1
|
Yakıncı Ö, Emerce E, Gürbüz P, Demi̇rel M, Çeri̇başı S, Süntar İ. Cytotoxic Effects of Citrus Peels on Breast Tumor: Opportunities for Waste to Raw Material Conversion. ACS OMEGA 2025; 10:16900-16908. [PMID: 40321571 PMCID: PMC12044562 DOI: 10.1021/acsomega.5c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
Citrus species have long been known for their rich nutritional value. Recent research has shed light on their therapeutic potential, particularly in cancer treatment. Citrus peels, on the other hand, often discarded as waste, contain a wealth of bioactive compounds, such as flavonoids, coumarins, and essential oil components, which have proven medicinal properties. Converting Citrus peels from waste products to medicinal raw materials is a crucial approach in both healthcare and sustainability. Therefore, the present study aims to investigate the cytotoxic potential of the peels of Citrus aurantium L., Citrus maxima (Burm.) Merr. (syn. Citrus grandis), Citrus medica L. and Citrus paradisi Macfad. cultivated in Türkiye, and to find out the compounds responsible for the cytotoxic activity. The cytotoxic effects of the peel extracts were evaluated on MCF-7 cell lines according to bioactivity-guided fractionation and isolation assay procedures. The compounds CAS-5 (isomeranzin), CAS-10 (3-methoxy nobiletin), CAS-11 (nobiletin), and CAS-12 (tangeretin) were isolated. In silico analyses conducted on the isolated compounds provided supporting information for the results obtained from in vitro experiments regarding their anticancer activity. Indeed, one of the key components of Citrus fruits is polymethoxy flavonoids (PMFs), a group of bioactive constituents recognized for their anti-inflammatory, antioxidant, and anticancer activities. As a valuable byproduct of Citrus waste, PMFs offer a dual benefit by reducing waste while providing a natural source of bioactive compounds and making them an exciting research area in cancer management. The therapeutic promise of PMFs lies not only in their ability to combat cancer but also in their potential to contribute to sustainable practices.
Collapse
Affiliation(s)
- Ömer
Faruk Yakıncı
- National
Poisons Information Service, Republic of
Türkiye Ministry of Health, Ankara 06680, Türkiye
- Institute
of Health Sciences, Gazi University, Ankara 06560, Türkiye
| | - Esra Emerce
- Department
of Pharmaceutical Toxicology, Faculty of Pharmacy, Gazi University, Ankara 06630, Türkiye
| | - Perihan Gürbüz
- Department
of Pharmacognosy, Faculty of Pharmacy, Erciyes
University, Kayseri 38280, Turkey
| | - Mürşide
Ayşe Demi̇rel
- Department
of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, Ankara 06630, Türkiye
| | - Songül Çeri̇başı
- Department
of Pathology, Faculty of Veterinary Medicine, Fırat University, Elazığ 23119, Türkiye
| | - İpek Süntar
- Department
of Pharmacognosy, Faculty of Pharmacy, Gazi
University, Ankara 06630,Türkiye
| |
Collapse
|
2
|
Suleman M, Khan A, Khan SU, Alissa M, Alghamdi SA, Alghamdi A, Abdullah Alamro A, Crovella S. Screening of medicinal phytocompounds with structure-based approaches to target key hotspot residues in tyrosyl-DNA phosphodiesterase 1: augmenting sensitivity of cancer cells to topoisomerase I inhibitors. J Biomol Struct Dyn 2025:1-16. [PMID: 40231415 DOI: 10.1080/07391102.2025.2490061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/07/2024] [Indexed: 04/16/2025]
Abstract
One of cancer's well-known hallmarks is DNA damage, yet it's intriguing that DNA damage has been explored as a therapeutic strategy against cancer. Tyrosyl-DNA phosphodiesterase 1, involved in DNA repair from topoisomerase I inhibitors, a chemotherapy class for cancer treatment. Inhibiting TDP1 can increase unresolved Top1 cleavage complexes in cancer cells, inducing DNA damage and cell death. TDP1's catalytic activity depends on His263 and His493 residues. Using molecular simulation, structure-based drug design, and free energy calculation, we identified potential drugs against TDP1. A multi-step screening of medicinal plant compound databases (North Africa, East Africa, Northeast Africa, and South Africa) identified the top four candidates. Docking scores for top hits 1-4 were -7.76, -7.37, -7.35, and -7.24 kcal/mol. Top hit 3 exhibited the highest potency, forming a strong bonding network with both His263 and His493 residues. All-atoms simulations showed consistent dynamics for top hits 1-4, indicating stability and potential for efficient interaction with interface residues. Minimal fluctuations in residue flexibility suggest these compounds can stabilize internal flexibility upon binding. The binding free energies of -35.11, -36.70, -31.38, and -23.85 kcal/mol were calculated for the top hit 1-4 complexes. Furthermore, the chosen compounds demonstrate outstanding ADMET characteristics, such as excellent water solubility, effective gastrointestinal absorption, and the absence of hepatotoxicity. Cytotoxicity analysis revealed top hit 2 higher probability of activity against 24 cancer cell lines. Our findings suggest that these compounds (top hits 1-4) hold promise for innovative drug therapies, suitable for both in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Amani Alghamdi
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abir Abdullah Alamro
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Rajimon KJ, Almeer R, Thangaiyan P, Khairbek A, Thomas R. In Silico Analysis of Curcumin's Targeted Cancer Therapy: Folate Receptor Pathways and Molecular Interaction Insights. Chem Biodivers 2025; 22:e202402561. [PMID: 39676625 DOI: 10.1002/cbdv.202402561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
This study explores the therapeutic potential of curcumin (CUR) in cancer therapy, specifically examining its targeted transport through folate receptors and its interaction with certain proteins in breast cancer cell lines. We employed molecular docking technique to assess the binding affinities of CUR with proteins 1H1Q, 1UOM, 4JDD, 5U2D and MCF10A normal breast epithelial cell line protein 5UGB. Out of these, the CUR-1H1Q complex exhibited the greatest binding affinity. To assess the stability of this complex in a biological setting, we conducted molecular dynamics simulations of the 1H1Q-CUR complex for a duration of 100 ns. The simulations demonstrated an extremely stable Cα-backbone, exhibiting a consistently low root mean square deviation. The radius of gyration measurements suggested a condensed structure with specific areas of flexibility. The simulation revealed a consistent hydrogen bond between CUR and 1H1Q, indicating a robust and long-lasting interaction between the two molecules. The results indicate that the cytotoxicity of curcumin on MCF7 cancer cell lines is mainly affected by its interactions with several proteins found in these cancer cells. Among the four proteins tested, 1H1Q has the greatest influence. The high affinity of these proteins for curcumin, which results in the creation of stable complexes, seems to trigger cell death. Curcumin's biocompatibility and toxicological effects were investigated in both normal and cancerous cell lines. The study revealed enhanced biocompatibility and potential toxicity in cancerous cell lines, while demonstrating reduced toxicity in normal cell lines.
Collapse
Affiliation(s)
- K J Rajimon
- Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala, India
- Centre for Theoretical and Computational Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala, India
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Pooventhiran Thangaiyan
- Centre for Theoretical and Computational Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala, India
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Mechanical Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ali Khairbek
- Centre for Theoretical and Computational Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala, India
- Department of Chemistry, Faculty of Science, Tishreen University, Latakia, Syrian Arab Republic
| | - Renjith Thomas
- Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala, India
- Centre for Theoretical and Computational Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala, India
| |
Collapse
|
4
|
Kgosiemang IKR, Lefojane R, Adegoke AM, Ogunyemi O, Mashele SS, Sekhoacha MP. Pharmacological Significance, Medicinal Use, and Toxicity of Extracted and Isolated Compounds from Euphorbia Species Found in Southern Africa: A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:469. [PMID: 39943031 PMCID: PMC11821031 DOI: 10.3390/plants14030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 02/16/2025]
Abstract
This study documents the Euphorbiaceae family of plants in Southern Africa, with a focus on their traditional medicinal applications, pharmacological properties, toxicity, and active secondary metabolites. A review of the literature from scientific journals, books, dissertations, and conference papers spanning from 1962 to 2023 was conducted for 15 Euphorbia species. Recent findings indicate that specific compounds found in Euphorbia plants exhibit significant biological and pharmacological properties. However, the white sticky latex sap they contain is highly toxic, although it may also have medicinal applications. Phytochemical analyses have demonstrated that these plants exhibit beneficial effects, including antibacterial, antioxidant, antiproliferative, anticancer, anti-inflammatory, antiviral, antifungal, and anti-HIV activities. Key phytochemicals such as euphol, cycloartenol, tirucallol, and triterpenoids contribute to their therapeutic efficacy, along with various proteins like lectin and lysozyme. Despite some Euphorbiaceae species undergoing screening for medicinal compounds, many remain insufficiently examined, highlighting a critical gap in the research literature. Given their historical usage, further investigations are essential to evaluate the medicinal significance of Euphorbia species through detailed studies of isolated compounds and their pharmacokinetics and pharmacodynamics. This research will serve as a valuable resource for future inquiries into the benefits of lesser-studied Euphorbia species.
Collapse
Affiliation(s)
- Ipeleng Kopano Rosinah Kgosiemang
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Relebohile Lefojane
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Ayodeji Mathias Adegoke
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa;
- Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Oludare Ogunyemi
- Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria;
| | - Samson Sitheni Mashele
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Mamello Patience Sekhoacha
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa;
| |
Collapse
|
5
|
Moldoveanu C, Mangalagiu II, Zbancioc G, Danac R, Tataringa G, Zbancioc AM. Anticancer Potential of Azatetracyclic Derivatives: In Vitro Screening and Selective Cytotoxicity of Azide and Monobrominated Compounds. Molecules 2025; 30:702. [PMID: 39942805 PMCID: PMC11820345 DOI: 10.3390/molecules30030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigated the antiproliferative activity of three classes of benzo[f]pyrrolo[1,2-a]quinoline azatetracyclic derivatives. All compounds were screened against 60 cancer cell lines at a single dose of 10 μM. When we compared the activity of the three classes of azatetracyclic derivatives (azide, monobrominated and dibrominated), we found that the dibrominated compounds were less active, while the azides were the most active molecules. Compounds 3b and 5a, showing the best growth inhibition profile of all the drugs evaluated, were selected for the second stage of a full five-dose testing. According to the results of the in vitro screening, compounds 3b and 5a exhibit good to moderate anticancer activity (in micromolar range) against all nine cancer sub-panels, with compound 5a being more selective than compound 3b. Both compounds presented better activity than phenstatin on T-47D breast cancer cells, with compound 3b also being more active on SK-MEL-28 melanoma cells, while compound 5a was more active than phenstatin on COLO 205 colon cancer cells. As for the probable mechanism of action, the benzoquinoline derivatives could act as PI5P4Kα and PI5P4Kβ inhibitors or topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Costel Moldoveanu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1, 700506 Iasi, Romania; (C.M.); (I.I.M.)
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1, 700506 Iasi, Romania; (C.M.); (I.I.M.)
- Institute of Interdisciplinary Research—CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Gheorghita Zbancioc
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1, 700506 Iasi, Romania; (C.M.); (I.I.M.)
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1, 700506 Iasi, Romania; (C.M.); (I.I.M.)
| | - Gabriela Tataringa
- Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 University Street, 700115 Iasi, Romania; (G.T.); (A.M.Z.)
| | - Ana Maria Zbancioc
- Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 University Street, 700115 Iasi, Romania; (G.T.); (A.M.Z.)
| |
Collapse
|
6
|
Paul P, Iftehimul M, Dey D, Mia MAR, Al-Khafaji K, Pal B, Biswas P, Mandal M, Hasan MN. Investigating the potent TOPO IIα inhibitors in breast cancer through the study of computational drug discovery research approaches. Mol Divers 2025; 29:655-670. [PMID: 38773015 DOI: 10.1007/s11030-024-10882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Breast cancer (BC) is the second-leading cause of cancer after lung cancer. The disease has affected millions of people and resulted in many deaths. In the metastasis of breast cancer cells, Topoisomerase IIα plays a vital role. Therefore, this investigation aims to identify potential flavonoid compounds against BC by inhibiting this enzyme at an early stage. Based on previous studies, we selected and screened several plant-derived flavonoid compounds with potential anti-breast cancer activity using PyRx 0.8 and Schrodinger applications for preliminary molecular docking: the highest docking scores of Myricetin (-11.6 kcal/mol) and Quercetin (-10.0 kcal/mol). Next, we evaluated the top four compounds on the Way2Drug server to complete the cytotoxicity evaluation, which demonstrated anti-cancer and anti-breast cancer activity in various cell lines. According to pharmacokinetics studies, four compounds exhibited outstanding values and functioned similar to drug-like molecules. Moreover, Myricetin, Quercetin, and Morin displayed the highest number of hydrogen bonds, with the corresponding receptor forming residues asn120, thr147, and lys168. The protein-ligand complexes were validated using the Desmond simulator, and their data were compared to the anti-breast cancer drug Doxorubicin. In the simulation analysis, various parameters were evaluated, including RMSD, RMSF, Rg, SASA, MolSA, PSA, and hydrogen bond interaction. Finally, validated our dynamic simulation result with MM-GBSA operation, and Myricetin and Quercetin had the greatest score of -72.74344651, -66.66771823 kcal/mol, which is outstanding than the control drug. Hence, the computational research approach determined that Myricetin, Quercetin, and Morin could be industrially developed for the alternative treatment of breast cancer following additional confirmation from animal and cell line studies.
