1
|
Li T, Stayrook SE, Li W, Wang Y, Li H, Zhang J, Liu Y, Klein DE. Crystal structure of Isthmin-1 and reassessment of its functional role in pre-adipocyte signaling. Nat Commun 2025; 16:3580. [PMID: 40234450 PMCID: PMC12000326 DOI: 10.1038/s41467-025-58828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Isthmin-1 (ISM1) is a recently described adipokine with insulin-like properties that can control hyperglycemia and liver steatosis. Additionally, ISM1 is proposed to play critical roles in patterning, angiogenesis, vascular permeability, and apoptosis. A key feature of ISM1 is its AMOP (adhesion-associated domain in MUC4 (Mucin-4) and other proteins) domain which is essential for many of its functions. However, the molecular details of AMOP domains remain elusive as there are no descriptions of their structure. Here we determined the crystal structure of ISM1 including its thrombospondin type I repeat (TSR) and AMOP domain. Interestingly, ISM1's AMOP domain exhibits a distinct fold with similarities to bacterial streptavidin. When comparing our structure to predicted structures of other AMOP domains, we observed that while the core streptavidin-like barrel is conserved, the surface helices and loops vary greatly. Thus, the AMOP domain fold allows for structural plasticity that may underpin its diverse functions. Furthermore, and contrary to prior studies, we show that highly purified ISM1 does not stimulate AKT phosphorylation on 3T3-F442A pre-adipocytes. Rather, we find that co-purifying growth factors are responsible for this activity. Together, our data reveal the structure and clarify functional studies of this enigmatic protein.
Collapse
Affiliation(s)
- Tongqing Li
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Steven E Stayrook
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Wenxue Li
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Yueyue Wang
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Hengyi Li
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jianan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Daryl E Klein
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
2
|
Rivera-Torruco G, Muench MO, Valle-Rios R. Exploring extramedullary hematopoiesis: unraveling the hematopoietic microenvironments. FRONTIERS IN HEMATOLOGY 2024; 3:1371823. [PMID: 39668982 PMCID: PMC11636351 DOI: 10.3389/frhem.2024.1371823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Hematopoiesis is a process by which all blood cells are formed. The mechanisms controlling it have been studied for decades. Surprisingly, while hematopoietic stem cells are among the most extensively studied stem cell types, the complete understanding of how they are regulated during development, adulthood, or in non-homeostatic conditions remains elusive. In this review, our primary focus is on research findings that explore where hematopoietic precursors are found in adults outside their primary niches in the bone marrow. This phenomenon is termed extramedullary hematopoiesis (EMH). Early in development hematopoietic stem cells migrate through different regions within and outside the embryo and later the fetus. Although, the primary home for hematopoietic progenitors is the adult bone marrow, it is now recognized that other adult organs may act as hematopoietic progenitor reservoirs both in mice and humans. The first reports about this topic were principally originated from clinical observations, in cases where the bone marrow was malfunctioning, leading to an aberrant hematopoiesis outside the bone marrow. It is worth highlighting that those extramedullary organs, like the small intestine or fat tissue, contain subsets of fully functioning hematopoietic progenitors demonstrated by both in vitro and in vivo studies. Nonetheless, there are still some unanswered questions regarding the source of these cells, how they differ in function compared to their counterparts in the bone marrow, and the specific roles they play within the tissues where they are located.
Collapse
Affiliation(s)
- Guadalupe Rivera-Torruco
- Cell Therapy Core, Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, Medical Center, University of California, San Francisco, San Francisco, CA, United States
| | - Marcus O. Muench
- Cell Therapy Core, Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, Medical Center, University of California, San Francisco, San Francisco, CA, United States
| | - Ricardo Valle-Rios
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
3
|
Qu L, Yang L, Wang Y, Zhi S, Zhao M, Xiong J, Yan X, Qin C, Nie G. Identification of Isthmin-1 in common carp (Cyprinus carpio L.) and the effects on glucose metabolism in vivo and in vitro. JOURNAL OF FISH BIOLOGY 2024; 104:1483-1492. [PMID: 38372009 DOI: 10.1111/jfb.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Isthmin-1 (Ism1) plays roles in glucose uptake in mammals as an adipokine. To investigate its role in the glucose metabolism of common carp (Cyprinus carpio. L), the Ism1 sequence was cloned, and its expression and distribution in tissues were detected. In addition, we prepared and purified the recombinant Ism1 protein using the E. coli expression system and assessed changes in the expression of key genes related to glucose metabolism through both in vivo injection experiments and primary hepatocyte experiments in vitro. The results revealed that the open reading frame of Ism1 was 1377 bp long, encoding 458 amino acids. Similarity analysis indicated that Ism1 exhibited a close evolutionary relationship with goldfish (Carassius auratus), sharing 98.35% amino acid similarity. Ism1 was expressed in all tissues of common carp, with the highest level observed in the heart, followed by the gill, head kidney, and hepatopancreas. Distinct patterns of Ism1 expression were identified during the oral glucose tolerance test and long-term high-carbohydrate and high-fat diet feeding experiments. In vivo studies demonstrated that the serum glucose concentration was reduced on treatment with Ism1, accompanied by a significant upregulation of mRNA levels for gk, hk, and pfk genes in hepatopancreas; conversely pepck and g6pase mRNA levels were significantly downregulated in the hepatopancreas under these conditions as well. Furthermore, our primary hepatocyte experiment confirmed that Ism1 could inhibit pepck and g6pase mRNA expression, while promoting gk, hk, and pfk mRNA expression levels. In conclusion, Ism1, in common carp, could participate in the glucose metabolism, which provides essential information for future studies on the function of Ism1.
