1
|
Clement WJJ, Kalpana K, Aiyanathan KEA, Ramakrishnan M, Kandan A, Manonmani K, Yesuraja I, Sabarinathan KG, Mini ML, Shanthi M, Rajangam J, Punitha A. Exploring the Perilous Nature of Phytophthora: Insights into Its Biology, Host Range, Detection, and Integrated Management Strategies in the Fields of Spices and Plantation Crops. THE PLANT PATHOLOGY JOURNAL 2025; 41:121-139. [PMID: 40211618 PMCID: PMC11986356 DOI: 10.5423/ppj.rw.07.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 04/14/2025]
Abstract
The horticultural crops, including spices and plantation crops, are known for their enormous benefits, contributing to the country's economy. However, Phytophthora, a genus of Oomycetes class, poses a threat to spice and plantation crops by infecting and damaging them, resulting in yield losses, economic hardship for farmers, and food security concerns, thereby threatening the sustainability of spice and plantation crops. Moreover, Phytophthora has greater adaptation systems in varying environmental conditions. Therefore, eradicating or controlling Phytophthora is a highly challenging process due to the longevity of its infective propagules in soil. Early detection and curative measures would be more effective in managing this destructive pathogen. Additionally, molecular detection using innovative methods such as polymerase chain reaction, reverse transcription polymerase chain reaction, recombinase polymerase amplification, and loop-mediated isothermal amplification would offer reliable and rapid detection. Furthermore, integrated disease management strategies, combining cultural, physical, chemical, and biological methods, would prove highly beneficial in managing Phytophthora infections in spices and plantation crops. This review provides a comprehensive overview of the diversity, symptomatology, pathogenicity, and impact of Phytophthora diseases on prominent spice and plantation crops. Finally, our review explores the current disease reduction strategies and suggests future research directions to address the threat posed by Phytophthora to spices and plantation crops.
Collapse
Affiliation(s)
| | - Krishnan Kalpana
- Department of Plant Protection, Horticultural College and Research Institute, TNAU Periyakulam, Tamil Nadu 625104, India
| | | | | | - Aravindaram Kandan
- Division of Germplasm Conservation and Utilization, ICAR-NBAIR, Bengaluru, Karnataka 560024, India
| | - Karunakaran Manonmani
- Department of Plant Pathology, Agricultural College and Research Institute, TNAU Madurai, Tamil Nadu 625104, India
| | - Iruthayarajan Yesuraja
- Department of Plant Pathology, Agricultural College and Research Institute, TNAU Madurai, Tamil Nadu 625104, India
| | | | - Madhavan Lysal Mini
- Department of Biotechnology, Agricultural College and Research Institute, TNAU Madurai, Tamil Nadu 625104, India
| | - Mookiah Shanthi
- Centre for Plant Protection Studies, TNAU, Coimbatore, Tamil Nadu 641003, India
| | - Jacop Rajangam
- Department of Horticulture, Horticultural College and Research Institute, TNAU, Periyakulam, Tamil Nadu 625601, India
| | - Ayyar Punitha
- Rice Research Station, TNAU, Tirur, Tamil Nadu 604102, India
| |
Collapse
|
2
|
Fajardo SN, Bourret TB, Frankel SJ, Rizzo DM. Phytophthora Species and Their Associations with Chaparral and Oak Woodland Vegetation in Southern California. J Fungi (Basel) 2025; 11:33. [PMID: 39852452 PMCID: PMC11766400 DOI: 10.3390/jof11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Evidence of unintended introductions of Phytophthora species into native habitats has become increasingly prevalent in California. If not managed adequately, Phytophthora species can become devastating agricultural and forest plant pathogens. Additionally, California's natural areas, characterized by a Mediterranean climate and dominated by chaparral (evergreen, drought-tolerant shrubs) and oak woodlands, lack sufficient baseline knowledge on Phytophthora biology and ecology, hindering effective management efforts. From 2018 to 2021, soil samples were collected from Angeles National Forest lands (Los Angeles County) with the objective of better understanding the diversity and distribution of Phytophthora species in Southern California. Forty sites were surveyed, and soil samples were taken from plant rhizospheres, riverbeds, and off-road vehicle tracks in chaparral and oak woodland areas. From these surveys, fourteen species of Phytophthora were detected, including P. cactorum (subclade 1a), P. multivora (subclade 2c), P. sp. cadmea (subclade 7a), P. taxon 'oakpath' (subclade 8e, first reported in this study), and several clade-6 species, including P. crassamura. Phytophthora species detected in rhizosphere soil were found underneath both symptomatic and asymptomatic plants and were most frequently associated with Salvia mellifera, Quercus agrifolia, and Salix sp. Phytophthora species were present in both chaparral and oak woodland areas and primarily in riparian areas, including detections in off-road tracks, trails, and riverbeds. Although these Mediterranean ecosystems are among the driest and most fire-prone areas in the United States, they harbor a large diversity of Phytophthora species, indicating a potential risk for disease for native Californian vegetation.
Collapse
Affiliation(s)
- Sebastian N. Fajardo
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (T.B.B.); (D.M.R.)
| | - Tyler B. Bourret
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (T.B.B.); (D.M.R.)
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Susan J. Frankel
- United States Forest Service, Pacific Southwest Research Station, Albany, CA 94710, USA;
| | - David M. Rizzo
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (T.B.B.); (D.M.R.)
| |
Collapse
|
3
|
Jung T, Milenković I, Balci Y, Janoušek J, Kudláček T, Nagy Z, Baharuddin B, Bakonyi J, Broders K, Cacciola S, Chang TT, Chi N, Corcobado T, Cravador A, Đorđević B, Durán A, Ferreira M, Fu CH, Garcia L, Hieno A, Ho HH, Hong C, Junaid M, Kageyama K, Kuswinanti T, Maia C, Májek T, Masuya H, Magnano di San Lio G, Mendieta-Araica B, Nasri N, Oliveira L, Pane A, Pérez-Sierra A, Rosmana A, Sanfuentes von Stowasser E, Scanu B, Singh R, Stanivuković Z, Tarigan M, Thu P, Tomić Z, Tomšovský M, Uematsu S, Webber J, Zeng HC, Zheng FC, Brasier C, Horta Jung M. Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Stud Mycol 2024; 107:251-388. [PMID: 38600961 PMCID: PMC11003442 DOI: 10.3114/sim.2024.107.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 04/12/2024] Open
Abstract
During 25 surveys of global Phytophthora diversity, conducted between 1998 and 2020, 43 new species were detected in natural ecosystems and, occasionally, in nurseries and outplantings in Europe, Southeast and East Asia and the Americas. Based on a multigene phylogeny of nine nuclear and four mitochondrial gene regions they were assigned to five of the six known subclades, 2a-c, e and f, of Phytophthora major Clade 2 and the new subclade 2g. The evolutionary history of the Clade appears to have involved the pre-Gondwanan divergence of three extant subclades, 2c, 2e and 2f, all having disjunct natural distributions on separate continents and comprising species with a soilborne and aquatic lifestyle and, in addition, a few partially aerial species in Clade 2c; and the post-Gondwanan evolution of subclades 2a and 2g in Southeast/East Asia and 2b in South America, respectively, from their common ancestor. Species in Clade 2g are soilborne whereas Clade 2b comprises both soil-inhabiting and aerial species. Clade 2a has evolved further towards an aerial lifestyle comprising only species which are predominantly or partially airborne. Based on high nuclear heterozygosity levels ca. 38 % of the taxa in Clades 2a and 2b could be some form of hybrid, and the hybridity may be favoured by an A1/A2 breeding system and an aerial life style. Circumstantial evidence suggests the now 93 described species and informally designated taxa in Clade 2 result from both allopatric non-adaptive and sympatric adaptive radiations. They represent most morphological and physiological characters, breeding systems, lifestyles and forms of host specialism found across the Phytophthora clades as a whole, demonstrating the strong biological cohesiveness of the genus. The finding of 43 previously unknown species from a single Phytophthora clade highlight a critical lack of information on the scale of the unknown pathogen threats to forests and natural ecosystems, underlining the risk of basing plant biosecurity protocols mainly on lists of named organisms. More surveys in natural ecosystems of yet unsurveyed regions in Africa, Asia, Central and South America are needed to unveil the full diversity of the clade and the factors driving diversity, speciation and adaptation in Phytophthora. Taxonomic novelties: New species: Phytophthora amamensis T. Jung, K. Kageyama, H. Masuya & S. Uematsu, Phytophthora angustata T. Jung, L. Garcia, B. Mendieta-Araica, & Y. Balci, Phytophthora balkanensis I. Milenković, Ž. Tomić, T. Jung & M. Horta Jung, Phytophthora borneensis T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora calidophila T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora catenulata T. Jung, T.-T. Chang, N.M. Chi & M. Horta Jung, Phytophthora celeris T. Jung, L. Oliveira, M. Tarigan & I. Milenković, Phytophthora curvata T. Jung, A. Hieno, H. Masuya & M. Horta Jung, Phytophthora distorta T. Jung, A. Durán, E. Sanfuentes von Stowasser & M. Horta Jung, Phytophthora excentrica T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora falcata T. Jung, K. Kageyama, S. Uematsu & M. Horta Jung, Phytophthora fansipanensis T. Jung, N.M. Chi, T. Corcobado & C.M. Brasier, Phytophthora frigidophila T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora furcata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora inclinata N.M. Chi, T. Jung, M. Horta Jung & I. Milenković, Phytophthora indonesiensis T. Jung, M. Tarigan, L. Oliveira & I. Milenković, Phytophthora japonensis T. Jung, A. Hieno, H. Masuya & J.F. Webber, Phytophthora limosa T. Corcobado, T. Majek, M. Ferreira & T. Jung, Phytophthora macroglobulosa H.-C. Zeng, H.-H. Ho, F.-C. Zheng & T. Jung, Phytophthora montana T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora multipapillata T. Jung, M. Tarigan, I. Milenković & M. Horta Jung, Phytophthora multiplex T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora nimia T. Jung, H. Masuya, A. Hieno & C.M. Brasier, Phytophthora oblonga T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora obovoidea T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora obturata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora penetrans T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora platani T. Jung, A. Pérez-Sierra, S.O. Cacciola & M. Horta Jung, Phytophthora proliferata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora pseudocapensis T. Jung, T.-T. Chang, I. Milenković & M. Horta Jung, Phytophthora pseudocitrophthora T. Jung, S.O. Cacciola, J. Bakonyi & M. Horta Jung, Phytophthora pseudofrigida T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora pseudoccultans T. Jung, T.-T. Chang, I. Milenković & M. Horta Jung, Phytophthora pyriformis T. Jung, Y. Balci, K.D. Boders & M. Horta Jung, Phytophthora sumatera T. Jung, M. Tarigan, M. Junaid & A. Durán, Phytophthora transposita T. Jung, K. Kageyama, C.M. Brasier & H. Masuya, Phytophthora vacuola T. Jung, H. Masuya, K. Kageyama & J.F. Webber, Phytophthora valdiviana T. Jung, E. Sanfuentes von Stowasser, A. Durán & M. Horta Jung, Phytophthora variepedicellata T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora vietnamensis T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora ×australasiatica T. Jung, N.M. Chi, M. Tarigan & M. Horta Jung, Phytophthora ×lusitanica T. Jung, M. Horta Jung, C. Maia & I. Milenković, Phytophthora ×taiwanensis T. Jung, T.-T. Chang, H.-S. Fu & M. Horta Jung. Citation: Jung T, Milenković I, Balci Y, Janoušek J, Kudláček T, Nagy ZÁ, Baharuddin B, Bakonyi J, Broders KD, Cacciola SO, Chang T-T, Chi NM, Corcobado T, Cravador A, Đorđević B, Durán A, Ferreira M, Fu C-H, Garcia L, Hieno A, Ho H-H, Hong C, Junaid M, Kageyama K, Kuswinanti T, Maia C, Májek T, Masuya H, Magnano di San Lio G, Mendieta-Araica B, Nasri N, Oliveira LSS, Pane A, Pérez-Sierra A, Rosmana A, Sanfuentes von Stowasser E, Scanu B, Singh R, Stanivuković Z, Tarigan M, Thu PQ, Tomić Z, Tomšovský M, Uematsu S, Webber JF, Zeng H-C, Zheng F-C, Brasier CM, Horta Jung M (2024). Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Studies in Mycology 107: 251-388. doi: 10.3114/sim.2024.107.04.
