems.
Collapse
Affiliation(s)
- Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | - Denis Nalbantoglu
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | | | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| |
Collapse
|
19
|
Diaz-Jimenez D, Kolb JP, Cidlowski JA. Glucocorticoids as Regulators of Macrophage-Mediated Tissue Homeostasis. Front Immunol 2021; 12:669891. [PMID: 34079551 PMCID: PMC8165320 DOI: 10.3389/fimmu.2021.669891] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Our immune system has evolved as a complex network of cells and tissues tasked with maintaining host homeostasis. This is evident during the inflammatory responses elicited during a microbial infection or traumatic tissue damage. These responses seek to eliminate foreign material or restore tissue integrity. Even during periods without explicit disturbances, the immune system plays prominent roles in tissue homeostasis. Perhaps one of the most studied cells in this regard is the macrophage. Tissue-resident macrophages are a heterogenous group of sensory cells that respond to a variety of environmental cues and are essential for organ function. Endogenously produced glucocorticoid hormones connect external environmental stress signals with the function of many cell types, producing profound changes in immune cells, including macrophages. Here, we review the current literature which demonstrates specific effects of glucocorticoids in several organ systems. We propose that tissue-resident macrophages, through glucocorticoid signaling, may play an underappreciated role as regulators of organ homeostasis.
Collapse
Affiliation(s)
- David Diaz-Jimenez
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Joseph P Kolb
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
20
|
Lamorte S, Shinde R, McGaha TL. Nuclear receptors, the aryl hydrocarbon receptor, and macrophage function. Mol Aspects Med 2021; 78:100942. [PMID: 33451803 PMCID: PMC7987878 DOI: 10.1016/j.mam.2021.100942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs) are key regulators of innate immune responses and tissue homeostasis. Evidence indicates that NRs significantly impact steady-state immune regulation, uptake and processing of apoptotic cells, tolerance induction, and control of inflammatory immunity. In this review, we describe our current understanding of the NR activity for balancing inflammation and tolerance, the signaling cascade inducing the NR activation and functional responses, and different mechanisms of the NR-driven immune effects in the context of autoimmune diseases. We further describe the ligand-activated transcription factor the aryl hydrocarbon receptor (AhR) that exhibits analogous functionality. Moreover, we will discuss the putative role of NRs and AhR in immune regulation and disease pathogenesis providing a rationale for therapeutic targeting as a unique opportunities in the clinical management of autoimmune diseases.
Collapse
Affiliation(s)
- Sara Lamorte
- Tumor Immunotherapy Program, The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rahul Shinde
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute Cancer Center, Philadelphia, PA, USA
| | - Tracy L McGaha
- Tumor Immunotherapy Program, The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; The Department of Immunology, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
A flow cytometric approach to study glucocorticoid receptor expression in immune cell subpopulations of genetically engineered mice. Immunol Lett 2021; 233:68-79. [PMID: 33753134 DOI: 10.1016/j.imlet.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022]
Abstract
Glucocorticoids (GCs) constitute one of the most powerful classes of anti-inflammatory agents and are used for the treatment of a plethora of diseases related to autoimmunity, allergy, cancer, and infection. In the last two decades, multiple studies using genetically engineered mice with targeted deletions of the GC receptor (GR) in individual cell types have provided insights into the mechanisms of GCs in the control of the immune system. The characterization of GR expression in these mouse models, however, mostly relied on the analysis of mRNA expression or reporter gene activity. In contrast, approaches directly detecting the GR protein on a cellular level are scarce. Thus, we here used a flow cytometric method to analyze mice in which the GR gene locus was disrupted with the help of a Cre recombinase expressed under the control of either the lck or the lysM promoter. Measuring GR protein expression in immune cell subpopulations unveiled an efficient and highly selective depletion in both strains of knock-out mice in accordance with the expected cellular specificity of the employed promoters for T cells or myeloid cells, respectively. The flow cytometric data were well in line with those from the analysis of GR mRNA expression in magnetically sorted immune cell subpopulations but they could be obtained much more quickly. In summary, our data indicate that flow cytometry is a powerful tool with which to define GR protein content at a single cell level when studying the function of GCs in the immune system.