Collapse
Affiliation(s)
- Leya Qu
- College of Fisheries, Henan Normal University, Xinxiang, People's Republic of China
| | - Liping Yang
- College of Fisheries, Henan Normal University, Xinxiang, People's Republic of China
| | - Yiran Wang
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Shaoyang Zhi
- College of Fisheries, Henan Normal University, Xinxiang, People's Republic of China
| | - Mengjuan Zhao
- College of Fisheries, Henan Normal University, Xinxiang, People's Republic of China
| | - Jinrui Xiong
- College of Fisheries, Henan Normal University, Xinxiang, People's Republic of China
| | - Xiao Yan
- College of Fisheries, Henan Normal University, Xinxiang, People's Republic of China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, Xinxiang, People's Republic of China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, People's Republic of China
| |
Collapse
|
4
|
Gao G, Zhou Z. Isthmin-1: A critical regulator of branching morphogenesis and metanephric mesenchyme condensation during early kidney development. Bioessays 2024; 46:e2300189. [PMID: 38161234 DOI: 10.1002/bies.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Isthmin-1 (Ism1) was first described to be syn-expressed with Fgf8 in Xenopus. However, its biological role has not been elucidated until recent years. Despite of accumulated evidence that Ism1 participates in angiogenesis, tumor invasion, macrophage apoptosis, and glucose metabolism, the cognate receptors for Ism1 remain largely unknown. Ism1 deficiency in mice results in renal agenesis (RA) with a transient loss of Gdnf transcription and impaired mesenchyme condensation at E11.5. Ism1 binds to and activates Integrin α8β1 to positively regulate Gdnf/Ret signaling, thus promoting mesenchyme condensation and ureteric epithelium branching morphogenesis. Here, we propose the hypothesis underlying the mechanism by which Ism1 regulates branching morphogenesis during early kidney development.
Collapse
Affiliation(s)
- Ge Gao
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Reproductive Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Li J, Tan M, Yang T, Huang Q, Shan F. The paracrine isthmin1 transcriptionally regulated by C/EBPβ exacerbates pulmonary vascular leakage in murine sepsis. Am J Physiol Cell Physiol 2024; 326:C304-C316. [PMID: 38047305 DOI: 10.1152/ajpcell.00431.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
It is known that pulmonary vascular leakage, a key pathological feature of sepsis-induced lung injury, is largely regulated by perivascular cells. However, the underlying mechanisms have not been fully uncovered. In the present study, we aimed to evaluate the role of isthmin1, a secretory protein originating from alveolar epithelium, in the pulmonary vascular leakage during sepsis and to investigate the regulatory mechanisms of isthmin1 gene transcription. We observed an elevated isthmin1 gene expression in the pulmonary tissue of septic mice induced by cecal ligation and puncture (CLP), as well as in primary murine alveolar type II epithelial cells (ATII) exposed to lipopolysaccharide (LPS). Furthermore, we confirmed that isthmin1 derived from ATII contributes to pulmonary vascular leakage during sepsis. Specifically, adenovirus-mediated isthmin1 disruption in ATII led to a significant attenuation of the increased pulmonary microvascular endothelial cell (PMVEC) hyperpermeability in a PMVEC/ATII coculture system when exposed to LPS. In addition, adeno-associated virus 9 (AAV9)-mediated knockdown of isthmin1 in the alveolar epithelium of septic mice significantly attenuated pulmonary vascular leakage. Finally, mechanistic studies unveiled that nuclear transcription factor CCAAT/enhancer binding protein (C/EBP)β participates in isthmin1 gene activation by binding directly to the cis-regulatory element of isthmin1 locus and may contribute to isthmin1 upregulation during sepsis. Collectively, the present study highlighted the impact of the paracrine protein isthmin1, derived from ATII, on the exacerbation of pulmonary vascular permeability in sepsis and revealed a new regulatory mechanism for isthmin1 gene transcription.NEW & NOTEWORTHY This article addresses the role of the alveolar epithelial-secreted protein isthmin1 on the exacerbation of pulmonary vascular permeability in sepsis and identified nuclear factor CCAAT/enhancer binding protein (C/EBP)β as a new regulator of isthmin1 gene transcription. Targeting the C/EBPβ-isthmin1 regulatory axis on the alveolar side would be of great value in the treatment of pulmonary vascular leakage and lung injury induced by sepsis.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Miaomiao Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Tian Yang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Qingyuan Huang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Liang JY, Wei HJ, Tang YY. Isthmin: A multifunctional secretion protein. Cytokine 2024; 173:156423. [PMID: 37979212 DOI: 10.1016/j.cyto.2023.156423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Isthmin is a polypeptide secreted by adipocytes that was first detected in Xenopus gastrula embryos. Recent studies have focused on the biological functions of isthmin in growth and development, angiogenesis, and metabolism. Distinct spatiotemporal expression of isthmin-1 (ISM-1) was observed during growth and development. ISM-1 plays an important role in the occurrence and development of cancer by regulating cell proliferation, migration, angiogenesis, and immune microenvironments. Moreover, ISM-1, as a newly identified insulin-like adipokine, increases adipocyte glucose uptake and inhibits hepatic lipid synthesis. However, the biological function of ISM-1 remains largely unknown. In this review, we highlight the structure and physiological functions of isthmin and explore its application potential, contributing to a better understanding of its function and providing prevention and treatment strategies for various diseases.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Department of Physiology, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Hai-Jun Wei