Collapse
Affiliation(s)
- T. Jung
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- Phytophthora Research and Consultancy, 83131 Nussdorf, Germany
| | - I. Milenković
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- University of Belgrade, Faculty of Forestry, 11030 Belgrade, Serbia
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - J. Janoušek
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - T. Kudláček
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- University of Greifswald, Institute for Mathematics and Computer Science & Center for Functional Genomics of Microbes, 17489 Greifswald, Germany
| | - Z.Á. Nagy
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - B. Baharuddin
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - J. Bakonyi
- HUN-REN Centre for Agricultural Research, Plant Protection Institute, ELKH, 1022 Budapest, Hungary
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, 61604, USA
| | - S.O. Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - T.-T. Chang
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - N.M. Chi
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 10000 Hanoi, Vietnam
| | - T. Corcobado
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - A. Cravador
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, University of Algarve, 8005-130 Faro, Portugal
| | - B. Đorđević
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - A. Durán
- Fiber Research and Development, Asia Pacific Resources International Limited (APRIL), 28300 Pangkalan Kerinci, Riau, Indonesia
| | - M. Ferreira
- Plant Diagnostic Center, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - C.-H. Fu
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - L. Garcia
- Universidad Nacional Agraria, Carretera Norte, Managua 11065, Nicaragua
| | - A. Hieno
- River Basin Research Center, Gifu University, Gifu, 501-1193, Japan
| | - H.-H. Ho
- Department of Biology, State University of New York, New Paltz, New York 12561, USA
| | - C. Hong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA
| | - M. Junaid
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - K. Kageyama
- River Basin Research Center, Gifu University, Gifu, 501-1193, Japan
| | - T. Kuswinanti
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - C. Maia
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
| | - T. Májek
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - H. Masuya
- Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan
| | - G. Magnano di San Lio
- University Mediterranea of Reggio Calabria, Department of Agriculture, 89124 Reggio Calabria, Italy
| | | | - N. Nasri
- The United Graduate School of Agricultural Science, Ehime University, Matsuyama, 790-8566, Japan
| | - L.S.S. Oliveira
- Research and Development, Bracell, Alagoinhas, Bahia 48030-300, Brazil
| | - A. Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - A. Pérez-Sierra
- Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - A. Rosmana
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - E. Sanfuentes von Stowasser
- Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, 4030000 Concepción, Chile
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100 Sassari, Italy
| | - R. Singh
- Plant Diagnostic Center, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Z. Stanivuković
- University of Banja Luka, Faculty of Forestry, 78000 Banja Luka, Bosnia and Herzegovina
| | - M. Tarigan
- Fiber Research and Development, Asia Pacific Resources International Limited (APRIL), 28300 Pangkalan Kerinci, Riau, Indonesia
| | - P.Q. Thu
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 10000 Hanoi, Vietnam
| | - Z. Tomić
- Center for Plant Protection, Croatian Agency for Agriculture and Food, 10000 Zagreb, Croatia
| | - M. Tomšovský
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - S. Uematsu
- Laboratory of Molecular and Cellular Biology, Dept. of Bioregulation and Bio-interaction, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - J.F. Webber
- Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - H.-C. Zeng
- The Institute of Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - F.-C. Zheng
- College of Environment and Plant Protection, Hainan University, Baodoa Xincun, Danzhou City, Hainan 571737, China
| | - C.M. Brasier
- Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - M. Horta Jung
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- Phytophthora Research and Consultancy, 83131 Nussdorf, Germany
| |
Collapse
|
4
|
Abad Z, Burgess T, Bourret T, Bensch K, Cacciola S, Scanu B, Mathew R, Kasiborski B, Srivastava S, Kageyama K, Bienapfl J, Verkleij G, Broders K, Schena L, Redford A. Phytophthora : taxonomic and phylogenetic revision of the genus. Stud Mycol 2023; 106:259-348. [PMID: 38298569 PMCID: PMC10825748 DOI: 10.3114/sim.2023.106.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/19/2023] [Indexed: 02/02/2024] Open
Abstract
Many members of the Oomycota genus Phytophthora cause economic and environmental impact diseases in nurseries, horticulture, forest, and natural ecosystems and many are of regulatory concern around the world. At present, there are 223 described species, including eight unculturable and three lost species. Twenty-eight species need to be redescribed or validated. A lectotype, epitype or neotype was selected for 20 species, and a redescription based on the morphological/molecular characters and phylogenetic placement is provided. In addition, the names of five species are validated: P. cajani, P. honggalleglyana (Synonym: P. hydropathica), P. megakarya, P. pisi and P. pseudopolonica for which morphology and phylogeny are given. Two species, P. ×multiformis and P. uniformis are presented as new combinations. Phytophthora palmivora is treated with a representative strain as both lecto- and epitypification are pending. This manuscript provides the updated multigene phylogeny and molecular toolbox with seven genes (ITS rDNA, β-tub, COI, EF1α, HSP90, L10, and YPT1) generated from the type specimens of 212 validly published, and culturable species (including nine hybrid taxa). The genome information of 23 types published to date is also included. Several aspects of the taxonomic revision and phylogenetic re-evaluation of the genus including species concepts, concept and position of the phylogenetic clades recognized within Phytophthora are discussed. Some of the contents of this manuscript, including factsheets for the 212 species, are associated with the "IDphy: molecular and morphological identification of Phytophthora based on the types" online resource (https://idtools.org/tools/1056/index.cfm). The first version of the IDphy online resource released to the public in September 2019 contained 161 species. In conjunction with this publication, we are updating the IDphy online resource to version 2 to include the 51 species recently described. The current status of the 223 described species is provided along with information on type specimens with details of the host (substrate), location, year of collection and publications. Additional information is provided regarding the ex-type culture(s) for the 212 valid culturable species and the diagnostic molecular toolbox with seven genes that includes the two metabarcoding genes (ITS and COI) that are important for Sanger sequencing and also very valuable Molecular Operational Taxonomic Units (MOTU) for second and third generation metabarcoding High-throughput sequencing (HTS) technologies. The IDphy online resource will continue to be updated annually to include new descriptions. This manuscript in conjunction with IDphy represents a monographic study and the most updated revision of the taxonomy and phylogeny of Phytophthora, widely considered one of the most important genera of plant pathogens. Taxonomic novelties: New species: Phytophthora cajani K.S. Amin, Baldev & F.J. Williams ex Abad, Phytophthora honggalleglyana Abad, Phytophthora megakarya Brasier & M.J. Griffin ex Abad, Phytophthora pisi Heyman ex Abad, Phytophthora pseudopolonica W.W. Li, W.X. Huai & W.X. Zhao ex Abad & Kasiborski; New combinations: Phytophthora ×multiformis (Brasier & S.A. Kirk) Abad, Phytophthora uniformis (Brasier & S.A. Kirk) Abad; Epitypifications (basionyms): Peronospora cactorum Lebert & Cohn, Pythiacystis citrophthora R.E. Sm. & E.H. Sm., Phytophthora colocasiae Racib., Phytophthora drechsleri Tucker, Phytophthora erythroseptica Pethybr., Phytophthora fragariae Hickman, Phytophthora hibernalis Carne, Phytophthora ilicis Buddenh. & Roy A. Young, Phytophthora inundata Brasier et al., Phytophthora megasperma Drechsler, Phytophthora mexicana Hotson & Hartge, Phytophthora nicotianae Breda de Haan, Phytophthora phaseoli Thaxt., Phytophthora porri Foister, Phytophthora primulae J.A. Toml., Phytophthora sojae Kaufm. & Gerd., Phytophthora vignae Purss, Pythiomorpha gonapodyides H.E. Petersen; Lectotypifications (basionym): Peronospora cactorum Lebert & Cohn, Pythiacystis citrophthora R.E. Sm. & E.H. Sm., Phytophthora colocasiae Racib., Phytophthora drechsleri Tucker, Phytophthora erythroseptica Pethybr., Phytophthora fragariae Hickman, Phytophthora hibernalis Carne, Phytophthora ilicis Buddenh. & Roy A. Young, Phytophthora megasperma Drechsler, Phytophthora mexicana Hotson & Hartge, Phytophthora nicotianae Breda de Haan, Phytophthora phaseoli Thaxt., Phytophthora porri Foister, Phytophthora primulae J.A. Toml., Phytophthora sojae Kaufm. & Gerd., Phytophthora vignae Purss, Pythiomorpha gonapodyides H.E. Petersen; Neotypifications (basionym): Phloeophthora syringae Kleb., Phytophthora meadii McRae Citation: Abad ZG, Burgess TI, Bourret T, Bensch K, Cacciola S, Scanu B, Mathew R, Kasiborski B, Srivastava S, Kageyama K, Bienapfl JC, Verkleij G, Broders K, Schena L, Redford AJ (2023). Phytophthora: taxonomic and phylogenetic revision of the genus. Studies in Mycology 106: 259-348. doi: 10.3114/sim.2023.106.05.