Collapse
|
22
|
Clarisse D, Beck IM. New Tricks of Our Old Friend the Glucocorticoid Receptor: From Combating Ulcerative Colitis to Preventing Associated Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2021; 11:1541-1542. [PMID: 33684386 PMCID: PMC8099677 DOI: 10.1016/j.jcmgh.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/10/2022]
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Ilse M Beck
- Department of Health Sciences, Odisee University College, Ghent, Belgium.
| |
Collapse
|
23
|
Fratta Pasini AM, Stranieri C, Cominacini L, Mozzini C. Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Antioxidants (Basel) 2021; 10:272. [PMID: 33578849 PMCID: PMC7916604 DOI: 10.3390/antiox10020272] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Here, we review the molecular pathogenesis of SARS-CoV-2 and its relationship with oxidative stress (OS) and inflammation. Furthermore, we analyze the potential role of antioxidant and anti-inflammatory therapies to prevent severe complications. OS has a potential key role in the COVID-19 pathogenesis by triggering the NOD-like receptor family pyrin domain containing 3 inflammasome and nuclear factor-kB (NF-kB). While exposure to many pro-oxidants usually induces nuclear factor erythroid 2 p45-related factor2 (NRF2) activation and upregulation of antioxidant related elements expression, respiratory viral infections often inhibit NRF2 and/or activate NF-kB pathways, resulting in inflammation and oxidative injury. Hence, the use of radical scavengers like N-acetylcysteine and vitamin C, as well as of steroids and inflammasome inhibitors, has been proposed. The NRF2 pathway has been shown to be suppressed in severe SARS-CoV-2 patients. Pharmacological NRF2 inducers have been reported to inhibit SARS-CoV-2 replication, the inflammatory response, and transmembrane protease serine 2 activation, which for the entry of SARS-CoV-2 into the host cells through the angiotensin converting enzyme 2 receptor. Thus, NRF2 activation may represent a potential path out of the woods in COVID-19 pandemic.
Collapse
Affiliation(s)
- Anna M. Fratta Pasini
- Section of General Medicine and Atherothrombotic and Degenerative Diseases, Department of Medicine, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (L.C.); (C.M.)
| | | | | | | |
Collapse
|
24
|
Dwyer Z, Chaiquin M, Landrigan J, Ayoub K, Shail P, Rocha J, Childers CL, Storey KB, Philpott DJ, Sun H, Hayley S. The impact of dextran sodium sulphate and probiotic pre-treatment in a murine model of Parkinson's disease. J Neuroinflammation 2021; 18:20. [PMID: 33422110 PMCID: PMC7796536 DOI: 10.1186/s12974-020-02062-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent work has established that Parkinson's disease (PD) patients have an altered gut microbiome, along with signs of intestinal inflammation. This could help explain the high degree of gastric disturbances in PD patients, as well as potentially be linked to the migration of peripheral inflammatory factors into the brain. To our knowledge, this is the first study to examine microbiome alteration prior to the induction of a PD murine model. METHODS We presently assessed whether pre-treatment with the probiotic, VSL #3, or the inflammatory inducer, dextran sodium sulphate (DSS), would influence the PD-like pathology provoked by a dual hit toxin model using lipopolysaccharide (LPS) and paraquat exposure. RESULTS While VSL #3 has been reported to have anti-inflammatory effects, DSS is often used as a model of colitis because of the gut inflammation and the breach of the intestinal barrier that it induces. We found that VSL#3 did not have any significant effects (beyond a blunting of LPS paraquat-induced weight loss). However, the DSS treatment caused marked changes in the gut microbiome and was also associated with augmented behavioral and inflammatory outcomes. In fact, DSS markedly increased taxa belonging to the Bacteroidaceae and Porphyromonadaceae families but reduced those from Rikencellaceae and S24-7, as well as provoking colonic pro-inflammatory cytokine expression, consistent with an inflamed gut. The DSS also increased the impact of LPS plus paraquat upon microglial morphology, along with circulating lipocalin-2 (neutrophil marker) and IL-6. Yet, neither DSS nor VSL#3 influenced the loss of substantia nigra dopamine neurons or the astrocytic and cytoskeleton remodeling protein changes that were provoked by the LPS followed by paraquat treatment. CONCLUSIONS These data suggest that disruption of the intestinal integrity and the associated microbiome can interact with systemic inflammatory events to promote widespread brain-gut changes that could be relevant for PD and at the very least, suggestive of novel neuro-immune communication.