- Department of Physiology, Hunan Polytechnic of Environment and Biology, Hengyang 421001, Hunan, PR China
| | - Yi-Yun Tang
- Department of Physiology, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
7
|
Menghuan L, Yang Y, Qianhe M, Na Z, Shicheng C, Bo C, XueJie YI. Advances in research of biological functions of Isthmin-1. J Cell Commun Signal 2023; 17:507-521. [PMID: 36995541 PMCID: PMC10409700 DOI: 10.1007/s12079-023-00732-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/07/2023] [Indexed: 03/31/2023] Open
Abstract
Isthmin-1 (ISM1) was initially thought to be a brain secretory factor, but with the development of technical means of research and the refinement of animal models, numerous studies have shown that this molecule is expressed in multiple tissues, suggesting that it may have multiple biological functions. As a factor that regulates growth and development, ISM1 is expressed in different animals with spatial and temporal variability and can coordinate the normal development of multiple organs. Recent studies have found that under the dependence of a non-insulin pathway, ISM1 can lower blood glucose, inhibit insulin-regulated lipid synthesis, promote protein synthesis, and affect the body's glucolipid and protein metabolism. In addition, ISM1 plays an important role in cancer development by promoting apoptosis and anti-angiogenesis, and by regulating multiple inflammatory pathways to influence the body's immune response. The purpose of this paper is to summarize relevant research results from recent years and to describe the key features of the biological functions of ISM1. We aimed to provide a theoretical basis for the study of ISM1 related diseases, and potential therapeutic strategies. The main biological functions of ISM1. Current studies on the biological functions of ISM1 focus on growth and development, metabolism, and anticancer treatment. During embryonic development, ISM1 is dynamically expressed in the zebrafish, African clawed frog, chick, mouse, and human, is associated with craniofacial malformations, abnormal heart localization, and hematopoietic dysfunction. ISM1 plays an important role in regulating glucose metabolism, lipid metabolism, and protein metabolism in the body. ISM1 affects cancer development by regulating cellular autophagy, angiogenesis, and the immune microenvironment.
Collapse
Affiliation(s)
- Li Menghuan
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China
| | - Yang Yang
- School of Sports and Human Sciences, Shanghai Sport University, Shanghai, 200438, China
| | - Ma Qianhe
- School of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Zhang Na
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China
| | - Cao Shicheng
- Department of Sports Medicine, China Medical University, Shenyang, China
| | - Chang Bo
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China.
| | - Y I XueJie
- Exercise and Health Research Center/Department of Kinesiology, Shenyang Sport University, No.36 Qiangsong East Road, Sujiatun District, Shenyang, 110115, Liaoning Province, China.
| |
Collapse
|
8
|
Gao G, Li X, Jiang Z, Osorio L, Tang YL, Yu X, Jin G, Zhou Z. Isthmin-1 (Ism1) modulates renal branching morphogenesis and mesenchyme condensation during early kidney development. Nat Commun 2023; 14:2378. [PMID: 37185772 PMCID: PMC10130008 DOI: 10.1038/s41467-023-37992-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The outgrowth of epithelial bud followed by reiterated bifurcations during renal development is driven by the ligand-receptor interactions between the epithelium and the surrounding mesenchyme. Here, by exploring ligand-receptor interactions in E10.5 and E11.5 kidneys by single cell RNA-seq, we find that Isthmin1 (Ism1), a secreted protein, resembles Gdnf expression and modulates kidney branching morphogenesis. Mice deficient for Ism1 exhibit defective ureteric bud bifurcation and impaired metanephric mesenchyme condensation in E11.5 embryos, attributable to the compromised Gdnf/Ret signaling, ultimately leading to renal agenesis and hypoplasia/dysplasia. By HRP-induced proximity labelling, we further identify integrin α8β1 as a receptor of Ism1 in E11.5 kidney and demonstrate that Ism1 promoted cell-cell adhesion through interacting with Integrin α8β1, the receptor whose activation is responsible for Gdnf expression and mesenchyme condensation. Taken together, our work reveals Ism1 as a critical regulator of cell-cell interaction that modulates Gdnf/Ret signaling during early kidney development.
Collapse
Affiliation(s)
- Ge Gao
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Zhixin Jiang
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China
| | - Liliana Osorio
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China
| | - Ying Lam Tang
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China
| | - Xueqing Yu
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China.