Collapse
Affiliation(s)
- Z.G. Abad
- USDA APHIS PPQ S&T Plant Pathogen Confirmatory Diagnostics Laboratory, USA;
| | - T.I. Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia;
| | - T. Bourret
- Department of Plant Pathology, University of California, Davis, CA, USA,
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8, 3584 CT Utrecht, Netherlands,
| | - S.O. Cacciola
- Department of Agricultural, Food and Environment, University of Catania, Italy;
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Italy;
| | - R. Mathew
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - B. Kasiborski
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - S. Srivastava
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - K. Kageyama
- River Basin Research Center, Gifu University, Japan,
| | - J.C. Bienapfl
- USDA APHIS PPQ S&T Plant Pathogen Confirmatory Diagnostics Laboratory, USA;
| | - G. Verkleij
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8, 3584 CT Utrecht, Netherlands,
| | - K. Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, 61604, USA;
| | - L. Schena
- Dipartimento di Agraria, Mediterranean University of Reggio Calabria, Italy,
| | - A.J. Redford
- USDA APHIS PPQ S&T Identification Technology Program, USA
| |
Collapse
|
5
|
Fletcher K, Michelmore R. Genome-Enabled Insights into Downy Mildew Biology and Evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:165-183. [PMID: 37268005 DOI: 10.1146/annurev-phyto-021622-103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oomycetes that cause downy mildew diseases are highly specialized, obligately biotrophic phytopathogens that can have major impacts on agriculture and natural ecosystems. Deciphering the genome sequence of these organisms provides foundational tools to study and deploy control strategies against downy mildew pathogens (DMPs). The recent telomere-to-telomere genome assembly of the DMP Peronospora effusa revealed high levels of synteny with distantly related DMPs, higher than expected repeat content, and previously undescribed architectures. This provides a road map for generating similar high-quality genome assemblies for other oomycetes. This review discusses biological insights made using this and other assemblies, including ancestral chromosome architecture, modes of sexual and asexual variation, the occurrence of heterokaryosis, candidate gene identification, functional validation, and population dynamics. We also discuss future avenues of research likely to be fruitful in studies of DMPs and highlight resources necessary for advancing our understanding and ability to forecast and control disease outbreaks.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, California, USA
| | - Richard Michelmore
- The Genome Center, University of California, Davis, California, USA
- Department of Plant Sciences; Department of Molecular and Cellular Biology; Department of Medical Microbiology and Immunology, University of California, Davis, California, USA;
| |
Collapse
|
6
|
DeRaad DA, McCullough JM, DeCicco LH, Hime PM, Joseph L, Andersen MJ, Moyle RG. Mitonuclear discordance results from incomplete lineage sorting, with no detectable evidence for gene flow, in a rapid radiation of Todiramphus kingfishers. Mol Ecol 2023; 32:4844-4862. [PMID: 37515525 DOI: 10.1111/mec.17080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023]
Abstract
Many organisms possess multiple discrete genomes (i.e. nuclear and organellar), which are inherited separately and may have unique and even conflicting evolutionary histories. Phylogenetic reconstructions from these discrete genomes can yield different patterns of relatedness, a phenomenon known as cytonuclear discordance. In many animals, mitonuclear discordance (i.e. discordant evolutionary histories between the nuclear and mitochondrial genomes) has been widely documented, but its causes are often considered idiosyncratic and inscrutable. We show that a case of mitonuclear discordance in Todiramphus kingfishers can be explained by extensive genome-wide incomplete lineage sorting (ILS), likely a result of the explosive diversification history of this genus. For these kingfishers, quartet frequencies reveal that the nuclear genome is dominated by discordant topologies, with none of the internal branches in our consensus nuclear tree recovered in >50% of genome-wide gene trees. Meanwhile, a lack of inter-species shared ancestry, non-significant pairwise tests for gene flow, and little evidence for meaningful migration edges between species, leads to the conclusion that gene flow cannot explain the mitonuclear discordance we observe. This lack of evidence for gene flow combined with evidence for extensive genome-wide gene tree discordance, a hallmark of ILS, leads us to conclude that the mitonuclear discordance we observe likely results from ILS, specifically deep coalescence of the mitochondrial genome. Based on this case study, we hypothesize that similar demographic histories in other 'great speciator' taxa across the Indo-Pacific likely predispose these groups to high levels of ILS and high likelihoods of mitonuclear discordance.
Collapse
Affiliation(s)
- Devon A DeRaad
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
| | - Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lucas H DeCicco
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
| | - Paul M Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australian Capital Territory, Australia
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Robert G Moyle
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
7
|
Jung T, Balci Y, Broders KD, Milenković I, Janoušek J, Kudláček T, Đorđević B, Horta Jung M. Synchrospora gen. nov., a New Peronosporaceae Genus with Aerial Lifestyle from a Natural Cloud Forest in Panama. J Fungi (Basel) 2023; 9:517. [PMID: 37233228 PMCID: PMC10218844 DOI: 10.3390/jof9050517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
During a survey of Phytophthora diversity in Panama, fast-growing oomycete isolates were obtained from naturally fallen leaves of an unidentified tree species in a tropical cloud forest. Phylogenetic analyses of sequences from the nuclear ITS, LSU and ßtub loci and the mitochondrial cox1 and cox2 genes revealed that they belong to a new species of a new genus, officially described here as Synchrospora gen. nov., which resided as a basal genus within the Peronosporaceae. The type species S. medusiformis has unique morphological characteristics. The sporangiophores show determinate growth, multifurcating at the end, forming a stunted, candelabra-like apex from which multiple (8 to >100) long, curved pedicels are growing simultaneously in a medusa-like way. The caducous papillate sporangia mature and are shed synchronously. The breeding system is homothallic, hence more inbreeding than outcrossing, with smooth-walled oogonia, plerotic oospores and paragynous antheridia. Optimum and maximum temperatures for growth are 22.5 and 25-27.5 °C, consistent with its natural cloud forest habitat. It is concluded that S. medusiformis as adapted to a lifestyle as a canopy-dwelling leaf pathogen in tropical cloud forests. More oomycete explorations in the canopies of tropical rainforests and cloud forests are needed to elucidate the diversity, host associations and ecological roles of oomycetes and, in particular, S. medusiformis and possibly other Synchrospora taxa in this as yet under-explored habitat.
Collapse
Affiliation(s)
- Thomas Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (I.M.); (J.J.); (T.K.); (B.Đ.); (M.H.J.)
- Phytophthora Research and Consultancy, 83131 Nußdorf, Germany
| | - Yilmaz Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, MD 20737, USA;
| | - Kirk D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, Panama City 0843-03092, Panama;
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, USA
| | - Ivan Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (I.M.); (J.J.); (T.K.); (B.Đ.); (M.H.J.)
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Josef Janoušek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (I.M.); (J.J.); (T.K.); (B.Đ.); (M.H.J.)
| | - Tomáš Kudláček
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (I.M.); (J.J.); (T.K.); (B.Đ.); (M.H.J.)
| | - Biljana Đorđević
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (I.M.); (J.J.); (T.K.); (B.Đ.); (M.H.J.)
| | - Marilia Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (I.M.); (J.J.); (T.K.); (B.Đ.); (M.H.J.)
- Phytophthora Research and Consultancy, 83131 Nußdorf, Germany
| |
Collapse
|
8
|
Fletcher K, Martin F, Isakeit T, Cavanaugh K, Magill C, Michelmore R. The genome of the oomycete Peronosclerospora sorghi, a cosmopolitan pathogen of maize and sorghum, is inflated with dispersed pseudogenes. G3 (BETHESDA, MD.) 2023; 13:jkac340. [PMID: 36592124 PMCID: PMC9997571 DOI: 10.1093/g3journal/jkac340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023]
Abstract
Several species in the oomycete genus Peronosclerospora cause downy mildew on maize and can result in significant yield losses in Asia. Bio-surveillance of these pathogens is a high priority to prevent epidemics on maize in the United States and consequent damage to the US economy. The unresolved taxonomy and dearth of molecular resources for Peronosclerospora spp. hinder these efforts. P. sorghi is a pathogen of sorghum and maize with a global distribution, for which limited diversity has been detected in the southern USA. We characterized the genome, transcriptome, and mitogenome of an isolate, representing the US pathotype 6. The highly homozygous genome was assembled using 10× Genomics linked reads and scaffolded using Hi-C into 13 chromosomes. The total assembled length was 303.2 Mb, larger than any other oomycete previously assembled. The mitogenome was 38 kb, similar in size to other oomycetes, although it had a unique gene order. Nearly 20,000 genes were annotated in the nuclear genome, more than described for other downy mildew causing oomycetes. The 13 chromosomes of P. sorghi were highly syntenic with the 17 chromosomes of Peronospora effusa with conserved centromeric regions and distinct chromosomal fusions. The increased assembly size and gene count of P. sorghi is due to extensive retrotransposition, resulting in putative pseudogenization. Ancestral genes had higher transcript abundance and were enriched for differential expression. This study provides foundational resources for analysis of Peronosclerospora and comparisons to other oomycete genera. Further genomic studies of global Peronosclerospora spp. will determine the suitability of the mitogenome, ancestral genes, and putative pseudogenes for marker development and taxonomic relationships.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, CA 95616, USA
| | - Frank Martin
- U.S. Department of Agriculture–Agriculture Research Service, Salinas, CA, 93905, USA
| | - Thomas Isakeit
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Keri Cavanaugh
- The Genome Center, University of California, Davis, CA 95616, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Richard Michelmore
- The Genome Center, University of California, Davis, CA 95616, USA
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Tör M, Wood T, Webb A, Göl D, McDowell JM. Recent developments in plant-downy mildew interactions. Semin Cell Dev Biol 2023; 148-149:42-50. [PMID: 36670035 DOI: 10.1016/j.semcdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Downy mildews are obligate oomycete pathogens that attack a wide range of plants and can cause significant economic impacts on commercial crops and ornamental plants. Traditionally, downy mildew disease control relied on an integrated strategies, that incorporate cultural practices, deployment of resistant cultivars, crop rotation, application of contact and systemic pesticides, and biopesticides. Recent advances in genomics provided data that significantly advanced understanding of downy mildew evolution, taxonomy and classification. In addition, downy mildew genomics also revealed that these obligate oomycetes have reduced numbers of virulence factor genes in comparison to hemibiotrophic and necrotrophic oomycetes. However, downy mildews do deploy significant arrays of virulence proteins, including so-called RXLR proteins that promote virulence or are recognized as avirulence factors. Pathogenomics are being applied to downy mildew population studies to determine the genetic diversity within the downy mildew populations and manage disease by selection of appropriate varieties and management strategies. Genome editing technologies have been used to manipulate host disease susceptibility genes in different plants including grapevine and sweet basil and thereby provide new soucres of resistance genes against downy mildews. Previously, it has proved difficult to transform and manipulate downy mildews because of their obligate lifestyle. However, recent exploitation of RNA interference machinery through Host-Induced Gene Silencing (HIGS) and Spray-Induced Gene Silencing (SIGS) indicate that functional genomics in downy mildews is now possible. Altogether, these breakthrough technologies and attendant fundamental understanding will advance our ability to mitigate downy mildew diseases.
Collapse
Affiliation(s)
- Mahmut Tör
- Department of Biology, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK.
| | | | | | - Deniz Göl
- Department of Biology, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061-0329, USA
| |
Collapse
|
10
|
Bourret TB, Fajardo SN, Frankel SJ, Rizzo DM. Cataloging Phytophthora Species of Agriculture, Forests, Horticulture, and Restoration Outplantings in California, U.S.A.: A Sequence-Based Meta-Analysis. PLANT DISEASE 2023; 107:67-75. [PMID: 35724315 DOI: 10.1094/pdis-01-22-0187-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
California contains a diverse flora, and knowledge of the pathogens that threaten those plants is essential to managing their long-term health. To better understand threats to California plant health, a meta-analysis of Phytophthora detections within the state was conducted using publicly available sequences as a primary source of data rather than published records. Accessions of internal transcribed spacer (ITS) ribosomal DNA were cataloged from 800 Californian Phytophthora isolates, analyzed, and determined to correspond to 80 taxa, including several phylogenetically distinct provisional species. A number of Phytophthora taxa not previously reported from California were identified, including 20 described species. Pathways of introduction and spread were analyzed by categorizing isolates' origins, grouped by land-use: (i) agriculture, (ii) forests and other natural ecosystems, (iii) horticulture and nurseries, or (iv) restoration outplantings. The pooled Phytophthora metacommunities of the restoration outplantings and horticulture land-use categories were the most similar, whereas the communities pooled from forests and agriculture were least similar. Phytophthora cactorum, P. pini, P. pseudocryptogea, and P. syringae were identified in all four land-use categories, while 13 species were found in three. P. gonapodyides was the most common species by number of ITS accessions and exhibited the greatest diversity of ITS haplotypes. P. cactorum, P. ramorum, and P. nicotianae were associated with the greatest number of host genera. In this analysis, the Phytophthora spp. most prevalent in California differ from those compiled from the scientific literature.