Collapse
Affiliation(s)
- Priyanka Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, 8100, Bangladesh
| | - Md Iftehimul
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, 8100, Bangladesh
| | - Md Abdur Rashid Mia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia.
| | - Khattab Al-Khafaji
- Department of Environmental Science, College of Energy and Environmental Science, Al-Karkh, University of Science, Baghdad, 10081, Iraq
| | - Bidu Pal
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, 8100, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, 8100, Bangladesh.
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
7
|
Ishaq S, Habib O, Aziz A, Tahir R, Mushtaq H, Hassan S, Sarwar S, Mubarak MS, Ahmad A, Ullah A. Evaluation of fluorinated phospholipid analogs: A study on ADMET profiles, molecular docking and dynamics simulation in anticancer therapy. Heliyon 2025; 11:e41739. [PMID: 39897839 PMCID: PMC11787509 DOI: 10.1016/j.heliyon.2025.e41739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Fluorinated phospholipid analogs Edelfosine and Ilmofosine drug reveal expressive potential as antineoplastic factors though targeted interaction with heat shock protein (HSP70KDa1A), an essential mediator in cancer pathophysiology. Using evolved computational approaches, this research evaluated their ADMET (absorption, distribution, metabolism, excretion and toxicity) profiles receptor binding affinities and molecular dynamics. Molecular docking discernible vigorous interactions with Edelfosine drug displaying greater binding stability and consistent hydrogen bonding as confirmed by 100 ns molecular dynamics simulations. Comparative interpretation emphasized Edelfosine drug enhanced pharmacokinetic properties depicted by lower RMSD values, stable solvent-accessible surface area and reduced structural fluctuations relative to Ilmofosine drug. Functional annotation and phylogenetic investigation affirmed the evolutionary conservation and pivotal biological function of heat shock protein (HSP70KDa1A). These findings position Edelfosine drug as a promising candidate for targeted cancer therapy appropriated further experimental validation to elucidate its mechanisms of action and therapeutic efficacy.
Collapse
Affiliation(s)
- Saqib Ishaq
- Guangdong Provincial Key Laboratory of System Biology and Synthetics Biology for Urogenital Tumors, School of Basic Medicine, Shenzhen University Medical School, Shenzhen University (SZU), Guangdong, China
- Department of Computer Sciences and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, Pakistan
| | - Obaid Habib
- Guangdong Provincial Key Laboratory of System Biology and Synthetics Biology for Urogenital Tumors, School of Basic Medicine, Shenzhen University Medical School, Shenzhen University (SZU), Guangdong, China
| | - Abdul Aziz
- Department of Computer Sciences and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, Pakistan
| | - Raheel Tahir
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, KP, Pakistan
| | - Hira Mushtaq
- Centre of Biotechnology and Microbiology, University of Peshawar, 25000, Peshawar, Pakistan
| | - Said Hassan
- Institute of Biotechnology and Microbiology, Bacha Khan University Charsada, 24550, Charsada, Pakistan
| | - Sarah Sarwar
- Department of Biochemistry, Shaheed Benazir Bhutto Women University Peshawar, 25000, Peshawar, Pakistan
| | - Mohammad S. Mubarak
- Department of Chemistry, Indiana University Bloomington, 47405, Bloomington, USA
- Department of Chemistry, University of Jordan, Amman, 11942, Jordan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Amin Ullah
- Department of Allied Health Sciences, Molecular Biology Lab, Iqra National University (INU) Peshawar, 25000, Peshawar, Pakistan
| |
Collapse
|
8
|
Jabłońska-Wawrzycka A, Rogala P, Czerwonka G, Hodorowicz M, Kalinowska-Tłuścik J, Karpiel M. Chloride and Acetonitrile Ruthenium(IV) Complexes: Crystal Architecture, Chemical Characterization, Antibiofilm Activity, and Bioavailability in Biological Systems. Molecules 2025; 30:564. [PMID: 39942666 PMCID: PMC11820517 DOI: 10.3390/molecules30030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Due to the emergence of drug resistance, many antimicrobial medications are becoming less effective, complicating the treatment of infections. Therefore, it is crucial to develop new active agents. This article aims to explore the ruthenium(IV) complexes with the following formulas: (Hdma)2(HL)2[RuIVCl6]·2Cl·2H2O (1), where Hdma is protonated dimethylamine and L is 2-hydroxymethylbenzimidazole, and [RuIVCl4(AN)2]·H2O (2), where AN is acetonitrile. This paper delves into the physicochemical characteristics and crystal structures of these complexes, employing various techniques such as spectroscopy (IR, UV-Vis), electrochemistry (CV, DPV), and X-ray crystallography. Hirshfeld surface analysis was also performed to visualize intermolecular interactions. Furthermore, the potential antibiofilm activity of the complexes against Pseudomonas aeruginosa PAO1 was investigated and the effect of the compounds on the production of pyoverdine, one of the virulence factors of the Pseudomonas strain, was assessed. The results show that particularly complex 1 reduces biofilm formation and pyoverdine production. Additionally, the bioavailability of these complexes in biological systems (by fluorescence quenching of human serum albumin (HSA) and molecular docking studies) is discussed, assessing how their chemical properties influence their interactions with biological molecules and their potential therapeutic applications.
Collapse
Affiliation(s)
| | - Patrycja Rogala
- Institute of Chemistry, Jan Kochanowski University, 7 Uniwersytecka Str., 25-406 Kielce, Poland
| | - Grzegorz Czerwonka
- Institute of Biology, Jan Kochanowski University, 7 Uniwersytecka Str., 25-406 Kielce, Poland;
| | - Maciej Hodorowicz
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Cracow, Poland; (M.H.); (J.K.-T.); (M.K.)
| | - Justyna Kalinowska-Tłuścik
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Cracow, Poland; (M.H.); (J.K.-T.); (M.K.)
| | - Marta Karpiel
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Cracow, Poland; (M.H.); (J.K.-T.); (M.K.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 11 Lojasiewicza Str., 30-348 Cracow, Poland
| |
Collapse
|
9
|
Araujo NGR, da Silva Junior FC, Santos LVDS, Batistuzzo de Medeiros SR, Felzenszwalb I, Araújo-Lima CF. Molecular docking and in silico analysis of the pharmacokinetics, toxicological profile and differential gene expression of bioactive compounds from Cyrtopodium glutiniferum. Toxicol Rep 2024; 13:101810. [PMID: 39629241 PMCID: PMC11612344 DOI: 10.1016/j.toxrep.2024.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
The genus Cyrtopodium, from the Orchidaceae family, is widely used for its therapeutic properties in the treatment of tuberculosis, abscesses, urinary infection, and colds. C. glutiniferum, one of the species of this genus, is endemic in Brazil and largely used in herbal medicine. Thus, it is of great interest to recognize its composition, the properties of the molecules found in it. This study aimed to perform the in silico analysis of the main compounds from C. glutiniferum, on the platforms pKCSM, SwissADME, LAZAR, CLC-pred, ToxTree, DIGEPred, STRING, and Cytoscape. Further than this, the molecular docking was performed. The compounds present in the aqueous extract of C. glutiniferum were identified by UHPLC-MS/MS, finding Arbutin, Caffeic acid 4-O-glucoside, and Dihydroformononetin as the three most abundant molecules. The evaluation of the gastrointestinal absorption of Dihydroformononetin is given as high, also managing to cross the blood-brain barrier, while Arbutin can only be absorbed by the gastrointestinal tract and Caffeic acid 4-O-glucoside had very low absorption. Further analysis showed that Arbutin and Dihydroformononetin are possible leading molecules for drug synthesis, according to the prediction. Toxicological aspects were analysed, and no adverse effects were noted, but there were divergences in the mutagenic prediction of Arbutin and Dihydroformononetin, having different results in the used platforms, demonstrating that a cautious analysis and data insertion is needed in these tools to optimize them. The analysis of the differentially expressed genes predicted that the compounds can regulate several genes, including some genes associated with carcinogenesis and inflammation. The Molecular docking analysis showed high binding affinities of the molecules with different proteins. Therefore, C. glutiniferum demonstrates the potential to be used as a phytotherapeutic. The same was given through the in silico analysis of the three compounds found in the orchid, that show good individual potential.
Collapse
Affiliation(s)
- Natália Gonçalves Ribeiro Araujo
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
| | | | - Lizandra Vitória de Souza Santos
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Laboratory of Biology and Molecular Mutagenesis, Department of Biology, Center for Biosciences/UFRN (Federal University of Rio Grande do Norte), 3000 Av. Sen. Salgado Filho-Lagoa Nova, Natal, RN 59064-741, Brazil
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
| | - Carlos Fernando Araújo-Lima
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
- Integrated Environmental Mutagenesis Laboratory, Federal University of Rio de Janeiro State (UNIRIO), R. Frei Caneca, 94 - Centro, Rio de Janeiro, RJ 20211-010, Brazil
| |
Collapse
|
10
|
Oancea OL, Gâz ȘA, Marc G, Lungu IA, Rusu A. In Silico Evaluation of Some Computer-Designed Fluoroquinolone-Glutamic Acid Hybrids as Potential Topoisomerase II Inhibitors with Anti-Cancer Effect. Pharmaceuticals (Basel) 2024; 17:1593. [PMID: 39770435 PMCID: PMC11679884 DOI: 10.3390/ph17121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Fluoroquinolones (FQs) are topoisomerase II inhibitors with antibacterial activity, repositioned recently as anti-cancer agents. Glutamic acid (GLA) is an amino acid that affects human metabolism. Since an anti-cancer mechanism of FQs is human topoisomerase II inhibition, it is expected that FQ-GLA hybrids can act similarly. Methods: We designed 27 hypothetical hybrids of 6 FQs and GLA through amide bonds at the 3- and 7-position groups of FQs or via ethylenediamine/ethanolamine linkers at the carboxyl group of the FQ. Hydroxamic acid derivatives were also theoretically formulated. Computational methods were used to predict their physicochemical, pharmacokinetic, or toxicological properties and their anti-cancer activity. For comparison, etoposide was used as an anti-cancer agent inhibiting topoisomerase II. Molecular docking assessed whether the hybrids could interact with the human topoisomerase II beta in the same binding site and interaction sites as etoposide. Results: All the hybrids acted as potential topoisomerase II inhibitors, demonstrating possible anti-cancer activity on several cancer cell lines. Among all the proposed hybrids, MF-7-GLA would be the ideal candidate as a lead compound. The hybrid OF-3-EDA-GLA and the hydroxamic acid derivatives also stood out. Conclusions: Both FQs and GLA have advantageous structures for obtaining hybrids with favourable properties. Improvements in the hybrids' structure could lead to promising results.
Collapse
Affiliation(s)
- Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Șerban Andrei Gâz
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Gabriel Marc
- Organic Chemistry Department, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
11
|
Ganapathy A A, Hari Priya VM, Baby K, Bindhu S, Jayan R, Krishnamoorthi R, Somappa SB, Nayak Y, Kumaran A. Flavone-C-glycosides from Cassia auriculata L. as possible inhibitors of phosphodiesterase-5 (PDE5): in vitro, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2024:1-23. [PMID: 39589221 DOI: 10.1080/07391102.2024.2431659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/03/2024] [Indexed: 11/27/2024]
Abstract
Phosphodiesterase-5 (PDE5) is a homodimeric enzyme that specifically targets cyclic guanosine monophosphate (cGMP), that mediates many downstream effects such as vasodilation, neurotransmission, and calcium homeostasis. Considering the functions of cGMP, inhibition of PDE5 has been established to have several therapeutic effects in disease conditions such as cancer, cardiovascular diseases and Alzheimer's disease. Consequently, many PDE5 inhibitors were developed but with severe adverse effects such as non-arteritic anterior ischemic optic neuropathy (NAION), priapism, etc. Hence, in our study for the identification of new PDE5 inhibitors from alternative sources, Cassia auriculata L. was identified as a potential PDE5 inhibitors with 56.23% inhibition at 100 μg/mL in vitro. In addition, the respective phytoconstituents were evaluated through molecular docking, interaction studies and MM/GBSA binding free energy calculations, identifying two potential flavone C-glycosides, lucenin-II (-15.977, dG bind = -38.8), stellarin-II (-15.099, dG bind = -34.59), and a flavan derivative (2S)-7,4-dihydroxyflavan(4β-8)-catechin, in comparison to sildenafil (-10.890, dG bind = -75.4) and having frequent contacts with Phe 786, Phe 820, Ser 663, Tyr 664, and other crucial residues at the catalytic site of PDE5. Molecular dynamics simulations performed for 100 ns showed structural stability and compactness of the candidates through RMSD, RMSF which showed less fluctuations. The ADMET analysis revealed favorable pharmacokinetics, and pharmacodynamic properties with no subsequent toxicity in normal cells. The biological target class prediction identified enzymes with similar properties and icariin, which is a well-established natural PDE5 inhibitor was identified as a structurally similar analogue. These findings could lead to the development of novel natural product based PDE5 inhibitors.