Collapse
Affiliation(s)
- Zach Dwyer
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Melany Chaiquin
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Jeffrey Landrigan
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Kiara Ayoub
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Pragya Shail
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Julianna Rocha
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Christie L Childers
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Hongyu Sun
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
25
|
Alexaki VI, Henneicke H. The Role of Glucocorticoids in the Management of COVID-19. Horm Metab Res 2021; 53:9-15. [PMID: 33207372 PMCID: PMC7781662 DOI: 10.1055/a-1300-2550] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by an infection with the novel coronavirus SARS-CoV-2, has resulted in a global pandemic and poses an emergency to public health systems worldwide. COVID-19 is highly infectious and is characterized by an acute respiratory illness that varies from mild flu-like symptoms to the life-threatening acute respiratory distress syndrome (ARDS). As such, there is an urgent need for the development of new therapeutic strategies, which combat the high mortality in severely ill COVID-19 patients. Glucocorticoids are a frontline treatment for a diverse range of inflammatory diseases. Due to their immunosuppressive functions, the use of glucocorticoids in the treatment of COVID-19 patients was initially regarded with caution. However, recent studies concluded that the initiation of systemic glucocorticoids in patients suffering from severe and critical COVID-19 is associated with lower mortality. Herein we review the anti-inflammatory effects of glucocorticoids and discuss emerging issues in their clinical use in the context of COVID-19.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Holger Henneicke
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
- Department of Medicine III & Center for Healthy Aging, University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
26
|
Wood M, Whirledge S. Mechanism of glucocorticoid action in immunology—Basic concepts. REPRODUCTIVE IMMUNOLOGY 2021:147-170. [DOI: 10.1016/b978-0-12-818508-7.00020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
27
|
Wepler M, Preuss JM, Merz T, McCook O, Radermacher P, Tuckermann JP, Vettorazzi S. Impact of downstream effects of glucocorticoid receptor dysfunction on organ function in critical illness-associated systemic inflammation. Intensive Care Med Exp 2020; 8:37. [PMID: 33336296 PMCID: PMC7746781 DOI: 10.1186/s40635-020-00325-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are stress hormones that regulate developmental and physiological processes and are among the most potent anti-inflammatory drugs to suppress chronic and acute inflammation. GCs act through the glucocorticoid receptor (GR), a ubiquitously expressed ligand-activated transcription factor, which translocates into the nucleus and can act via two different modes, as a GR monomer or as a GR dimer. These two modes of action are not clearly differentiated in practice and may lead to completely different therapeutic outcomes. Detailed aspects of GR mechanisms are often not taken into account when GCs are used in different clinical scenarios. Patients, with critical illness-related corticosteroid insufficiency, treated with natural or synthetic GCs are still missing a clearly defined therapeutic strategy. This review discusses the different modes of GR function and its importance on organ function in vivo.
Collapse
Affiliation(s)
- Martin Wepler
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany. .,Department of Anesthesia, University Hospital Ulm, Ulm, Germany.
| | - Jonathan M Preuss
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| |
Collapse
|
28
|
Williams EL, Stimpson ML, Lait PJP, Schewitz-Bowers LP, Jones LV, Dhanda AD, Lee RWJ, Bradbury CA. Glucocorticoid treatment in patients with newly diagnosed immune thrombocytopenia switches CD14 ++ CD16 + intermediate monocytes from a pro-inflammatory to an anti-inflammatory phenotype. Br J Haematol 2020; 192:375-384. [PMID: 33338291 DOI: 10.1111/bjh.17205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
Immune thrombocytopenia (ITP) is thought to result from an aberrant adaptive autoimmune response, involving autoantibodies, B and T lymphocytes, directed at platelets and megakaryocytes. Previous reports have demonstrated skewed CD4+ T-helper subset distribution and enhanced production of pro-inflammatory cytokines such as interleukin 17A and interferon gamma. The role of monocytes (MCs) in ITP is less widely described, but innate immune cells have a role in shaping CD4+ T-cell phenotypes. Glucocorticoids (GCs) are commonly used for first-line ITP treatment and modulate a broad range of immune cells including T cells and MCs. Using multiparameter flow cytometry analysis, we demonstrate the expansion of intermediate MCs (CD14++ CD16+ ) in untreated patients with newly diagnosed ITP, with these cells displaying a pro-inflammatory phenotype, characterised by enhanced expression of CD64 and CD80. After 2 weeks of prednisolone treatment (1 mg/kg daily), the proportion of intermediate MCs reduced, with enhanced expression of the anti-inflammatory markers CD206 and CD163. Healthy control MCs were distinctly different than MCs from patients with ITP before and after GC treatment. Furthermore, the GC-induced phenotype was not observed in patients with chronic ITP receiving thrombopoietin receptor agonists. These data suggest a role of MCs in ITP pathogenesis and clinical response to GC therapy.
