1
|
Li D, Wang Z, Yu Q, Wang J, Wu R, Tuo Z, Yoo KH, Wusiman D, Ye L, Guo Y, Yang Y, Shao F, Shu Z, Okoli U, Cho WC, Wei W, Feng D. Tracing the Evolution of Sex Hormones and Receptor-Mediated Immune Microenvironmental Differences in Prostate and Bladder Cancers: From Embryonic Development to Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407715. [PMID: 40007149 PMCID: PMC11967776 DOI: 10.1002/advs.202407715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Indexed: 02/27/2025]
Abstract
The bladder and prostate originate from the urogenital sinus. However, bladder cancer (BC) is usually classified as an immune "hot" tumor, whereas prostate cancer (PCa) is deemed as an immune "cold" tumor according to the tumor microenvironment (TME) and clinical outcomes. To investigate the immune differences between BC and PCa, studies are compared focusing on immune regulation mediated by sex hormones and receptors to identify key genes and pathways responsible for the immune differences. From a developmental perspective, it is shown that PCa and BC activate genes and pathways similar to those in the developmental stage. During prostate development, the differential expression and function of the androgen receptor (AR) across cell types may contribute to its dual role in promoting and inhibiting immunity in different cells. Androgen deprivation therapy affects AR function in different cells within the TME, influencing immune cell infiltration and antitumor function. Additionally, estrogenα and estrogenβ exert contrasting effects in PCa and BC, which may hold the potential for modifying the "cold" and "hot" tumor phenotypes. Future research should target key genes and pathways involved in bladder development to clarify the immune regulatory similarities and differences between BC and PCa.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Zhipeng Wang
- Department of UrologySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610041China
| | - Qingxin Yu
- Department of pathologyNingbo Clinical Pathology Diagnosis CenterNingbo CityZhejiang Province315211China
| | - Jie Wang
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Ruicheng Wu
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Zhouting Tuo
- Department of Urological SurgeryDaping HospitalArmy Medical Center of PLAArmy Medical UniversityChongqing404100China
| | - Koo Han Yoo
- Department of UrologyKyung Hee UniversitySeoul04510South Korea
| | - Dilinaer Wusiman
- Department of Comparative PathobiologyCollege of Veterinary MedicinePurdue UniversityWest LafayetteIN47907USA
- Purdue Institute for Cancer ResearchPurdue UniversityWest LafayetteIN47907USA
| | - Luxia Ye
- Department of Public Research PlatformTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000China
| | - Yiqing Guo
- Department of Public Research PlatformTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000China
| | - Yubo Yang
- Department of UrologyThree Gorges HospitalChongqing UniversityWanzhouChongqing404000China
| | - Fanglin Shao
- Department of RehabilitationThe Affiliated Hospital of Southwest Medical UniversityLuzhou646000P. R. China
| | - Ziyu Shu
- Department of Earth Science and EngineeringImperial College LondonLondonSW7 2AZUK
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education)Chongqing UniversityChongqing400045China
| | - Uzoamaka Okoli
- Division of Surgery & Interventional ScienceUniversity College LondonLondonW1W 7TSUK
- Basic and Translational Cancer Research GroupDepartment of Pharmacology and TherapeuticsCollege of MedicineUniversity of NigeriaEnugu StateNsukka410001Eastern part of Nigeria
| | - William C. Cho
- Department of Clinical OncologyQueen Elizabeth HospitalHong KongSAR999077China
| | - Wuran Wei
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Dechao Feng
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
- Division of Surgery & Interventional ScienceUniversity College LondonLondonW1W 7TSUK
| |
Collapse
|
2
|
Ju Y, Xiao W, Mathis BJ, Shi Y. KLF4: a multifunctional nexus connecting tumor progression and immune regulation. Front Immunol 2025; 16:1514780. [PMID: 39995670 PMCID: PMC11848521 DOI: 10.3389/fimmu.2025.1514780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Krüppel-like factors (KLFs) regulate various biological processes such as cell proliferation, migration, invasion, and differentiation as gene transcription factors. Signaling pathways which mediated by KLF4 and KLF4 have a sophisticated role in tumors due to multiple factors, including the types or stage of tumors. KLF4 plays a promoter role in tumorigenesis and development, or tumor suppressor as a context-dependent anti- and pro-inflammatory factor. KLF4 over-expression increases CD8+T cell differentiation and enhances the antitumor immunity. This review aims to provide information about the relationship of KLF4 in immunity with tumors and to guide the future study.