Collapse
Affiliation(s)
- Tyler B Bourret
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616
| | - Sebastian N Fajardo
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616
| | - Susan J Frankel
- Pacific Southwest Research Station, United States Department of Agriculture Forest Service, Albany, CA 94710
| | - David M Rizzo
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
11
|
Coomber A, Saville A, Carbone I, Ristaino JB. An open-access T-BAS phylogeny for emerging Phytophthora species. PLoS One 2023; 18:e0283540. [PMID: 37011062 PMCID: PMC10069789 DOI: 10.1371/journal.pone.0283540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Phytophthora species cause severe diseases on food, forest, and ornamental crops. Since the genus was described in 1876, it has expanded to comprise over 190 formally described species. There is a need for an open access phylogenetic tool that centralizes diverse streams of sequence data and metadata to facilitate research and identification of Phytophthora species. We used the Tree-Based Alignment Selector Toolkit (T-BAS) to develop a phylogeny of 192 formally described species and 33 informal taxa in the genus Phytophthora using sequences of eight nuclear genes. The phylogenetic tree was inferred using the RAxML maximum likelihood program. A search engine was also developed to identify microsatellite genotypes of P. infestans based on genetic distance to known lineages. The T-BAS tool provides a visualization framework allowing users to place unknown isolates on a curated phylogeny of all Phytophthora species. Critically, the tree can be updated in real-time as new species are described. The tool contains metadata including clade, host species, substrate, sexual characteristics, distribution, and reference literature, which can be visualized on the tree and downloaded for other uses. This phylogenetic resource will allow data sharing among research groups and the database will enable the global Phytophthora community to upload sequences and determine the phylogenetic placement of an isolate within the larger phylogeny and to download sequence data and metadata. The database will be curated by a community of Phytophthora researchers and housed on the T-BAS web portal in the Center for Integrated Fungal Research at NC State. The T-BAS web tool can be leveraged to create similar metadata enhanced phylogenies for other Oomycete, bacterial or fungal pathogens.
Collapse
Affiliation(s)
- Allison Coomber
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Functional Genomics Program, NC State University, Raleigh, North Carolina, United States of America
| | - Amanda Saville
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Center for Integrated Fungal Research, NC State University, Raleigh, North Carolina, United States of America
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Emerging Plant Disease and Global Food Security Cluster, NC State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
12
|
Combier M, Evangelisti E, Piron MC, Schornack S, Mestre P. Candidate effector proteins from the oomycetes Plasmopara viticola and Phytophthora parasitica share similar predicted structures and induce cell death in Nicotiana species. PLoS One 2022; 17:e0278778. [PMID: 36459530 PMCID: PMC9718384 DOI: 10.1371/journal.pone.0278778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Effector proteins secreted by plant pathogens are essential for infection. Cytoplasmic RXLR effectors from oomycetes are characterized by the presence of RXLR and EER motifs that are frequently linked to WY- and/or LWY-domains, folds that are exclusive to this effector family. A related family of secreted candidate effector proteins, carrying WY-domains and the EER motif but lacking the canonical RXLR motif, has recently been described in oomycetes and is mainly found in downy mildew pathogens. Plasmopara viticola is an obligate biotrophic oomycete causing grapevine downy mildew. Here we describe a conserved Pl. viticola secreted candidate non-RXLR effector protein with cell death-inducing activity in Nicotiana species. A similar RXLR effector candidate from the broad host range oomycete pathogen Phytophthora parasitica also induces cell death in Nicotiana. Through comparative tertiary structure modelling, we reveal that both proteins are predicted to carry WY- and LWY-domains. Our work supports the presence of LWY-domains in non-RXLR effectors and suggests that effector candidates with similar domain architecture may exert similar activities.
Collapse
Affiliation(s)
- Maud Combier
- SVQV, UMR-A 1131, Université de Strasbourg, INRAE, Colmar, France
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | | | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | - Pere Mestre
- SVQV, UMR-A 1131, Université de Strasbourg, INRAE, Colmar, France
- * E-mail:
| |
Collapse
|
13
|
Bustamante MI, Osorio-Navarro C, Fernández Y, Bourret TB, Zamorano A, Henríquez-Sáez JL. First Record of Colletotrichum anthrisci Causing Anthracnose on Avocado Fruits in Chile. Pathogens 2022; 11:pathogens11101204. [PMID: 36297261 PMCID: PMC9611251 DOI: 10.3390/pathogens11101204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
Anthracnose caused by Colletotrichum species is one of the most frequent and damaging fungal diseases affecting avocado fruits (Persea americana Mill.) worldwide. In Chile, the disease incidence has increased over the last decades due to the establishment of commercial groves in more humid areas. Since 2018, unusual symptoms of anthracnose have been observed on Hass avocado fruits, with lesions developing a white to gray sporulation. Morphological features and multi-locus phylogenetic analyses using six DNA barcodes (act, chs-1, gapdh, his3, ITS, and tub2) allowed the identification of the causal agent as Colletotrichum anthrisci, a member of the dematium species complex. Pathogenicity was confirmed by inoculating healthy Hass avocado fruits with representative isolates, reproducing the same symptoms initially observed, and successfully reisolating the same isolates from the margin of the necrotic pulp. Previously, several Colletotrichum species belonging to other species complexes have been associated with avocado anthracnose in other countries. To our knowledge, this is the first record of C. anthrisci and of a species of the dematium species complex causing anthracnose on avocado fruits in Chile and worldwide.
Collapse
Affiliation(s)
- Marcelo I. Bustamante
- Departament of Plant Health, Faculty of Agricultural Sciences, University of Chile, Avenida Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
- Correspondence:
| | - Claudio Osorio-Navarro
- Departament of Plant Health, Faculty of Agricultural Sciences, University of Chile, Avenida Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Ñuñoa 7800003, Santiago, Chile
| | - Ysadora Fernández
- Departament of Plant Health, Faculty of Agricultural Sciences, University of Chile, Avenida Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
| | - Tyler B. Bourret
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Alan Zamorano
- Departament of Plant Health, Faculty of Agricultural Sciences, University of Chile, Avenida Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
| | - José Luis Henríquez-Sáez
- Departament of Plant Health, Faculty of Agricultural Sciences, University of Chile, Avenida Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
| |
Collapse
|
14
|
Chen Q, Bakhshi M, Balci Y, Broders K, Cheewangkoon R, Chen S, Fan X, Gramaje D, Halleen F, Jung MH, Jiang N, Jung T, Májek T, Marincowitz S, Milenković I, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies C, Suhaizan L, Suzuki H, Tian C, Tomšovský M, Úrbez-Torres J, Wang W, Wingfield B, Wingfield M, Yang Q, Yang X, Zare R, Zhao P, Groenewald J, Cai L, Crous P. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol 2022; 101:417-564. [PMID: 36059898 PMCID: PMC9365048 DOI: 10.3114/sim.2022.101.06] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenković, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenković, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenković T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomšovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
Collapse
Affiliation(s)
- Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Bakhshi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
| | - R. Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - S.F. Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV). Consejo Superior de Investigaciones Científicas - Universidad de La Rioja - Gobierno de La Rioja. Ctra. LO-20 Salida 13, 26007 Logroño. Spain
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenboscvh, 7599, South Africa
| | - M. Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - T. Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - T. Májek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - I. Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - I. Nurul Faziha
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Pan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - C.F.J. Spies
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - L. Suhaizan
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - H. Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - J.R. Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W. Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Q. Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - X. Yang
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland, 21702 USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, P.O. Box 117, Oak Ridge, Tennessee, 37831 USA
| | - R. Zare
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
15
|
Brasier C, Scanu B, Cooke D, Jung T. Phytophthora: an ancient, historic, biologically and structurally cohesive and evolutionarily successful generic concept in need of preservation. IMA Fungus 2022; 13:12. [PMID: 35761420 PMCID: PMC9235178 DOI: 10.1186/s43008-022-00097-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
The considerable economic and social impact of the oomycete genus Phytophthora is well known. In response to evidence that all downy mildews (DMs) reside phylogenetically within Phytophthora, rendering Phytophthora paraphyletic, a proposal has been made to split the genus into multiple new genera. We have reviewed the status of the genus and its relationship to the DMs. Despite a substantial increase in the number of described species and improvements in molecular phylogeny the Phytophthora clade structure has remained stable since first demonstrated in 2000. Currently some 200 species are distributed across twelve major clades in a relatively tight monophyletic cluster. In our assessment of 196 species for twenty morphological and behavioural criteria the clades show good biological cohesion. Saprotrophy, necrotrophy and hemi-biotrophy of woody and non-woody roots, stems and foliage occurs across the clades. Phylogenetically less related clades often show strong phenotypic and behavioural similarities and no one clade or group of clades shows the synapomorphies that might justify a unique generic status. We propose the clades arose from the migration and worldwide radiation ~ 140 Mya (million years ago) of an ancestral Gondwanan Phytophthora population, resulting in geographic isolation and clade divergence through drift on the diverging continents combined with adaptation to local hosts, climatic zones and habitats. The extraordinary flexibility of the genus may account for its global 'success'. The 20 genera of the obligately biotrophic, angiosperm-foliage specialised DMs evolved from Phytophthora at least twice via convergent evolution, making the DMs as a group polyphyletic and Phytophthora paraphyletic in cladistic terms. The long phylogenetic branches of the DMs indicate this occurred rather rapidly, via paraphyletic evolutionary 'jumps'. Such paraphyly is common in successful organisms. The proposal to divide Phytophthora appears more a device to address the issue of the convergent evolution of the DMs than the structure of Phytophthora per se. We consider it non-Darwinian, putting the emphasis on the emergent groups (the DMs) rather than the progenitor (Phytophthora) and ignoring the evolutionary processes that gave rise to the divergence. Further, the generic concept currently applied to the DMs is narrower than that between some closely related Phytophthora species. Considering the biological and structural cohesion of Phytophthora, its historic and social impacts and its importance in scientific communication and biosecurity protocol, we recommend that the current broad generic concept is retained by the scientific community.
Collapse
Affiliation(s)
- Clive Brasier
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK.
| | - Bruno Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
| | - David Cooke
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas Jung
- Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, Mendel University in Brno, 613 00, Brno, Czech Republic.