Collapse
Affiliation(s)
- Anand Ganapathy A
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijayakumari Mahadevan Hari Priya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sreelekshmy Bindhu
- Department of Chemistry and Polymer Chemistry, Kumbalathu Sankupillai Memorial Devaswom Board College, Sasthamcotta, India
| | - Raji Jayan
- Department of Chemistry, Sree Narayana College, Punalur, India
| | - Raman Krishnamoorthi
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sasidhar Balappa Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alaganandam Kumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Kumar P, Sharma P, Singh D, Mishra N, Sarangi PP. Unraveling the molecular basis for effective regulation of integrin α5β1 for enhanced therapeutic interventions. Biochem Biophys Res Commun 2024; 734:150627. [PMID: 39236588 DOI: 10.1016/j.bbrc.2024.150627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Cell attachment to the extracellular matrix significantly impacts the integrity of tissues and human health. The integrin α5β1 is a heterodimer of α5 and β1 subunits and has been identified as a crucial modulator in several human carcinomas. Integrin α5β1 significantly regulates cell proliferation, angiogenesis, inflammation, tumor metastasis, and invasion. This regulatory role of integrin α5β1 in tumor metastasis makes it an appealing target for cancer therapy. The majority of the drugs targeting integrin α5β1 are limited only to clinical trials. In our study, we have performed 94287 compounds screening to determine potential drugs against α5β1 integrin. We have used ATN-161 as a reference and employed combined bioinformatic methodologies, including molecular modelling, virtual screening, MM-GBSA, cell-line cytotoxicity prediction, ADMET, Density Functional Theory (DFT), Non-covalent Interactions (NCI) and molecular simulation, to identify putative integrin α5β1 inhibitors. We found Taxifolin, PD133053, and Acebutolol that possess inhibitory activity against α5β1 integrin and could act as effective drug for the cancer treatment. Taxifolin, PD133053, and Acebutolol exhibited excellent binding to the druggable pocket of integrin α5β1, and also maintained a unique binding mechanism with extra hydrophobic contacts at molecular level. Overall, our study gives new pharmacological candidates that may act as a potential drug against integrin α5β1.
Collapse
Affiliation(s)
- Puneet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Prerna Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Divya Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
13
|
Rogalewicz B, Sierański T, Szczesio M, Olczak A, Gobis K, Orlewska C, Korona-Głowniak I, Korga-Plewko A, Iwan M, Michalczuk M, Kubik J, Adamczuk G, Korga M, Rutkowska N, Boruta T, Gas K, Sawicki M, Poleszak E, Maniukiewicz W, Świątkowski M, Czylkowska A. Physicochemical properties and mechanism of action of a new copper(ii) pyrazine-based complex with high anticancer activity and selectivity towards cancer cells. RSC Adv 2024; 14:36295-36307. [PMID: 39534047 PMCID: PMC11556459 DOI: 10.1039/d4ra06874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Two compounds, benzyl-2-(amino(pyrazin-2-yl)methylene)-1-methylhydrazine-1-carbodithioate (L) and its copper(ii) complex Cu(L) were synthesized and studied in terms of their physicochemical properties, including single crystal, spectroscopic and magnetic properties; in silico simulations, including DFT calculations and pharmacokinetic profile analysis; and in vitro biological activity. The Cu(L) compound was found to exhibit good anticancer activity against A375, PANC-1, MKN-74, T-47D, HeLa, and NCI-H1563 cells, with the IC50 value against the HeLa cell line reaching 17.50 μM, significantly surpassing the activity of the organic ligand. Moreover, at the same time, the Cu(L) complex did not exhibit significant toxicity towards healthy cells. Mechanism of action studies revealed that its activity is connected with the oxidative stress and redox imbalance caused by the upregulation of genes encoding superoxide dismutase (SOD2) and catalase (CAT) antioxidant enzymes. The reported results further underscore the anticancer potential of pyrazine-based copper(ii) complexes.
Collapse
Affiliation(s)
- B Rogalewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - T Sierański
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - M Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - A Olczak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - K Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdansk Gen. Hallera 107 Gdańsk 80-416 Poland
| | - C Orlewska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdansk Gen. Hallera 107 Gdańsk 80-416 Poland
| | - I Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin Lublin 20-093 Poland
| | - A Korga-Plewko
- Independent Medical Biology Unit, Medical University of Lublin Jaczewskiego 8b Lublin 20-093 Poland
| | - M Iwan
- Department of Toxicology, Medical University of Lublin Chodźki 8b Lublin 20-093 Poland
| | - M Michalczuk
- Independent Medical Biology Unit, Medical University of Lublin Jaczewskiego 8b Lublin 20-093 Poland
| | - J Kubik
- Independent Medical Biology Unit, Medical University of Lublin Jaczewskiego 8b Lublin 20-093 Poland
| | - G Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin Jaczewskiego 8b Lublin 20-093 Poland
| | - M Korga
- Independent Medical Biology Unit, Medical University of Lublin Jaczewskiego 8b Lublin 20-093 Poland
| | - N Rutkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology Stefanowskiego 2/22 Lodz 90-537 Poland
| | - T Boruta
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology ul. Wolczanska 213 Lodz 93-005 Poland
| | - K Gas
- Institute of Physics, Polish Academy of Sciences Aleja Lotnikow 32/46 Warsaw PL-02668 Poland
| | - M Sawicki
- Institute of Physics, Polish Academy of Sciences Aleja Lotnikow 32/46 Warsaw PL-02668 Poland
| | - E Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin Chodzki 1 Lublin 20-093 Poland
| | - W Maniukiewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - M Świątkowski
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - A Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| |
Collapse
|
14
|
Bojarska J, Breza M, Borowiecki P, Madura ID, Kaczmarek K, Ziora ZM, Wolf WM. An experimental and computational investigation of the cyclopentene-containing peptide-derived compounds: focus on pseudo-cyclic motifs via intramolecular interactions. ROYAL SOCIETY OPEN SCIENCE 2024; 11:40962. [PMID: 39386982 PMCID: PMC11462612 DOI: 10.1098/rsos.240962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Abstract
Conformational flexibility is one of the main disadvantages of peptide-based compounds. We focus on their molecular 'chameleonicity' related to forming pseudo-cyclic motifs via modulation of weak intramolecular interactions. It is an appealing strategy for controlling equilibrium between the polar open and the nonpolar closed conformations. Within this context, we report here the crystal structure of the (R)-(2-tert-butoxycarbonyl)amino-1-oxo-3-phenyl)propyl)-1-cyclopentene (1), synthesis of which in high yield was achieved by a facile multi-step protocol. Our Cambridge Structural Database (CSD) overview for the peptide-based crystals revealed the exclusivity of this compound from the viewpoint of the unusual pseudo-bicyclic system via C-H…O and C-O…π interactions, in which cyclopentene shields the amide bond. Notably, cyclopentene as a bioisostere of proline is an appealing scaffold in medicinal chemistry. An extensive combined experimental and computational study provided more profound insight into the supramolecular landscape of 1 with respect to similar derivatives deposited in the CSD, including the tendency of cyclopentene for the generation of pseudo-cyclic motifs through weak H-bonding and π-based intramolecular interactions. These weak interactions have been examined by either the quantum theory of 'atoms-in-molecules' (QTAIM) or complex Hirshfeld surface methodology, including enrichment ratios, molecular electrostatic potential surfaces and energy frameworks. In all analysed crystals, all types of H-bonded motifs involving cyclopentene are formed at all levels of supramolecular architecture. A library of cyclopentene-based H-bonding synthons is provided. A molecular docking study depicted vital interactions of cyclopentene with key amino acid residues inside the active sites of two prominent protein kinases, uncovering the therapeutic potential of 1 against breast cancer. To a large extent, dispersion forces have significance in stabilizing the supramolecular structure of both ligand and bio-complex ligand-protein. Finally, the satisfactory in silico bio-pharmacokinetic profile of 1 related to drug-likeness and blood-brain barrier permeation was also revealed.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical University of Lodz, 116 Zeromskiego St., Lodz90-924, Poland
| | - Martin Breza
- Department of Physical Chemistry, Slovak Technical University, Radlinskeho 9, BratislavaSK-81237, Slovakia
| | - Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 75 Koszykowa St., Warsaw00-662, Poland
| | - Izabela D. Madura
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St., Warsaw00-664, Poland
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego St., Lodz90-924, Poland
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St LuciaQLD 4072, Australia
| | - Wojciech M. Wolf
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical University of Lodz, 116 Zeromskiego St., Lodz90-924, Poland
| |
Collapse
|
15
|
Pyka P, Garbo S, Murzyn A, Satała G, Janusz A, Górka M, Pietruś W, Mituła F, Popiel D, Wieczorek M, Palmisano B, Raucci A, Bojarski AJ, Zwergel C, Szymańska E, Kucwaj-Brysz K, Battistelli C, Handzlik J, Podlewska S. Unlocking the potential of higher-molecular-weight 5-HT 7R ligands: Synthesis, affinity, and ADMET examination. Bioorg Chem 2024; 151:107668. [PMID: 39079393 DOI: 10.1016/j.bioorg.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/30/2024]
Abstract
An increasing number of drugs introduced to the market and numerous repositories of compounds with confirmed activity have posed the need to revalidate the state-of-the-art rules that determine the ranges of properties the compounds should possess to become future drugs. In this study, we designed a series of two chemotypes of aryl-piperazine hydantoin ligands of 5-HT7R, an attractive target in search for innovative CNS drugs, with higher molecular weight (close to or over 500). Consequently, 14 new compounds were synthesised and screened for their receptor activity accompanied by extensive docking studies to evaluate the observed structure-activity/properties relationships. The ADMET characterisation in terms of the biological membrane permeability, metabolic stability, hepatotoxicity, cardiotoxicity, and protein plasma binding of the obtained compounds was carried out in vitro. The outcome of these studies constituted the basis for the comprehensive challenge of computational tools for ADMET properties prediction. All the compounds possessed high affinity to the 5-HT7R (Ki below 250 nM for all analysed structures) with good selectivity over 5-HT6R and varying affinity towards 5-HT2AR, 5-HT1AR and D2R. For the best compounds of this study, the expression profile of genes associated with neurodegeneration, anti-oxidant response and anti-inflammatory function was determined, and the survival of the cells (SH-SY5Y as an in vitro model of Alzheimer's disease) was evaluated. One 5-HT7R agent (32) was characterised by a very promising ADMET profile, i.e. good membrane permeability, low hepatotoxicity and cardiotoxicity, and high metabolic stability with the simultaneous high rate of plasma protein binding and high selectivity over other GPCRs considered, together with satisfying gene expression profile modulations and neural cell survival. Such encouraging properties make it a good candidate for further testing and optimisation as a potential agent in the treatment of CNS-related disorders.
Collapse
Affiliation(s)
- Patryk Pyka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Kraków, Poland
| | - Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome
| | - Aleksandra Murzyn
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Artur Janusz
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Michał Górka
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Wojciech Pietruś
- Medicinal Chemistry Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Filip Mituła
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Delfina Popiel
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland; Clinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome
| | - Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome.
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Sabina Podlewska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| |
Collapse
|
16
|
Ferreira DA, Medeiros ABA, Soares MM, Lima ÉDA, de Oliveira GCSL, Leite MBDS, Machado MV, Villar JAFP, Barbosa LA, Scavone C, Moura MT, Rodrigues-Mascarenhas S. Evaluation of Anti-Inflammatory Activity of the New Cardiotonic Steroid γ-Benzylidene Digoxin 8 (BD-8) in Mice. Cells 2024; 13:1568. [PMID: 39329752 PMCID: PMC11430542 DOI: 10.3390/cells13181568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Cardiotonic steroids are known to bind to Na+/K+-ATPase and regulate several biological processes, including the immune response. The synthetic cardiotonic steroid γ-Benzylidene Digoxin 8 (BD-8) is emerging as a promising immunomodulatory molecule, although it has remained largely unexplored. Therefore, we tested the immunomodulatory potential of BD-8 both in vitro and in vivo. Hence, primary mouse macrophages were incubated with combinations of BD-8 and the pro-inflammatory fungal protein zymosan (ZYM). Nitric oxide (NO) production was determined by Griess reagent and cytokines production was assessed by enzyme-linked immunosorbent assay. Inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS), p-nuclear factor kappa B p65 (NF-κB p65), p-extracellular signal-regulated kinase (p-ERK), and p-p38 were evaluated by flow cytometry. Macrophages exposed to BD-8 displayed reduced phagocytic activity, NO levels, and production of the proinflammatory cytokine IL-1β induced by ZYM. Furthermore, BD-8 diminished the expression of iNOS and phosphorylation of NF-κB p65, ERK, and p38. Additionally, BD-8 exhibited anti-inflammatory capacity in vivo in a carrageenan-induced mouse paw edema model. Taken together, these findings demonstrate the anti-inflammatory activity of BD-8 and further reinforce the potential of cardiotonic steroids and their derivatives as immunomodulatory molecules.