Collapse
Affiliation(s)
- Emily L Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Madeleine L Stimpson
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Philippa J P Lait
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Lauren V Jones
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashwin D Dhanda
- Faculty of Health, Peninsula Institute of Health Research, University of Plymouth, Plymouth, UK.,South West Liver Unit, Derriford Hospital, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Richard W J Lee
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,University Hospitals Bristol NHS Foundation Trust, Bristol, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Charlotte A Bradbury
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| |
Collapse
|
29
|
Muzzi C, Watanabe N, Twomey E, Meers GK, Reichardt HM, Bohnenberger H, Reichardt SD. The Glucocorticoid Receptor in Intestinal Epithelial Cells Alleviates Colitis and Associated Colorectal Cancer in Mice. Cell Mol Gastroenterol Hepatol 2020; 11:1505-1518. [PMID: 33316454 PMCID: PMC8039723 DOI: 10.1016/j.jcmgh.2020.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease is commonly treated by administration of glucocorticoids. While the importance of intestinal epithelial cells for the pathogenesis of this disorder is widely accepted, their role as target cells for glucocorticoids has not been explored. To address this issue, we induced colonic inflammation in GRvillin mice, which carry an inducible deletion of the glucocorticoid receptor in intestinal epithelial cells. METHODS Colitis and colitis-associated colorectal cancer were induced by administration of dextran sulfate sodium and azoxymethane in mice. Clinical parameters, epithelial permeability and tumor development were monitored during disease progression. Colon tissue, lamina propria cells and intestinal epithelial cells were examined by gene expression analyses, flow cytometry, histopathology, and immunohistochemistry. RESULTS The absence of the intestinal epithelial glucocorticoid receptor aggravated clinical symptoms and tissue damage, and compromised epithelial barrier integrity during colitis. Gene expression of chemokines, pattern recognition receptors and molecules controlling epithelial permeability was dysregulated in intestinal epithelial cells of GRvillin mice, leading to a reduced recruitment and a hyperactivation of leukocytes in the lamina propria of the colon. Importantly, the exaggerated inflammatory response in GRvillin mice also enhanced associated tumorigenesis, resulting in a higher number and larger size of tumors in the colon. CONCLUSIONS Our results reveal an important role of intestinal epithelial cells as targets of glucocorticoid action in inflammatory bowel disease and suggest that the efficacy with which colitis is kept at bay directly affects the progression of colorectal cancer.
Collapse
Affiliation(s)
- Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Norika Watanabe
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Eric Twomey
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Garrit K. Meers
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany,Correspondence Address correspondence to: Sybille Reichardt, PhD, Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Humboldtallee 34, 37073 Göttingen, Germany. fax: +49 551-395843.
| |
Collapse
|
30
|
Alumina Ceramic Exacerbates the Inflammatory Disease by Activation of Macrophages and T Cells. Int J Mol Sci 2020; 21:ijms21197114. [PMID: 32993182 PMCID: PMC7583733 DOI: 10.3390/ijms21197114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Aluminum oxide (Al2O3) ceramic is one of the materials used for artificial joints, and it has been known that their fine particles (FPs) are provided by the wear of the ceramic. Al2O3 FPs have been shown to induce macrophage activation in vitro; however, the inflammatory effect in vivo has not been studied. (2) Methods: We examined the in vivo effect of Al2O3 FPs on the innate and adaptive immune cells in the mice. (3) Results: Al2O3 FPs promoted the activation of spleen macrophages; however, conventional dendritic cells (cDCs), plasmacytoid DCs (pDCs), and natural killer (NK) cells were not activated. In addition, increases in the CD4 and CD8 T cells was induced in the spleens of the mice treated with Al2O3 FPs, which differentiated into interferon-gamma (IFN-γ)-producing helper T1 (Th1) and cytotoxic T1 (Tc1) cells. Finally, the injection of Al2O3 FPs exacerbated dextran sulfate sodium (DSS)-induced inflammation in the colon, mediated by activated and increased number of CD4 and CD8 T cells. (4) Conclusions: These data demonstrate that FPs of Al2O3 ceramic may contribute to the exacerbation of inflammatory diseases in the patients.
Collapse
|
31
|
New insights into the cell- and tissue-specificity of glucocorticoid actions. Cell Mol Immunol 2020; 18:269-278. [PMID: 32868909 PMCID: PMC7456664 DOI: 10.1038/s41423-020-00526-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) are endogenous hormones that are crucial for the homeostasis of the organism and adaptation to the external environment. Because of their anti-inflammatory effects, synthetic GCs are also extensively used in clinical practice. However, almost all cells in the body are sensitive to GC regulation. As a result, these mediators have pleiotropic effects, which may be undesirable or detrimental to human health. Here, we summarize the recent findings that contribute to deciphering the molecular mechanisms downstream of glucocorticoid receptor activation. We also discuss the complex role of GCs in infectious diseases such as sepsis and COVID-19, in which the balance between pathogen elimination and protection against excessive inflammation and immunopathology needs to be tightly regulated. An understanding of the cell type- and context-specific actions of GCs from the molecular to the organismal level would help to optimize their therapeutic use.
