1
|
Stakenborg N, Viola MF, Boeckxstaens G. Intestinal neuron-associated macrophages in health and disease. Nat Immunol 2025:10.1038/s41590-025-02150-6. [PMID: 40399608 DOI: 10.1038/s41590-025-02150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/14/2025] [Indexed: 05/23/2025]
Abstract
Neuron-macrophage cross-talk in the intestine plays a crucial role in the maintenance of tissue homeostasis and the modulation of immune responses throughout life. Here, we describe how gut neuron-macrophage interactions shift macrophage phenotype and function from early development to adulthood and how this cross-talk modulates the macrophage function in response to infection and inflammation. We highlight how a neural microenvironment instructs a neuron-associated macrophage phenotype in the gut and show that their phenotype may resemble nerve-associated macrophages in other organs. Finally, we note that the loss of neuron-associated macrophages or a shift in their phenotype can contribute to enteric neurodegeneration in the gastrointestinal tract, causing gut motility disorders.
Collapse
Affiliation(s)
- Nathalie Stakenborg
- Center of Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Maria Francesca Viola
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Guy Boeckxstaens
- Center of Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Hesampour F, Bernstein CN, Ghia JE. Investigating the effect of neuro-immune communication on immune responses in health and disease: Exploring immunological disorders. Cell Immunol 2025; 413:104963. [PMID: 40378510 DOI: 10.1016/j.cellimm.2025.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
Recent recognition of the intricate nervous-immune system interplay has prompted research into the specific cellular components involved in these interactions. Emerging evidence suggests that immune and neural cells collaborate within distinct units and act in concert to regulate tissue function and provide protection. These specialized neuro-immune cell units have been identified in diverse body tissues, ranging from lymphoid organs to the bone marrow and mucosal barriers. Their significance has become increasingly apparent as they are recognized as pivotal regulators influencing a broad spectrum of physiological and pathological processes. This recognition extends to critical roles in hematopoiesis, organ function, inflammatory responses, and intricate tissue repair processes. This review explores the bidirectional communication between the nervous and immune systems. The focus is on understanding the profound impact of this communication on immune cells within key anatomical sites, such as the bone marrow, gastrointestinal tract, and lymphoid organs. By examining these interactions, this review aims to shed light on how this intricate network operates under normal and pathological conditions, offering insights into the mechanisms underlying health and disease.
Collapse
Affiliation(s)
| | - Charles N Bernstein
- Internal Medicine, University of Manitoba, Winnipeg, Canada; Inflammatory Bowel Disease Clinical & Research Centre, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Immunology, University of Manitoba, Winnipeg, Canada; Internal Medicine, University of Manitoba, Winnipeg, Canada; Inflammatory Bowel Disease Clinical & Research Centre, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
| |
Collapse
|
3
|
Hesampour F, Tshikudi DM, Bernstein CN, Ghia JE. Exploring the efficacy of Transcutaneous Auricular Vagus nerve stimulation (taVNS) in modulating local and systemic inflammation in experimental models of colitis. Bioelectron Med 2024; 10:29. [PMID: 39648211 PMCID: PMC11626753 DOI: 10.1186/s42234-024-00162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Current inflammatory bowel disease (IBD) treatments often fail to achieve lasting remission and have adverse effects. Vagus nerve stimulation (VNS) offers a promising therapy due to its anti-inflammatory effects. Its invasive nature, however, has led to the development of non-invasive methods like transcutaneous auricular VNS (taVNS). This study assesses taVNS's impact on acute colitis progression, inflammatory, anti-inflammatory, and apoptosis-related markers. METHODS Male C57BL/6 mice (11-12 weeks) were used for dextran sulfate sodium (DSS)- and dinitrobenzene sulfonic acid (DNBS)-induced colitis studies. The administration of taVNS or no stimulation (anesthesia without stimulation) for 10 min per mouse began one day before colitis induction and continued daily until sacrifice. Ulcerative colitis (UC)-like colitis was induced by administering 5% DSS in drinking water for 5 days, after which the mice were sacrificed. Crohn's disease (CD)-like colitis was induced through a single intrarectal injection of DNBS/ethanol, with the mice sacrificed after 3 days. Disease activity index (DAI), macroscopic evaluations, and histological damage were assessed. Colon, spleen, and blood samples were analyzed via qRT-PCR and ELISA. One-way or two-way ANOVA with Bonferroni and Šídák tests were applied. RESULTS taVNS improved DAI, macroscopic, and histological scores in DSS colitis mice, but only partially mitigated weight loss and DAI in DNBS colitis mice. In DSS colitis, taVNS locally decreased colonic inflammation by downregulating pro-inflammatory markers (IL-1β, TNF-α, Mip1β, MMP 9, MMP 2, and Nos2) at the mRNA level and upregulating anti-inflammatory TGF-β in non-colitic conditions at both mRNA and protein levels and IL-10 mRNA levels in both non-colitic and colitic conditions. Systemically, taVNS decreased splenic TNF-α in non-colitic mice and increased serum levels of TGF-β in colitic mice and splenic levels in non-colitic and colitic mice. Effects were absent in DNBS-induced colitis. Additionally, taVNS decreased pro-apoptotic markers (Bax, Bak1, and caspase 8) in non-colitic and colitic conditions and increased the pro-survival molecule Bad in non-colitic mice. CONCLUSIONS This study demonstrates that taVNS has model-dependent local and systemic effects, reducing inflammation and apoptosis in UC-like colitis while offering protective benefits in non-colitic conditions. These findings encourage further research into underlying mechanisms and developing adjunct therapies for UC.