Collapse
Affiliation(s)
- Davi Azevedo Ferreira
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Anna Beatriz Araujo Medeiros
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Mariana Mendonça Soares
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Éssia de Almeida Lima
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Gabriela Carolina Santos Lima de Oliveira
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Mateus Bernardo da Silva Leite
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Matheus Vieira Machado
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindú, Federal University of São João del-Rei, Divinópolis 35.501-296, MG, Brazil; (M.V.M.); (J.A.F.P.V.); (L.A.B.)
| | - José Augusto Ferreira Perez Villar
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindú, Federal University of São João del-Rei, Divinópolis 35.501-296, MG, Brazil; (M.V.M.); (J.A.F.P.V.); (L.A.B.)
| | - Leandro Augusto Barbosa
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindú, Federal University of São João del-Rei, Divinópolis 35.501-296, MG, Brazil; (M.V.M.); (J.A.F.P.V.); (L.A.B.)
| | - Cristoforo Scavone
- Laboratory of Neuropharmacology Research, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, São Paulo 05.508-900, SP, Brazil;
| | - Marcelo Tigre Moura
- Laboratory of Cellular Reprogramming, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil;
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| |
Collapse
|
17
|
Nguyen-Vo TH, Do TTT, Nguyen BP. Multitask Learning on Graph Convolutional Residual Neural Networks for Screening of Multitarget Anticancer Compounds. J Chem Inf Model 2024. [PMID: 39197175 DOI: 10.1021/acs.jcim.4c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Recently, various modern experimental screening pipelines and assays have been developed to find promising anticancer drug candidates. However, it is time-consuming and almost infeasible to screen an immense number of compounds for anticancer activity via experimental approaches. To partially address this issue, several computational advances have been proposed. In this study, we present iACP-GCR, a model based on multitask learning on graph convolutional residual neural networks with two types of shortcut connections, to identify multitarget anticancer compounds. In our architecture, the graph convolutional residual neural networks are shared by all the prediction tasks before being separately customized. The NCI-60 data set, one of the most reliable and well-known sources of experimentally verified compounds, was used to develop our model. From that data set, we collected and refined data about compounds screened across nine cancer types (panels), including breast, central nervous system, colon, leukemia, nonsmall cell lung, melanoma, ovarian, prostate, and renal, for model training and evaluation. The model performance evaluated on an independent test set shows that iACP-GCR surpasses the three advanced computational methods for multitask learning. The integration of two shortcut connection types in the shared networks also improves the prediction efficiency. We also deployed the model as a public web server to assist the research community in screening potential anticancer compounds.
Collapse
Affiliation(s)
- Thanh-Hoang Nguyen-Vo
- Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City 70000, Vietnam
| | - Trang T T Do
- Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City 70000, Vietnam
| | - Binh P Nguyen
- Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand
| |
Collapse
|
18
|
Bharadwaj KK, Ahmad I, Pati S, Ghosh A, Rabha B, Sarkar T, Bhattacharjya D, Patel H, Baishya D. Screening of Phytocompounds for Identification of Prospective Histone Deacetylase 1 (HDAC1) Inhibitor: An In Silico Molecular Docking, Molecular Dynamics Simulation, and MM-GBSA Approach. Appl Biochem Biotechnol 2024; 196:3747-3764. [PMID: 37776441 DOI: 10.1007/s12010-023-04731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
The upregulation of HDAC1 facilitate the induction of epigenetic repression of genes responsible for suppressing tumourigenesis, thereby triggering the development of cancer. HDAC1 inhibitors have thus emerged as possible therapeutic approaches against a variety of human malignancies, as they can inhibit the activity of certain HDACs, repair the overexpression of tumour suppressor genes, and induce cell differentiation, cell cycle arrest, and apoptosis. In this study, among 810 virtually screened compounds, Pinocembrin (PHUB000396) had a significant binding affinity (-7.99 kcal/mol). In molecular dynamics simulation (MD) studies for 200 ns time scale, the compound Pinocembrin effectively undergoes conformational optimization, thereby enabling its accommodation within the active site of the receptor. This outcome serves as a rational for the observed binding affinity. The optimal binding free energy calculations using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) (-35.86 ± 7.52 kcal/mol) showed the significant role of van der Waals forces and Coulomb interactions in the stability of the respective complex. The pharmacokinetic study showed its potential as a lead compound. The in-silico cytotoxicity prediction also confirmed its potential as an active anticancer phytocompound in lung and brain cancer. Therefore, it can be predicted that Pinocembrin could be a useful bioactive compound as an HDAC1 inhibitor and could be used in developing epigenetic therapy in cancer such as brain cancer and lung cancer to regulate gene expression.
Collapse
Affiliation(s)
- Kaushik Kumar Bharadwaj
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Siddhartha Pati
- Skills Innovation & Academic Network (SIAN) Institute-ABC, Balasore, 756001, Odisha, India
- NatNov Bioscience Private Limited, 756001, Balasore, Odisha, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India, 781014
| | - Bijuli Rabha
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Dorothy Bhattacharjya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India.
| |
Collapse
|
19
|
Singh A, Verma A, Bhardwaj B, Saraf P, Kumar H, Jain N, Waiker DK, Gajendra TA, Krishnamurthy S, Shrivastava SK. Structure-Guided Design, Synthesis, and Biological Evaluation of Peripheral Anionic Site Selective and Brain Permeable Novel Oxadiazole-Piperazine Conjugates against Alzheimer's Disease with Antioxidant Potential. ACS OMEGA 2024; 9:18169-18182. [PMID: 38680351 PMCID: PMC11044217 DOI: 10.1021/acsomega.3c10276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial and emerging neurological disorder, which has invoked researchers to develop multitargeted ligands. Herein, hybrid conjugates of 5-phenyl-1,3,4-oxadiazole and piperazines were rationally designed, synthesized, and pharmacologically evaluated against hAChE, hBChE, and hBACE-1 enzymes for the management of AD. Among the series, compound 5AD comprising pyridyl substitution at terminal nitrogen of piperazine contemplated as a paramount lead compound (hAChE, IC50 = 0.103 ± 0.0172 μM, hBChE, IC50 ≥ 10 μM, and hBACE-1, IC50 = 1.342 ± 0.078 μM). Compound 5AD showed mixed-type enzyme inhibition in enzyme kinetic studies against the hAChE enzyme. In addition, compound 5AD revealed a significant displacement of propidium iodide from the peripheral anionic site (PAS) of hAChE and excellent blood-brain barrier (BBB) permeability in a parallel artificial membrane permeation assay (PAMPA). Besides, 5AD also exhibited anti-Aβ aggregation activity in self- and AChE-induced thioflavin T assay. Further, compound 5AD has shown significant improvement in learning and memory (p < 0.001) against the in vivo scopolamine-induced cognitive dysfunction mice model. The ex vivo study implied that after treatment with compound 5AD, there was a decrease in AChE and malonaldehyde (MDA) levels with an increase in catalase (CAT, oxidative biomarkers) in the hippocampal brain homogenate. Hence, compound 5AD could be regarded as a lead compound and further be explored in the treatment of AD.
Collapse
Affiliation(s)
- Abhinav Singh
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Akash Verma
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Bhagwati Bhardwaj
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Poorvi Saraf
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Hansal Kumar
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Nishi Jain
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Digambar Kumar Waiker
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - T A Gajendra
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering &
Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering &
Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Sushant K. Shrivastava
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
20
|
Ahmed S, Tabish M. Phytocompounds screening of Nigella sativa in terms of human cancer by targeting sphingosine kinase-1 and pyruvate kinase-M2: a study based on in silico analysis. J Biomol Struct Dyn 2024; 42:1544-1558. [PMID: 37194426 DOI: 10.1080/07391102.2023.2212773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 05/18/2023]
Abstract
Cancer is a multifactorial disease that can cause morbidity and mortality in humans. An altered gene expression in cancer leads to a change in the overall activity of the human cell. Overexpression of cancer protein may give a piece of wide information about the specific type of tumor. Sphingosine kinase-1 (SK-1) is a metabolic enzyme that is mainly overexpressed in several types of cancer and other inflammatory diseases. Similarly, pyruvate kinase-M2 (PK-M2) is an important oncogenic ATP-producing glycolytic enzyme that is upregulated in most cancer cells. The phytocompound of medicinal plants such as Nigella sativa contains a variety of micronutrients that inhibit the proliferation and activity of tumor cells. In this study, the role of phytocompounds in combating cancer was studied against the model kinase proteins, that is, PK-M2 and SK-1. In silico tool like the PASS-Way2Drug server was used to predict the anticancer properties of phytocompounds. Moreover, the CLC-Pred web server provided the cytotoxicity prediction of chemical compounds against several human cancer cell lines. The pharmacokinetics and toxicity profiles were predicted by the SwissADME and pkCSM software. The binding energies were obtained by molecular docking to confirm the intermolecular interaction of selected phytocompounds with proteins. Consequently, molecular dynamics (MD) simulation confirmed the stability, conformational changes, and dynamic behavior of the kinase proteins complexed with the lead phytocompounds, that is, epicatechin, apigenin, and kaempferol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, Uttar Pradesh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, Uttar Pradesh, India
| |
Collapse
|
21
|
Mathpal S, Joshi T, Sharma P, Maiti P, Nand M, Pande V, Chandra S. In silico screening of chalcone derivatives as promising EGFR-TK inhibitors for the clinical treatment of cancer. 3 Biotech 2024; 14:18. [PMID: 38130684 PMCID: PMC10730483 DOI: 10.1007/s13205-023-03858-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) promotes tumorigenic characteristics and activates cancer-associated signaling pathways such as Wnt/-catenin, transforming growth factor (TGF-β), and phosphoinositide-3-kinase (PI3K). Several inhibitors have been reported to suppress the activity of EGFR and are being used in cancer treatment. However, patients in the malignant stage of cancer show resistance to those inhibitors, opening a wide space for research to discover novel inhibitors. Therefore, we carried out machine learning and virtual screening to discover novel inhibitors with high affinity against EGFR-TK. Initially, a library of 2640 chalcones were screened out using a machine-learning model developed based on the random forest algorithm, exhibiting high sensitivity and a Receiver Operating Characteristic curve (ROC area) of 0.99. Furthermore, out of the initial 2640 screened compounds, 412 compounds exhibiting potential activity are subjected to evaluation for drug-likeness properties through different filters: Blood-brain barrier penetration, Lipinski's rule, CMC-50 like rule, Veber rule, and Ghose filter, alongside Cell Line Cytotoxicity Prediction. A total of 30 compounds that successfully pass through all these filters are selected for molecular docking. Of these, 6 compounds display substantial binding affinity and closer interaction with the conserved catalytic residues of the target EGFR-TK compared to the reference molecule (erlotinib). Furthermore, molecular dynamics simulation studies were conducted on four compounds (CID-375861, CID-375862, CID-23636403, and CID-259166) to confirm the stability of the docked complexes over a 100 ns simulation trajectory. Additionally, the binding free energy calculations by MMPBSA reveal that these four chalcone compounds exhibit strong affinity towards the EGFR-TK enzyme, with binding free energies of - 65.421 kJ/mol, - 94.266 kJ/mol, - 80.044 kJ/mol, and - 79.734 kJ/mol, respectively. The findings from this investigation highlight a set of promising chalcone compounds that have the potential to be developed into effective drugs for the treatment of various cancers. Further research and development on these compounds could pave the way for novel therapeutic interventions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03858-8.
