1
|
Hekimoglu ER, Esrefoglu M, Karakaya Cimen FB, Elibol B, Dedeakayogullari H, Pasin Ö. Beneficial effects of adipose-derived stromal vascular fraction on testicular injury caused by busulfan. Drug Chem Toxicol 2024; 47:1018-1032. [PMID: 38465409 DOI: 10.1080/01480545.2024.2324332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
The use of stem cells can attenuate testicular injury and promote sperm production. The adipose-derived stromal vascular fraction (SVF) has become an attractive cell source for cell-based therapies. In this study, we aimed to investigate the therapeutic efficacy of SVF on busulfan-induced testicular damage in rats. Twenty-four male rats were randomly divided into control, busulfan, SVF, and busulfan + SVF groups. Testicular damage was induced by intraperitoneal administration of busulfan (35 mg/kg). SVF obtained from human adipose tissue using Lipocube SVF™ was injected into rats 5 weeks after busulfan administration. At the end of the 8th week, rats were sacrificed, and histopathological, biochemical, and western blotting analyses were performed. No harmful effects of SVF on healthy testis tissue and sperm parameters were detected. SVF improved busulfan-induced oxidative stress in both testis tissue and serum. SVF injection to damaged testicular tissue resulted in increases in the healthy spermatozoon numbers and decreases in the abnormal tail numbers. Additionally, SVF increased bax/Bcl, DAZL, and TGF-β1 levels whereas decreased ATG5 and NF-kB levels. According to the results we obtained in this study, we suggest that SVF is beneficial in restoring damaged tissue by primarily being a multipotent cell source, by inhibiting oxidative stress and converting necrotic cell death to apoptotic cell death. In the future, clinical applications should bring higher benefits. Since SVF is the patient's own tissue, being harmless, it will offer an advantageous supportive treatment option for patients already weakened by cancer and anticancer therapy.
Collapse
Affiliation(s)
- E Rumeysa Hekimoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Mukaddes Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Fatma Bedia Karakaya Cimen
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Huri Dedeakayogullari
- Department of Medical Biochemistry, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Özge Pasin
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
2
|
Zhao L, Chen C, Wang L, Liu Y, Gong F, Wang J, Sun H, Wang D, Wang Z. Photoperiod-regulated mitophagy in the germ cells of Brandt's voles (Lasiopodomys brandtii). Integr Zool 2024; 19:1105-1120. [PMID: 38556617 DOI: 10.1111/1749-4877.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Photoperiod is a pivotal factor in affecting testicular function and spermatogenesis in seasonal-breeding animals. Mitophagy is essential for spermatogenesis, but its association with seasonal photoperiods has not been studied extensively. To explore this, we exposed male Brandt's voles (Lasiopodomys brandtii) to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) conditions from their embryonic stages. Our results indicated that testis weight, volume, and relative testes weight were all significantly increased in LP compared to SP. Additionally, blood testosterone levels were markedly higher in LP than SP. Histological examination revealed that seminiferous diameter and epithelium thickness were greater in LP, with an increased abundance of germ cell types and cell numbers compared to SP. RT-qPCR analysis showed that mitophagy-promoting genes, such as Pink1, Prkn, Tomm7, Mnf2, Lc3, Optn, Gabarap, and Nbr1 were all upregulated in LP. Fluorescence in situ hybridization indicated that Pink1 expression was present in spermatogonia in SP, while in LP, Pink1 expression extended to almost all germ cell types with significantly higher mean optical density. Prkn expression was found in all germ cell types in both LP and SP, with a significantly higher mean optical density of 10-week-old LP males. Transmission electron microscopy showed normal mitochondrial morphology with clear membranes in SP, while the LP group had reduced cristae in mitochondria and damaged mitochondria undergoing autophagy. This study suggests that mitophagy may be involved in the photoperiodic spermatogenesis in Brandt's voles, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunxiao Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Yan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fanglei Gong
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Wang Z, Wang MD, Wang XC, Chen L, Li LF, Jiang LN, Xu JH, Kai Dang. High levels of mitochondrial dynamics, autophagy, and apoptosis contribute to stable testicular status in hibernating Daurian ground squirrels. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111705. [PMID: 39032767 DOI: 10.1016/j.cbpa.2024.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Daurian ground squirrels (Spermophilus dauricus) experience various stress states during winter hibernation, but the impact on testicular function remains unclear. This study focused on the effects of changes in testicular autophagy, apoptosis, and mitochondrial homeostasis signaling pathways at various stages on the testes of Daurian ground squirrels. Results indicated that: (1) During winter hibernation, there was a significant increase in seminiferous tubule diameter and seminiferous epithelium thickness compared to summer. Spermatogonia number and testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels were higher during inter-bout arousal, suggesting that the testes remained stable during hibernation. (2) An increased number of mitochondria with intact morphology were observed during hibernation, indicating that mitochondrial homeostasis may contribute to testicular stability. (3) DNA fragmentation was evident in the testes during the hibernation and inter-bout arousal stages, with the highest level of caspase3 enzyme activity detected during inter-bout arousal, together with elevated levels of Bax/Bcl-2 and Lc3 II/Lc3 I, indicating an up-regulation of apoptosis and autophagy signaling pathways during hibernation. (4) The abundance of DRP1, MFF, OPA1, and MFN2 proteins was increased, suggesting an up-regulation of mitochondrial dynamics-related pathways. Overall, testicular autophagy, apoptosis, and mitochondrial homeostasis-related signaling pathways were notably active in the extreme winter environment. The well-maintained mitochondrial morphology may favor the production of reproductive hormones and support stable testicular morphology.
Collapse
Affiliation(s)
- Zhe Wang
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China.
| | - Ming-Di Wang
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Xing-Chen Wang
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Le Chen
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Lu-Fan Li
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Li-Na Jiang
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Jin-Hui Xu
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Kai Dang
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| |
Collapse
|
4
|
Samaha MM, Nour OA. Ranolazine ameliorates T1DM-induced testicular dysfunction in rats; role of NF-κB/TXNIP/GSDMD-N/IL-18/Beclin-1 signaling pathway. Eur J Pharmacol 2024; 977:176744. [PMID: 38897438 DOI: 10.1016/j.ejphar.2024.176744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Approximately 90% of diabetic males have varying degrees of testicular dysfunction. The current study investigates the possible beneficial consequences of ranolazine against T1DM-induced testicular dysfunction in rats. Thirty-two male Sprague Dawley rats were assorted into 4 groups; normal, diabetic (single 50 mg/kg STZ, I.P.) and ranolazine (40 and 80 mg/kg, orally). The present investigation revealed that the hypoglycemic impact of ranolazine significantly improved the testicular weight and body weight of the final rats, as well as the concentration of blood testosterone, sperm count, and viability, all of which were associated with STZ-induced testicular dysfunction. Furthermore, as demonstrated by elevated reduced glutathione (GSH) activity and lowered malondialdehyde (MDA) levels, diabetic rats administered ranolazine showed a noteworthy improvement in the oxidant/antioxidant ratio. Furthermore, a substantial rise in beclin-1 concentration was seen in conjunction with a significant decrease in thioredoxin-interacting protein (TXNIP) and interleukin-18 (IL-18) concentrations when ranolazine was administered. Although ranolazine exhibited a reduction in inflammation as seen by lower expression of nuclear factor-κB (NF-κB) and cluster of differentiation (CD68) in the testicles, these biochemical findings were validated by improvements in the morphological and histopathological outcomes of both the pancreatic and testicular tissues. In conclusion, daily oral administration of ranolazine (40 and 80 mg/kg) for 8 weeks could be a promising therapy for T1DM-induced testicular dysfunction through its dose-dependent anti-oxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Omnia A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Bueno LM, Soares EM, Ferraz JF, Santiago CS, Comelis-Martins MT, Taboga SR, Morielle-Versute E, Beguelini MR. Testicular regression and recrudescence in the bat Eptesicus furinalis: Morpho-physiological variations and hormonal signaling pathways. Anat Rec (Hoboken) 2024; 307:2875-2890. [PMID: 38095144 DOI: 10.1002/ar.25369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 07/04/2024]
Abstract
Males of the bat Eptesicus furinalis show at least one process of testicular regression, in which the testes regress and temporarily interrupt the production of sperm, during its annual reproductive cycle. As the process of spermatogenesis is under hormonal control, mainly of pituitary and androgen hormones, our aim was to analyze the morphological variations and the hormonal control of the testes of E. furinalis during the four phases of its reproductive cycle. Testes of 18 adult males, divided into four sample groups (active, regressing, regressed, and recrudescence phases), were submitted to morphological, morphometric, and immunohistochemical analyzes. The results demonstrate that the processes of testicular regression and recrudescence of E. furinalis are under the control of pituitary, androgen and estrogen hormones. The regulation is exerted mainly through the activation and cross signaling of AR and FSHR in Sertoli cells and of LHR in Leydig cells. The testicular regression appears to be activated by an inhibition/reduction of AR expression in Sertoli cells, which inhibits the proliferation and differentiation of new spermatogonia and causes the deactivation of spermatogenesis. Conversely, the testicular recrudescence occurs by the increasing of the expression of LHR in Leydig cells, and AR and FSHR in Sertoli cells, which reactivates the testicular production of androgens and estrogens, the proliferation of spermatogonia and restarts the spermatogenesis.