Collapse
Affiliation(s)
- Yunjie Ju
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bryan James Mathis
- Clinical Research Manuscript Elevation Service, University of Tsukuba Institute of Medicine, Tsukuba, Japan
| | - Ying Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Liu CW, Peng HY, Siao AC, Tsuei YW, Lin YY, Shiah SG, Shih LJ, Yeh CC, Lee SW, Kao YH. Resistin stimulates PC-3 prostate cancer cell growth through stimulation of SOCS3 and SOCS5 genes. Exp Biol Med (Maywood) 2023; 248:1695-1707. [PMID: 37646261 PMCID: PMC10792425 DOI: 10.1177/15353702231191206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/08/2023] [Indexed: 09/01/2023] Open
Abstract
Resistin and suppressors of cytokine signaling (SOCSs) have been reported to regulate prostate cancer (PCa) cell proliferation and survival, respectively. Whether any of the SOCS molecules mediate the mitogenic effect of resistin on PCa cells is unknown. Using PC-3 human PCa cells, we found that resistin upregulates the expression of SOCS3 and SOCS5 mRNA, but not SOCS7 mRNA, in a dose- and time-dependent manner. The resistin-induced increases in SOCS3 and SOCS5 expression and cell proliferation were prevented by pretreatment with specific inhibitors of the TLR4, ERK, p38 MAPK, JNK, PI3K, and JAK2 proteins. However, pretreatment with a TLR2 inhibitor had no effect on resistin-mediated SOCS3 and SOCS5 expression. In addition, the effects of resistin on SOCS3, SOCS5, and SOCS7 mRNA levels were cell type-specific. Overexpression of either SOCS3 or SOCS5 enhanced further resistin-stimulated growth of PC-3 cells, whereas silencing SOCS3 or SOCS5 antagonized resistin-increased cell growth. Further PCa tissue analysis demonstrated higher levels of RETN, TLR4, SOCS3, and SOCS5 mRNAs in cancer tissues than benign prostate hyperplasia and indicated positive correlations among RETN, TLR4, and SOCS5. These data suggest that SOCS5, TLR4, and, to a lesser extent, SOCS3 can mediate the mitogenic effect of resistin on PC-3 PCa cells.
Collapse
Affiliation(s)
- Chi-Wei Liu
- Department of Life Sciences, National Central University, Taoyuan 320
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330
| | - Hsuan-Yu Peng
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350
| | - An-Ci Siao
- Department of Life Sciences, National Central University, Taoyuan 320
| | - Yi-Wei Tsuei
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325
| | - Yen-Yue Lin
- Department of Life Sciences, National Central University, Taoyuan 320
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350
| | - Li-Jane Shih
- Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan 325
| | - Chien-Chih Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan 325
| | - Shih-Wei Lee
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Taoyuan 320
| |
Collapse
|
4
|
Qu G, Zhang Y, Duan H, Tang C, Yang G, Chen D, Xu Y. ARPC5 is transcriptionally activated by KLF4, and promotes cell migration and invasion in prostate cancer via up-regulating ADAM17 : ARPC5 serves as an oncogene in prostate cancer. Apoptosis 2023; 28:783-795. [PMID: 36881291 DOI: 10.1007/s10495-023-01827-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most common cancers in men worldwide. Actin-related protein 2/3 complex subunit 5 (ARPC5) has been validated as a critical regulator in several kinds of human tumors. However, whether ARPC5 is implicated in PCa progression remains largely unknown. METHODS PCa specimens and PCa cell lines were obtained for detecting gene expressions using western blot and quantitative reverse transcriptase PCR (qRT-PCR). PCa cells transfected with ARPC5 shRNA or a disintegrin and metalloprotease 17 (ADAM17) overexpressed plasmids were harvested for assessing cell proliferation, migration and invasion by using cell counting kit-8 (CCK-8), colony formation and transwell assays, respectively. The interaction relationship between molecules was testified with chromatin immunoprecipitation and luciferase reporter assay. Xenograft mice model was conducted for confirming the role of ARPC5/ADAM17 axis in vivo. RESULTS Upregulated ARPC5 was observed in PCa tissues and cells, as well as forecasted poor prognosis of PCa patients. Depletion of ARPC5 inhibited PCa cell proliferation, migration and invasion. Krüppel-like factor 4 (KLF4) was identified to be a transcriptional activator of ARPC5 via binding with its promoter region. Furthermore, ADAM17 served as a downstream effector of ARPC5. ADAM17 overexpression overturned ARPC5 knockdown-induced repressive impacts on PCa progression in vitro and in vivo. CONCLUSION Collectively, ARPC5 was activated by KLF4 and upregulated ADAM17 to promote PCa progression, which might act as a promising therapeutic target and prognostic biomarker for PCa.