Collapse
Affiliation(s)
- Shalini Mathpal
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Bhimtal, Uttarakhand 263136 India
| | - Tushar Joshi
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Bhimtal, Uttarakhand 263136 India
| | - Priyanka Sharma
- Department of Botany, D.S.B Campus, Kumaun University, Nainital, Uttarakhand India
| | - Priyanka Maiti
- Centre for Environmental Assessment and Climate Change, G.B. Pant, National Institute of Himalayan Environment (GBP-NIHE), Kosi-Katarmal, Almora, Uttarakhand 263643 India
| | - Mahesha Nand
- ENVIS Centre on Himalayan Ecology, G.B. Pant National Institute of Himalayan Environment (GBP-NIHE), Kosi-Katarmal, Almora, Uttarakhand 263643 India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Bhimtal, Uttarakhand 263136 India
| | - Subhash Chandra
- Computational Biology and Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand 263601 India
| |
Collapse
|
22
|
Lagunin AA, Sezganova AS, Muraviova ES, Rudik AV, Filimonov DA. BC CLC-Pred: a freely available web-application for quantitative and qualitative predictions of substance cytotoxicity in relation to human breast cancer cell lines. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:1-9. [PMID: 38112004 DOI: 10.1080/1062936x.2023.2289050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
In silico prediction of cell line cytotoxicity considerably decreases time and financial costs during drug development of new antineoplastic agents. (Q)SAR models for the prediction of drug-like compound cytotoxicity in relation to nine breast cancer cell lines (T47D, ZR-75-1, MX1, Hs-578T, MCF7-DOX, MCF7, Bcap37, MCF7R, BT-20) were created by GUSAR software based on the data from ChEMBL database (v. 30). The separate datasets related with IC50 and IG50 values were used for the creation of (Q)SAR models for each cell line. Based on leave-one-out and 5F CV procedures, 24 reasonable (Q)SAR models were selected for the creation of a freely available web-application (BC CLC-Pred: https://www.way2drug.com/bc/) to predict substance cytotoxicity in relation to human breast cancer cell lines. The mean accuracies of prediction r2, RMSE, Balance Accuracy for the selected (Q)SAR models calculated by 5F CV were 0.599, 0.679 and 0.875, respectively. As a result, BC CLC-Pred provides simultaneous quantitative and qualitative predictions of IC50 and IG50 values for most of the nine breast cancer cell lines, which may be helpful in selecting promising compounds and optimizing lead compounds during the development of new antineoplastic agents against breast cancer.
Collapse
Affiliation(s)
- A A Lagunin
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - A S Sezganova
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - E S Muraviova
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Rudik
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - D A Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
23
|
Gutiérrez Cano JR, Paulina Morales-Sandoval I, Gnecco D, Carrasco-Carballo A, Terán JL. L-Aspartic acid pyridinium salts: In silico, synthesis and adjuvant vs antibiotic antibacterial evaluation. RESULTS IN CHEMISTRY 2024; 7:101366. [DOI: 10.1016/j.rechem.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
24
|
Rodrigues Dos Santos Barbosa C, Macêdo NS, de Sousa Silveira Z, Rocha JE, Freitas TS, Muniz DF, Araújo IM, Datiane de Morais Oliveira-Tintino C, Marinho ES, Nunes da Rocha M, Marinho MM, Bezerra AH, Ribeiro de Sousa G, Barbosa-Filho JM, de Souza-Ferrari J, Melo Coutinho HD, Silva Dos Santos H, Bezerra da Cunha FA. Evaluation of the antibacterial and inhibitory activity of the MepA efflux pump of Staphylococcus aureus by riparins I, II, III, and IV. Arch Biochem Biophys 2023; 748:109782. [PMID: 37839789 DOI: 10.1016/j.abb.2023.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The efflux pump mechanism contributes to the antibiotic resistance of widely distributed strains of Staphylococcus aureus. Therefore, in the present work, the ability of the riparins N-(4-methoxyphenethyl)benzamide (I), 2-hydroxy-N-[2-(4-methoxyphenyl)ethyl]benzamide (II), 2, 6-dihydroxy-N-[ 2-(4-methoxyphenyl)ethyl]benzamide (III), and 3,4,5-trimethoxy-N-[2-(4-methoxyphenethyl)benzamide (IV) as potential inhibitors of the MepA efflux pump in S. aureus K2068 (fluoroquinolone-resistant). In addition, we performed checkerboard assays to obtain more information about the activity of riparins as potential inhibitors of MepA efflux and also analyzed the ability of riparins to act on the permeability of the bacterial membrane of S. aureus by the fluorescence method with SYTOX Green. A molecular coupling assay was performed to characterize the interaction between riparins and MepA, and ADMET (absorption, distribution, metabolism, and excretion) properties were analyzed. We observed that I-IV riparins did not show direct antibacterial activity against S. aureus. However, combination assays with substrates of MepA, ciprofloxacin, and ethidium bromide (EtBr) revealed a potentiation of the efficacy of these substrates by reducing the minimum inhibitory concentration (MIC). Furthermore, increased EtBr fluorescence emission was observed for all riparins. The checkerboard assay showed synergism between riparins I, II, and III, ciprofloxacin, and EtBr. Furthermore, riparins III and IV exhibited permeability in the S. aureus membrane at a concentration of 200 μg/mL. Molecular docking showed that riparins I, II, and III bound in a different region from the binding site of chlorpromazine (standard pump inhibitor), indicating a possible synergistic effect with the reference inhibitor. In contrast, riparin IV binds in the same region as the chlorpromazine binding site. From the in silico ADMET prediction based on MPO, it could be concluded that the molecules of riparin I-IV present their physicochemical properties within the ideal pharmacological spectrum allowing their preparation as an oral drug. Furthermore, the prediction of cytotoxicity in liver cell lines showed a low cytotoxic effect for riparins I-IV.
Collapse
Affiliation(s)
| | - Nair Silva Macêdo
- Biological Chemistry, Department of Biological Chemistry, Cariri Regional University (URCA), Crato, CE, Brazil.
| | - Zildene de Sousa Silveira
- Biological Chemistry, Department of Biological Chemistry, Cariri Regional University (URCA), Crato, CE, Brazil.
| | - Janaína Esmeraldo Rocha
- Biological Chemistry, Department of Biological Chemistry, Cariri Regional University (URCA), Crato, CE, Brazil.
| | - Thiago Sampaio Freitas
- Biological Chemistry, Department of Biological Chemistry, Cariri Regional University (URCA), Crato, CE, Brazil.
| | - Débora Feitosa Muniz
- Biological Chemistry, Department of Biological Chemistry, Cariri Regional University (URCA), Crato, CE, Brazil.
| | - Isaac Moura Araújo
- Biological Chemistry, Department of Biological Chemistry, Cariri Regional University (URCA), Crato, CE, Brazil.
| | | | - Emmanuel Silva Marinho
- State University of Ceará, Graduate Program in Natural Sciences, Laboratory of Natural Products Chemistry, Fortaleza, Ceará, Brazil.
| | - Matheus Nunes da Rocha
- State University of Ceará, Graduate Program in Natural Sciences, Laboratory of Natural Products Chemistry, Fortaleza, Ceará, Brazil.
| | - Marcia Machado Marinho
- Center of Exact Sciences and Technology, State University of Ceará, Fortaleza, CE, Brazil.
| | | | - Gabriela Ribeiro de Sousa
- Natural and Synthetic Bioactive Products, Federal University of Paraiba (UFPB), João Pessoa, PB, Brazil.
| | - José Maria Barbosa-Filho
- Natural and Synthetic Bioactive Products, Federal University of Paraiba (UFPB), João Pessoa, PB, Brazil.
| | | | | | - Hélcio Silva Dos Santos
- Rede Nordeste de Biotecnologia (RENORBIO-Nucleadora UECE), Universidade Estadual Vale do Acaraú (UVA), Sobral, CE, Brazil.
| | | |
Collapse
|
25
|
Campos MC, Barbosa IR, Guedes GP, Echevarria A, Echevarria-Lima J, Chaves OA. Novel Zn(II)-complex with hybrid chalcone-thiosemicarbazone ligand: Synthesis, characterization, and inhibitory effect on HTLV-1-infected MT-2 leukemia cells. J Inorg Biochem 2023; 245:112239. [PMID: 37148641 DOI: 10.1016/j.jinorgbio.2023.112239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Chalcone and thiosemicarbazone have attracted attention due to their easy synthetic procedure and high success in the development of antiviral and antitumor, however, there are few biological data on the evaluation of chalcone-thiosemicarbazone hybrids and their complexation with metal ions. In this sense, the present work reports the synthesis and characterization of the hybrid (Z)-2-((E)-3-(4-chlorophenyl)-1-phenylallylidene)hydrazine-1-carbothioamide (CTCl) and its Zn(II)-complex (CTCl-Zn). The compounds were cell-based evaluated in terms of cytotoxicity against human T-cell lymphotropic virus type 1 (HTLV-1) infected leukemia cells (MT-2) and the experimental data were correlated with molecular docking calculations. The ligand and Zn(II)-complex were easily synthesized with a good yield - 57% and 79%, respectively. The dynamic of E/Z isomers with respect to the imine bond configuration of CTCl was evidenced by 1H NMR experiments in DMSO‑d6, while the X-ray diffraction of CTCl-Zn showed that Zn(II) ion is tetracoordinated to two ligands in a bidentate mode and the metal ion lies on an intermediate geometry between the see-saw and trigonal pyramid. The ligand and complex exhibited low toxicity and the Zn(II)-complex is more cytotoxic than the ligand, with the corresponding IC50 value of 30.01 and 47.06 μM. Both compounds had a pro-apoptotic effect without the release of reactive oxygen species (ROS) and they can interact with DNA via minor grooves driven by van der Waals forces.
Collapse
Affiliation(s)
- Maria Clara Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Igor Resendes Barbosa
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Aurea Echevarria
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil.
| | - Juliana Echevarria-Lima
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Otávio Augusto Chaves
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; CQC-IMS, Departamento de Química, Universidade de Coimbra, Rua Larga s/n, Coimbra, Portugal.
| |
Collapse
|
26
|
Caasi JMN, Baldoza RID, Bauzon MSC, Odtohan MAF, Santiago LA, Santiago-Bautista MR. In Silico Prediction of Selected Bioactive Compounds Present in Alpinia elegans (C.Presl) K.Schum Seed Oil as Potential Drug Candidates Against Human Cancer Cell Lines. Asian Pac J Cancer Prev 2023; 24:2601-2614. [PMID: 37642045 PMCID: PMC10685237 DOI: 10.31557/apjcp.2023.24.8.2601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Alpinia elegans (Zingiberaceae) is a Philippine endemic plant reported to have various folkloric uses. The seed oil of A. elegans has been shown to contain a majority of the following bioactive compounds: D-limonene, α-pinene, and caryophyllene oxide. The study sought to determine if the bioactive compounds found in A. elegans seed oil would be a good natural, inexpensive, and less-detrimental alternative for cancer treatment. METHODS The study utilized in silico (Way2Drug predictive services, SwissADME, AutoDock 4) experiment to examine the aforementioned compounds as viable therapeutic candidates against human cancer cell lines. RESULT Results determined that the compounds D-limonene, α-pinene, and caryophyllene oxide were most potent against thyroid gland carcinoma (8505C) cells, brain glaucoma (Hs 683) cells, and promyeloblast leukemia (HL-60) cells, respectively. Additionally, D-limonene was the only compound to show arrhythmia as an adverse effect. Predictions showed that the compounds could inhibit cellular growth factors and serine/threonine-protein kinase activity. The compounds generated a bioavailability score of 0.55 and exhibited blood-brain barrier (BBB) penetration. D-limonene, α-pinene, and caryophyllene oxide had binding energy of -4.59, -5.43, and -6.92, respectively. CONCLUSION The binding energy indicated that the ligands could securely dock to the receptors, thus suggesting that interaction between the ligands and receptors was stable. Results have shown that the compounds are promising candidates against human cancer cell lines by inhibiting cell proliferation and inducing apoptosis.
Collapse
Affiliation(s)
- Jane Marie N. Caasi
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.
| | | | - Mary Sophia C. Bauzon
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.
| | | | - Librado A. Santiago
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.
| | - Myla R. Santiago-Bautista
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.
| |
Collapse
|
27
|
Zamisa SJ, Adeleke AA, Devnarain N, Rhman MA, Owira PMO, Omondi B. The link between relative stability constant of DNA- and BSA-chromenopyrimidine complexes and cytotoxicity towards human breast cancer cells (MCF-7). RSC Adv 2023; 13:21820-21837. [PMID: 37475760 PMCID: PMC10354499 DOI: 10.1039/d3ra01741a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
In this study, we synthesized and characterized ten chromenopyrimidine derivatives using analytical and spectroscopic methods. Studies on DNA and albumin binding affinity, as well as cytotoxicity tests on human breast cancer (MCF-7) cells, of the chromenopyrimidines, were conducted. The natural logarithm of the relative stability constant of DNA- and BSA-chromenopyrimidine complexes [ln(KDNA/KBSA)] was used as a criterion for selecting compounds for cytotoxicity studies. We found that ln(KDNA/KBSA) was inversely related to IC50 values of the compounds in MCF-7 cells. The antiproliferative effects of the compounds were found to induce apoptosis in MCF-7 cells, which is a desired mechanism of cell death. Correlations between the DNA and albumin binding affinities of chromenopyrimidines were established. We propose that this relationship approach can, for a given set of compounds, assist in predicting the cytotoxicity of potential drug candidates towards MCF-7 cells based on their experimentally determined CT-DNA and BSA binding affinities.