Collapse
Affiliation(s)
- Larissa Mayumi Bueno
- Department of Zoology and Botany, UNESP-Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Emília M Soares
- Center of Biological and Health Science, UFOB-Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Juliana F Ferraz
- Center of Biological and Health Science, UFOB-Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Cornélio S Santiago
- Center of Biological and Health Science, UFOB-Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | | | | | - Eliana Morielle-Versute
- Department of Zoology and Botany, UNESP-Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Mateus Rodrigues Beguelini
- Center of Biological and Health Science, UFOB-Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| |
Collapse
|
6
|
Rosales GJ, Filippa VP, Mohamed FH. Effect of estrogens on apoptosis in the pituitary of viscachas (Lagostomus maximus maximus). ZOOLOGY 2024; 164:126171. [PMID: 38761613 DOI: 10.1016/j.zool.2024.126171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/13/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Estrogens, acting through their receptors (ERα and ERβ), regulate cell turnover in the pituitary gland, influencing cell proliferation and apoptosis across various species. However, their role in pituitary processes in seasonally reproducing animals remains poorly understood. This study aims to investigate the influence of estrogens, through the expression of their specific receptors, on the apoptosis of PD cells in relation to sexual maturity, the reproductive cycle, and pregnancy in a seasonal reproductive rodent (Lagostomus maximus maximus). ERα and caspase-3-cleaved (CASP3c) immunoreactive (-ir) cells were identified through immunohistochemistry. Apoptotic cells were detected using the TUNEL technique, with quantitative analysis facilitated by image analysis software, alongside measurement of serum estradiol levels using radioimmunoassay The immunostaining pattern for ERα included nuclear (ERαn) and cytoplasmic (ERαc) staining. In male viscachas, ERα expression significantly increases from immature to adult animals, correlating with the rise in serum estradiol levels and a decrease in the percentage of apoptotic cells. During the gonadal regression period in adult males, a decrease in the number of ER-ir cells and serum levels of estradiol corresponds with an increase in the number of apoptotic cells. In females, serum levels of estradiol peaked during mid-pregnancy, coinciding with a significant decrease in the number of apoptotic cells in the PD. Simultaneously, the percentage of ERαn-ir cells reaches its maximum value during late pregnancy, indicating the need to maintain the protective action of this gonadal hormone throughout the extensive pregnancy in these rodents. Regional ERα receptor expression and apoptotic cells appear to be associated with distinct PD cell populations and their hormonal responses. Finally, elevated estradiol levels coincide with diminished apoptotic cells in the male reproductive cycle and during pregnancy, suggesting an antiapoptotic role of estradiol in this species.
Collapse
Affiliation(s)
- Gabriela Judith Rosales
- Laboratorio de Histología, Área Morfología, Departamento de Bioquímica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Av. Ejército de los Andes 950 Bloque I Piso 1º, San Luis 5700, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica Palmira Filippa
- Laboratorio de Histología, Área Morfología, Departamento de Bioquímica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Av. Ejército de los Andes 950 Bloque I Piso 1º, San Luis 5700, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Fabian Heber Mohamed
- Laboratorio de Histología, Área Morfología, Departamento de Bioquímica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Av. Ejército de los Andes 950 Bloque I Piso 1º, San Luis 5700, Argentina
| |
Collapse
|
7
|
Li H, Li Y, Liu J, Liu X, Li Y, Wang S, Ma J. Knockdown of ZnT4 Induced Apoptosis, Inhibited Proliferation and testosterone synthesis of TM3 cells. In Vitro Cell Dev Biol Anim 2023; 59:565-574. [PMID: 37733161 DOI: 10.1007/s11626-023-00804-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 09/22/2023]
Abstract
Zinc deficiency has a huge impact on male reproduction. The zinc transporter (ZnT) family is involved in the maintenance of zinc homeostasis and testosterone synthesis. However, the underlying mechanisms remain to be investigated. Therefore, in this study, we aimed to determine the effect of zinc transporter 4 (ZnT4) on testosterone synthesis in male Kunming mice and mouse Leydig cells. The results of this study showed that compared with the zinc normal diet group (Con group), the zinc-deficient diet group (ZnD group) had decreased zinc content and increased ZnT4 expression in testicular tissues, and decreased serum testosterone levels, suggesting that ZnT4 may be involved in Leydig cell injury resulting from a zinc-deficient diet. Subsequently, mouse Leydig cell line TM3 cells were used to analyze the effect of ZnT4 downregulation on TM3 cell proliferation and apoptosis, on testosterone synthesis, and its underlying mechanisms. Here, we show that knockdown of ZnT4 can induce the accumulation of zinc, inhibit the viability, and induce apoptosis in TM3 cells. In addition, knockdown of ZnT4 downregulated testosterone concentration and expression of testosterone synthesis-related proteins steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase/D5-D4 isomerase (3β-HSD) in TM3 cells, while hCG could rescue their levels. We show that it is ZnT4 that plays a role in testosterone production through a mediated PI3K/Akt/mTOR autophagy pathway, whereas mTORC1 complex inhibitor (Rapa) blocks the decrease in testosterone levels caused by ZnT4 downregulation. In conclusion, the above results indicate that ZnT4 plays an important role in regulating testosterone synthesis.
Collapse
Affiliation(s)
- Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 480 Heping Street, Shijiazhuang, 050071, Xinhua District, Hebei, China
| | - Yuejia Li
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuan Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuanjing Li
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 480 Heping Street, Shijiazhuang, 050071, Xinhua District, Hebei, China.
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China.
