1
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Guan T, Zhang W, Li M, Wang Q, Guo L, Guo B, Luo X, Li Z, Lu M, Dong Z, Xu M, Liu M, Liu Y, Feng J. D-Ala2-GIP (1-30) promotes angiogenesis by facilitating endothelial cell migration via the Epac/Rap1/Cdc42 signaling pathway. Cell Signal 2025; 127:111615. [PMID: 39855534 DOI: 10.1016/j.cellsig.2025.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Angiogenesis, a meticulously regulated process essential for both normal development and pathological conditions, necessitates a comprehensive understanding of the endothelial mechanisms governing its progression. Leveraging the zebrafish model and NgAgo knockdown system to identify target genes influencing angiogenesis, our study highlights the significant role of gastric inhibitory polypeptide (GIP) and its receptor (GIPR) in this process. While GIP has been extensively studied for its insulinotropic and glucagonotropic effects, its role in angiogenesis remains unexplored. This study demonstrated that GIPR knockdown induced developmental delays, morphological abnormalities, and pronounced angiogenic impairments in zebrafish embryos. Conversely, exogenous D-Ala2-GIP administration enhanced blood vessel formation in the yolk sac membrane of chick embryos. Consistent with these findings, D-Ala2-GIP treatment promoted microvessel formation in the tube formation assays and rat aortic ring models. Further investigation revealed that D-Ala2-GIP facilitated human umbilical vein endothelial cell (HUVEC) migration, a key step in angiogenesis, through the cyclic adenosine monophosphate (cAMP)-mediated activation of the Epac/Rap1/Cdc42 signaling pathway. This study provides novel insights into the angiogenic functions of GIP and its potential implications for cardiovascular biology.
Collapse
Affiliation(s)
- Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mingxuan Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qing Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Longyu Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xiaoqian Luo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Zhen Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Muxing Lu
- Medical School of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
3
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
5
|
Gabe MBN, van der Velden WJC, Smit FX, Gasbjerg LS, Rosenkilde MM. Molecular interactions of full-length and truncated GIP peptides with the GIP receptor - A comprehensive review. Peptides 2020; 125:170224. [PMID: 31809770 DOI: 10.1016/j.peptides.2019.170224] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
Enzymatic cleavage of endogenous peptides is a commonly used principle to initiate, modulate and terminate action for instance among cytokines and peptide hormones. The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and the related hormone glucagon-like peptide-2 (GLP-2) are all rapidly N-terminally truncated with severe loss of intrinsic activity. The most abundant circulating form of full length GIP(1-42) is GIP(3-42) (a dipeptidyl peptidase-4 (DPP-4) product). GIP(1-30)NH2 is another active form resulting from prohormone convertase 2 (PC2) cleavage of proGIP. Like GIP(1-42), GIP(1-30)NH2 is a substrate for DPP-4 generating GIP(3-30)NH2 which, compared to GIP(3-42), binds with higher affinity and very efficiently inhibits GIP receptor (GIPR) activity with no intrinsic activity. Here, we review the action of these four and multiple other N- and C-terminally truncated forms of GIP with an emphasis on molecular pharmacology, i.e. ligand binding, subsequent receptor activation and desensitization. Our overall conclusion is that the N-terminus is essential for receptor activation as GIP N-terminal truncation leads to decreased/lost intrinsic activity and antagonism (similar to GLP-1 and GLP-2), whereas the C-terminal extension of GIP(1-42), as compared to GLP-1, GLP-2 and glucagon (29-33 amino acids), has no apparent impact on the GIPR in vitro, but may play a role for other properties such as stability and tissue distribution. A deeper understanding of the molecular interaction of naturally occurring and designed GIP-based peptides, and their impact in vivo, may contribute to a future therapeutic targeting of the GIP system - either with agonists or with antagonists, or both.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Wijnand J C van der Velden
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Florent Xavier Smit
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|