Collapse
Affiliation(s)
- Sizwe J Zamisa
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Adesola A Adeleke
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Nikita Devnarain
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Mahasin Abdel Rhman
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Peter M O Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Bernard Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
28
|
Sahu N, Mishra S, Kesheri M, Kanchan S, Sinha RP. Identification of Cyanobacteria-Based Natural Inhibitors Against SARS-CoV-2 Druggable Target ACE2 Using Molecular Docking Study, ADME and Toxicity Analysis. Indian J Clin Biochem 2023; 38:361-373. [PMID: 35812791 PMCID: PMC9255548 DOI: 10.1007/s12291-022-01056-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
In 2019-2020, the novel "severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)" had emerged as the biggest challenge for humanity, causing "coronavirus disease 19 (COVID-19)". Scientists around the world have been putting continuous efforts to unfold potential inhibitors of SARS-CoV-2. We have performed computational studies that help us to identify cyanobacterial photoprotective compounds as potential inhibitors against SARS-CoV-2 druggable target human angiotensin-converting enzyme (ACE2), which plays a vital role in the attachment and entry of the virus into the cell. Blocking the receptor-binding domain of ACE2 can prevent the access of the virus into the compartment. A molecular docking study was performed between photoprotective compounds mycosporine-like amino acids, scytonemins and ACE2 protein using AutoDock tools. Among sixteen molecularly docked metabolites, seven compounds were selected with binding energy < 6.8 kcal/mol. Afterwards, drug-likeness and toxicity of the top candidate were predicted using Swiss ADME and Pro Tox-II online servers. All top hits show desirable drug-likeness properties, but toxicity pattern analysis discloses the toxic effect of scytonemin and its derivatives, resulting in the elimination from the screening pipeline. Further molecular interaction study of the rest two ligands, mycosporine-glycine-valine and shinorine with ACE2 was performed using PyMol, Biovia Discovery studio and LigPlot+. Lastly biological activity of both the ligands was predicted by using the PASS online server. Combining the docking score and other studied properties, we believe that mycosporine-glycine-valine and shinorine have potential to be potent inhibitors of ACE2 and can be explored further to use against COVID-19.
Collapse
Affiliation(s)
- Niharika Sahu
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Sonal Mishra
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Minu Kesheri
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Swarna Kanchan
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Rajeshwar P. Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
29
|
Amărandi RM, Al-Matarneh MC, Popovici L, Ciobanu CI, Neamțu A, Mangalagiu II, Danac R. Exploring Pyrrolo-Fused Heterocycles as Promising Anticancer Agents: An Integrated Synthetic, Biological, and Computational Approach. Pharmaceuticals (Basel) 2023; 16:865. [PMID: 37375812 DOI: 10.3390/ph16060865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Five new series of pyrrolo-fused heterocycles were designed through a scaffold hybridization strategy as analogs of the well-known microtubule inhibitor phenstatin. Compounds were synthesized using the 1,3-dipolar cycloaddition of cycloimmonium N-ylides to ethyl propiolate as a key step. Selected compounds were then evaluated for anticancer activity and ability to inhibit tubulin polymerization in vitro. Notably, pyrrolo[1,2-a]quinoline 10a was active on most tested cell lines, performing better than control phenstatin in several cases, most notably on renal cancer cell line A498 (GI50 27 nM), while inhibiting tubulin polymerization in vitro. In addition, this compound was predicted to have a promising ADMET profile. The molecular details of the interaction between compound 10a and tubulin were investigated through in silico docking experiments, followed by molecular dynamics simulations and configurational entropy calculations. Of note, we found that some of the initially predicted interactions from docking experiments were not stable during molecular dynamics simulations, but that configurational entropy loss was similar in all three cases. Our results suggest that for compound 10a, docking experiments alone are not sufficient for the adequate description of interaction details in terms of target binding, which makes subsequent scaffold optimization more difficult and ultimately hinders drug design. Taken together, these results could help shape novel potent antiproliferative compounds with pyrrolo-fused heterocyclic cores, especially from an in silico methodological perspective.
Collapse
Affiliation(s)
- Roxana-Maria Amărandi
- TRANSCEND Research Center, Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
| | - Maria-Cristina Al-Matarneh
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Lăcrămioara Popovici
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Catalina Ionica Ciobanu
- Institute of Interdisciplinary Research-CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Andrei Neamțu
- TRANSCEND Research Center, Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
| | - Ionel I Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| |
Collapse
|
30
|
Baby K, Maity S, Mehta CH, Nayak UY, Shenoy GG, Pai KSR, Harikumar KB, Nayak Y. Computational drug repurposing of Akt-1 allosteric inhibitors for non-small cell lung cancer. Sci Rep 2023; 13:7947. [PMID: 37193898 PMCID: PMC10188557 DOI: 10.1038/s41598-023-35122-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
Non-small cell lung carcinomas (NSCLC) are the predominant form of lung malignancy and the reason for the highest number of cancer-related deaths. Widespread deregulation of Akt, a serine/threonine kinase, has been reported in NSCLC. Allosteric Akt inhibitors bind in the space separating the Pleckstrin homology (PH) and catalytic domains, typically with tryptophan residue (Trp-80). This could decrease the regulatory site phosphorylation by stabilizing the PH-in conformation. Hence, in this study, a computational investigation was undertaken to identify allosteric Akt-1 inhibitors from FDA-approved drugs. The molecules were docked at standard precision (SP) and extra-precision (XP), followed by Prime molecular mechanics-generalized Born surface area (MM-GBSA), and molecular dynamics (MD) simulations on selected hits. Post XP-docking, fourteen best hits were identified from a library of 2115 optimized FDA-approved compounds, demonstrating several beneficial interactions such as pi-pi stacking, pi-cation, direct, and water-bridged hydrogen bonds with the crucial residues (Trp-80 and Tyr-272) and several amino acid residues in the allosteric ligand-binding pocket of Akt-1. Subsequent MD simulations to verify the stability of chosen drugs to the Akt-1 allosteric site showed valganciclovir, dasatinib, indacaterol, and novobiocin to have high stability. Further, predictions for possible biological interactions were performed using computational tools such as ProTox-II, CLC-Pred, and PASSOnline. The shortlisted drugs open a new class of allosteric Akt-1 inhibitors for the therapy of NSCLC.
Collapse
Affiliation(s)
- Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gautham G Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Karkala Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
31
|
Moldovan OL, Sandulea A, Lungu IA, Gâz ȘA, Rusu A. Identification of Some Glutamic Acid Derivatives with Biological Potential by Computational Methods. Molecules 2023; 28:molecules28104123. [PMID: 37241864 DOI: 10.3390/molecules28104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Glutamic acid is a non-essential amino acid involved in multiple metabolic pathways. Of high importance is its relationship with glutamine, an essential fuel for cancer cell development. Compounds that can modify glutamine or glutamic acid behaviour in cancer cells have resulted in attractive anticancer therapeutic alternatives. Based on this idea, we theoretically formulated 123 glutamic acid derivatives using Biovia Draw. Suitable candidates for our research were selected among them. For this, online platforms and programs were used to describe specific properties and their behaviour in the human organism. Nine compounds proved to have suitable or easy to optimise properties. The selected compounds showed cytotoxicity against breast adenocarcinoma, lung cancer cell lines, colon carcinoma, and T cells from acute leukaemia. Compound 2Ba5 exhibited the lowest toxicity, and derivative 4Db6 exhibited the most intense bioactivity. Molecular docking studies were also performed. The binding site of the 4Db6 compound in the glutamine synthetase structure was determined, with the D subunit and cluster 1 being the most promising. In conclusion, glutamic acid is an amino acid that can be manipulated very easily. Therefore, molecules derived from its structure have great potential to become innovative drugs, and further research on these will be conducted.
Collapse
Affiliation(s)
- Octavia-Laura Moldovan
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Alexandra Sandulea
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Șerban Andrei Gâz
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
32
|
Mazumdar B, Deva Sarma PK, Mahanta HJ, Sastry GN. Machine learning based dynamic consensus model for predicting blood-brain barrier permeability. Comput Biol Med 2023; 160:106984. [PMID: 37137267 DOI: 10.1016/j.compbiomed.2023.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
The blood-brain barrier (BBB) is an important defence mechanism that restricts disease-causing pathogens and toxins to enter the brain from the bloodstream. In recent years, many in silico methods were proposed for predicting BBB permeability, however, the reliability of these models is questionable due to the smaller and class-imbalance dataset which subsequently leads to a very high false positive rate. In this study, machine learning and deep learning-based predictive models were built using XGboost, Random Forest, Extra-tree classifiers and deep neural network. A dataset of 8153 compounds comprising both the BBB permeable and BBB non-permeable was curated and subjected to calculations of molecular descriptors and fingerprints for generating the features for machine learning and deep learning models. Three balancing techniques were then applied to the dataset to address the class-imbalance issue. A comprehensive comparison among the models showed that the deep neural network model generated on the balanced MACCS fingerprint dataset outperformed with an accuracy of 97.8% and a ROC-AUC score of 0.98 among all the models. Additionally, a dynamic consensus model was prepared with the machine learning models and validated with a benchmark dataset for predicting BBB permeability with higher confidence scores.
Collapse
Affiliation(s)
- Bitopan Mazumdar
- Department of Computer Science, Assam University, Silchar, 788011, Assam, India; Advanced Computation and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | | | - Hridoy Jyoti Mahanta
- Advanced Computation and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - G Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
33
|
Vidovic T, Dakhovnik A, Hrabovskyi O, MacArthur MR, Ewald CY. AI-Predicted mTOR Inhibitor Reduces Cancer Cell Proliferation and Extends the Lifespan of C. elegans. Int J Mol Sci 2023; 24:ijms24097850. [PMID: 37175557 PMCID: PMC10177929 DOI: 10.3390/ijms24097850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) kinase is one of the top drug targets for promoting health and lifespan extension. Besides rapamycin, only a few other mTOR inhibitors have been developed and shown to be capable of slowing aging. We used machine learning to predict novel small molecules targeting mTOR. We selected one small molecule, TKA001, based on in silico predictions of a high on-target probability, low toxicity, favorable physicochemical properties, and preferable ADMET profile. We modeled TKA001 binding in silico by molecular docking and molecular dynamics. TKA001 potently inhibits both TOR complex 1 and 2 signaling in vitro. Furthermore, TKA001 inhibits human cancer cell proliferation in vitro and extends the lifespan of Caenorhabditis elegans, suggesting that TKA001 is able to slow aging in vivo.
Collapse
Affiliation(s)
- Tinka Vidovic
- Tinka Therapeutics, Fra Ivana Rozica 7, 21276 Vrgorac, Croatia
| | - Alexander Dakhovnik
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603 Schwerzenbach, Switzerland
| | - Oleksii Hrabovskyi
- Palladin Institute of Biochemistry of the NAS of Ukraine, 02000 Kyiv, Ukraine
| | - Michael R MacArthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603 Schwerzenbach, Switzerland
| |
Collapse
|
34
|
Identification of Dietary Bioflavonoids as Potential Inhibitors against KRAS G12D Mutant—Novel Insights from Computer-Aided Drug Discovery. Curr Issues Mol Biol 2023; 45:2136-2156. [PMID: 36975507 PMCID: PMC10047893 DOI: 10.3390/cimb45030137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
The KRAS G12D mutation is very frequent in many cancers, such as pancreatic, colon and lung, and has remained undruggable for the past three decades, due to its smooth surface and lack of suitable pockets. Recent small pieces of evidence suggest that targeting the switch I/II of KRAS G12D mutant could be an efficient strategy. Therefore, in the present study, we targeted the switch I (residues 25–40) and switch II (residues 57–76) regions of KRAS G12D with dietary bioflavonoids in comparison with the reference KRAS SI/II inhibitor BI-2852. Initially, we screened 925 bioflavonoids based on drug-likeness properties, and ADME properties and selected 514 bioflavonoids for further studies. Molecular docking resulted in four lead bioflavonoids, namely 5-Dehydroxyparatocarpin K (L1), Carpachromene (L2), Sanggenone H (L3), and Kuwanol C (L4) with binding affinities of 8.8 Kcal/mol, 8.64 Kcal/mol, 8.62 Kcal/mol, and 8.58 Kcal/mol, respectively, in comparison with BI-2852 (−8.59 Kcal/mol). Further steered-molecular dynamics, molecular-dynamics simulation, toxicity, and in silico cancer-cell-line cytotoxicity predictions significantly support these four lead bioflavonoids as potential inhibitors of KRAS G12D SI/SII inhibitors. We finally conclude that these four bioflavonoids have potential inhibitory activity against the KRAS G12D mutant, and are further to be studied in vitro and in vivo, to evaluate their therapeutic potential and the utility of these compounds against KRAS G12D mutated cancers.