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 480 Heping Street, Shijiazhuang, 050071, Xinhua District, Hebei, China.
| |
Collapse
|
8
|
An K, Yao B, Tan Y, Kang Y, Su J. Potential Role of Anti-Müllerian Hormone in Regulating Seasonal Reproduction in Animals: The Example of Males. Int J Mol Sci 2023; 24:5874. [PMID: 36982948 PMCID: PMC10054328 DOI: 10.3390/ijms24065874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Seasonal reproduction is a survival strategy by which animals adapt to environmental changes to improve their fitness. Males are often characterized by a significantly reduced testicular volume, indicating that they are in an immature state. Although many hormones, including gonadotropins, have played a role in testicular development and spermatogenesis, research on other hormones is insufficient. The anti-Müllerian hormone (AMH), which is a hormone responsible for inducing the regression of Müllerian ducts involved in male sex differentiation, was discovered in 1953. Disorders in AMH secretion are the main biomarkers of gonadal dysplasia, indicating that it may play a crucial role in reproduction regulation. A recent study has found that the AMH protein is expressed at a high level during the non-breeding period of seasonal reproduction in animals, implying that it may play a role in restricting breeding activities. In this review, we summarize the research progress on the AMH gene expression, regulatory factors of the gene's expression, and its role in reproductive regulation. Using males as an example, we combined testicular regression and the regulatory pathway of seasonal reproduction and attempted to identify the potential relationship between AMH and seasonal reproduction, to broaden the physiological function of AMH in reproductive suppression, and to provide new ideas for understanding the regulatory pathway of seasonal reproduction.
Collapse
Affiliation(s)
- Kang An
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuchen Tan
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yukun Kang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Zhang Y, Zhu Y, Cao X, Zhang G, Liu S. Cell adhesion function was altered during the seasonal regression of the seminiferous epithelium in the mink species Neovison vison. J Anim Sci 2023; 101:skad190. [PMID: 37282598 PMCID: PMC10276646 DOI: 10.1093/jas/skad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023] Open
Abstract
Minks are seasonal breeders whose seminiferous epithelium undergoes regression through massive germ cell death, leaving only Sertoli cells and spermatogonial cells in the tubules. However, the molecular mechanisms that control this biological process remain largely unknown. This study describes a transcriptomic analysis of mink testes at various reproductive stages (active, regressing, and inactive). A comparison of seminiferous epithelium at different stages of reproduction shows that cell adhesion is altered during regression. In addition, genes and proteins involved in forming the blood-testis barrier (BTB) were examined in sexually active and inactive minks. The seminiferous epithelium in the testes of sexually inactive minks expressed occludin, but this expression was not discernibly observed in the testes of sexually active minks. There was no discernible expression of CX43 in the seminiferous epithelium in the testes of sexually inactive minks, but CX43 was expressed in the testes of sexually active minks. During the regression process, we observed a remarkable increase in the expression levels of Claudin-11, which is associated with Sertoli-germ cell junctions. In conclusion, these findings suggest a loss of Sertoli-germ cell adhesion, which may regulate postmeiotic cell shedding during testicular regression in mink.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaodong Cao
- School of pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonmous Region, China
- School of pharmacy New Drug Safety Evaluation Research Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonmous Region, China
| | - Guanhua Zhang
- Agriculture and Animal Husbandry Comprehensive Inspection and Testing Center of chifeng, Inner Mongolia, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| |
Collapse
|
10
|
Zhou Z, He Y, Wang S, Wang Y, Shan P, Li P. Autophagy regulation in teleost fish: A double-edged sword. AQUACULTURE 2022; 558:738369. [DOI: 10.1016/j.aquaculture.2022.738369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Beltrán-Frutos E, Seco-Rovira V, Martínez-Hernández J, Ferrer C, Serrano-Sánchez MI, Pastor LM. Cellular Modifications in Spermatogenesis during Seasonal Testicular Regression: An Update Review in Mammals. Animals (Basel) 2022; 12:ani12131605. [PMID: 35804504 PMCID: PMC9265002 DOI: 10.3390/ani12131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The most common form of reproduction in mammals is seasonal reproduction. This ensures that offspring are born at the most suitable time for survival, due to the abundance of food and the optimal temperatures for early postnatal development. In males, one way to achieve this is to decrease or lose fertility over a given period. This loss is associated with a greater or lesser degree of spermatogenesis modification that affects both germ and Sertoli cells. This paper reviews the different cellular mechanisms that have been postulated in recent years to explain how the activity of the seminiferous epithelium decreases during the non-reproductive period. Abstract Testicular regression occurs during the non-breeding season in many mammals. This affects spermatogenesis, resulting in decreased or arrested activity. Both lead to a decrease or cessation in sperm production. In recent years, the cellular mechanisms that lead to infertility in males in non-reproductive periods have been studied in very different species of mammals. At the start of the present century, the main mechanism involved was considered as an increase in the apoptotic activity of germ cells during the regression period. The loss of spermatogonia and spermatocytes causes not only a decrease in spermatogenesis, but an arrest of the seminiferous epithelium activity at the end of regression. Recently, in some mammal species, it was found that apoptosis is the usual mechanism involved in epithelium activity arrest, although it is firstly atrophied by massive desquamation of the germ cells that are released from their binding with the Sertoli cells, and which are shed into the lumen of the seminiferous tubule. In other species, it has been shown that not only germ cell apoptosis, but also Sertoli cell apoptosis, including decreased proliferative activity, spermatophagy or autophagy, are involved in testicular regression. Furthermore, the most recent studies indicate that there are multiple patterns of seminiferous epithelium regression in seasonally breeding animals, which may not only be used by different species, but also by the same ones to reproduce in the best conditions, ensuring their survival. In conclusion, at this time, it is not possible to consider the existence of a paradigmatic cellular mechanism in the involution of the seminiferous epithelium applicable to all male mammals with seasonal reproduction, rather the existence of several mechanisms which participate to a greater or lesser extent in each of the species that have been studied to date.
Collapse
|
12
|
Real FM, Lao-Pérez M, Burgos M, Mundlos S, Lupiáñez DG, Jiménez R, Barrionuevo FJ. Cell adhesion and immune response, two main functions altered in the transcriptome of seasonally regressed testes of two mammalian species. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 340:231-244. [PMID: 35535962 DOI: 10.1002/jez.b.23142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022]
Abstract
In species with seasonal breeding, male specimens undergo substantial testicular regression during the nonbreeding period of the year. However, the molecular mechanisms that control this biological process are largely unknown. Here, we report a transcriptomic analysis on the Iberian mole, Talpa occidentalis, in which the desquamation of live, nonapoptotic germ cells is the major cellular event responsible for testis regression. By comparing testes at different reproductive states (active, regressing, and inactive), we demonstrate that the molecular pathways controlling the cell adhesion function in the seminiferous epithelium, such as the MAPK, ERK, and TGF-β signaling, are altered during the regression process. In addition, inactive testes display a global upregulation of genes associated with immune response, indicating a selective loss of the "immune privilege" that normally operates in sexually active testes. Interspecies comparative analyses using analogous data from the Mediterranean pine vole, a rodent species where testis regression is controlled by halting meiosis entry, revealed a common gene expression signature in the regressed testes of these two evolutionary distant species. Our study advances in the knowledge of the molecular mechanisms associated to gonadal seasonal breeding, highlighting the existence of a conserved transcriptional program of testis involution across mammalian clades.