Collapse
Affiliation(s)
- GenYi Qu
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China
| | - YuLong Zhang
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China
| | - HongTao Duan
- Department of Ultrasound, ZhuZhou central hospital, ZhuZhou, 412000, Hunan Province, P.R. China
| | - Cheng Tang
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China
| | - Guang Yang
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China
| | - Dan Chen
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China
| | - Yong Xu
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China.
| |
Collapse
|
5
|
Economopoulos V, Pannell M, Johanssen VA, Scott H, Andreou KE, Larkin JR, Sibson NR. Inhibition of Anti-Inflammatory Macrophage Phenotype Reduces Tumour Growth in Mouse Models of Brain Metastasis. Front Oncol 2022; 12:850656. [PMID: 35359423 PMCID: PMC8960618 DOI: 10.3389/fonc.2022.850656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer brain metastasis is a significant clinical problem and carries a poor prognosis. Although it is well-established that macrophages are a primary component of the brain metastasis microenvironment, the role of blood-derived macrophages (BDM) and brain-resident microglia in the progression of brain metastases remains uncertain. The aim of this study, therefore, was to determine the role, specifically, of pro- and anti-inflammatory BDM and microglial phenotypes on metastasis progression. Initial in vitro studies demonstrated decreased migration of EO771 metastatic breast cancer cells in the presence of pro-inflammatory, but not anti-inflammatory, stimulated RAW 264.7 macrophages. In vivo, suppression of the anti-inflammatory BDM phenotype, specifically, via myeloid knock out of Krüppel-like Factor 4 (KLF4) significantly reduced EO771 tumour growth in the brains of C57BL/6 mice. Further, pharmacological inhibition of the anti-inflammatory BDM and/or microglial phenotypes, via either Colony Stimulating Factor 1 Receptor (CSF-1R) or STAT6 pathways, significantly decreased tumour burden in two different syngeneic mouse models of breast cancer brain metastasis. These findings suggest that switching BDM and microglia towards a more pro-inflammatory phenotype may be an effective therapeutic strategy in brain metastasis.
Collapse
Affiliation(s)
- Vasiliki Economopoulos
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Maria Pannell
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Vanessa A Johanssen
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Helen Scott
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Kleopatra E Andreou
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - James R Larkin
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicola R Sibson
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Suresh R, Barakat DJ, Barberi T, Zheng L, Jaffee E, Pienta KJ, Friedman AD. NF-κB p50-deficient immature myeloid cell (p50-IMC) adoptive transfer slows the growth of murine prostate and pancreatic ductal carcinoma. J Immunother Cancer 2021; 8:jitc-2019-000244. [PMID: 31940589 PMCID: PMC7057444 DOI: 10.1136/jitc-2019-000244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2019] [Indexed: 12/26/2022] Open
Abstract
Background Macrophages and dendritic cells lacking the transcription factor nuclear factor kappa B p50 are skewed toward a proinflammatory phenotype, with increased cytokine expression and enhanced T cell activation; additionally, murine melanoma, fibrosarcoma, colon carcinoma, and glioblastoma grow slower in p50−/− mice. We therefore evaluated the efficacy of p50-negative immature myeloid cells (p50-IMCs) adoptively transferred into tumor-bearing hosts. Immature cells were used to maximize tumor localization, and pretreatment with 5-fluorouracil (5FU) was examined due to its potential to impair marrow production of myeloid cells, to target tumor myeloid cells and to release tumor neoantigens. Methods Wild-type (WT)-IMC or p50-IMC were generated by culturing lineage-negative marrow cells from WT or p50−/− mice in media containing thrombopoietin, stem cell factor and Flt3 ligand for 6 days followed by monocyte colony-stimulating factor for 1 day on ultralow attachment plates. Mice inoculated with Hi-Myc prostate cancer (PCa) cells or K-RasG12D pancreatic ductal carcinoma (PDC)-luciferase cells received 5FU followed 5 days later by three doses of 107 immature myeloid cells (IMC) every 3–4 days. Results PCa cells grew slower in p50−/− mice, and absence of host p50 prolonged the survival of mice inoculated orthotopically with PDC cells. IMC from Cytomegalovirus (CMV)-luciferase mice localized to tumor, nodes, spleen, marrow, and lung. 5FU followed by p50-IMC slowed PCa and PDC tumor growth, ~3-fold on average, in contrast to 5FU followed by WT-IMC, 5FU alone or p50-IMC alone. Slowed tumor growth was evident for 93% of PCa but only 53% of PDC tumors; we therefore focused on PCa for additional IMC analyses. In PCa, p50-IMC matured into F4/80+ macrophages, as well as CD11b+F4/80−CD11c+ conventional dendritic cells (cDCs). In both tumor and draining lymph nodes, p50-IMC generated more macrophages and cDCs than WT-IMC. Activated tumor CD8+ T cells were increased fivefold by p50-IMC compared with WT-IMC, and antibody-mediated CD8+ T cell depletion obviated slower tumor growth induced by 5FU followed by p50-IMC. Conclusions 5FU followed by p50-IMC slows the growth of murine prostate and pancreatic carcinoma and depends on CD8+ T cell activation. Deletion of p50 in patient-derived marrow CD34+ cells and subsequent production of IMC for adoptive transfer may contribute to the therapy of these and additional cancers.