- Reproductive Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
9
|
Sahiri V, Caron J, Roger E, Desterke C, Ghachem K, Mohamadou I, Serre J, Prakoura N, Fellahi S, Placier S, Adriouch S, Zhang L, Chadjichristos CE, Chatziantoniou C, Lorenzo HK, Boffa JJ. The Angiogenesis Inhibitor Isthmin-1 (ISM1) Is Overexpressed in Experimental Models of Glomerulopathy and Impairs the Viability of Podocytes. Int J Mol Sci 2023; 24:ijms24032723. [PMID: 36769045 PMCID: PMC9916724 DOI: 10.3390/ijms24032723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a major cause of end-stage renal disease and remains without specific treatment. To identify new events during FSGS progression, we used an experimental model of FSGS associated with nephroangiosclerosis in rats injected with L-NAME (Nω-nitro-L-arginine methyl ester). After transcriptomic analysis we focused our study on the role of Isthmin-1 (ISM1, an anti-angiogenic protein involved in endothelial cell apoptosis. We studied the renal expression of ISM1 in L-NAME rats and other models of proteinuria, particularly at the glomerular level. In the L-NAME model, withdrawal of the stimulus partially restored basal ISM1 levels, along with an improvement in renal function. In other four animal models of proteinuria, ISM1 was overexpressed and localized in podocytes while the renal function was degraded. Together these facts suggest that the glomerular expression of ISM1 correlates directly with the progression-recovery of the disease. Further in vitro experiments demonstrated that ISM1 co-localized with its receptors GRP78 and integrin αvβ5 on podocytes. Treatment of human podocytes with low doses of recombinant ISM1 decreased cell viability and induced caspase activation. Stronger ISM1 stimuli in podocytes dropped mitochondrial membrane potential and induced nuclear translocation of apoptosis-inducing factor (AIF). Our results suggest that ISM1 participates in the progression of glomerular diseases and promotes podocyte apoptosis in two different complementary ways: one caspase-dependent and one caspase-independent associated with mitochondrial destabilization.
Collapse
Affiliation(s)
- Virgilia Sahiri
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Jonathan Caron
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Elena Roger
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Christophe Desterke
- Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
- Université Paris Saclay, INSERM UA/09 UMR-S 935, 94800 Villejuif, France
| | - Khalil Ghachem
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Inna Mohamadou
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Justine Serre
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Niki Prakoura
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Soraya Fellahi
- Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75013 Paris, France
| | - Sandrine Placier
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Sahil Adriouch
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies (PANTHER), Normandie University, 76000 Rouen, France
| | - Lu Zhang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Christos E. Chadjichristos
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Christos Chatziantoniou
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Hans Kristian Lorenzo
- Université Paris Saclay, INSERM UA/09 UMR-S 935, 94800 Villejuif, France
- Department of Nephrology, Bicêtre Hospital, AP-HP, 94270 Le Kremlin-Bicêtre, France
- Université Paris Saclay, INSERM UMR_S 1197, 94803 Villejuif, France
| | - Jean-Jacques Boffa
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
- Département Néphrologie et Dialyses, Tenon Hospital, AP-HP, 75020 Paris, France
- Correspondence:
| |
Collapse
|
10
|
Bozkurt AS, Görücü Yílmaz Ş. Ferroptotic Potency of ISM1 Expression in the Drug-Induced Alzheimer's Disease-Like Phenotype Under the Influence of Betulin. J Alzheimers Dis 2023; 96:1565-1578. [PMID: 37980676 DOI: 10.3233/jad-230940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by two main pathological mechanisms, mostly hyperphosphorylated tau and amyloid-β toxicity. Although many studies focus on these basic mechanisms, ferroptosis draws attention as an important pathway responsible for neurodegeneration in AD. There is no definitive treatment for AD but alternative phytochemicals to drugs come into prominence. Betulin is usually obtained from the birch tree. It is an abundant triterpene and has a high antioxidant capacity. Isthmin-1 (ISM1) is a secreted adipokine. OBJECTIVE In this study, we investigated the potential treatment of AD in the ferroptosis-ISM1-betulin triangle. METHODS For this, we created an AD model with okadaic acid (200 ng/kg)) in 36 Wistar albino male rats and treated with betulin (20 mg/kg/day, i.p). We evaluated ISM1 gene expression, iron accumulation, and total oxidative metabolism parameters (TAS, TOS, OSI) in hippocampal tissue. We analyzed cognitive recovery in AD with Morris Water Maze Test and general locomotor activity, explore, and anti-anxiolytic effect with Open Field Test. RESULTS We compared the obtained data with metabolic and genetic results. In conclusion, betulin may have a role in neuronal ferroptotic mechanisms by reducing iron accumulation by ISM1 regulation. CONCLUSIONS Betulin may have a role in neuronal ferroptotic mechanisms by reducing iron accumulation by ISM1 regulation. Although this study suggests the corrective effect of betulin and ISM1 on cognitive gain and anxiety, it is the first study to show the total antioxidant capacity of betulin in AD.