Collapse
Affiliation(s)
- Francisca M Real
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Miguel Lao-Pérez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco J Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| |
Collapse
|
13
|
Gumułka M, Hrabia A, Rozenboim I. Annual changes in cell proliferation and apoptosis and expression of connexin 43 in the testes of domestic seasonal breeding ganders. Theriogenology 2022; 186:27-39. [DOI: 10.1016/j.theriogenology.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022]
|
14
|
Melatonin is involved in the modulation of the hypothalamic and pituitary activity in the South American plains vizcacha, Lagostomus maximus. J Comp Physiol B 2021; 192:141-159. [PMID: 34459966 DOI: 10.1007/s00360-021-01405-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Melatonin, the key messenger of photoperiodic information, is synthesized in the pineal gland by arylalkylamine N-acetyltransferase enzyme (AANAT). It binds to specific receptors MT1 and MT2 located in the hypothalamus and pituitary gland. Melatonin can modulate the reproductive axis affecting the secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). The South American plains vizcacha, Lagostomus maximus, shows natural poliovulation of up to 800 oocytes per estrous cycle, a 154-day long pregnancy, and reactivation of the reproductive axis at mid-gestation with pre-ovulatory follicular recruitment, presence of active corpora lutea, and variations of the endocrine status. Here we analyzed the involvement of melatonin in the modulation of the hypothalamic and pituitary gland physiology of vizcacha thorough several approaches, including histological localization of melatoninergic system components, assessment of melatoninergic components expression throughout the reproductive cycle, and evaluation of the effect of melatonin on hypothalamic and pituitary activities during the follicular and luteal phases of the estrous cycle. AANAT and melatonin receptors were localized in the pineal gland and preoptic area of the hypothalamus. Increase in pineal AANAT and serum melatonin expression was observed as pregnancy progressed, with the lowest hypothalamic MT1 and MT2 levels at mid-pregnancy. Pulsatility assays demonstrated that melatonin induces GnRH and LH secretion at luteal phase. The melatoninergic system effects on hypothalamic and pituitary gland hormones secretion during pregnancy pinpoint to melatonin as a potential key factor underlying the reactivation of the reproductive axis activity at mid-gestation.
Collapse
|
15
|
Barbeito CG, Acuña F, Miglino MA, Portiansky EL, Flamini MA. Placentation and embryo death in the plains viscacha (Lagostomus maximus). Placenta 2021; 108:97-102. [PMID: 33857820 DOI: 10.1016/j.placenta.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023]
Abstract
Caviomorpha are an exceptional group among rodents due to their extended gestational period and the delivery of precocial offspring. Among them, Lagostomus maximus is characterized by its polyovulation, polyembryony, and the highest embryonic death known in mammals. Its chorioallantoic placenta is hemomonochorial, an ancestral character among rodents. It resembles more the human placenta than the murine models. As in all caviomophs, the chorioallantoic placenta is divided in a main placenta and a subplacenta. The former is organized in labyrinth lobes surrounded by trophospongium, as in most caviomorphs. The giant cells (more numerous than in other caviomorphs) near the decidua could be related to invasiveness. During placentation of L. maximus, uterine natural killer cells are found. These cells have been related to invasiveness and remodeling of blood vessels in Mus musculus and Homo sapiens, although in other caviomorphs are not frequently found. In L. maximus, the placenta develops in all conceptuses (5-6 per uterine horn). Necrosis was observed in each implantation site at day 70 post-coitum, except in that closest to the vagina in each horn. This process of embryo death followed by resorption begins at day 26-30 post-coitum. Recently, we found variations in the percentage of blood vessel and uterine gland areas that could explain the regional differences in embryo survival. The characteristics of the placenta and implantation of L. maximus are important to stablish a unique model for studying placentation as well as early embryonic death, of interest for human and veterinary medicine.
Collapse
Affiliation(s)
- Claudio Gustavo Barbeito
- Laboratory of Descriptive, Experimental and Comparative, Histology and Embryology, Argentina; National Council of Scientific and Technical Research, CCT-La Plata, Argentina.
| | - Francisco Acuña
- Laboratory of Descriptive, Experimental and Comparative, Histology and Embryology, Argentina; National Council of Scientific and Technical Research, CCT-La Plata, Argentina
| | | | - Enrique Leo Portiansky
- National Council of Scientific and Technical Research, CCT-La Plata, Argentina; Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata, Argentina
| | - Mirta Alicia Flamini
- Laboratory of Descriptive, Experimental and Comparative, Histology and Embryology, Argentina
| |
Collapse
|
16
|
Mou J, Xu J, Wang Z, Wang C, Yang X, Wang X, Xue H, Wu M, Xu L. Effects of photoperiod on morphology and function in testis and epididymis of Cricetulus barabensis. J Cell Physiol 2021; 236:2109-2125. [PMID: 32743820 DOI: 10.1002/jcp.29998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/03/2023]
Abstract
Photoperiod regulates the seasonal reproductive rhythms of mammals by influencing the development and function of sexual organs; however, the underlying mechanism remains unclear. We examined the morphology and functioning of the main sex organs of striped dwarf hamsters (Cricetulus barabensis) under different photoperiods (short daylight [SD], moderate daylight [MD], and long daylight [LD]) and further investigated the underlying molecular mechanisms. There was an inverse correlation between blood melatonin levels and photoperiod in the order SD > MD > LD. Decreases in body and tissue weights were observed under SD, whereas testis and epididymis weights between MD and LD were comparable. The diameters of the spermatogenic tubules, thickness of the spermatogenic epithelium, and the number of spermatogonia and Sertoli cells decreased under SD, whereas the serum-luteinizing hormone, follicle-stimulating hormone, and fecal testosterone concentrations decreased under LD. In SD, bax/bcl2 protein expression increased in the testes and decreased in the epididymides, whereas LC3II/LC3I remained unchanged in the testes and increased in the epididymides compared with the MD group. In LD, bax/bcl2 and LC3II/LC3I protein expression levels were unchanged in the testes but were decreased in the epididymides. In SD and LD, adenosine triphosphate synthase and citrate synthase protein expression levels were unchanged in the testes but were decreased in the epididymides. Drp1 and Mff protein expression increased in the testes and decreased in the epididymides. Overall, different regulatory mechanisms in the testis and epididymis led to degeneration under SD and maintenance under LD, preferentially protecting mitochondrial function in the testis by regulating mitochondrial fission.
Collapse
Affiliation(s)
- Junjie Mou
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jinhui Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Zhe Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Chuanli Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xueqi Yang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xingchen Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Huiliang Xue
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Ming Wu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Laixiang Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
17
|
Shen H, Li C, He M, Huang Y, Wang J, Wang M, Yue B, Zhang X. Immune profiles of male giant panda (Ailuropoda melanoleuca) during the breeding season. BMC Genomics 2021; 22:143. [PMID: 33639852 PMCID: PMC7916315 DOI: 10.1186/s12864-021-07456-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background The giant panda (Ailuropoda melanoleuca) is a threatened endemic Chinese species and a flagship species of national and global conservation concern. Life history theory proposes that reproduction and immunity can be mutually constraining and interrelated. Knowledge of immunity changes of male giant pandas during the breeding season is limited. Results Here, we researched peripheral blood gene expression profiles associated with immunity. Thirteen captive giant pandas, ranging from 9 to 11 years old, were divided into two groups based on their reproductive status. We identified 318 up-regulated DEGs and 43 down-regulated DEGs, which were enriched in 87 GO terms and 6 KEGG pathways. Additionally, we obtained 45 immune-related genes with altered expression, mostly up-regulated, and identified four hub genes HSPA4, SUGT1, SOD1, and IL1B in PPI analysis. These 45 genes were related to pattern recognition receptors, autophagy, peroxisome, proteasome, natural killer cell, antigen processing and presentation. SUGT1 and IL1B were related to pattern recognition receptors. HSP90AA1 was the most up-regulated gene and is a member of heat shock protein 90 family. HSP90 contributes to the translocation of extracellular antigen. KLRD1 encodes CD94, whose complex is an inhibitor of the cytotoxic activity of NK cells, was down-regulated. IGIP, which has the capability of inducing IgA production by B cells, was down-regulated, suggesting low concentration of IgA in male giant pandas. Our results suggest that most immune-related genes were up-regulated and more related to innate immune than adaptive immune. Conclusions Our results indicated that breeding male giant pandas presented an immunoenhancement in innate immunity, enhanced antigen presentation and processing in cellular immunity compared to non-breeding males. The humoral immunity of male giant pandas may show a tendency to decrease during the breeding season. This study will provide a foundation for further studies of immunity and reproduction in male giant pandas. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07456-x.