Collapse
|
32
|
Kaiser TK, Li H, Roßmann L, Reichardt SD, Bohnenberger H, Feldmann C, Reichardt HM. Glucocorticoids delivered by inorganic-organic hybrid nanoparticles mitigate acute graft-versus-host disease and sustain graft-versus-leukemia activity. Eur J Immunol 2020; 50:1220-1233. [PMID: 32133644 DOI: 10.1002/eji.201948464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/29/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
Glucocorticoids (GCs) are widely used to treat acute graft-versus-host disease (aGvHD) due to their immunosuppressive activity, but they also reduce the beneficial graft-versus-leukemia (GvL) effect of the allogeneic T cells contained in the graft. Here, we tested whether aGvHD therapy could be improved by delivering GCs with the help of inorganic-organic hybrid nanoparticles (IOH-NPs) that preferentially target myeloid cells. IOH-NPs containing the GC betamethasone (BMP-NPs) efficiently reduced morbidity, mortality, and tissue damage in a totally MHC mismatched mouse model of aGvHD. Therapeutic activity was lost in mice lacking the GC receptor (GR) in myeloid cells, confirming the cell type specificity of our approach. BMP-NPs had no relevant systemic activity but suppressed cytokine and chemokine gene expression locally in the small intestine, which presumably explains their mode of action. Most importantly, BMP-NPs delayed the development of an adoptively transferred B cell lymphoma better than the free drug, although the overall incidence was unaffected. Our findings thus suggest that employing IOH-NPs could diminish the risk of relapse associated with GC therapy of aGvHD patients while still allowing to efficiently ameliorate the disease.
Collapse
Affiliation(s)
- Tina K Kaiser
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Hu Li
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Laura Roßmann
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Sybille D Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Li H, Kaiser TK, Borschiwer M, Bohnenberger H, Reichardt SD, Lühder F, Walter L, Dressel R, Meijsing SH, Reichardt HM. Glucocorticoid resistance of allogeneic T cells alters the gene expression profile in the inflamed small intestine of mice suffering from acute graft-versus-host disease. J Steroid Biochem Mol Biol 2019; 195:105485. [PMID: 31561002 DOI: 10.1016/j.jsbmb.2019.105485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/20/2019] [Accepted: 09/21/2019] [Indexed: 01/20/2023]
Abstract
Glucocorticoids (GCs) play an important role in controlling acute graft-versus-host disease (aGvHD), a frequent complication of allogeneic hematopoietic stem cell transplantation. The anti-inflammatory activity of GCs is mainly ascribed to the modulation of T cells and macrophages, for which reason a genetically induced GC resistance of either of these cell types causes aggravated aGvHD. Since only a few genes are currently known that are differentially regulated under these conditions, we analyzed the expression of 54 candidate genes in the inflamed small intestine of mice suffering from aGvHD when either allogeneic T cells or host myeloid cells were GC resistant using a microfluidic dynamic array platform for high-throughput quantitative PCR. The majority of genes categorized as cytokines (e.g. Il2, Il6), chemokines (e.g. Ccl2, Cxcl1), cell surface receptors (e.g. Fasl, Ctla4) and intracellular molecules (e.g. Dusp1, Arg1) were upregulated in mice transplanted with GC resistant allogeneic T cells. Moreover, the expression of several genes linked to energy metabolism (e.g. Glut1) was altered. Surprisingly, mice harboring GC resistant myeloid cells showed almost no changes in gene expression despite their fatal disease course after aGvHD induction. To identify additional genes in the inflamed small intestine that were affected by a GC resistance of allogeneic T cells, we performed an RNAseq analysis, which uncovered more than 500 differentially expressed transcripts (e.g. Cxcr6, Glut3, Otc, Aoc1, Il1r1, Sphk1) that were enriched for biological processes associated with inflammation and tissue disassembly. The changes in gene expression could be confirmed during full-blown disease but hardly any of them in the preclinical phase using high-throughput quantitative PCR. Further analysis of some of these genes revealed a highly selective expression pattern in T cells, intestinal epithelial cells and macrophages, which correlated with their regulation during disease progression. Collectively, we identified an altered gene expression profile caused by GC resistance of transplanted allogeneic T cells, which could help to define new targets for aGvHD therapy.