Collapse
Affiliation(s)
- Ahmet Sarper Bozkurt
- Gaziantep University, Medical Faculty, Physiology Department, Gaziantep University, Gaziantep, Turkey
| | - Şenay Görücü Yílmaz
- Gaziantep University, Health Science Faculty, Nutrition and Dietetics Department, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
11
|
Isthmin-A Multifaceted Protein Family. Cells 2022; 12:cells12010017. [PMID: 36611811 PMCID: PMC9818725 DOI: 10.3390/cells12010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Isthmin (ISM) is a secreted protein family with two members, namely ISM1 and ISM2, both containing a TSR1 domain followed by an AMOP domain. Its broad expression pattern suggests diverse functions in developmental and physiological processes. Over the past few years, multiple studies have focused on the functional analysis of the ISM protein family in several events, including angiogenesis, metabolism, organ homeostasis, immunity, craniofacial development, and cancer. Even though ISM was identified two decades ago, we are still short of understanding the roles of the ISM protein family in embryonic development and other pathological processes. To address the role of ISM, functional studies have begun but unresolved issues remain. To elucidate the regulatory mechanism of ISM, it is crucial to determine its interactions with other ligands and receptors that lead to the activation of downstream signalling pathways. This review provides a perspective on the gene organization and evolution of the ISM family, their links with developmental and physiological functions, and key questions for the future.
Collapse
|
12
|
Coassolo L, Dannieskiold-Samsøe NB, Zhao M, Allen H, Svensson KJ. New players of the adipose secretome: Therapeutic opportunities and challenges. Curr Opin Pharmacol 2022; 67:102302. [PMID: 36195010 PMCID: PMC9772291 DOI: 10.1016/j.coph.2022.102302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
Adipose tissue is a functional endocrine organ comprised of adipocytes and other cell types that are known to secrete a multiplicity of adipose-derived factors, including lipids and proteins. It is well established that adipose tissue and its secretome can impact systemic energy homeostasis. The endocrine and paracrine effects of adipose-derived factors have been widely studied over the last several decades. Owing to technological advances in genomics and proteomics, several additional adipose-derived protein factors have recently been identified. By learning from previous efforts, the next challenge will be to leverage these discoveries for the prevention or treatment of metabolic disorders. Here, we discuss recently discovered adipose-derived proteins secreted from white or brown adipose tissue and the opportunities and challenges of translating these biological findings into disease therapeutics.
Collapse
Affiliation(s)
- Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Niels Banhos Dannieskiold-Samsøe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Hobson Allen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
13
|
Hu M, Zhang X, Hu C, Teng T, Tang QZ. A brief overview about the adipokine: Isthmin-1. Front Cardiovasc Med 2022; 9:939757. [PMID: 35958402 PMCID: PMC9360543 DOI: 10.3389/fcvm.2022.939757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Isthmin-1 is a secreted protein with multiple capability; however, it truly attracts our attention since the definition as an adipokine in 2021, which exerts indispensable roles in various pathophysiological processes through the endocrine or autocrine manners. In this review, we summarize recent knowledge of isthmin-1, including its distribution, structure, receptor and potential function.
Collapse
Affiliation(s)
- Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- *Correspondence: Qi-Zhu Tang
| |
Collapse
|
14
|
Faisal M, Hassan M, Kumar A, Zubair M, Jamal M, Menghwar H, Saad M, Kloczkowski A. Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. Int J Mol Sci 2022; 23:7285. [PMID: 35806290 PMCID: PMC9266955 DOI: 10.3390/ijms23137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in a peculiar anatomic location which regulates the maintenance of stem cells and controls its functions. Recent scientific progress in experimental technologies have enabled the specific detection of epigenetic factors responsible for the maintenance and quiescence of the hematopoietic niche, which has improved our knowledge of regulatory mechanisms. The aberrant role of RNA-binding proteins and their impact on the disruption of stem cell biology have been reported by a number of recent studies. Despite recent modernization in hematopoietic microenvironment research avenues, our comprehension of the signaling mechanisms and interactive pathways responsible for integration of the hematopoietic niche is still limited. In the past few decades, zebrafish usage with regards to exploratory studies of the hematopoietic niche has expanded our knowledge for deeper understanding of novel cellular interactions. This review provides an update on the functional roles of different genetic and epigenetic factors and molecular signaling events at different sections of the hematopoietic microenvironment. The explorations of different molecular approaches and interventions of latest web-based tools being used are also outlined. This will help us to get more mechanistic insights and develop therapeutic options for the malignancies.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Aman Kumar
- Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Muhammad Zubair
- Department of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan 430072, China;
| | - Harish Menghwar
- Axe Molecular Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), Laval University, Quebec City, QC G1V 4G2, Canada;
| | - Muhammad Saad
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43205, USA;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
15
|
Isthmin 1 is Expressed by Progenitor-Like Cells in the Lung: Phenotypical Analysis of Isthmin 1+ Hematopoietic Stem-Like Cells in Homeostasis and during Infection. J Immunol Res 2022; 2022:2909487. [PMID: 35402623 PMCID: PMC8993550 DOI: 10.1155/2022/2909487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 01/22/2023] Open
Abstract
The process by which blood cells are generated has been widely studied in homeostasis and during pathogen-triggered inflammatory response. Recently, murine lungs have been shown to be a significant source of hematopoietic progenitors in a process known as extramedullary hematopoiesis. Using multiparametric flow cytometry, we have identified mesenchymal, endothelial, and hematopoietic progenitor cells that express the secreted small protein Isthmin 1 (ISM1). Further characterization of hematopoietic progenitor cells indicated that ISM1+ Lineage− Sca-1+ c-kit+ (ISM1+ LSK) cells are enriched in short-term hematopoietic stem cells (ST-HSCs). Moreover, most Sca-1+ ISM1+ cells express the residence marker CD49a, and this correlated with their localization in the extravascular region of the lung, indicating that ISM1+ cells are lung-resident cells. We also observed that ISM1+ cells express TLR4, TLR5, and TLR9, and, in a mouse model of sepsis induced by P. aeruginosa, we observed that all the LSK and ISM1+LSK cells were affected. We conclude that ISM1 is a novel biomarker associated with progenitor-like cells. ISM1+ cells are involved in the response to a bacterial challenge, suggesting an association between ISM1-producing cells and dangerous inflammatory responses like sepsis.