Collapse
|
35
|
Kirishnamaline G, Magdaline JD, Chithambarathanu T. Structural elucidation, spectroscopic investigation, in silico docking, and in vitro cytotoxicity studies of chromone derivatives as potential anti-breast cancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
36
|
Luo L, Tan H, Liao Y. In silico analysis of marine natural product for protein arginine methyltransferase 5(PRMT5) inhibitors based on pharmacophore and molecular docking. J Biomol Struct Dyn 2023; 41:13180-13197. [PMID: 36856049 DOI: 10.1080/07391102.2023.2184172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/15/2023] [Indexed: 03/02/2023]
Abstract
Over the past few decades, various inhibitors of PRMT5 have been developed because of its involvement in a variety of tumor development processes. As of now, no drugs targeting PRMT5 have been approved, and multiple drugs entering clinical trials have proven to have side effects. In this study, PRMT5 was used to perform virtual screening of 52119 marine natural compounds by combining various methods. We constructed 20 pharmacophore models based on multiple ligands. The best pharmacophore model AARR_2 was selected by analyzing the statistical parameters of the pharmacophore model and the binding characteristics of the ligand active site, and then 3552 compounds were screened out. Compared with the positive compound, 46 compounds were selected based on the molecular docking fraction and docking mode analysis. Then, 3D-QSAR was used to analyze the relationship between structure and activity of the compounds. Then, in addition to marine compounds 36404, 36405 and 14436, we selected compound 46 (the positive control compound) and used the CLC-Pred online Web server to predict their cytotoxicity to human cell lines, making cell experiments possible. Finally, we conducted the prediction of ADMET in order to better promote clinical trials. After comprehensive judgment, we screened out the marine natural compounds 36404 and 36405 as candidates for PRMT5 substrate competitive inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China
| | - Huiting Tan
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yinglin Liao
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
37
|
Climova A, Pivovarova E, Szczesio M, Gobis K, Ziembicka D, Korga-Plewko A, Kubik J, Iwan M, Antos-Bielska M, Krzyżowska M, Czylkowska A. Anticancer and antimicrobial activity of new copper (II) complexes. J Inorg Biochem 2023; 240:112108. [PMID: 36592510 DOI: 10.1016/j.jinorgbio.2022.112108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In this study, three new organic ligands N'-(benzylidene)-6-chloropyrazine-2-carbohydrazonamide (L1), 6-chloro-N'-(4-nitrobenzylidene)picolinohydrazonamide(L2), and N'-(benzylidene)-4-chloropicolinohydrazonamide (L3) and three copper coordination compounds (Cu(L1)Cl2, Cu(L2)Cl2 and Cu(L3)Cl2) based on them were synthesized. All obtained compounds were characterized using appropriate analytical techniques: elemental analysis (EA), thermogravimetric analysis (TG-DTG), Fourier transform infrared spectroscopy (FTIR) and flame-atomic absorption spectrometry (F-AAS). These methods of physicochemical analyses helped to assume that the complexation in three cases proceeds in a bidentate manner. The X-ray investigation confirmed the synthesis pathway and molecular structures for L1 and L3 ligands. The antimicrobial activity of the obtained compounds was then comprehensively investigated, where Cu(L3)Cl2 showed the strongest antibacterial properties against all tested bacteria (Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli). LN229 human glioma cells and BJ human normal fibroblasts cells were treated with tested compounds and their cytotoxicity was evaluated with MTT test. The effect of complexing on antitumor activity has been investigated. The ligand L1 and its complex showed similar activity against normal cells while complexation increases toxicity against cancer cells in concentrations of 50 and 100 μM. For the one pair of ligand/complex compounds the apoptosis detection, cell cycle analysis and gene expression analysis (qRT-PCR) were performed. Cu(L1)Cl2 showed the stronger toxic effect in comparison with L1 due to the population of early apoptotic cells which revealed metabolic activity in MTT assay.
Collapse
Affiliation(s)
- Alina Climova
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Ekaterina Pivovarova
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Katarzyna Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| | - Dagmara Ziembicka
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-093 Lublin, Poland.
| | - Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-093 Lublin, Poland.
| | - Magdalena Iwan
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 8, 20-093 Lublin, Poland.
| | - Małgorzata Antos-Bielska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland.
| | - Małgorzata Krzyżowska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
38
|
Eugui M, Lucero V, do Carmo H, Cabrera M, Moyna G. Synthesis and antitumoral evaluation of natural product-like compounds based on tropolone and benzotropolone derivatives. Arch Pharm (Weinheim) 2023; 356:e2200305. [PMID: 36481876 DOI: 10.1002/ardp.202200305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
We present the preparation of a series of novel natural product-like homobarrelenones, norcaranes, and dihydrofluorenones through a diversity-oriented synthetic (DOS) strategy that combines Diels-Alder reactions and phototransformations, as well as their biological evaluation against MCF-7, HT-29, and NCI-H460 human tumor cells. Six of these demonstrated activities in the micromolar range against the three cell lines, and none were predicted as cytotoxic against human nontumor cells according to in silico studies. In addition, within the set of active derivatives, three exhibited low unspecific cytotoxicity in a sperm motility assay. The rich functionality of the new compounds makes them ideal candidates for exhaustive structure-activity relationship studies.
Collapse
Affiliation(s)
- Macarena Eugui
- Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Valeria Lucero
- Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Hugo do Carmo
- Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Mauricio Cabrera
- Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Guillermo Moyna
- Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| |
Collapse
|
39
|
CLC-Pred 2.0: A Freely Available Web Application for In Silico Prediction of Human Cell Line Cytotoxicity and Molecular Mechanisms of Action for Druglike Compounds. Int J Mol Sci 2023; 24:ijms24021689. [PMID: 36675202 PMCID: PMC9861947 DOI: 10.3390/ijms24021689] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
In vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds. Here, we present a new version of this web application: CLC-Pred 2.0. It also employs the PASS (Prediction of Activity Spectra for Substance) approach based on substructural atom centric MNA descriptors and a Bayesian algorithm. CLC-Pred 2.0 provides three types of qualitative prediction: (1) cytotoxicity against 391 tumor and 47 normal human cell lines based on ChEMBL and PubChem data (128,545 structures) with a mean accuracy of prediction (AUC), calculated by the leave-one-out (LOO CV) and the 20-fold cross-validation (20F CV) procedures, of 0.925 and 0.923, respectively; (2) cytotoxicity against an NCI60 tumor cell-line panel based on the Developmental Therapeutics Program's NCI60 data (22,726 structures) with different thresholds of IG50 data (100, 10 and 1 nM) and a mean accuracy of prediction from 0.870 to 0.945 (LOO CV) and from 0.869 to 0.942 (20F CV), respectively; (3) 2170 molecular mechanisms of actions based on ChEMBL and PubChem data (656,011 structures) with a mean accuracy of prediction 0.979 (LOO CV) and 0.978 (20F CV). Therefore, CLC-Pred 2.0 is a significant extension of the capabilities of the initial web application.
Collapse
|
40
|
Tiwari M, Panwar S, Tiwari V. Assessment of potassium ion channel during electric signalling in biofilm formation of Acinetobacter baumannii for finding antibiofilm molecule. Heliyon 2023; 9:e12837. [PMID: 36685419 PMCID: PMC9852675 DOI: 10.1016/j.heliyon.2023.e12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic ESKAPE pathogen which causes nosocomial infections and can produce biofilms that act as resistant determinants. The role of quorum sensing (chemical signaling) in biofilm establishment has already been studied extensively, but the existence of electrochemical signaling during biofilm formation by A. baumannii has not yet been investigated. The current study evaluated the presence of electrical signaling, types of ion channels involved, and their role in biofilm formation using spectroscopic and microbiological methods. The findings suggest that the potassium ion channel has a significant role in the electrical signaling during the biofilm formation by A. baumannii. Further, in-silico screening, molecular mechanics, and molecular dynamic simulation studies identify a potential lead, ZINC12496555(a specific inhibitor), which targets the potassium ion channel protein of A. baumannii. Mutational analysis of the interacting residues showed alterations in the unfolding rate of this protein after the selected mutation, which shows its role in the stability of this protein. It was also observed that identified lead has high antibiofilm activity, no human off-targets, and non-cytotoxicity to cell lines. Thus, identified lead against the potassium channel of A baumannii may be used as an effective therapeutic for the treatment of A. baumannii infections after further experimental validation.
Collapse
Affiliation(s)
- Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Shruti Panwar
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| |
Collapse
|
41
|
Santaniello G, Nebbioso A, Altucci L, Conte M. Recent Advancement in Anticancer Compounds from Marine Organisms: Approval, Use and Bioinformatic Approaches to Predict New Targets. Mar Drugs 2022; 21:md21010024. [PMID: 36662197 PMCID: PMC9862894 DOI: 10.3390/md21010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In recent years, the study of anticancer bioactive compounds from marine sources has received wide interest. Contextually, world regulatory authorities have approved several marine molecules, and new synthetic derivatives have also been synthesized and structurally improved for the treatment of numerous forms of cancer. However, the administration of drugs in cancer patients requires careful evaluation since their interaction with individual biological macromolecules, such as proteins or nucleic acids, determines variable downstream effects. This is reflected in a constant search for personalized therapies that lay the foundations of modern medicine. The new knowledge acquired on cancer mechanisms has certainly allowed advancements in tumor prevention, but unfortunately, due to the huge complexity and heterogeneity of cancer, we are still looking for a definitive therapy and clinical approaches. In this review, we discuss the significance of recently approved molecules originating from the marine environment, starting from their organism of origin to their structure and mechanism of action. Subsequently, these bio-compounds are used as models to illustrate possible bioinformatics approaches for the search of new targets that are useful for improving the knowledge on anticancer therapies.
Collapse
Affiliation(s)
- Giovanna Santaniello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
- BIOGEM, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino, Italy
- IEOS, Institute for Endocrinology and Experimental Oncology, CNR, Via Pansini 5, 80131 Napoli, Italy
- Correspondence: (L.A.); (M.C.); Tel.: +39-081-5667564 (M.C.)
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
- Correspondence: (L.A.); (M.C.); Tel.: +39-081-5667564 (M.C.)
| |
Collapse
|
42
|
Khan GB, Qasim M, Rasul A, Ashfaq UA, Alnuqaydan AM. Identification of Lignan Compounds as New 6-Phosphogluconate Dehydrogenase Inhibitors for Lung Cancer. Metabolites 2022; 13:metabo13010034. [PMID: 36676959 PMCID: PMC9864769 DOI: 10.3390/metabo13010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Targeting pentose phosphate pathway (PPP) enzymes has emerged as a promising strategy to combat cancer. 6-Phosphogluconate dehydrogenase (6-PGD), the third critical enzyme of the PPP, catalyzes oxidative decarboxylation of 6-phosphogluconate (6-PG) to produce ribulose-5-phosphate (Ru-5-P) and CO2. Overexpression of 6-PGD has been reported in multiple cancers and is recognized as a potential anticancer drug target. The current study is focused on the utilization of indispensable virtual screening tools for structure-based drug discovery. During the study, 17,000 natural compounds were screened against the 3-phosphoglycerate (3-PG) binding site of 6-PGD through a molecular operating environment (MOE), which revealed 115 inhibitors with higher selectivity and binding affinity. Out of the 115 best-fit compounds within the 6-PGD binding cavity, 15 compounds were selected and optimized through stringent in silico ADMET assessment models that justified the desirable pharmacokinetic, pharmacodynamic and physicochemical profiles of 5 ligands. Further protein−ligand stability assessment through molecular dynamics (MD) simulation illustrated three potential hits, secoisolariciresinol, syringaresinol and cleomiscosin A, with stable confirmation. Moreover, 6-PGD inhibitor validation was performed by an in vitro enzymatic assay using human erythrocytes purified 6-PGD protein and A549 cell lysate protein. The results of the in vitro assays supported the in silico findings. In order to gain insight into the anticancer activity of the aforementioned compounds, they were subjected to CLC-Pred, an in silico cytotoxicity browsing tool, which proved their anticancer activity against several cancer cell lines at Pa > 0.5. Additionally, a confirmation for in silico cytotoxicity was made by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for commercially available hits syringaresinol and cleomiscosin A against lung cancer (A549) cells. The results demonstrated that syringaresinol has an IC50 value of 36.9 μg/mL, while cleomiscosin A has an IC50 value of 133 μg/mL. After MTT, flow cytometry analysis confirmed that compounds induced apoptosis in A549 cells in a dose-dependent manner. This study suggested that the respective lignan compounds can serve as lead candidates for lung cancer therapy via 6-PGD inhibition. Furthermore, in vivo experiments need to be conducted to confirm their efficacy.
Collapse
Affiliation(s)
- Gul Bushra Khan
- Department of Bioinformatics and Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.Q.); (A.M.A.); Tel.: +966-63800050 (ext. 15411) (A.M.A.)
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (M.Q.); (A.M.A.); Tel.: +966-63800050 (ext. 15411) (A.M.A.)
| |
Collapse
|
43
|
Kramarova EP, Borisevich SS, Khamitov EM, Korlyukov AA, Dorovatovskii PV, Shagina AD, Mineev KS, Tarasenko DV, Novikov RA, Lagunin AA, Boldyrev I, Ezdoglian AA, Karpechenko NY, Shmigol TA, Baukov YI, Negrebetsky VV. Pyridine Carboxamides Based on Sulfobetaines: Design, Reactivity, and Biological Activity. Molecules 2022; 27:7542. [PMID: 36364369 PMCID: PMC9658115 DOI: 10.3390/molecules27217542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 03/09/2024] Open
Abstract
The synthesis of the products of the 1,3-propanesultone ring opening during its interaction with amides of pyridinecarboxylic acids has been carried out. The dependence of the yield of the reaction products on the position (ortho-, meta-, para-) of the substituent in the heteroaromatic fragment and temperature condition was revealed. In contrast to the meta- and para-substituted substrates, the reaction involving ortho-derivatives at the boiling point of methanol unexpectedly led to the formation of a salt. On the basis of spectroscopic, X-Ray, and quantum-chemical calculation data, a model of the transition-state, as well as a mechanism for this alkylation reaction of pyridine carboxamides with sultone were proposed in order to explain the higher yields obtained with the nicotinamide and its N-methyl analog compared to ortho or meta parents. Based on the analysis of ESP maps, the positions of the binding sites of reagents with a potential complexing agent in space were determined. The in silico evaluation of possible biological activity showed that the synthetized compounds revealed some promising pharmacological effects and low acute toxicity.