Collapse
Affiliation(s)
- Rahul Suresh
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J Barakat
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Theresa Barberi
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lei Zheng
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Jaffee
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J Pienta
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan D Friedman
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Maia J, Otake AH, Poças J, Carvalho AS, Beck HC, Magalhães A, Matthiesen R, Strano Moraes MC, Costa-Silva B. Transcriptome Reprogramming of CD11b + Bone Marrow Cells by Pancreatic Cancer Extracellular Vesicles. Front Cell Dev Biol 2020; 8:592518. [PMID: 33330473 PMCID: PMC7729189 DOI: 10.3389/fcell.2020.592518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancers (PC) are highly metastatic with poor prognosis, mainly due to delayed detection. We previously showed that PC-derived extracellular vesicles (EVs) act on macrophages residing in the liver, eliciting extracellular matrix remodeling in this organ and marked hepatic accumulation of CD11b+ bone marrow (BM) cells, which support PC liver metastasis. We here show that PC-EVs also bind to CD11b+ BM cells and induce the expansion of this cell population. Transcriptomic characterization of these cells shows that PC-EVs upregulate IgG and IgA genes, which have been linked to the presence of monocytes/macrophages in tumor microenvironments. We also report here the transcriptional downregulation of genes linked to monocyte/macrophage activation, trafficking, and expression of inflammatory molecules. Together, these results show for the first time the existence of a PC-BM communication axis mediated by EVs with a potential role in PC tumor microenvironments.
Collapse
Affiliation(s)
- Joana Maia
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Andreia Hanada Otake
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Poças
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ana Magalhães
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
8
|
Recent Discoveries on the Involvement of Krüppel-Like Factor 4 in the Most Common Cancer Types. Int J Mol Sci 2020; 21:ijms21228843. [PMID: 33266506 PMCID: PMC7700188 DOI: 10.3390/ijms21228843] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor highly conserved in evolution. It is particularly well known for its role in inducing pluripotent stem cells. In addition, KLF4 plays many roles in cancer. The results of most studies suggest that KLF4 is a tumor suppressor. However, the functioning of KLF4 is regulated at many levels. These include regulation of transcription, alternative splicing, miRNA, post-translational modifications, subcellular localization, protein stability and interactions with other molecules. Simple experiments aimed at assaying transcript levels or protein levels fail to address this complexity and thus may deliver misleading results. Tumor subtypes are also important; for example, in prostate cancer KLF4 is highly expressed in indolent tumors where it impedes tumor progression, while it is absent from aggressive prostate tumors. KLF4 is important in regulating response to many known drugs, and it also plays a role in tumor microenvironment. More and more information is available about upstream regulators, downstream targets and signaling pathways associated with the involvement of KLF4 in cancer. Furthermore, KLF4 performs critical function in the overall regulation of tissue homeostasis, cellular integrity, and progression towards malignancy. Here we summarize and analyze the latest findings concerning this fascinating transcription factor.
Collapse
|
9
|
Yang C, Xiao X, Huang L, Zhou F, Chen LH, Zhao YY, Qu SL, Zhang C. Role of Kruppel-like factor 4 in atherosclerosis. Clin Chim Acta 2020; 512:135-141. [PMID: 33181148 DOI: 10.1016/j.cca.2020.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/13/2023]
Abstract
Atherosclerosis is one of the chronic progressive diseases, which is caused by vascular injury and promoted by the interaction of various inflammatory factors and inflammatory cells. In recent years, kruppel-like factor 4 (KLF4), a significant transcription factor that participated in cell growth, differentiation and proliferation, has been proved to cause substantial impacts on regulating cardiovascular disease. This paper will give a comprehensive summary to highlight KLF4 as a crucial regulator of foam cell formation, vascular smooth muscle cells (VSMCs) phenotypic transformation, macrophage polarization, endothelial cells inflammation, lymphocyte differentiation and cell proliferation in the process of atherosclerosis. Recent studies show that KLF4 may be an important "molecular switch" in the process of improving vascular injury and inflammation under harmful stimulation, suggesting that KLF4 is a latent disease biomarker for the therapeutic target of atherosclerosis and vascular disease.