Collapse
|
16
|
Lam TYW, Nguyen N, Peh HY, Shanmugasundaram M, Chandna R, Tee JH, Ong CB, Hossain MZ, Venugopal S, Zhang T, Xu S, Qiu T, Kong WT, Chakarov S, Srivastava S, Liao W, Kim JS, Teh M, Ginhoux F, Fred Wong WS, Ge R. ISM1 protects lung homeostasis via cell-surface GRP78-mediated alveolar macrophage apoptosis. Proc Natl Acad Sci U S A 2022; 119:e2019161119. [PMID: 35046017 PMCID: PMC8794848 DOI: 10.1073/pnas.2019161119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Terence Y W Lam
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ngan Nguyen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Mahalakshmi Shanmugasundaram
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ritu Chandna
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Jong Huat Tee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Chee Bing Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673, Singapore
| | - Md Zakir Hossain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shruthi Venugopal
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tianyi Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Simin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tao Qiu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Wan Ting Kong
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Supriya Srivastava
- Department of Medicine, National University Hospital, Singapore 119228, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, South Korea
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Ming Teh
- Department of Pathology, National University Hospital, Singapore 119228
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Immunology Program, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore 138602, Singapore
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
| |
Collapse
|
17
|
Li C, Song L, Zhou Y, Yuan J, Zhang S. Identification of Isthmin1 in the small annual fish, Nothobranchius guentheri, as a novel biomarker of aging and its potential rejuvenation activity. Biogerontology 2022; 23:99-114. [PMID: 34988750 DOI: 10.1007/s10522-021-09948-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Isthmin 1 (Ism1) has been shown to play roles in multiple biological processes including morphogenesis, hematopoiesis, antiviral immune response and suppression of tumor growth. However, it remains unknown if it plays any role in aging process. Here we showed for the first time that Ism1 was a new age-related biomarker, which decreased with age in fish, mice and humans. Interestingly, Ism1 was also useful to measure the "rejuvenated" age of fish Nothobranchius guentheri reversed by salidroside treatment and temperature reduction, providing additional evidence that Ism1 was an aging biomarker. In addition, we clearly showed that dietary intake of recombinant Ism1 had little effects on the body length and weight of aging N. guentheri, but it retarded the onset of age-related biomarkers and prolonged both the maximum and median lifespan of the fish. We also showed that Ism1 exerted its rejuvenation activity via the enhancement of antioxidant system. Collectively, our results indicate that Ism1 is not only is a novel biomarker of aging but also a potential rejuvenation factor capable of reversing aging of N. guentheri.
Collapse
Affiliation(s)
- Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yang Zhou
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jiangshui Yuan
- Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, 266011, Shandong, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
18
|
Wang J, Du J, Ge X, Peng W, Guo X, Li W, Huang S. Circulating Ism1 Reduces the Risk of Type 2 Diabetes but not Diabetes-Associated NAFLD. Front Endocrinol (Lausanne) 2022; 13:890332. [PMID: 35712241 PMCID: PMC9195582 DOI: 10.3389/fendo.2022.890332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To examine the association of serum Ism1, a new adipokine that can regulate glucose uptake, with type 2 diabetes (T2D) in a Chinese population. Considering high prevalence of Nonalcoholic Fatty Liver Disease in patients with type 2 diabetes and the regulating role of Ism1 on glucose uptake of peripheral tissues, we further explored the association between Ism1 and diabetes-associated nonalcoholic fatty liver disease. METHODS A total of 120 newly diagnosed T2D patients and 60 control subjects with normal glucose were recruited in the case-control study. Serum Ism1 concentrations were determined by ELISA. Multivariate logistic regression analysis was used to evaluate the independent association of serum Ism1 concentration with the risk of T2D. The 120 newly diagnosed T2D patients were divided into uncomplicated T2D group and diabetes-associated NAFLD group according to the FLI score. RESULTS The Ism1 level of normoglycemic controls was higher than that of T2D patients (3.91 ± 0.24 ng/ml vs 3.01 ± 0.16 ng/ml, P=0.001). Based on quartile analysis of Ism1 level, the proportion of high circulating Ism1 levels in the control group increased while T2D group decreased, and the distribution difference was statistically significant (P=0.015). Logistic regression analysis indicated that the serum Ism1 level was an independent protective factor of type 2 diabetes (OR=0.69, 95%CI: 0.54-0.89). The decrease of Ism1 level did not increase the risk of non-alcoholic fatty liver disease in diabetic patients by Binary logistic regression analysis (OR=1.08, 95% CI: 0.69-1.69). CONCLUSIONS The increase of serum Ism1 was associated with a decreased risk of diabetes, and it did not reduce the risk of non-alcoholic fatty liver disease in diabetic patients.