- Phytophthora Research and Consultancy, 83131, Nussdorf, Germany.
| |
Collapse
|
16
|
Fletcher K, Shin OH, Clark KJ, Feng C, Putman AI, Correll JC, Klosterman SJ, Van Deynze A, Michelmore RW. Ancestral Chromosomes for Family Peronosporaceae Inferred from a Telomere-to-Telomere Genome Assembly of Peronospora effusa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:450-463. [PMID: 35226812 DOI: 10.1094/mpmi-09-21-0227-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Downy mildew disease of spinach, caused by the oomycete Peronospora effusa, causes major losses to spinach production. In this study, the 17 chromosomes of P. effusa were assembled telomere-to-telomere, using Pacific Biosciences high-fidelity reads. Of these, 16 chromosomes are complete and gapless; chromosome 15 contains one gap bridging the nucleolus organizer region. This is the first telomere-to-telomere genome assembly for an oomycete. Putative centromeric regions were identified on all chromosomes. This new assembly enables a reevaluation of the genomic composition of Peronospora spp.; the assembly was almost double the size and contained more repeat sequences than previously reported for any Peronospora species. Genome fragments consistently underrepresented in six previously reported assemblies of P. effusa typically encoded repeats. Some genes annotated as encoding effectors were organized into multigene clusters on several chromosomes. Putative effectors were annotated on 16 of the 17 chromosomes. The intergenic distances between annotated genes were consistent with compartmentalization of the genome into gene-dense and gene-sparse regions. Genes encoding putative effectors were enriched in gene-sparse regions. The near-gapless assembly revealed apparent horizontal gene transfer from Ascomycete fungi. Gene order was highly conserved between P. effusa and the genetically oriented assembly of the oomycete Bremia lactucae; high levels of synteny were also detected with Phytophthora sojae. Extensive synteny between phylogenetically distant species suggests that many other oomycete species may have similar chromosome organization. Therefore, this assembly provides the foundation for genomic analyses of diverse oomycetes.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, CA, U.S.A
| | - Oon-Ha Shin
- Seed Biotechnology Center, Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Kelley J Clark
- United States Department of Agriculture-Agricultural Research Station, 1636 East Alisal Street, Salinas, CA, U.S.A
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AR, U.S.A
| | - Chunda Feng
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AR, U.S.A
| | - Alexander I Putman
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, U.S.A
| | - James C Correll
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AR, U.S.A
| | - Steven J Klosterman
- United States Department of Agriculture-Agricultural Research Station, 1636 East Alisal Street, Salinas, CA, U.S.A
| | - Allen Van Deynze
- Seed Biotechnology Center, Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Richard W Michelmore
- The Genome Center, University of California, Davis, CA, U.S.A
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA, U.S.A
| |
Collapse
|
17
|
Winkworth RC, Neal G, Ogas RA, Nelson BCW, McLenachan PA, Bellgard SE, Lockhart PJ. Comparative analyses of complete Peronosporaceae (Oomycota) mitogenome sequences - insights into structural evolution and phylogeny. Genome Biol Evol 2022; 14:6568501. [PMID: 35420669 PMCID: PMC9020773 DOI: 10.1093/gbe/evac049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/14/2022] Open
Abstract
Members of the Peronosporaceae (Oomycota, Chromista), which currently consists of 25 genera and approximately 1000 recognised species, are responsible for disease on a wide range of plant hosts. Molecular phylogenetic analyses over the last two decades have improved our understanding of evolutionary relationships within Peronosporaceae. To date, 16 numbered and three named clades have been recognised; it is clear from these studies that the current taxonomy does not reflect evolutionary relationships. Whole organelle genome sequences are an increasingly important source of phylogenetic information, and in this study we present comparative and phylogenetic analyses of mitogenome sequences from 15 of the 19 currently recognized clades of Peronosporaceae, including 44 newly assembled sequences. Our analyses suggest strong conservation of mitogenome size and gene content across Peronosporaceae but, as previous studies have suggested, limited conservation of synteny. Specifically, we identified 28 distinct syntenies amongst the 71 examined isolates. Moreover, 19 of the isolates contained inverted or direct repeats, suggesting repeated sequences may be more common than previously thought. In terms of phylogenetic relationships, our analyses of 34 concatenated mitochondrial gene sequences resulted in a topology that was broadly consistent with previous studies. However, unlike previous studies concatenated mitochondrial sequences provided strong support for higher level relationships within the family.
Collapse
Affiliation(s)
- Richard C Winkworth
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand.,School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Grace Neal
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Raeya A Ogas
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Briana C W Nelson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Stanley E Bellgard
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Peter J Lockhart
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand.,School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
18
|
A Barcode-Based Phylogenetic Characterization of Phytophthora cactorum Identifies Two Cosmopolitan Lineages with Distinct Host Affinities and the First Report of Phytophthora pseudotsugae in California. J Fungi (Basel) 2022; 8:jof8030303. [PMID: 35330305 PMCID: PMC8950362 DOI: 10.3390/jof8030303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
A collection of 30 Phytophthora cactorum and 12 P. pseudotsugae (subclade 1a) strains isolated from several recent surveys across California was phylogenetically compared to a worldwide collection of 112 conspecific strains using sequences from three barcoding loci. The surveys baited P. cactorum from soil and water across a wide variety of forested ecosystems with a geographic range of more than 1000 km. Two cosmopolitan lineages were identified within the widespread P. cactorum, one being mainly associated with strawberry production and the other more closely associated with apple orchards, oaks and ornamental trees. Two other well-sampled P. cactorum lineages, including one that dominated Californian restoration outplantings, were only found in the western United States, while a third was only found in Japan. Coastal California forest isolates of both Phytophthora species exhibited considerable diversity, suggesting both may be indigenous to the state. Many isolates with sequence accessions deposited as P. cactorum were determined to be P. hedraiandra and P. ×serendipita, with one hybrid lineage appearing relatively common across Europe and Asia. This study contains the first report of P. pseudotsugae from the state of California and one of the only reports of that species since its original description.
Collapse
|
19
|
Skiadas P, Klein J, Quiroz‐Monnens T, Elberse J, de Jonge R, Van den Ackerveken G, Seidl MF. Sexual reproduction contributes to the evolution of resistance-breaking isolates of the spinach pathogen Peronospora effusa. Environ Microbiol 2022; 24:1622-1637. [PMID: 35191594 PMCID: PMC9304176 DOI: 10.1111/1462-2920.15944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Peronospora effusa causes downy mildew, the economically most important disease of cultivated spinach worldwide. To date, 19 P. effusa races have been denominated based on their capacity to break spinach resistances, but their genetic diversity and the evolutionary processes that contribute to race emergence are unknown. Here, we performed the first systematic analysis of P. effusa races showing that those emerge by both asexual and sexual reproduction. Specifically, we studied the diversity of 26 P. effusa isolates from 16 denominated races based on mitochondrial and nuclear comparative genomics. Mitochondrial genomes based on long-read sequencing coupled with diversity assessment based on short-read sequencing uncovered two mitochondrial haplogroups, each with distinct genome organization. Nuclear genome-wide comparisons of the 26 isolates revealed that 10 isolates from six races could clearly be divided into three asexually evolving groups, in concordance with their mitochondrial phylogeny. The remaining isolates showed signals of reticulated evolution and discordance between nuclear and mitochondrial phylogenies, suggesting that these evolved through sexual reproduction. Increased understanding of this pathogen's reproductive modes will provide the framework for future studies into the molecular mechanisms underlying race emergence and into the P. effusa-spinach interaction, thus assisting in sustainable production of spinach through knowledge-driven resistance breeding.
Collapse
Affiliation(s)
- Petros Skiadas
- Theoretical Biology and BioinformaticsUtrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Joël Klein
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Thomas Quiroz‐Monnens
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Joyce Elberse
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Ronnie de Jonge
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | | | - Michael F. Seidl
- Theoretical Biology and BioinformaticsUtrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| |
Collapse
|
20
|
Nowicki M, Hadziabdic D, Trigiano RN, Runge F, Thines M, Boggess SL, Ristaino J, Spring O. Microsatellite Markers from Peronospora tabacina, the Cause of Blue Mold of Tobacco, Reveal Species Origin, Population Structure, and High Gene Flow. PHYTOPATHOLOGY 2022; 112:422-434. [PMID: 34058860 DOI: 10.1094/phyto-03-21-0092-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peronospora tabacina is an obligate parasite that causes blue mold of tobacco. The pathogen reproduces primarily by sporangia, whereas the sexual oospores are rarely observed. A collection of 122 isolates of P. tabacina was genotyped using nine microsatellites to assess the population structure of individuals from subpopulations collected from central, southern, and western Europe; the Middle East; Central America; North America; and Australia. Genetic variations among the six subpopulations accounted for ∼8% of the total variation, including moderate levels of genetic differentiation, high gene flow among these subpopulations, and a positive correlation between geographic and genetic distance (r = 0.225; P < 0.001). Evidence of linkage disequilibrium (P < 0.001) showed that populations contained partially clonal subpopulations but that subpopulations from Australia and Mediterranean Europe did not. High genetic variation and population structure among samples could be explained by continuous gene flow across continents via infected transplant exchange and/or long-distance dispersal of sporangia via wind currents. This study analyzed the most numerous P. tabacina collection and allowed conclusions regarding the migration, mutation, and evolutionary history of this obligate biotrophic oomycete. The evidence pointed to the species origin in Australia and identified intracontinental and intercontinental migration patterns of this important pathogen.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Fabian Runge
- Institute of Botany 210, University of Hohenheim, D-70593 Stuttgart, Germany
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, D-60325 Frankfurt am Main, Germany
| | - Marco Thines
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, D-60325 Frankfurt am Main, Germany
- Department of Life Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, D-60323 Frankfurt am Main, Germany
| | - Sarah L Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Jean Ristaino
- Department of Entomology and Plant Pathology, Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh 27650, U.S.A
| | - Otmar Spring
- Institute of Botany 210, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
21
|
Phytophthora podocarpi sp. nov. from Diseased Needles and Shoots of Podocarpus in New Zealand. FORESTS 2022. [DOI: 10.3390/f13020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Foliage samples from Podocarpus totara with severe needle browning and needle loss in the lower part of the crown were observed in 2011 in the Gisborne region of New Zealand. A Phytophthora genus-specific test applied directly to the needles gave a strong positive result, and subsequent isolations yielded colonies of a slow-growing oomycete. Morphological examination in vitro revealed a Phytophthora species. Preliminary comparisons of the rDNA (ITS), and ras-related protein (Ypt) gene regions with international DNA sequence revealed low sequence similarity to species from the downy mildew genus Peronospora, as well as clade 3 Phytophthora species. Other studies have also demonstrated the close relationship with Peronospora. The species was given the interim designation Phytophthora taxon tōtara pending further examination. Here, we formally describe Phytophthora podocarpi sp. Nov. and its associated disease, tōtara needle blight.