Collapse
Affiliation(s)
- Chen Yang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Fan Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
10
|
Liu Z, Murphy SF, Huang J, Zhao L, Hall CC, Schaeffer AJ, Schaeffer EM, Thumbikat P. A novel immunocompetent model of metastatic prostate cancer-induced bone pain. Prostate 2020; 80:782-794. [PMID: 32407603 PMCID: PMC7375026 DOI: 10.1002/pros.23993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Over 70% to 85% of men with advanced prostate cancer (PCa) develop bone metastases characterized by severe bone pain and increased likelihood of bone fracture. These clinical features result in decreased quality of life and act as a predictor of higher mortality. Mechanistically, the skeletal pathologies such as osteolytic lesions and abnormal osteoblastic activity drive these symptoms. The role of immune cells in bone cancer pain remains understudied, here we sought to recapitulate this symptomology in a murine model. METHODS The prostate cancer bone metastasis-induced pain model (CIBP) was established by transplanting a mouse prostate cancer cell line into the femur of immunocompetent mice. Pain development, gait dynamics, and the changes in emotional activities like depression and anxiety were evaluated. Animal tissues including femurs, dorsal root ganglion (DRG), and spinal cord were collected at killing and microcomputed tomography (μCT), histology/immunohistochemistry, and quantitative immunofluorescent analysis were performed. RESULTS Mice receiving prostate cancer cells showed a significantly lower threshold for paw withdrawal responses induced by mechanical stimulation compared with their control counterparts. Zero maze and DigiGait analyses indicated reduced and aberrant movement associated emotional activity compared with sham control at 8-weeks postinjection. The μCT analysis showed osteolytic and osteoblastic changes and a 50% reduction of the trabecular volumes within the prostate cancer group. Neurologically we demonstrated, increased calcitonin gene-related peptide (CGRP) and neuronal p75NTR immune-reactivities in both the projected terminals of the superficial dorsal horn and partial afferent neurons in DRG at L2 to L4 level in tumor-bearing mice. Furthermore, our data show elevated nerve growth factor (NGF) and TrkA immunoreactivities in the same segment of the superficial dorsal horn that were, however, not colocalized with CGRP and p75NTR . CONCLUSIONS This study describes a novel immunocompetent model of CIBP and demonstrates the contribution of NGF and p75NTR to chronic pain in bone metastasis.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Stephen F. Murphy
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Christel C. Hall
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Anthony J. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Edward M. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Praveen Thumbikat
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
11
|
Petty AJ, Li A, Wang X, Dai R, Heyman B, Hsu D, Huang X, Yang Y. Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment. J Clin Invest 2020; 129:5151-5162. [PMID: 31638600 DOI: 10.1172/jci128644] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) usually display an antiinflammatory M2-like phenotype to facilitate tumor growth. However, what drives M2 polarization of TAMs and how TAMs suppress antitumor immunity within the tumor microenvironment (TME) remain largely undefined. Using several murine tumor models, we showed that hedgehog (Hh) signaling in myeloid cells is critical for TAM M2 polarization and tumor growth. We also found that tumor cells secrete sonic hedgehog (SHH), an Hh ligand, and that tumor-derived SHH drives TAM M2 polarization. Furthermore, Hh-induced functional polarization in TAMs suppresses CD8+ T cell recruitment to the TME through the inhibition of CXCL9 and CXCL10 production by TAMs. Last, we demonstrated that Krüppel-like factor 4 (Klf4) mediates Hh-dependent TAM M2 polarization and the immunosuppressive function. Collectively, these findings highlight a critical role for tumor-derived SHH in promoting TAM M2 polarization, a mechanism for TAM-mediated immunosuppression, and may provide insights into the design of new cancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Amy J Petty
- Department of Pharmacology and Cancer Biology.,Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Ang Li
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Xinyi Wang
- Department of Pharmacology and Cancer Biology.,Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Rui Dai
- Department of Pharmacology and Cancer Biology.,Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Benjamin Heyman
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - David Hsu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Xiaopei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and.,Department of Immunology, Duke University, Durham, North Carolina, USA
| |
Collapse
|