Collapse
Affiliation(s)
- Hu Li
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Tina K Kaiser
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Marina Borschiwer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195 Berlin, Germany
| | - Hanibal Bohnenberger
- University Medical Center Göttingen, Institute for Pathology, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Sybille D Reichardt
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Fred Lühder
- University Medical Center Göttingen, Institute for Neuroimmunology and Multiple Sclerosis Research, von-Siebold-Straße 3a, 37075 Göttingen, Germany
| | - Lutz Walter
- German Primate Center, Leibniz Institute for Primate Research, Primate Genetics Laboratory, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ralf Dressel
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | | | - Holger M Reichardt
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany.
| |
Collapse
|
34
|
Ehrchen JM, Roth J, Barczyk-Kahlert K. More Than Suppression: Glucocorticoid Action on Monocytes and Macrophages. Front Immunol 2019; 10:2028. [PMID: 31507614 PMCID: PMC6718555 DOI: 10.3389/fimmu.2019.02028] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Uncontrolled inflammation is a leading cause of many clinically relevant diseases. Current therapeutic strategies focus mainly on immunosuppression rather than on the mechanisms of inflammatory resolution. Glucocorticoids (GCs) are still the most widely used anti-inflammatory drugs. GCs affect most immune cells but there is growing evidence for cell type specific mechanisms. Different subtypes of monocytes and macrophages play a pivotal role both in generation as well as resolution of inflammation. Activation of these cells by microbial products or endogenous danger signals results in production of pro-inflammatory mediators and initiation of an inflammatory response. GCs efficiently inhibit these processes by down-regulating pro-inflammatory mediators from macrophages and monocytes. On the other hand, GCs act on “naïve” monocytes and macrophages and induce anti-inflammatory mediators and differentiation of anti-inflammatory phenotypes. GC-induced anti-inflammatory monocytes have an increased ability to migrate toward inflammatory stimuli. They remove endo- and exogenous danger signals by an increased phagocytic capacity, produce anti-inflammatory mediators and limit T-cell activation. Thus, GCs limit amplification of inflammation by repressing pro-inflammatory macrophage activation and additionally induce anti-inflammatory monocyte and macrophage populations actively promoting resolution of inflammation. Further investigation of these mechanisms should lead to the development of novel therapeutic strategies to modulate undesirable inflammation with fewer side effects via induction of inflammatory resolution rather than non-specific immunosuppression.
Collapse
Affiliation(s)
- Jan M Ehrchen
- Department of Dermatology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | | |
Collapse
|
35
|
Escoter-Torres L, Caratti G, Mechtidou A, Tuckermann J, Uhlenhaut NH, Vettorazzi S. Fighting the Fire: Mechanisms of Inflammatory Gene Regulation by the Glucocorticoid Receptor. Front Immunol 2019; 10:1859. [PMID: 31440248 PMCID: PMC6693390 DOI: 10.3389/fimmu.2019.01859] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
For many decades, glucocorticoids have been widely used as the gold standard treatment for inflammatory conditions. Unfortunately, their clinical use is limited by severe adverse effects such as insulin resistance, cardiometabolic diseases, muscle and skin atrophies, osteoporosis, and depression. Glucocorticoids exert their effects by binding to the Glucocorticoid Receptor (GR), a ligand-activated transcription factor which both positively, and negatively regulates gene expression. Extensive research during the past several years has uncovered novel mechanisms by which the GR activates and represses its target genes. Genome-wide studies and mouse models have provided valuable insight into the molecular mechanisms of inflammatory gene regulation by GR. This review focusses on newly identified target genes and GR co-regulators that are important for its anti-inflammatory effects in innate immune cells, as well as mutations within the GR itself that shed light on its transcriptional activity. This research progress will hopefully serve as the basis for the development of safer immune suppressants with reduced side effect profiles.
Collapse
Affiliation(s)
- Laura Escoter-Torres
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Giorgio Caratti
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Aikaterini Mechtidou
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Jan Tuckermann
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Nina Henriette Uhlenhaut
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Sabine Vettorazzi
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| |
Collapse
|
36
|
Desgeorges T, Caratti G, Mounier R, Tuckermann J, Chazaud B. Glucocorticoids Shape Macrophage Phenotype for Tissue Repair. Front Immunol 2019; 10:1591. [PMID: 31354730 PMCID: PMC6632423 DOI: 10.3389/fimmu.2019.01591] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a complex process which is highly conserved among species. Inflammation occurs in response to injury, infection, and cancer, as an allostatic mechanism to return the tissue and to return the organism back to health and homeostasis. Excessive, or chronic inflammation is associated with numerous diseases, and thus strategies to combat run-away inflammation is required. Anti-inflammatory drugs were therefore developed to switch inflammation off. However, the inflammatory response may be beneficial for the organism, in particular in the case of sterile tissue injury. The inflammatory response can be divided into several parts. The first step is the mounting of the inflammatory reaction itself, characterized by the presence of pro-inflammatory cytokines, and the infiltration of immune cells into the injured area. The second step is the resolution phase, where immune cells move toward an anti-inflammatory phenotype and decrease the secretion of pro-inflammatory cytokines. The last stage of inflammation is the regeneration process, where the tissue is rebuilt. Innate immune cells are major actors in the inflammatory response, of which, macrophages play an important role. Macrophages are highly sensitive to a large number of environmental stimuli, and can adapt their phenotype and function on demand. This change in phenotype in response to the environment allow macrophages to be involved in all steps of inflammation, from the first mounting of the pro-inflammatory response to the post-damage tissue repair.