Collapse
|
22
|
Neofunctionalization of Glycolytic Enzymes: An Evolutionary Route to Plant Parasitism in the Oomycete Phytophthora nicotianae. Microorganisms 2022; 10:microorganisms10020281. [PMID: 35208735 PMCID: PMC8879444 DOI: 10.3390/microorganisms10020281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Oomycetes, of the genus Phytophthora, comprise of some of the most devastating plant pathogens. Parasitism of Phytophthora results from evolution from an autotrophic ancestor and adaptation to a wide range of environments, involving metabolic adaptation. Sequence mining showed that Phytophthora spp. display an unusual repertoire of glycolytic enzymes, made of multigene families and enzyme replacements. To investigate the impact of these gene duplications on the biology of Phytophthora and, eventually, identify novel functions associated to gene expansion, we focused our study on the first glycolytic step on P. nicotianae, a broad host range pathogen. We reveal that this step is committed by a set of three glucokinase types that differ by their structure, enzymatic properties, and evolutionary histories. In addition, they are expressed differentially during the P. nicotianae life cycle, including plant infection. Last, we show that there is a strong association between the expression of a glucokinase member in planta and extent of plant infection. Together, these results suggest that metabolic adaptation is a component of the processes underlying evolution of parasitism in Phytophthora, which may possibly involve the neofunctionalization of metabolic enzymes.
Collapse
|
23
|
Trouillas FP, Nouri MT, Bourret TB. Identification and Characterization of Phytophthora Species Associated with Crown and Root Rot of Pistachio Trees in California. PLANT DISEASE 2022; 106:197-206. [PMID: 34515509 DOI: 10.1094/pdis-05-21-1064-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pistachio is one of the most widely cultivated nut crops in California, with approximately 115,000 ha of bearing pistachio trees. In recent years, several orchards were identified, with declining trees leading to substantial tree losses. Symptoms included trees with poor vigor, yellowing and wilting of leaves, crown rot, and profuse gumming on the lower portion of trunks. Thirty-seven Phytophthora-like isolates were obtained from crown rot tissues in the rootstock of grafted pistachio trees and characterized by means of multilocus phylogeny comprising internal transcribed spacer rDNA, beta-tubulin, and mt cox1 sequence data. The analysis provided strong support for the delineation and identification of three Phytophthora species associated with declining pistachio trees, including P. niederhauserii, P. mediterranea, and Phytophthora taxon walnut. Pathogenicity studies in potted University of California Berkeley I (UCBI) rootstocks (clonal and seeded) confirmed that all three Phytophthora species can cause crown and root rot of pistachio, thus fulfilling Koch's postulates. The widespread occurrence of Phytophthora crown rot in recently planted pistachio orchards and the susceptibility of UCBI rootstocks suggest this disease constitute an emerging new threat to the pistachio industry of California. To the best of our knowledge, this study is the first to report P. niederhauserii, P. mediterranea, and Phytophthora taxon walnut as causal agents of crown and root rots of pistachio.
Collapse
Affiliation(s)
- Florent P Trouillas
- University of California, Davis, Department of Plant Pathology and Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Mohamed T Nouri
- University of California Cooperative Extension San Joaquin County, Stockton, CA 95206
| | - Tyler B Bourret
- University of California, Davis, Department of Plant Pathology, Davis, CA 95616
| |
Collapse
|
24
|
Phytophthora heterospora sp. nov., a New Pseudoconidia-Producing Sister Species of P. palmivora. J Fungi (Basel) 2021; 7:jof7100870. [PMID: 34682290 PMCID: PMC8539753 DOI: 10.3390/jof7100870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Since 1999, an unusual Phytophthora species has repeatedly been found associated with stem lesions and root and collar rot on young olive trees in Southern Italy. In all cases, this species was obtained from recently established commercial plantations or from nursery plants. Morphologically, the Phytophthora isolates were characterized by the abundant production of caducous non-papillate conidia-like sporangia (pseudoconidia) and caducous papillate sporangia with a short pedicel, resembling P. palmivora var. heterocystica. Additional isolates with similar features were obtained from nursery plants of Ziziphus spina-christi in Iran, Juniperus oxycedrus and Capparis spinosa in Italy, and mature trees in commercial farms of Durio zibethinus in Vietnam. In this study, morphology, breeding system and growth characteristics of these Phytophthora isolates with peculiar features were examined, and combined mitochondrial and nuclear multigene phylogenetic analyses were performed. The proportion between pseudoconidia and sporangia varied amongst isolates and depended on the availability of free water. Oogonia with amphigynous antheridia and aplerotic oospores were produced in dual cultures with an A2 mating type strain of P. palmivora, indicating all isolates were A1 mating type. Phylogenetically, these isolates grouped in a distinct well-supported clade sister to P. palmivora; thus, they constitute a separate taxon. The new species, described here as Phytophthora heterospora sp. nov., proved to be highly pathogenic to both olive and durian plants in stem inoculation tests.
Collapse
|
25
|
Bello JC, Hausbeck MK, Sakalidis ML. Application of Target Enrichment Sequencing for Population Genetic Analyses of the Obligate Plant Pathogens Pseudoperonospora cubensis and P. humuli in Michigan. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1103-1118. [PMID: 34227836 DOI: 10.1094/mpmi-11-20-0329-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Technological advances in genome sequencing have improved our ability to catalog genomic variation and have led to an expansion of the scope and scale of genetic studies over the past decade. Yet, for agronomically important plant pathogens such as the downy mildews (Peronosporaceae), the scale of genetic studies remains limited. This is, in part, due to the difficulties associated with maintaining obligate pathogens and the logistical constraints involved in the genotyping of these species (e.g., obtaining DNA of sufficient quantity and quality). To gain an evolutionary and ecological perspective of downy mildews, adaptable methods for the genotyping of their populations are required. Here, we describe a targeted enrichment (TE) protocol to genotype isolates from two Pseudoperonospora species (P. cubensis and P. humuli), using less than 50 ng of mixed pathogen and plant DNA for library preparation. We were able to enrich 830 target genes across 128 samples and identified 2,514 high-quality single nucleotide polymorphism (SNP) variants. Using these SNPs, we detected significant genetic differentiation (analysis of molecular variance [AMOVA], P = 0.01) between P. cubensis subpopulations from Cucurbita moschata (clade I) and Cucumis sativus (clade II) in the state of Michigan. No evidence of location-based differentiation was detected within the P. cubensis (clade II) subpopulation in Michigan. However, a significant effect of location on the genetic variation of the P. humuli subpopulation was detected in the state (AMOVA, P = 0.01). Mantel tests found evidence that the genetic distance among P. humuli samples was associated with the physical distance of the hop yards from which the samples were collected (P = 0.005). The differences in the distribution of genetic variation of the Michigan P. humuli and P. cubensis subpopulations suggest differences in the dispersal of these two species. The TE protocol described here provides an additional tool for genotyping obligate biotrophic plant pathogens and the execution of new genetic studies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Julian C Bello
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Mary K Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
- Department of Forestry, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
26
|
Crous PW, Rossman AY, Aime MC, Allen WC, Burgess T, Groenewald JZ, Castlebury LA. Names of Phytopathogenic Fungi: A Practical Guide. PHYTOPATHOLOGY 2021; 111:1500-1508. [PMID: 33487022 DOI: 10.1094/phyto-11-20-0512-per] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using the correct name for phytopathogenic fungi and oomycetes is essential for communicating knowledge about species and their biology, control, and quarantine as well as for trade and research purposes. However, many plant pathogenic fungi are pleomorphic, meaning they produce different asexual (anamorph) and sexual (teleomorph) morphs in their life cycles. Therefore, more than one name has been applied to different morphs of the same species, which has confused users. The onset of DNA technologies makes it possible to connect different morphs of the same species, resulting in a move to a more natural classification system for fungi in which a single name for a genus and species can now be used. This move to a single nomenclature, coupled with the advent of molecular systematics and the introduction of polythetic taxonomic approaches, has been the main driving force for a reclassification of fungi, including pathogens. Nonetheless, finding the correct name for species remains challenging. In this article we outline a series of steps or considerations to greatly simplify this process and provide links to various online databases and resources to aid in determining the correct name. Additionally, a list of accurate names is provided for the most common genera and species of phytopathogenic fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre, Laboratory of Phytopathology, 6708 PB Wageningen, The Netherlands
| | - Amy Y Rossman
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97330, U.S.A
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - W Cavan Allen
- U.S. Department of Agriculture-Agriculture Research Service Mycology & Nematology Genetic Diversity & Biology Laboratory, Beltsville, MD 20705, U.S.A
| | - Treena Burgess
- Harry Butler Institute, Murdoch University, Murdoch 6150, Australia
| | | | - Lisa A Castlebury
- U.S. Department of Agriculture-Agriculture Research Service Mycology & Nematology Genetic Diversity & Biology Laboratory, Beltsville, MD 20705, U.S.A
| |
Collapse
|
27
|
Winkworth RC, Bellgard SE, McLenachan PA, Lockhart PJ. The mitogenome of Phytophthora agathidicida: Evidence for a not so recent arrival of the "kauri killing" Phytophthora in New Zealand. PLoS One 2021; 16:e0250422. [PMID: 34019564 PMCID: PMC8139493 DOI: 10.1371/journal.pone.0250422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Phytophthora agathidicida is associated with a root rot that threatens the long-term survival of the iconic New Zealand kauri. Although it is widely assumed that this pathogen arrived in New Zealand post-1945, this hypothesis has yet to be formally tested. Here we describe evolutionary analyses aimed at evaluating this and two alternative hypotheses. As a basis for our analyses, we assembled complete mitochondrial genome sequences from 16 accessions representing the geographic range of P. agathidicida as well as those of five other members of Phytophthora clade 5. All 21 mitogenome sequences were very similar, differing little in size with all sharing the same gene content and arrangement. We first examined the temporal origins of genetic diversity using a pair of calibration schemes. Both resulted in similar age estimates; specifically, a mean age of 303.0-304.4 years and 95% HPDs of 206.9-414.6 years for the most recent common ancestor of the included isolates. We then used phylogenetic tree building and network analyses to investigate the geographic distribution of the genetic diversity. Four geographically distinct genetic groups were recognised within P. agathidicida. Taken together the inferred age and geographic distribution of the sampled mitogenome diversity suggests that this pathogen diversified following arrival in New Zealand several hundred to several thousand years ago. This conclusion is consistent with the emergence of kauri dieback disease being a consequence of recent changes in the relationship between the pathogen, host, and environment rather than a post-1945 introduction of the causal pathogen into New Zealand.
Collapse
Affiliation(s)
- Richard C. Winkworth
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Stanley E. Bellgard
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - Peter J. Lockhart
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
28
|
Dussert Y, Legrand L, Mazet ID, Couture C, Piron MC, Serre RF, Bouchez O, Mestre P, Toffolatti SL, Giraud T, Delmotte F. Identification of the First Oomycete Mating-type Locus Sequence in the Grapevine Downy Mildew Pathogen, Plasmopara viticola. Curr Biol 2020; 30:3897-3907.e4. [PMID: 32795448 DOI: 10.1016/j.cub.2020.07.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 02/02/2023]
Abstract
Mating types are self-incompatibility systems that promote outcrossing in plants, fungi, and oomycetes. Mating-type genes have been widely studied in plants and fungi but have yet to be identified in oomycetes, eukaryotic organisms closely related to brown algae that cause many destructive animal and plant diseases. We identified the mating-type locus of Plasmopara viticola, the oomycete responsible for grapevine downy mildew, one of the most damaging grapevine diseases worldwide. Using a genome-wide association approach, we identified a 570-kb repeat-rich non-recombining region controlling mating types, with two highly divergent alleles. We showed that one mating type was homozygous, whereas the other was heterozygous at this locus. The mating-type locus encompassed 40 genes, including one encoding a putative hormone receptor. Functional studies will, however, be required to validate the function of these genes and find the actual determinants of mating type. Our findings have fundamental implications for our understanding of the evolution of mating types, as they reveal a unique determinism involving an asymmetry of heterozygosity, as in sex chromosomes and unlike other mating-type systems. This identification of the mating-type locus in such an economically important crop pathogen also has applied implications, as outcrossing facilitates rapid evolution and resistance to harsh environmental conditions.