Collapse
Affiliation(s)
- Haibo Shen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Ming He
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Jing Wang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Minglei Wang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
18
|
Massoud D, Lao-Pérez M, Ortega E, Burgos M, Jiménez R, Barrionuevo FJ. Divergent Seasonal Reproductive Patterns in Syntopic Populations of Two Murine Species in Southern Spain, Mus spretus and Apodemus sylvaticus. Animals (Basel) 2021; 11:ani11020243. [PMID: 33498171 PMCID: PMC7908971 DOI: 10.3390/ani11020243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/16/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary In temperate zones of the Earth, most species reproduce in seasons providing the most favourable environmental conditions. Producing gametes is expensive in energetical terms, so both males and females either reduce or abolish gametogenesis during the non-breeding period. We thoroughly studied the testes of sexually inactive males of two rodents, the wood mouse, Apodemus sylvaticus, and the Algerian mouse, Mus spretus, in southern Iberian peninsula. These populations are syntopic, that is, animals of the two species share their territories and resources, so one would expect them to show similar or identical seasonal reproduction patterns. Contrarily, we found that both species reproduce during most of the year, but wood mice stop breeding in the summer whereas Algerian mice do it in winter. These divergent seasonal breeding patterns imply that either very subtle animal features and/or environmental cues operate to determine reproduction timing and support the notion that multiple models of circannual reproduction patterns are possible for different populations of the same species, showing that the mechanisms controlling seasonal reproduction are in fact very plastic and fast evolving. Hence, small mammals probably have multiple ways available to get adapted to the unstable environmental conditions derived from the ongoing global climate change. Abstract In most mammals with seasonal reproduction, males undergo testis regression during the non-breeding period. We performed a morphological, hormonal, functional, and molecular study of the testes of sexually inactive males of two species of murine rodents, the wood mouse, Apodemus sylvaticus, and the Algerian mouse, Mus spretus, in syntopic populations of southern Iberian peninsula. Both species reproduce during most of the year, but wood mice stop breeding in the summer whereas Algerian mice do it in winter. Sexually inactive males of A. sylvaticus show complete testis regression with reduced levels of serum testosterone and abnormal distribution of cell-adhesion molecules. Contrarily, inactive males of M. spretus maintain almost normal spermotogenesis despite a significant reduction of androgenic function. The lack of an evident explanation for the divergent seasonal breeding patterns found in southern populations of A. sylvaticus and M. spretus, compared with northern ones, implies that very subtle species/population-specific features and/or non-conspicuous environmental cues probably operate to determine their seasonal breeding pattern. These results also support the notion that multiple models of circannual testis variation are possible for different populations of the same species, showing that the mechanisms controlling seasonal reproduction are in fact very plastic and fast evolving.
Collapse
Affiliation(s)
- Diaa Massoud
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Avenida del Conocimiento S/N, 18016 Armilla, Granada, Spain; (D.M.); (M.L.-P.); (M.B.); (F.J.B.)
- Department of Zoology, Faculty of Science, Fayoum University, Gamma St., Keman Square, Fayoum 63514, Egypt
| | - Miguel Lao-Pérez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Avenida del Conocimiento S/N, 18016 Armilla, Granada, Spain; (D.M.); (M.L.-P.); (M.B.); (F.J.B.)
| | - Esperanza Ortega
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Avenida de la Investigación 11, 18071 Granada, Spain;
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Avenida del Conocimiento S/N, 18016 Armilla, Granada, Spain; (D.M.); (M.L.-P.); (M.B.); (F.J.B.)
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Avenida del Conocimiento S/N, 18016 Armilla, Granada, Spain; (D.M.); (M.L.-P.); (M.B.); (F.J.B.)
- Correspondence:
| | - Francisco J. Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Avenida del Conocimiento S/N, 18016 Armilla, Granada, Spain; (D.M.); (M.L.-P.); (M.B.); (F.J.B.)
| |
Collapse
|
19
|
Silva SFM, Oliveira LCA, Dias FCR, Cordero-Schmidt E, Vargas-Mena JC, Silva IGM, Báo SN, Luna JLS, Lima RRM, Júnior RFA, Farias NBS, Moura CEB, Matta SLP, Morais DB. Seasonal evaluation of spermatogenesis of the hematophagous bat Desmodus rotundus in the Caatinga biome. PLoS One 2020; 15:e0242932. [PMID: 33270698 PMCID: PMC7714151 DOI: 10.1371/journal.pone.0242932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/12/2020] [Indexed: 11/29/2022] Open
Abstract
This study was aimed to characterize the spermatogenic process and its seasonal variation in Desmodus rotundus, in the Caatinga biome, a water-limited ecosystem, with marked water restriction during most of the year. Collections of adult animals were performed during the dry and rainy seasons, and after euthanasia, their testes were processed histologically to perform morphological, morphometric, ultrastructural and immunohistochemical analyzes. The percentage of seminiferous epithelium, number of Leydig cells per gram of testis, and population of Sertoli cells and A-type spermatogonia presented by D. rotundus were significantly higher in the rainy season, while the percentage of lumen, mitotic index, support capacity performed by Sertoli cells, and overall yield of spermatogenesis were higher in the dry season. The ultrastructure of spermatogenesis was similar to that described in other mammals, and the immunohistochemical analysis revealed activity of the aromatase enzyme in Sertoli cells, Leydig cells, spermatocytes and spermatids, as well as the presence of androgen receptors in Sertoli cells and Leydig cells. FGF2 activity was detected in primary spermatocytes in zygotene and pachytene, as well as secondary spermatocytes and rounded and elongated spermatids, while the BCL-2 protein was expressed in primary spermatocytes in zygotene and pachytene, secondary spermatocytes, and rounded spermatids. The activity of these molecules was similar in both seasons, and associated with the morphometric findings, indicates maintenance in the integrity of the seminiferous epithelium throughout the year. The seasonal study of D. rotundus spermatogenesis indicates a continuous spermatogenesis pattern and suggests a greater production of spermatozoa in the rainy season in the Caatinga biome.
Collapse
Affiliation(s)
- Soraia F. M. Silva
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Laryssa C. A. Oliveira
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Fernanda C. R. Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Eugenia Cordero-Schmidt
- Department of Ecology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Juan C. Vargas-Mena
- Department of Ecology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ingrid G. M. Silva
- Department of Cell Biology, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Sônia N. Báo
- Department of Cell Biology, University of Brasília, Brasília, Distrito Federal, Brazil
| | - João L. S. Luna
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ruthnaldo R. M. Lima
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Raimundo F. A. Júnior
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Naisandra B. S. Farias
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Carlos E. B. Moura
- Department of Animal Sciences, Federal Rural University of the Semi-Arid Region, Mossoró, Rio Grande do Norte, Brazil
| | - Sérgio L. P. Matta
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danielle B. Morais
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
20
|
Xu JH, Wang Z, Mou JJ, Zhao XY, Geng XC, Wu M, Xue HL, Chen L, Xu LX. The effect of autophagy and mitochondrial fission on Harderian gland is greater than apoptosis in male hamsters during different photoperiods. PLoS One 2020; 15:e0241561. [PMID: 33253255 PMCID: PMC7704011 DOI: 10.1371/journal.pone.0241561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/18/2020] [Indexed: 11/28/2022] Open
Abstract
Photoperiod is an important factor of mammalian seasonal rhythm. Here, we studied morphological differences in the Harderian gland (HG), a vital photosensitive organ, in male striped dwarf hamsters (Cricetulus barabensis) under different photoperiods (short photoperiod, SP; moderate photoperiod, MP; long photoperiod, LP), and investigated the underlying molecular mechanisms related to these morphological differences. Results showed that carcass weight and HG weight were lower under SP and LP conditions. There was an inverse correlation between blood melatonin levels and photoperiod in the order SP > MP > LP. Protein expression of hydroxyindole-O-methyltransferase (HIOMT), a MT synthesis-related enzyme, was highest in the SP group. Protein expression of bax/bcl2 showed no significant differences, indicating that the level of apoptosis remained stable. Protein expression of LC3II/LC3I was higher in the SP group than that in the MP group. Furthermore, comparison of changes in the HG ultrastructure demonstrated autolysosome formation in the LP, suggesting the lowest autophagy level in under MP. Furthermore, the protein expression levels of ATP synthase and mitochondrial fission factor were highest in the MP group, whereas citrate synthase, dynamin-related protein1, and fission1 remained unchanged in the three groups. The change trends of ATP synthase and citrate synthase activity were similar to that of protein expression among the three groups. In summary, the up-regulation of autophagy under SP and LP may be a primary factor leading to loss of HG weight and reduced mitochondrial energy supply capacity.