Collapse
Affiliation(s)
- Thibaut Desgeorges
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Giorgio Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5310, INSERM U1217, Lyon, France
| |
Collapse
|
37
|
Kang SA, Park MK, Park SK, Choi JH, Lee DI, Song SM, Yu HS. Adoptive transfer of Trichinella spiralis-activated macrophages can ameliorate both Th1- and Th2-activated inflammation in murine models. Sci Rep 2019; 9:6547. [PMID: 31024043 PMCID: PMC6484028 DOI: 10.1038/s41598-019-43057-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Trichinella spiralis is a zoonotic nematode and food borne parasite and infection with T. spiralis leads to suppression of the host immune response and other immunopathologies. Alternative activated macrophages (M2) as well as Treg cells, a target for immunomodulation by the helminth parasite, play a critical role in initiating and modulating the host immune response to parasite. The precise mechanism by which helminths modulate host immune response is not fully understood. To determine the functions of parasite-induced M2 macrophages, we compared the effects of M1 and M2 macrophages obtained from Trichinella spiralis-infected mice with those of T. spiralis excretory/secretory (ES) protein-treated macrophages on experimental intestinal inflammation and allergic airway inflammation. T. spiralis infection induced M2 macrophage polarization by increasing the expression of CD206, ARG1, and Fizz2. In a single application, we introduced macrophages obtained from T. spiralis-infected mice and T. spiralis ES protein-treated macrophages into mice tail veins before the induction of dextran sulfate sodium (DSS)-induced colitis, ovalbumin (OVA)-alum sensitization, and OVA challenge. Colitis severity was assessed by determining the severity of colitis symptoms, colon length, histopathologic parameters, and Th1-related inflammatory cytokine levels. Compared with the DSS-colitis group, T. spiralis-infected mice and T. spiralis ES protein-treated macrophages showed significantly lower disease activity index (DAI) at sacrifice and smaller reductions of body weight and proinflammatory cytokine level. The severity of allergic airway inflammation was assessed by determining the severity of symptoms of inflammation, airway hyperresponsiveness (AHR), differential cell counts, histopathologic parameters, and levels of Th2-related inflammatory cytokines. Severe allergic airway inflammation was induced after OVA-alum sensitization and OVA challenge, which significantly increased Th2-related cytokine levels, eosinophil infiltration, and goblet cell hyperplasia in the lung. However, these severe allergic symptoms were significantly decreased in T. spiralis-infected mice and T. spiralis ES protein-treated macrophages. Helminth infection and helminth ES proteins induce M2 macrophages. Adoptive transfer of macrophages obtained from helminth-infected mice and helminth ES protein-activated macrophages is an effective treatment for preventing and treating airway allergy in mice and is promising as a therapeutic for treating inflammatory diseases.
Collapse
Affiliation(s)
- Shin Ae Kang
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Mi-Kyung Park
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Sang Kyun Park
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Jun Ho Choi
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Da In Lee
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - So Myong Song
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
38
|
Kosinsky RL, Chua RL, Qui M, Saul D, Mehlich D, Ströbel P, Schildhaus HU, Wegwitz F, Faubion WA, Johnsen SA. Loss of RNF40 Decreases NF-κB Activity in Colorectal Cancer Cells and Reduces Colitis Burden in Mice. J Crohns Colitis 2019; 13:362-373. [PMID: 30321325 PMCID: PMC6599279 DOI: 10.1093/ecco-jcc/jjy165] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases are linked to an increased risk of developing colorectal cancer [CRC]. Previous studies suggested that the H2B ubiquitin ligase RING finger protein-20 [RNF20] inhibited inflammatory signaling mediated by the nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB]. However, the role of RNF40, the obligate heterodimeric partner of RNF20, in the context of inflammation and CRC has not been addressed. Here, we examined the effect of RNF40 loss on CRC cells in vitro and on inflammation and inflammatory signaling in vitro and in vivo. METHODS We evaluated H2Bub1 levels in human and murine colorectal tumors by immunohistochemistry. Moreover, we correlated H2Bub1 and RNF40 levels in vivo and assessed the consequences of RNF40 depletion on cellular phenotype and gene expression in CRC cells in vitro. Finally, we examined the effect of a colon-specific loss of Rnf40 in a murine model of colitis, and assessed both local and systemic inflammation-associated consequences. RESULTS In vitro studies revealed that the tumorigenic phenotype of CRC cells decreased after RNF40 depletion and displayed gene expression changes related to chromosome segregation and DNA replication, as well as decreased induction of several NF-κB-associated cytokines. This effect was associated with decreased nuclear localization of NF-κB following tumor necrosis factor alpha treatment. Consistently, the colon-specific loss of Rnf40 exerted a protective local, as well as systemic, effect following acute colitis. CONCLUSIONS Our findings suggest that RNF40 plays a central role in the maintenance of tumorigenic features and inflammatory signaling by promoting nuclear NF-κB activity.