Collapse
Affiliation(s)
- Eugene P. Kramarova
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Sophia S. Borisevich
- Laboratory of Physical Chemistry, Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 450071 Ufa, Russia
| | - Edward M. Khamitov
- Laboratory of Physical Chemistry, Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 450071 Ufa, Russia
| | - Alexander A. Korlyukov
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | | | - Anastasia D. Shagina
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitri V. Tarasenko
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Roman A. Novikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey A. Lagunin
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Ivan Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Aiarpi A. Ezdoglian
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Natalia Yu. Karpechenko
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Tatiana A. Shmigol
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Yuri I. Baukov
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Vadim V. Negrebetsky
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| |
Collapse
|
44
|
Structural and Biofunctional Insights into the Cyclo(Pro-Pro-Phe-Phe-) Scaffold from Experimental and In Silico Studies: Melanoma and Beyond. Int J Mol Sci 2022; 23:ijms23137173. [PMID: 35806175 PMCID: PMC9266943 DOI: 10.3390/ijms23137173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023] Open
Abstract
Short peptides have great potential as safe and effective anticancer drug leads. Herein, the influence of short cyclic peptides containing the Pro-Pro-Phe-Phe sequence on patient-derived melanoma cells was investigated. Cyclic peptides such as cyclo(Leu-Ile-Ile-Leu-Val-Pro-Pro-Phe-Phe-), called CLA, and cyclo(Pro-homoPro-β3homoPhe-Phe-), called P11, exert the cytotoxic and the cytostatic effects in melanoma cells, respectively. CLA was the most active peptide as it reduced the viability of melanoma cells to 50% of control at about 10 µM, whereas P11 at about 40 µM after 48 h incubation. Interestingly, a linear derivative of P11 did not induce any effect in melanoma cells confirming previous studies showing that cyclic peptides exert better biological activity compared to their linear counterparts. According to in silico predictions, cyclic tetrapeptides show a better pharmacokinetic and toxic profile to humans than CLA. Notably, the spatial structure of those peptides containing synthetic amino acids has not been explored yet. In the Cambridge Structural Database, there is only one such cyclic tetrapeptide, cyclo((R)-β2homoPhe-D-Pro-Lys-Phe-), while in the Protein Data Bank—none. Therefore, we report the first crystal structure of cyclo(Pro-Pro-β3homoPhe-Phe-), denoted as 4B8M, a close analog of P11, which is crucial for drug discovery. Comparative molecular and supramolecular analysis of both structures was performed. The DFT findings revealed that 4B8M is well interpreted in the water solution. The results of complex Hirshfeld surface investigations on the cooperativity of interatomic contacts in terms of electrostatic and energetic features are provided. In short, the enrichment ratio revealed O…H/H…O and C…H/H…C as privileged intercontacts in the crystals in relation to basic and large supramolecular H-bonding synthon patterns. Furthermore, the ability of self-assemble 4B8M leading to a nanotubular structure is also discussed.
Collapse
|
45
|
Antioxidant Activity and Cytotoxicity of Aromatic Oligosulfides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123961. [PMID: 35745083 PMCID: PMC9229798 DOI: 10.3390/molecules27123961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 01/05/2023]
Abstract
Natural or synthetic antioxidants with biomimetic fragments protect the functional and structural integrity of biological molecules at a minimum concentration, and may be used as potential chemotherapeutic agents. This paper is devoted to in silico and in vitro evaluation of the antioxidant and cytotoxic properties of synthetic analogues of natural compounds—aromatic oligosulfides. The antiradical and SOD-protective activity of oligosulfides was demonstrated in the reaction with O2–• generated in enzymatic and non-enzymatic systems. It was found that phenol-containing disulfides significantly reduced the accumulation level of hydroperoxides and secondary carbonyl thiobarbituric acid reactive substances, which are primary products of oleic acid peroxidation. The antioxidant efficiency of bis(3,5-di-tert-butyl-4-hydroxyphenyl) disulfide increased over time due to the synergistic action of the 2,6-di-tert-butylphenol fragment and the disulfide linker. The highest cytotoxicity on the A-549 and HCT-116 cell lines was found for bis(3,4-dimethoxyphenyl) disulfide. Significant induction of apoptosis in HCT-116 cells in the presence of bis(3,4-dimethoxyphenyl) disulfide indicates the prospect of its use as an antitumor agent. The significant and moderate dependences revealed between various types of activities of the studied aromatic oligosulfides can be used in the development of a strategy for the synthesis and study of target-oriented compounds with predictable biological activity.
Collapse
|
46
|
Quantum chemical evaluation, QSAR analysis, molecular docking and dynamics investigation of s-triazine derivatives as potential anticancer agents. Struct Chem 2022. [DOI: 10.1007/s11224-022-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Raducka A, Świątkowski M, Korona-Głowniak I, Kaproń B, Plech T, Szczesio M, Gobis K, Szynkowska-Jóźwik MI, Czylkowska A. Zinc Coordination Compounds with Benzimidazole Derivatives: Synthesis, Structure, Antimicrobial Activity and Potential Anticancer Application. Int J Mol Sci 2022; 23:ijms23126595. [PMID: 35743039 PMCID: PMC9224258 DOI: 10.3390/ijms23126595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Developing new, smart drugs with the anticancer activity is crucial, especially for cancers, which cause the highest mortality in humans. In this paper we describe a series of coordination compounds with the element of health, zinc, and bioactive ligands, benzimidazole derivatives. By way of synthesis we have obtained four compounds named C1, C2, C4 and C4. Analytical analyses (elemental analysis (EA), flame atomic absorption spectrometry (FAAS)), spectroscopic (Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS)) and thermogravimetric (TG) methods and the definition of crystal structures were used to explore the nature of bonding and to elucidate the chemical structures. The collected analytical data allowed the determination of the stoichiometry in coordination compounds, thermal stability, crystal structure and way of bonding. The cytotoxicity effect of the new compounds as a potential antitumor agent on the glioblastoma (T98G), neuroblastoma (SK-N-AS) and lung adenocarcinoma (A549) cell lines and human normal skin fibroblasts (CCD-1059Sk) was also determined. Cell viability was determined by the MTT assay. The results obtained confirmed that conversion of ligands into the respective metal complexes significantly improved their anticancer properties. The complexes were screened for antibacterial and antifungal activities. The ADME technique was used to determine the physicochemical and biological properties.
Collapse
Affiliation(s)
- Anita Raducka
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.Ś.); (M.S.); (M.I.S.-J.)
- Correspondence: (A.R.); (A.C.)
| | - Marcin Świątkowski
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.Ś.); (M.S.); (M.I.S.-J.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Radziwilłłowska 11, 20-080 Lublin, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.Ś.); (M.S.); (M.I.S.-J.)
| | - Katarzyna Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gen. Hallera 107, 80-416 Gdańsk, Poland;
| | - Małgorzata Iwona Szynkowska-Jóźwik
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.Ś.); (M.S.); (M.I.S.-J.)
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.Ś.); (M.S.); (M.I.S.-J.)
- Correspondence: (A.R.); (A.C.)
| |
Collapse
|
48
|
dos Santos IV, Borges RS, Silva GM, de Lima LR, Bastos RS, Ramos RS, Silva LB, da Silva CHTP, dos Santos CBR. Hierarchical Virtual Screening Based on Rocaglamide Derivatives to Discover New Potential Anti-Skin Cancer Agents. Front Mol Biosci 2022; 9:836572. [PMID: 35720115 PMCID: PMC9201829 DOI: 10.3389/fmolb.2022.836572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Skin Cancer (SC) is among the most common type of cancers worldwide. The search for SC therapeutics using molecular modeling strategies as well as considering natural plant-derived products seems to be a promising strategy. The phytochemical Rocaglamide A (Roc-A) and its derivatives rise as an interesting set of reference compounds due to their in vitro cytotoxic activity with SC cell lines. In view of this, we performed a hierarchical virtual screening study considering Roc-A and its derivatives, with the aim to find new chemical entities with potential activity against SC. For this, we selected 15 molecules (Roc-A and 14 derivatives) and initially used them in docking studies to predict their interactions with Checkpoint kinase 1 (Chk1) as a target for SC. This allowed us to compile and use them as a training set to build robust pharmacophore models, validated by Pearson’s correlation (p) values and hierarchical cluster analysis (HCA), subsequentially submitted to prospective virtual screening using the Molport® database. Outputted compounds were then selected considering their similarities to Roc-A, followed by analyses of predicted toxicity and pharmacokinetic properties as well as of consensus molecular docking using three software. 10 promising compounds were selected and analyzed in terms of their properties and structural features and, also, considering their previous reports in literature. In this way, the 10 promising virtual hits found in this work may represent potential anti-SC agents and further investigations concerning their biological tests shall be conducted.
Collapse
Affiliation(s)
- Igor V.F. dos Santos
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Brazil
| | - Rosivaldo S. Borges
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém, Brazil
| | - Guilherme M. Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lúcio R. de Lima
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém, Brazil
| | - Ruan S. Bastos
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém, Brazil
| | - Ryan S. Ramos
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Brazil
| | - Luciane B. Silva
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém, Brazil
| | - Carlos H. T. P. da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cleydson B. R. dos Santos
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém, Brazil
- *Correspondence: Cleydson B. R. dos Santos,
| |
Collapse
|
49
|
Tiwari V. Pharmacophore screening, denovo designing, retrosynthetic analysis, and combinatorial synthesis of a novel lead VTRA1.1 against RecA protein of Acinetobacter baumannii. Chem Biol Drug Des 2022; 99:839-856. [PMID: 35278346 DOI: 10.1111/cbdd.14037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/08/2023]
Abstract
Antibiotics and disinfectants resistance is acquired by activating RecA-mediated DNA repair, which maintains ROS-dependent DNA damage caused by the antimicrobial molecules. To increase the efficacy of different antimicrobials, an inhibitor can be developed against RecA protein. The present study aims to design a denovo inhibitor against RecA protein of Acinetobacter baumannii. Pharmacophore-based screening, molecular mechanics, molecular dynamics simulation (MDS), retrosynthetic analysis, and combinatorial synthesis were used to design lead VTRA1.1 against RecA of A. baumannii. Pharmacophore models (structure-based and ligand-based) were created, and a phase library of FDA-approved drugs was prepared. Screening of the phase library against these pharmacophore models selected thirteen lead molecules. These filtered leads were used for the denovo fragment-based design, which produced 253 combinations. These designed molecules were further analyzed for its interaction with active site of RecA that selected a hybrid VTRA1. Further, retrosynthetic analysis and combinatorial synthesis produced 1000 analogs of VTRA1 by more than 100 modifications. These analogs were used for XP docking, binding free energy calculation, and MDS analysis which finally select lead VTRA1.1 against RecA protein. Further, mutations at the interacting residues of RecA with VTRA1.1, alter the unfolding rate of RecA, which suggests the binding of VTRA1.1 to these residues may alter the stability of RecA. It is also found that VTRA1.1 had reduced interaction of RecA with LexA and ssDNA polydT, showing the lead's efficacy in controlling the SOS response. Further, it was also observed that VTRA1.1 does not contain any predicted human off-targets and no cytotoxicity to cell lines. As functional RecA is involved in antimicrobial resistance, denovo designed lead VTRA1.1 against RecA may be further developed as a significant combination for therapeutic uses against A. baumannii.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
50
|
New Coordination Compounds Based on a Pyrazine Derivative: Design, Characterization, and Biological Study. Molecules 2022; 27:molecules27113467. [PMID: 35684404 PMCID: PMC9181841 DOI: 10.3390/molecules27113467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
New coordination compounds of Mn(II), Fe(III), Co(II), and Ni(II) and the biologically active ligand L (N′-benzylidenepyrazine-2-carbohydrazonamide) were synthesized and characterized by appropriate analytical techniques: elemental analysis (EA), thermogravimetric analysis (TG–DTG), infrared spectroscopy (FTIR), and flame-atomic absorption spectrometry (F-AAS). The biological activity of the obtained compounds was then comprehensively investigated. Rational use of these compounds as potential drugs was proven by ADME analysis. All obtained compounds were screened in vitro for antibacterial, antifungal, and anticancer activities. Some of the studied complexes exhibited significantly higher activity than the ligand alone.
Collapse
|