Collapse
Affiliation(s)
- Yann Dussert
- SAVE, INRAE, Bordeaux Sciences Agro, Université de Bordeaux, F-33140 Villenave d'Ornon, France.
| | - Ludovic Legrand
- LIPM, INRAE, Université de Toulouse, CNRS, Castanet-Tolosan, France
| | - Isabelle D Mazet
- SAVE, INRAE, Bordeaux Sciences Agro, Université de Bordeaux, F-33140 Villenave d'Ornon, France
| | - Carole Couture
- SAVE, INRAE, Bordeaux Sciences Agro, Université de Bordeaux, F-33140 Villenave d'Ornon, France
| | | | | | - Olivier Bouchez
- INRAE, US 1426 GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Pere Mestre
- SVQV, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Universite Paris-Saclay, 91400 Orsay, France
| | - François Delmotte
- SAVE, INRAE, Bordeaux Sciences Agro, Université de Bordeaux, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
29
|
Ettinger CL, Eisen JA. Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina. PLoS One 2020; 15:e0236135. [PMID: 32697800 PMCID: PMC7375540 DOI: 10.1371/journal.pone.0236135] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/29/2020] [Indexed: 01/18/2023] Open
Abstract
Fungi in the marine environment are often neglected as a research topic, despite that fungi having critical roles on land as decomposers, pathogens or endophytes. Here we used culture-dependent methods to survey the fungi associated with the seagrass, Zostera marina, also obtaining bacteria and oomycete isolates in the process. A total of 108 fungi, 40 bacteria and 2 oomycetes were isolated. These isolates were then taxonomically identified using a combination of molecular and phylogenetic methods. The majority of the fungal isolates were classified as belonging to the classes Eurotiomycetes, Dothideomycetes, and Sordariomycetes. Most fungal isolates were habitat generalists like Penicillium sp. and Cladosporium sp., but we also cultured a diverse set of rare taxa including possible habitat specialists like Colletotrichum sp. which may preferentially associate with Z. marina leaf tissue. Although the bulk of bacterial isolates were identified as being from known ubiquitous marine lineages, we also obtained several Actinomycetes isolates and a Phyllobacterium sp. We identified two oomycetes, another understudied group of marine microbial eukaryotes, as Halophytophthora sp. which may be opportunistic pathogens or saprophytes of Z. marina. Overall, this study generates a culture collection of fungi which adds to knowledge of Z. marina associated fungi and highlights a need for more investigation into the functional and evolutionary roles of microbial eukaryotes associated with seagrasses.
Collapse
Affiliation(s)
- Cassandra L. Ettinger
- Genome Center, University of California, Davis, CA, United States of America
- Department of Evolution and Ecology, University of California, Davis, CA, United States of America
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, CA, United States of America
- Department of Evolution and Ecology, University of California, Davis, CA, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States of America
| |
Collapse
|
30
|
Molnar C, Nikolaeva E, Kim S, Olson T, Bily D, Kim JE, Kang S. Phytophthora Diversity in Pennsylvania Nurseries and Greenhouses Inferred from Clinical Samples Collected over Four Decades. Microorganisms 2020; 8:microorganisms8071056. [PMID: 32708553 PMCID: PMC7409235 DOI: 10.3390/microorganisms8071056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
The increasing movement of exotic pathogens calls for systematic surveillance so that newly introduced pathogens can be recognized and dealt with early. A resource crucial for recognizing such pathogens is knowledge about the spatial and temporal diversity of endemic pathogens. Here, we report an effort to build this resource for Pennsylvania (PA) by characterizing the identity and distribution of Phytophthora species isolated from diverse plant species in PA nurseries and greenhouses. We identified 1137 Phytophthora isolates cultured from clinical samples of >150 plant species submitted to the PA Department of Agriculture for diagnosis from 1975 to 2019 using sequences of one or more loci and morphological characteristics. The three most commonly received plants were Abies, Rhododendron, and Pseudotsuga. Thirty-six Phytophthora species identified represent all clades, except 3 and 10, and included a distinct subgroup of a known species and a prospective new species. Prominent pathogenic species such as P. cactorum, P. cinnamomi, P. nicotianae, P. drechsleri, P. pini, P. plurivora, and P. sp. kelmania have been found consistently since 1975. One isolate cultured from Juniperus horizontalis roots did not correspond to any known species, and several other isolates also show considerable genetic variation from any authentic species or isolate. Some species were isolated from never-before-documented plants, suggesting that their host range is larger than previously thought. This survey only provides a coarse picture of historical patterns of Phytophthora encounters in PA nurseries and greenhouses because the isolation of Phytophthora was not designed for a systematic survey. However, its extensive temporal and plant coverage offers a unique insight into the association of Phytophthora with diverse plants in nurseries and greenhouses.
Collapse
Affiliation(s)
- Cody Molnar
- Department of Plant Pathology & Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA; (C.M.); (J.-E.K.)
| | - Ekaterina Nikolaeva
- Bureau of Plant Industry, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA; (S.K.); (T.O.); (D.B.)
- Correspondence: (E.N.); (S.K.); Tel.: +1-717-705-5857 (E.N.); +1-814-863-3846 (S.K.)
| | - Seonghwan Kim
- Bureau of Plant Industry, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA; (S.K.); (T.O.); (D.B.)
| | - Tracey Olson
- Bureau of Plant Industry, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA; (S.K.); (T.O.); (D.B.)
| | - Devin Bily
- Bureau of Plant Industry, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA; (S.K.); (T.O.); (D.B.)
| | - Jung-Eun Kim
- Department of Plant Pathology & Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA; (C.M.); (J.-E.K.)
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA; (C.M.); (J.-E.K.)
- Correspondence: (E.N.); (S.K.); Tel.: +1-717-705-5857 (E.N.); +1-814-863-3846 (S.K.)
| |
Collapse
|
31
|
Klein J, Neilen M, van Verk M, Dutilh BE, Van den Ackerveken G. Genome reconstruction of the non-culturable spinach downy mildew Peronospora effusa by metagenome filtering. PLoS One 2020; 15:e0225808. [PMID: 32396560 PMCID: PMC7217449 DOI: 10.1371/journal.pone.0225808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/24/2020] [Indexed: 01/27/2023] Open
Abstract
Peronospora effusa (previously known as P. farinosa f. sp. spinaciae, and here referred to as Pfs) is an obligate biotrophic oomycete that causes downy mildew on spinach (Spinacia oleracea). To combat this destructive many disease resistant cultivars have been bred and used. However, new Pfs races rapidly break the employed resistance genes. To get insight into the gene repertoire of Pfs and identify infection-related genes, the genome of the first reference race, Pfs1, was sequenced, assembled, and annotated. Due to the obligate biotrophic nature of this pathogen, material for DNA isolation can only be collected from infected spinach leaves that, however, also contain many other microorganisms. The obtained sequences can, therefore, be considered a metagenome. To filter and obtain Pfs sequences we utilized the CAT tool to taxonomically annotate ORFs residing on long sequences of a genome pre-assembly. This study is the first to show that CAT filtering performs well on eukaryotic contigs. Based on the taxonomy, determined on multiple ORFs, contaminating long sequences and corresponding reads were removed from the metagenome. Filtered reads were re-assembled to provide a clean and improved Pfs genome sequence of 32.4 Mbp consisting of 8,635 scaffolds. Transcript sequencing of a range of infection time points aided the prediction of a total of 13,277 gene models, including 99 RxLR(-like) effector, and 14 putative Crinkler genes. Comparative analysis identified common features in the predicted secretomes of different obligate biotrophic oomycetes, regardless of their phylogenetic distance. Their secretomes are generally smaller, compared to hemi-biotrophic and necrotrophic oomycete species. We observe a reduction in proteins involved in cell wall degradation, in Nep1-like proteins (NLPs), proteins with PAN/apple domains, and host translocated effectors. The genome of Pfs1 will be instrumental in studying downy mildew virulence and for understanding the molecular adaptations by which new isolates break spinach resistance.
Collapse
Affiliation(s)
- Joël Klein
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Manon Neilen
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Marcel van Verk
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- Crop Data Science, KeyGene, Wageningen, The Netherlands
| | - Bas E. Dutilh
- Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Guido Van den Ackerveken
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
32
|
Abstract
The oomycetes are a class of ubiquitous, filamentous microorganisms that include some of the biggest threats to global food security and natural ecosystems. Within the oomycete class are highly diverse species that infect a broad range of animals and plants. Some of the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the agent of potato late blight and the cause of the Irish famine. Recent years have seen a dramatic increase in the number of sequenced oomycete genomes. Here we review the latest developments in oomycete genomics and some of the important insights that have been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome sequences have revealed tremendous insights into oomycete biology, evolution, genome organization, mechanisms of infection, and metabolism. We also present an updated phylogeny of the oomycete class using a phylogenomic approach based on the 65 oomycete genomes that are currently available.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
33
|
Hoffmeister M, Ashrafi S, Thines M, Maier W. Two new species of the Peronospora belbahrii species complex, Pe. choii sp. nov. and Pe. salviae-pratensis sp. nov., and a new host for Pe. salviae-officinalis. Fungal Syst Evol 2020; 6:39-53. [PMID: 32904171 PMCID: PMC7451775 DOI: 10.3114/fuse.2020.06.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The downy mildew species parasitic to Mentheae are of particular interest, as this tribe of Lamiaceae contains a variety of important medicinal plants and culinary herbs. Over the past two decades, two pathogens, Peronospora belbahrii and Pe. salviae-officinalis have spread globally, impacting basil and common sage production, respectively. In the original circumscription of Pe. belbahrii, the downy mildew of coleus (Plectranthus scutellarioides) was ascribed to this species in the broader sense, but subtle differences in morphological and molecular phylogenetic analyses using two genes suggested that this pathogen would potentially need to be assigned to a species of its own. In the present study, Peronospora species causing downy mildew on members of the Mentheae, including clary sage (Salvia sclarea), meadow sage (S. pratensis), basil (Ocimum basilicum), ground ivy (Glechoma hederacea) and coleus (Plectranthus scutellarioides) were studied using light microscopy and molecular phylogenetic analyses based on six loci (ITS rDNA, cox1, cox2, ef1a, hsp90 and β-tubulin) to clarify the species boundaries in the Pe. belbahrii species complex. The downy mildew on Salvia pratensis is shown to be distinct from Pe. salviae-officinalis and closely related to Pe. glechomae, and is herein described as a new species, Pe. salviae-pratensis. The downy mildew on S. sclarea was found to be caused by Pe. salviae-officinalis. This is of phytopathological importance, because meadow sage thus does not play a role as inoculum source for common sage in the natural habitat of the former in Europe and Asia, while clary sage probably does. The multi-gene phylogeny revealed that the causal agent of downy mildew on coleus is distinct from Pe. belbahrii on basil, and is herein described as a new taxon, Pe. choii.