Collapse
Affiliation(s)
- Jin-Hui Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Zhe Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jun-Jie Mou
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xiang-Yu Zhao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xiao-Cui Geng
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
- Yiheyuan School, Yiyuan, Shandong, China
| | - Ming Wu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Hui-Liang Xue
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lei Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lai-Xiang Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
- * E-mail:
| |
Collapse
|
21
|
Patulin induces pyroptosis through the autophagic-inflammasomal pathway in liver. Food Chem Toxicol 2020; 147:111867. [PMID: 33217525 DOI: 10.1016/j.fct.2020.111867] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 01/18/2023]
Abstract
Patulin (PAT), a kind of mycotoxin, is produced by many common fungi in fruit and vegetable-based products. It has been shown to cause hepatotoxicity. However, the possible mechanisms are not completely elucidated. The present study aimed to characterize the role of autophagic-inflammasomal pathway on pyroptosis induced by PAT. In mouse livers, PAT induced pyroptosis, and increased inflammation through the activation of NLRP3 inflammasome. In liver cells, we noticed that PAT induced pyroptotic cell death, which was confirmed by the activation of GSDMD, caspase-1, the release of LDH, and the result of PI/Hoechst assay. In addition, PAT-induced pyroptosis was dependent upon the activation of NLRP3 inflammasome and the release of cathepsin B. Cells had less expression of caspase-1 and IL-1β protein levels after treated by NLRP3 inhibitor MCC950 or cathepsin B inhibitor CA-074Me. The expression of GSDMD and IL-1β protein levels were also decrease after treated by caspase-1 inhibitor Ac-YVAD-cmk. Moreover, autophagy inhibitor 3-methyladenine (3-MA) attenuated PAT-induced increase in cytoplasmic cathepsin B expression, and subsequent LDH release, the activation of NLRP3 inflamosomes, pyroptotic cell death, and inflammation. These findings suggested that PAT-induced pyroptosis maybe through autophagy-cathepsin B-inflammasomal pathway in the liver. These results provide new mechanistic insights into PAT-induced hepatotoxicity.
Collapse
|
22
|
Yahyavy S, Valizadeh A, Saki G, Khorsandi L. Taurine induces autophagy and inhibits oxidative stress in mice Leydig cells. JBRA Assist Reprod 2020; 24:250-256. [PMID: 32155016 PMCID: PMC7365531 DOI: 10.5935/1518-0557.20190079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES This study evaluated taurine (TAU) effects on autophagy, apoptosis and oxidative stress in mice Leydig TM3 cells. METHODS We treated TM3 cells with TAU (100 µg/mL) or 3-Methyladenine (3-MA, an autophagy inhibitor) for 24 h, and assessed cell viability, testosterone level, oxidative stress, apoptosis, and autophagy. RESULTS The results showed that TAU markedly increased cell viability, testosterone levels, expression of autophagy-related genes and percentage of LC3-II-positive cells. TAU significantly reduced malondialdehyde (MDA) contents and reactive oxygen species (ROS) levels and increased the activities of SOD (superoxide dismutase) and CAT (Catalase) enzymes in the TM3 cells. TAU in the presence of autophagy inhibitor (3-MA) increased oxidative stress and decreased testosterone levels. CONCLUSION The results showed that autophagy might be involved in TAU-increased testosterone levels in mice Leydig TM3 cells.
Collapse
Affiliation(s)
- Shokofeh Yahyavy
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Armita Valizadeh
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
23
|
A dual death/survival role of autophagy in the adult ovary of Lagostomus maximus (Mammalia- Rodentia). PLoS One 2020; 15:e0232819. [PMID: 32469908 PMCID: PMC7259749 DOI: 10.1371/journal.pone.0232819] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Follicular atresia is a cell death event that occurs in the great majority of follicles before ovulation in the mature mammalian ovary. Germ cell loss has been mainly associated to apoptosis although autophagy also seems to be at play. Aimed to increase our understanding on the possible cooperating role of autophagy and apoptosis in follicular atresia and/or follicular survival, we analyzed both programmed cell death mechanisms in a rodent model, the South American plains vizcacha, Lagostomus maximus. Female vizcacha shows highly suppressed apoptosis-dependent follicular atresia in the adult ovary, with continuous folliculogenesis and massive polyovulation. This strategy of massive ovulation requires a permanent remodeling of the ovarian architecture to maintain the availability of quiescent primordial follicles throughout the individual's reproductive lifespan. We report here our analysis of autophagy (BECN1, LAMP1 and LC3B-I/II) and apoptosis (BCL2 and ACTIVE CASPASE-3) markers which revealed interactive behaviors between both processes, with autophagy promoting survival or cell death depending on the ovarian structure. Strong BECN1, LC3B-II and LAMP1 staining was observed in atretic follicles and degenerating corpora lutea that also expressed nuclear ACTIVE CASPASE-3. Healthy follicles showed a slight expression of autophagy proteins but a strong expression of BCL2 and no detectable ACTIVE CASPASE-3. Transmission electron microscopy revealed a high formation of autophagosomes, autolysosomes and lysosomes in atretic follicles and degenerating corpora lutea and a low number of autophagic vesicles in normal follicles. The co-expression of LC3B-BECN1, LC3B-LAMP1 and LC3B-ACTIVE CASPASE-3 was only detected in atretic follicles and degenerating corpora lutea, while co-expression of BCL2-BECN1 was only observed in normal follicles. We propose that autophagy could act as a mechanism to eliminate altered follicles and remnant corpora lutea providing the necessary space for maturation of primordial follicles that continuously enter the growing follicular pool to sustain massive ovulation.
Collapse
|
24
|
Jablonska O, Juchno D, Leska A, Kowalewska K, Boroń A. Variable occurrence of apoptosis in the testes of diploid and sterile allotetraploid Cobitis (Teleostei, Cobitidae) males during the reproductive cycle. J Exp Biol 2020; 223:jeb212050. [PMID: 32205361 DOI: 10.1242/jeb.212050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Cobitis species exist in both diploid and diploid-polyploid (d-p) populations, but mostly occur in the latter. They are considered an important model organism to study the biology and physiology of natural hybrid and polyploid vertebrates. Indeed, polyploidization causes a huge stress for in terms of cell physiology and alters spermatogenesis in polyploid fish. The most extensively studied mode of germ cell death during spermatogenesis in vertebrates is apoptosis. The aim of this study was to examine caspase-3 immunoexpression in the testes of Cobitis taenia from a diploid population as well as C. taenia and sterile tetraploid Cobitis from d-p populations before, during and after spawning. The obtained results suggest a different performance of apoptosis in the testes of C. taenia from the two studied populations and seems to be conditioned by their role as the only sperm donors in d-p populations. Moreover, apoptosis was an active cell death process in the testes of tetraploid Cobitis.