Collapse
Affiliation(s)
| | | | | | | | - Xirong Guo
- *Correspondence: Xirong Guo, ; Wenyi Li, ; Shan Huang,
| | - Wenyi Li
- *Correspondence: Xirong Guo, ; Wenyi Li, ; Shan Huang,
| | - Shan Huang
- *Correspondence: Xirong Guo, ; Wenyi Li, ; Shan Huang,
| |
Collapse
|
19
|
Li C, Zhong S, Ni S, Liu Z, Zhang S, Ji G. Zebrafish Ism1 is a novel antiviral factor that positively regulates antiviral immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104210. [PMID: 34302859 DOI: 10.1016/j.dci.2021.104210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Isthmin1 (Ism1), first identified as a secreted protein in Xenopus embryos in 2002, has been shown to perform multiple biological functions, but little is known currently regarding its role in immunity. Here we show that the expression of ism1 is inducible by challenge with Grass carp reovirus (GCRV) in zebrafish, suggesting involvement of Ism1 in antiviral response. We then demonstrate that recombinant Ism1 (rIsm1) reduces the cytopathic effect in the cells infected by GCRV, promotes the expression of type I IFN gene and IFN-inducible antiviral protein Mxa gene, and reduces the virus quantity in virus-infected cells and host. We also show that rIsm1 promotes the expression of tbk1, irf3 and irf7, suggesting it promotes the expression of type I IFN gene and Mxa gene via induction of Tbk1-Irf3-Ifn pathway. These data together indicate that Ism1 is a new immune-relevant factor functioning in antiviral immune response, and provides a target for controlling viral infection.
Collapse
Affiliation(s)
- Congjun Li
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Shenjie Zhong
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shousheng Ni
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhenhui Liu
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| | - Guangdong Ji
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
20
|
Thapa S, Stachura DL. Deep Learning Approach for Quantification of Fluorescently Labeled Blood Cells in Danio rerio (Zebrafish). Bioinform Biol Insights 2021; 15:11779322211037770. [PMID: 34413636 PMCID: PMC8369963 DOI: 10.1177/11779322211037770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/15/2021] [Indexed: 11/15/2022] Open
Abstract
Neutrophils are a type of white blood cell essential for the function of the innate immune system. To elucidate mechanisms of neutrophil biology, many studies are performed in vertebrate animal model systems. In Danio rerio (zebrafish), in vivo imaging of neutrophils is possible due to transgenic strains that possess fluorescently labeled leukocytes. However, due to the relative abundance of neutrophils, the counting process is laborious and subjective. In this article, we propose the use of a custom trained “you only look once” (YOLO) machine learning algorithm to automate the identification and counting of fluorescently labeled neutrophils in zebrafish. Using this model, we found the correlation coefficient between human counting and the model equals r = 0.8207 with an 8.65% percent error, while variation among human counters was 5% to 12%. Importantly, the model was able to correctly validate results of a previously published article that quantitated neutrophils manually. While the accuracy can be further improved, this model notably achieves these results in mere minutes compared with hours via standard manual counting protocols and can be performed by anyone with basic programming knowledge. It further supports the use of deep learning models for high throughput analysis of fluorescently labeled blood cells in the zebrafish model system.
Collapse
Affiliation(s)
| | - David L Stachura
- David L Stachura, Department of Biological Sciences, California State University, Chico, 400 W. 1st Ave, Chico, CA 95929-0515, USA.
| |
Collapse
|
21
|
Belmonte RL, Engbretson IL, Kim JH, Cajias I, Ahn EYE, Stachura DL. son is necessary for proper vertebrate blood development. PLoS One 2021; 16:e0247489. [PMID: 33630943 PMCID: PMC7906411 DOI: 10.1371/journal.pone.0247489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
The gene SON is on human chromosome 21 (21q22.11) and is thought to be associated with hematopoietic disorders that accompany Down syndrome. Additionally, SON is an RNA splicing factor that plays a role in the transcription of leukemia-associated genes. Previously, we showed that mutations in SON cause malformations in human and zebrafish spines and brains during early embryonic development. To examine the role of SON in normal hematopoiesis, we reduced expression of the zebrafish homolog of SON in zebrafish at the single-cell developmental stage with specific morpholinos. In addition to the brain and spinal malformations we also observed abnormal blood cell levels upon son knockdown. We then investigated how blood production was altered when levels of son were reduced. Decreased levels of son resulted in lower amounts of red blood cells when visualized with lcr:GFP transgenic fish. There were also reduced thrombocytes seen with cd41:GFP fish, and myeloid cells when mpx:GFP fish were examined. We also observed a significant decrease in the quantity of T cells, visualized with lck:GFP fish. However, when we examined their hematopoietic stem and progenitor cells (HSPCs), we saw no difference in colony-forming capability. These studies indicate that son is essential for the proper differentiation of the innate and adaptive immune system, and further investigation determining the molecular pathways involved during blood development should elucidate important information about vertebrate HSPC generation, proliferation, and differentiation.