Collapse
Affiliation(s)
- Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Lorenz Chua
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Qui
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Göttingen, Germany
| | - Dominik Saul
- Department of Trauma, Orthopedics and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Dawid Mehlich
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Göttingen, Germany
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Göttingen, Germany,Corresponding author: Prof. Steven A. Johnsen, PhD, University Medical Center Göttingen, Göttingen Center for Molecular Biosciences, Clinic for General, Visceral and Pediatric Surgery, Section of Tumor Epigenetics, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany. Tel.: +49 551 39-13711; fax: +49 551 39-13713; email
| |
Collapse
|
39
|
Simanovich E, Brod V, Rahat MA. Active Vaccination With EMMPRIN-Derived Multiple Antigenic Peptide (161-MAP) Reduces Angiogenesis in a Dextran Sodium Sulfate (DSS)-Induced Colitis Model. Front Immunol 2018; 9:2919. [PMID: 30619283 PMCID: PMC6295553 DOI: 10.3389/fimmu.2018.02919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease that affects the colon and shares many clinical and histological features with the dextran sulfate sodium (DSS)-induced colitis model in mice. Angiogenesis is a critical component in many autoimmune diseases, as well as in the DSS-induced colitis model, and is it partially mediated by EMMPRIN, a multifunctional protein that can induce the expression of both the potent pro-angiogenic vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). We asked whether targeting EMMPRIN by active vaccination, using a novel, specific epitope in the protein, synthesized as a multiple antigenic peptide (MAP), could trigger beneficial effects in the DSS-induced colitic C57BL/6J mice. Mice were vaccinated with four boost injections (50 μg each) of either 161-MAP coding for the EMMPRIN epitope or the scrambled control peptide (Scr-MAP) emulsified in Freund's adjuvant. We show that male mice that were vaccinated with 161-MAP lost less weight, demonstrated improved disease activity indices (DAI), had reduced colitis histological score, and their colons were longer in comparison to mice vaccinated with the Scr-MAP. The 161-MAP vaccination also reduced serum and colon levels of EMMPRIN, colon concentrations of VEGF, MMP-9, and TGFβ, and vessel density assessed by CD31 staining. A similar effect was observed in female mice vaccinated with 161-MAP, including weight loss, colitis histological score, colon length, colon levels of EMMPRIN and colon concentrations of VEGF. However, for female mice, the changes in DAI values, EMMPRIN serum levels, and MMP-9 and TGFβ colon concentrations did not reach significance. We conclude that our strategy of alleviating autoimmunity in this model through targeting angiogenesis by actively vaccinating against EMMPRIN was successful and efficient in reducing angiogenesis.
Collapse
Affiliation(s)
| | - Vera Brod
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
40
|
Defining the role of glucocorticoids in inflammation. Clin Sci (Lond) 2018; 132:1529-1543. [DOI: 10.1042/cs20171505] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
An established body of knowledge and clinical practice has argued in favor of the use of glucocorticoids in various chronic inflammatory and autoimmune diseases. However, the very well-known adverse effects associated with their treatment hampers continuation of therapy with glucocorticoids. Analyses of the molecular mechanisms underlying the actions of glucocorticoids have led to the discovery of several mediators that add complexity and diversity to the puzzling world of these hormones and anti-inflammatory drugs. Such mediators hold great promise as alternative pharmacologic tools to be used as anti-inflammatory drugs with the same properties as glucocorticoids, but avoiding their metabolic side effects. This review summarizes findings about the molecular targets and mediators of glucocorticoid function.
Collapse
|