Collapse
Affiliation(s)
- Olga Jablonska
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Dorota Juchno
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Anna Leska
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Karolina Kowalewska
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Alicja Boroń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| |
Collapse
|
25
|
Sales CF, Barbosa Pinheiro AP, Ribeiro YM, Weber AA, Paes-Leme FDO, Luz RK, Bazzoli N, Rizzo E, Melo RMC. Effects of starvation and refeeding cycles on spermatogenesis and sex steroids in the Nile tilapia Oreochromis niloticus. Mol Cell Endocrinol 2020; 500:110643. [PMID: 31711986 DOI: 10.1016/j.mce.2019.110643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022]
Abstract
Food restriction is part of the life cycle of many fish species; however, nutritional deficiency may negatively influence gametogenesis and gonadal maturation. The aim of this study was to evaluate the effects of food restriction on the spermatogenesis of Nile tilapia. For this, adult males were submitted to starvation and refeeding cycles (alternating periods of starvation and feeding) for 7, 14, 21, and 28 days. After 7 days of starvation, glycaemic and lipid levels were significantly reduced, followed by reduction of plasma testosterone (T) and 11-ketotestosterone (11-KT). In addition, reduced proliferation of spermatogonia and increased apoptosis of spermatocytes, spermatids, and spermatozoa was observed in starvation groups. In the refeeding groups, the sex steroids and the proportion of germ cells had no significant alterations compared to the control group, except for spermatozoa. In this sense, the present study suggests that starvation after 7 days progressively reduces T and 11-TK, resulting in damage to the production of spermatogenic cells, while refeeding may delay spermatogenesis but does not lead to testicular impairment.
Collapse
Affiliation(s)
- Camila Ferreira Sales
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Barbosa Pinheiro
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Yves Moreira Ribeiro
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - André Alberto Weber
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Fabíola de Oliveira Paes-Leme
- Laboratório de Aquacultura, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ronald Kennedy Luz
- Laboratório de Aquacultura, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Pontifícia Universidade Católica de Minas Gerais, Programa de Pós-graduação em Biologia de Vertebrados, 30535-610, Belo Horizonte, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Testicular characterization and spermatogenesis of the hematophagous bat Diphylla ecaudata. PLoS One 2019; 14:e0226558. [PMID: 31835274 PMCID: PMC6910855 DOI: 10.1371/journal.pone.0226558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/28/2019] [Indexed: 11/19/2022] Open
Abstract
Diphylla ecaudata is a hematophagous bat endemic of South America, with food preference for bird blood. Given the lack of information about the reproductive activity of this species, this study aimed to describe the testicular morphology and histomorphometry of D. ecaudata in order to understand its reproductive biology, specially spermatogenesis. The animals were collected in Lajes city, Rio Grande do Norte, Brazil. Following euthanasia, the testes were histologically processed for morphological, morphometric, ultrastructural and immunohistochemical analyses. Their average body weight was 24.64g, with a gonadosomatic index of 0.49%, tubulesomatic index of 0.47%, and a total of 32.20m of seminiferous tubules per gram of testis. The pre-meiotic, meiotic, and post-meiotic phases accounted for 56.20%, 9.30%, and 34.50% of the seminiferous epithelium cycle, respectively. The ultrastructure of spermiogenesis was similar to that described in other mammals and the perforatorium was not observed in the sperm. Androgen receptors were detected in Sertoli cell nuclei and Leydig cell cytoplasm, while aromatase enzyme was detected only in Sertoli cell nuclei. FGF2 and BCL-2 activities were detected in the cytoplasm of zygotene and pachytene primary spermatocytes, as well as round and elongated spermatids. D. ecaudata showed testicular pattern similar to other mammals and characteristics common to other bat species. This species stood out for its high efficiency of Sertoli cells, which presented high capacity to support germ cells, besides the highest sperm production rates among those already recorded. This study is the first step towards the knowledge of D. ecaudata reproduction and the first description of its spermatogenesis.
Collapse
|
27
|
Autophagy as a consequence of seasonal functions of testis and epididymis in adult male European bison (Bison bonasus, Linnaeus 1758). Cell Tissue Res 2019; 379:613-624. [PMID: 31705214 DOI: 10.1007/s00441-019-03111-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Abstract
The European bison is still an animal endangered with extinction, so by learning factors that regulate its reproduction, we can contribute to the survival of this species. On the other hand, autophagy is a dynamic, lisosomal, and evolutionary conserved process which is essential for animal cell survival, homeostasis, and differentiation. This process was demonstrated in many species and in many organs; however, information on the metabolic course of autophagy in the male reproductive system in seasonally reproducing species is lacking. Therefore, in this study, we examined for the first time several autophagy-related factors (mTOR, ULK1, Atg13, PI3K, beclin1, beclin2, Atg14, Atg5, Atg16L, LC3) in testicular and epididymal tissues obtained from adult male individuals of the European bison. We compared the level of gene expression, protein synthesis, and localization of autophagy-related factors between June, September, and December (before, during, and after reproductive activity, respectively). We confirmed that the induction of autophagy was at the highest level in the period after reproductive activity, i.e., in December, when a significant increase in the gene and protein expression was observed for the majority of these factors, probably to ensure cellular protection. However, autophagy was also clearly marked in September, during the intense spermatogenesis, and this may indicate a great demand for autophagy-related proteins required for the normal development of reproductive cells. Obtained results seem to confirm that autophagy pathway, as a consequence of seasonal reproduction, may control the normal course of spermatogenesis in the male European bison.
Collapse
|
28
|
Structural organization, GABAergic and tyrosine hydroxylase expression in the striatum and globus pallidus of the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha). J Mol Histol 2019; 50:515-531. [PMID: 31515635 DOI: 10.1007/s10735-019-09845-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
The striatum is an essential component of the basal ganglia that regulatessensory processing, motor, cognition, and behavior. Depending on the species, the striatum shows a unique structure called caudate-putamen as in mice, or its separation into two regions called caudate and lenticular nuclei, the latter formed by putamen and globus pallidus areas, as in primates. These structures have two compartments, striosome and matrix. We investigated the structural organization, GABAergic and tyrosine hydroxylase (TH) expression in the striatum and globus pallidus of the South American plains vizcacha, Lagostomus maximus. Its striatum showed regionalization arising from the presence of an internal capsule, and a similar organization to a striosome-matrix compartmentalization. GABAergic neurons in the matrix of caudate exhibited parvalbumin, calretinin, calbindin, GAD65, and NADPH-d-immunoreactivity. These were also expressed in cells of the putamen with the exception of calretinin showing neurofibers localization. Globus pallidus showed parvalbumin- and GAD65-immunoreactive cells, and calretinin- and calbindin-immunoreactive neuropil, plus GABA-A-immunoreactive neurofibers. NADPH-d-, GAD65- and GABA-A-immunoreactive neurons were larger than parvalbumin-, calretinin-, and calbindin-immunoreactive cells, whereas calbindin-immunoreactive cells were the most abundant. In addition, TH-immunoreactive neuropil was observed in the matrix of the striatum. A significant larger TH-immunoreactive area and neuron number was found in females compared to males. The presence of an internal capsule suggests an adaptive advantage concerning motor and cognitive abilities favoring reaction time in response to predators. In an anatomy-evolutive perspective, the striatum of vizcacha seems to be closer to that of humans than to that of laboratory traditional models such as mouse.