Collapse
Affiliation(s)
- Rebecca L. Belmonte
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
| | - Isabella L. Engbretson
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
| | - Jung-Hyun Kim
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Illiana Cajias
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
| | - Eun-Young Erin Ahn
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David L. Stachura
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Xia C, Olsen TK, Zirakzadeh AA, Almamoun R, Sjöholm LK, Dahlström J, Sjöberg J, Claesson HE, Johnsen JI, Winqvist O, Xu D, Ekström TJ, Björkholm M, Strååt K. Hodgkin Lymphoma Monozygotic Triplets Reveal Divergences in DNA Methylation Signatures. Front Oncol 2020; 10:598872. [PMID: 33363029 PMCID: PMC7756121 DOI: 10.3389/fonc.2020.598872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
We studied DNA methylation profiles in four different cell populations from a unique constellation of monozygotic triplets in whom two had developed Hodgkin Lymphoma (HL). We detected shared differences in DNA methylation signatures when comparing the two HL-affected triplets with the non-affected triplet. The differences were observed in naïve B-cells and marginal zone-like B-cells. DNA methylation differences were also detected when comparing each of the HL-affected triplets against each other. Even though we cannot determine whether treatment and/or disease triggered the observed differences, we believe our data are important on behalf of forthcoming studies, and that it might provide important clues for a better understanding of HL pathogenesis.
Collapse
Affiliation(s)
- Chuanyou Xia
- Department of Medicine, Division of Hematology, BioClinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - A Ali Zirakzadeh
- Unit of Translational Immunology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Radwa Almamoun
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Louise K Sjöholm
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Jenny Dahlström
- Department of Medicine, Division of Hematology, BioClinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Jan Sjöberg
- Department of Medicine, Division of Hematology, BioClinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Hans-Erik Claesson
- Department of Medicine, Division of Hematology, BioClinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ola Winqvist
- Unit of Translational Immunology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dawei Xu
- Department of Medicine, Division of Hematology, BioClinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Tomas J Ekström
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Magnus Björkholm
- Department of Medicine, Division of Hematology, BioClinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Klas Strååt
- Department of Medicine, Division of Hematology, BioClinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Isthmin1, a secreted signaling protein, acts downstream of diverse embryonic patterning centers in development. Cell Tissue Res 2020; 383:987-1002. [PMID: 33367974 PMCID: PMC7960586 DOI: 10.1007/s00441-020-03318-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/06/2020] [Indexed: 11/25/2022]
Abstract
Extracellular signals play essential roles during embryonic patterning by providing positional information in a concentration-dependent manner, and many such signals, like Wnt, fibroblast growth factor (FGF), Hedgehog (Hh), and retinoic acid, act by being secreted into the extracellular space, thereby triggering receptor-mediated responses in other cells. Isthmin1 (ism1) is a secreted protein whose gene expression pattern coincides with that of early dorsal determinants, nodal ligand genes like sqt and cyc, and with fgf8 during various phases of zebrafish development. Ism1 functions in early embryonic patterning and development are poorly understood; however, it has recently been shown to interact with nodal pathway genes to control organ asymmetry in chicken. Here, we show that misexpression of ism1 deletion constructs disrupts embryonic patterning in zebrafish and exhibits genetic interactions with both Fgf and nodal signaling. Unlike Fgf and nodal pathway mutants, CRISPR/Cas9-engineered ism1 mutants did not show obvious developmental defects. Further, in vivo single molecule fluorescence correlation spectroscopy (FCCS) showed that Ism1 diffuses freely in the extra-cellular space, with a diffusion coefficient similar to that of Fgf8a; however, our measurements do not support direct molecular interactions between Ism1 and either nodal ligands or Fgf8a in the developing zebrafish embryo. Together, data from gain- and loss-of-function experiments suggest that zebrafish Ism1 plays a complex role in regulating extracellular signals during early embryonic development.
Collapse
|
24
|
Mahony CB, Bertrand JY. How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:34. [PMID: 30915333 PMCID: PMC6422921 DOI: 10.3389/fcell.2019.00034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Rare hematopoietic stem cells (HSCs) can self-renew, establish the entire blood system and represent the basis of regenerative medicine applied to hematological disorders. Clinical use of HSCs is however limited by their inefficient expansion ex vivo, creating a need to further understand HSC expansion in vivo. After embryonic HSCs are born from the hemogenic endothelium, they migrate to the embryonic/fetal niche, where the future adult HSC pool is established by considerable expansion. This takes place at different anatomical sites and is controlled by numerous signals. HSCs then migrate to their adult niche, where they are maintained throughout adulthood. Exactly how HSC expansion is controlled during embryogenesis remains to be characterized and is an important step to improve the therapeutic use of HSCs. We will review the current knowledge of HSC expansion in the different fetal niches across several model organisms and highlight possible clinical applications.
Collapse
Affiliation(s)
- Christopher B Mahony
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|