Collapse
Affiliation(s)
- M Hoffmeister
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - S Ashrafi
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - M Thines
- Goethe University, Faculty of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.,LOEWE-Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany
| | - W Maier
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
34
|
Winkworth RC, Nelson BCW, Bellgard SE, Probst CM, McLenachan PA, Lockhart PJ. A LAMP at the end of the tunnel: A rapid, field deployable assay for the kauri dieback pathogen, Phytophthora agathidicida. PLoS One 2020; 15:e0224007. [PMID: 31978166 PMCID: PMC6980612 DOI: 10.1371/journal.pone.0224007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
The root rot causing oomycete, Phytophthora agathidicida, threatens the long-term survival of the iconic New Zealand kauri. Currently, testing for this pathogen involves an extended soil bioassay that takes 14–20 days and requires specialised staff, consumables, and infrastructure. Here we describe a loop-mediated isothermal amplification (LAMP) assay for the detection of P. agathidicida that targets a portion of the mitochondrial apocytochrome b coding sequence. This assay has high specificity and sensitivity; it did not cross react with a range of other Phytophthora isolates and detected as little as 1 fg of total P. agathidicida DNA or 116 copies of the target locus. Assay performance was further investigated by testing plant tissue baits from flooded soil samples using both the extended soil bioassay and LAMP testing of DNA extracted from baits. In these comparisons, P. agathidicida was detected more frequently using the LAMP test. In addition to greater sensitivity, by removing the need for culturing, the hybrid baiting plus LAMP approach is more cost effective than the extended soil bioassay and, importantly, does not require a centralised laboratory facility with specialised staff, consumables, and equipment. Such testing will allow us to address outstanding questions about P. agathidicida. For example, the hybrid approach could enable monitoring of the pathogen beyond areas with visible disease symptoms, allow direct evaluation of rates and patterns of spread, and allow the effectiveness of disease control to be evaluated. The hybrid LAMP bioassay also has the potential to empower local communities to evaluate the pathogen status of local kauri stands, providing information for disease management and conservation initiatives.
Collapse
Affiliation(s)
- Richard C. Winkworth
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- * E-mail:
| | - Briana C. W. Nelson
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | | | | | - Peter J. Lockhart
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
35
|
Diversity and evolution of chitin synthases in oomycetes (Straminipila: Oomycota). Mol Phylogenet Evol 2019; 139:106558. [PMID: 31288106 DOI: 10.1016/j.ympev.2019.106558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Abstract
The oomycetes are filamentous eukaryotic microorganisms, distinct from true fungi, many of which act as crop or fish pathogens that cause devastating losses in agriculture and aquaculture. Chitin is present in all true fungi, but it occurs in only small amounts in some Saprolegniomycetes and it is absent in Peronosporomycetes. However, the growth of several oomycetes is severely impacted by competitive chitin synthase (CHS) inhibitors. Here, we shed light on the diversity, evolution and function of oomycete CHS proteins. We show by phylogenetic analysis of 93 putative CHSs from 48 highly diverse oomycetes, including the early diverging Eurychasma dicksonii, that all available oomycete genomes contain at least one putative CHS gene. All gene products contain conserved CHS motifs essential for enzymatic activity and form two Peronosporomycete-specific and six Saprolegniale-specific clades. Proteins of all clades, except one, contain an N-terminal microtubule interacting and trafficking (MIT) domain as predicted by protein domain databases or manual analysis, which is supported by homology modelling and comparison of conserved structural features from sequence logos. We identified at least three groups of CHSs conserved among all oomycete lineages and used phylogenetic reconciliation analysis to infer the dynamic evolution of CHSs in oomycetes. The evolutionary aspects of CHS diversity in modern-day oomycetes are discussed. In addition, we observed hyphal tip rupture in Phytophthora infestans upon treatment with the CHS inhibitor nikkomycin Z. Combining data on phylogeny, gene expression, and response to CHS inhibitors, we propose the association of different CHS clades with certain developmental stages.
Collapse
|
36
|
Dussert Y, Mazet ID, Couture C, Gouzy J, Piron MC, Kuchly C, Bouchez O, Rispe C, Mestre P, Delmotte F. A High-Quality Grapevine Downy Mildew Genome Assembly Reveals Rapidly Evolving and Lineage-Specific Putative Host Adaptation Genes. Genome Biol Evol 2019; 11:954-969. [PMID: 30847481 PMCID: PMC6660063 DOI: 10.1093/gbe/evz048] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant–pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.
Collapse
Affiliation(s)
- Yann Dussert
- SAVE, INRA, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | | | - Carole Couture
- SAVE, INRA, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Jérôme Gouzy
- LIPM, INRA, Université de Toulouse, CNRS, Castanet-Tolosan, France
| | | | - Claire Kuchly
- US 1426 GeT-PlaGe, Genotoul, INRA, Castanet-Tolosan, France
| | | | | | - Pere Mestre
- SVQV, INRA, Université de Strasbourg, Colmar, France
| | | |
Collapse
|
37
|
Fletcher K, Gil J, Bertier LD, Kenefick A, Wood KJ, Zhang L, Reyes-Chin-Wo S, Cavanaugh K, Tsuchida C, Wong J, Michelmore R. Genomic signatures of heterokaryosis in the oomycete pathogen Bremia lactucae. Nat Commun 2019; 10:2645. [PMID: 31201315 PMCID: PMC6570648 DOI: 10.1038/s41467-019-10550-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Lettuce downy mildew caused by Bremia lactucae is the most important disease of lettuce globally. This oomycete is highly variable and rapidly overcomes resistance genes and fungicides. The use of multiple read types results in a high-quality, near-chromosome-scale, consensus assembly. Flow cytometry plus resequencing of 30 field isolates, 37 sexual offspring, and 19 asexual derivatives from single multinucleate sporangia demonstrates a high incidence of heterokaryosis in B. lactucae. Heterokaryosis has phenotypic consequences on fitness that may include an increased sporulation rate and qualitative differences in virulence. Therefore, selection should be considered as acting on a population of nuclei within coenocytic mycelia. This provides evolutionary flexibility to the pathogen enabling rapid adaptation to different repertoires of host resistance genes and other challenges. The advantages of asexual persistence of heterokaryons may have been one of the drivers of selection that resulted in the loss of uninucleate zoospores in multiple downy mildews.
Collapse
Affiliation(s)
- Kyle Fletcher
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Juliana Gil
- Genome Center, University of California, Davis, CA, 95616, USA
- Plant Pathology Graduate Group, University of California, Davis, CA, 95616, USA
| | - Lien D Bertier
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Aubrey Kenefick
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Kelsey J Wood
- Genome Center, University of California, Davis, CA, 95616, USA
- Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, 95616, USA
| | - Lin Zhang
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Sebastian Reyes-Chin-Wo
- Genome Center, University of California, Davis, CA, 95616, USA
- Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, 95616, USA
- Bayer Crop Science, 37437 CA-16, Woodland, CA, 95695, USA
| | - Keri Cavanaugh
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Cayla Tsuchida
- Genome Center, University of California, Davis, CA, 95616, USA
- Plant Pathology Graduate Group, University of California, Davis, CA, 95616, USA
- Arcadia Biosciences, Davis, CA, 95616, USA
| | - Joan Wong
- Genome Center, University of California, Davis, CA, 95616, USA
- Plant Biology Graduate Group, University of California, Davis, CA, 95616, USA
- Pacific Biosciences of California, Inc., Menlo Park, CA, 94025, USA
| | - Richard Michelmore
- Genome Center, University of California, Davis, CA, 95616, USA.
- Departments of Plant Sciences, Molecular and Cellular Biology, Medical Microbiology and Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
38
|
Riddell CE, Frederickson-Matika D, Armstrong AC, Elliot M, Forster J, Hedley PE, Morris J, Thorpe P, Cooke DEL, Pritchard L, Sharp PM, Green S. Metabarcoding reveals a high diversity of woody host-associated Phytophthora spp. in soils at public gardens and amenity woodlands in Britain. PeerJ 2019; 7:e6931. [PMID: 31143546 PMCID: PMC6526010 DOI: 10.7717/peerj.6931] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/09/2019] [Indexed: 12/04/2022] Open
Abstract
Forests and woodlands worldwide are being severely impacted by invasive Phytophthora species, with initial outbreaks in some cases occurring on host trees located in public parks and gardens. These highly disturbed sites with diverse planting practices may indeed act as harbours for invasive Phytophthora pathogens which are particularly well adapted to surviving in soil. High throughput Illumina sequencing was used to analyse Phytophthora species diversity in soil samples collected from 14 public garden/amenity woodland sites in northern Britain. Bioinformatic analyses revealed some limitations to using internal transcribed spacer as the barcode region; namely reporting of false positives and ambiguous species matches. Taking this into account, 35 distinct sequences were amplified across the sites, corresponding to 23 known Phytophthora species as well as twelve oomycete sequences with no match to any known Phytophthora species. Phytophthora pseudosyringae and P. austrocedri, both of which cause serious damage to trees and are regarded as fairly recent introductions to Britain, were the two most abundant Phytophthora species detected. There was no evidence that any of the detected Phytophthora species were more associated with any one type of host, healthy or otherwise. This study has demonstrated the ubiquity and diversity of Phytophthora species endemic in highly managed, extensively planted soil environments in Britain. Suggested improvements to the methodology and the practical implications of the findings in terms of mitigating Phytophthora spread and impact are discussed.
Collapse
Affiliation(s)
| | | | | | - Matt Elliot
- Forest Research, Roslin, Midlothian, UK
- The Woodland Trust, Edinburgh, UK
| | | | | | | | - Peter Thorpe
- James Hutton Institute, Dundee, UK
- School of Medicine, University of St. Andrews, St Andrews, UK
| | | | | | - Paul M. Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
39
|
Dussert Y, Mazet ID, Couture C, Gouzy J, Piron MC, Kuchly C, Bouchez O, Rispe C, Mestre P, Delmotte F. A High-Quality Grapevine Downy Mildew Genome Assembly Reveals Rapidly Evolving and Lineage-Specific Putative Host Adaptation Genes. Genome Biol Evol 2019. [PMID: 30847481 DOI: 10.1101/350041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant-pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.
Collapse
Affiliation(s)
- Yann Dussert
- SAVE, INRA, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | | | - Carole Couture
- SAVE, INRA, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Jérôme Gouzy
- LIPM, INRA, Université de Toulouse, CNRS, Castanet-Tolosan, France
| | | | - Claire Kuchly
- US 1426 GeT-PlaGe, Genotoul, INRA, Castanet-Tolosan, France
| | | | | | - Pere Mestre
- SVQV, INRA, Université de Strasbourg, Colmar, France
| | | |
Collapse
|