Collapse
|
29
|
Abdel-Maksoud FM, Hussein MT, Attaai A. Seasonal Variation of the Intraepithelial Gland in Camel Epididymis with Special Reference to Autophagosome. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1052-1060. [PMID: 31210121 DOI: 10.1017/s1431927619014557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The key role of the epididymis is contributing to sperm storage, maturation, and survival. The epididymis of camel has a unique structure called the intraepithelial gland. The present work aimed to investigate the structure of the epididymal intraepithelial gland with special references to the seasonal variation. The samples were collected from the distal part of the corpus epididymes of completely healthy mature camels (Camelus dromedarius) in the breeding and nonbreeding seasons. Tomato lectin-positive material had been demonstrated within the epididymal spermatozoa. Here, we provide the first transmission electron microscopic study for the intraepithelial gland of camel epididymis detecting the autophagy during the nonbreeding season. The autophagosomes originated from the endoplasmic reticulum, surrounding mitochondria, and located mainly next to the basement membrane. This location is probably valuable for subsequent passing of their contents into the interstitium for possible recycling. The histochemical and ultrastructural characteristics of the gland in the breeding season indicated a hyperactive secretory microenvironment enriched with the glycoprotein-producing machinery, which could be controlled by androgens. The present data suggest that the camel intraepithelial gland has a significant impact on the reproductive activity through their secretory microenvironment during the breeding season. Moreover, it recycles the unused organelles or proteins for reuse or to supply energy under stress conditions in the nonbreeding season.
Collapse
Affiliation(s)
- Fatma M Abdel-Maksoud
- Department of Anatomy and Histology,Faculty of Veterinary Medicine, Assiut University,71526,Egypt
| | - Manal T Hussein
- Department of Anatomy and Histology,Faculty of Veterinary Medicine, Assiut University,71526,Egypt
| | - Abdelraheim Attaai
- Department of Anatomy and Histology,Faculty of Veterinary Medicine, Assiut University,71526,Egypt
| |
Collapse
|
30
|
Li MY, Zhu XL, Zhao BX, Shi L, Wang W, Hu W, Qin SL, Chen BH, Zhou PH, Qiu B, Gao Y, Liu BL. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death Dis 2019; 10:489. [PMID: 31222000 PMCID: PMC6586845 DOI: 10.1038/s41419-019-1728-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
Adrenomedullin (ADM) exerts anti-oxidant, anti-inflammatory and anti-apoptotic effects in Leydig cells. However, the role and mechanism of ADM in the pyroptosis of Leydig cells are poorly understood. This study first showed the protective effects of ADM on the pyroptosis and biological functions of Leydig cells exposed to lipopolysaccharide (LPS) by promoting autophagy. Primary rat Leydig cells were treated with various concentrations of LPS and ADM, together with or without N-acetyl-L-cysteine (NAC) or 3-methyladenine (3-MA). Cell proliferation was detected through CCK-8 and BrdU incorporation assays, and ROS level was measured with the DCFDA assay. Real-time PCR, western blot, immunofluorescence, transmission electron microscopy, TUNEL and flow cytometry were performed to examine ADM's effect on the pyroptosis, autophagy and steroidogenic enzymes of Leydig cells and AMPK/mTOR signalling. Like NAC, ADM dose-dependently reduced LPS-induced cytotoxicity and ROS overproduction. ADM also dose-dependently ameliorated LPS-induced pyroptosis by reversing the increased expression of NLRP3, ASC, caspase-1, IL-1β, IL-18, GSDMD, caspase-3, caspase-7, TUNEL-positive and PI and active caspase-1 double-stained positive rate, DNA fragmentation and LDH concentration, which could be rescued via co-incubation with 3-MA. ADM dose-dependently increased autophagy in LPS-induced Leydig cells, as confirmed by the increased expression of LC3-I/II, Beclin-1 and ATG-5; decreased expression of p62 and autophagosomes formation; and increased LC3-II/LC3-I ratio. However, co-treatment with 3-MA evidently decreased autophagy. Furthermore, ADM dose-dependently rescued the expression of steroidogenic enzymes, including StAR, P450scc, 3β-HSD and CYP17, and testosterone production in LPS-induced Leydig cells. Like rapamycin, ADM dose-dependently enhanced AMPK phosphorylation but reduced mTOR phosphorylation in LPS-induced Leydig cells, which could be rescued via co-incubation with 3-MA. In addition, pyroptosis was further decreased, and autophagy was further promoted in LPS-induced Leydig cells upon co-treatment with ADM and rapamycin. ADM may protect the steroidogenic functions of Leydig cells against pyroptosis by activating autophagy via the ROS-AMPK-mTOR axis.
Collapse
Grants
- Hunan Natural Science Foundation, Hunan, China (Grant No.: 2019JJ40269), Health and Family Planning Research Project of Hunan Province, Changsha, China (Grant No.: B2017051)
- National Science Foundation of China, Beijing, China (Grant No.: 81401190)
- Social Development Foundation of Zhenjiang, Zhenjiang, China (Grant No.: SH2016031)
- National Science Foundation of China, Beijing, China (Grant No.: 81501921),Science and Technology Project of Wuhan, China (Grant No.: 2016060101010045)
- National Science Foundation of China, Beijing, China (Grant No.: 81602241)
- National Science Foundation of China, Beijing, China (Grant Nos.: 81471449,81871110 and 81671449),Guangdong Province Natural Science Foundation, Guangzhou, China (Grant No.: 2015A030313141), Guangdong Province Science and Technology Project, Guangzhou, China (Grant Nos.: 2016B030230001 and 2016A040403113), Key Scientific and Technological Program of Guangzhou City, Guangzhou, China (Grant No.: 201604020189)
Collapse
Affiliation(s)
- Ming-Yong Li
- Department of Urology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China
| | - Xia-Lian Zhu
- Department of Hand Surgery, Affiliated Nanhua Hospital of University of South China, No. 336 Dong Feng South Road, Hengyang, 421002, Hunan Province, China
| | - Bi-Xia Zhao
- Department of Urology, Affiliated Nanhua Hospital of University of South China, No. 336 Dong Feng South Road, Hengyang, 421002, Hunan Province, China
| | - Lei Shi
- Department of Oncology, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Wei Hu
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China.
| | - Song-Lin Qin
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China.
| | - Bing-Hai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, No. 438 Liberation Road, Zhenjiang, 212000, Jiangsu Province, China.
| | - Pang-Hu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Bo Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Yong Gao
- Reproductive Medicine Centre, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Second Zhongshan Road, Guangzhou, 510080, Guangdong Province, China
| | - Bo-Long Liu
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
31
|
Massoud D, Lao-Pérez M, Hurtado A, Abdo W, Palomino-Morales R, Carmona FD, Burgos M, Jiménez R, Barrionuevo FJ. Germ cell desquamation-based testis regression in a seasonal breeder, the Egyptian long-eared hedgehog, Hemiechinus auritus. PLoS One 2018; 13:e0204851. [PMID: 30286149 PMCID: PMC6171879 DOI: 10.1371/journal.pone.0204851] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/05/2018] [Indexed: 11/18/2022] Open
Abstract
Testes of seasonally breeding species experience a severe functional regression before the non-breeding period, which implies a substantial mass reduction due to massive germ-cell depletion. Two alternative mechanisms of seasonal germ-cell depletion have been described in mammals, apoptosis and desquamation (sloughing), but their prevalence has not been determined yet due to reduced number of species studied. We performed a morphological, hormonal, and molecular study of the mechanism of seasonal testicular regression in males of the Egyptian long eared-hedgehog (Hemiechinus auritus). Our results show that live, non-apoptotic, germ cells are massively depleted by desquamation during the testis regression process. This is concomitant with both decreased levels of serum testosterone and irregular distribution of the cell-adhesion molecules in the seminiferous epithelium. The inactive testes maintain some meiotic activity as meiosis onset is not halted and spermatocytes die by apoptosis at the pachytene stage. Our data support the notion that apoptosis is not the major testis regression effector in mammals. Instead, desquamation appears to be a common mechanism in this class.
Collapse
Affiliation(s)
- Diaa Massoud
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Miguel Lao-Pérez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Alicia Hurtado
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | | | - Francisco David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
- * E-mail:
| | | |
Collapse
|