Collapse
Affiliation(s)
- Fatemeh Hesampour
- Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Diane M Tshikudi
- Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Charles N Bernstein
- Internal Medicine Section of Gastroenterology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical & Research Centre, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
- Internal Medicine Section of Gastroenterology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
- Inflammatory Bowel Disease Clinical & Research Centre, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
- Department of Immunology, Internal Medicine Section of Gastroenterology, Apotex Centre 431, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada.
| |
Collapse
|
4
|
Youssef A, Rehman AU, Elebasy M, Roper J, Sheikh SZ, Karhausen J, Yang W, Ulloa L. Vagal stimulation ameliorates murine colitis by regulating SUMOylation. Sci Transl Med 2024; 16:eadl2184. [PMID: 39565873 DOI: 10.1126/scitranslmed.adl2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic debilitating conditions without cure, the etiologies of which are unknown, that shorten the lifespans of 7 million patients worldwide by nearly 10%. Here, we found that decreased autonomic parasympathetic tone resulted in increased IBD susceptibility and mortality in mouse models of disease. Conversely, vagal stimulation restored neuromodulation and ameliorated colitis by inhibiting the posttranslational modification SUMOylation through a mechanism independent of the canonical interleukin-10/α7 nicotinic cholinergic vagal pathway. Colonic biopsies from patients with IBDs and mouse models showed an increase in small ubiquitin-like modifier (SUMO)2 and SUMO3 during active disease. In global genetic knockout mouse models, the deletion of Sumo3 protected against development of colitis and delayed onset of disease, whereas deletion of Sumo1 halted the progression of colitis. Bone marrow transplants from Sumo1-knockout (KO) but not Sumo3-KO mice into wild-type mice conferred protection against development of colitis. Electric stimulation of the cervical vagus nerve before the induction of colitis inhibited SUMOylation and delayed the onset of colitis in Sumo1-KO mice and resulted in milder symptoms in Sumo3-KO mice. Treatment with TAK-981, a first-in-class inhibitor of the SUMO-activating enzyme, ameliorated disease in three murine models of IBD and reduced intestinal permeability and bacterial translocation in a severe model of the disease, suggesting the potential to reduce progression to sepsis. These results reveal a pathway of vagal neuromodulation that reprograms endogenous stress-adaptive responses through inhibition of SUMOylation and suggest SUMOylation as a therapeutic target for IBD.
Collapse
Affiliation(s)
- Ayman Youssef
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ata Ur Rehman
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mohamed Elebasy
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University, Durham, NC 27710, USA
| | - Shehzad Z Sheikh
- University of North Carolina, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jorn Karhausen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Humanitas Research Hospital, Rozzano, MI 20089, Italy
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Liu FJ, Wu J, Gong LJ, Yang HS, Chen H. Non-invasive vagus nerve stimulation in anti-inflammatory therapy: mechanistic insights and future perspectives. Front Neurosci 2024; 18:1490300. [PMID: 39605787 PMCID: PMC11599236 DOI: 10.3389/fnins.2024.1490300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Non-invasive vagus nerve stimulation (VNS) represents a transformative approach for managing a broad spectrum of inflammatory and autoimmune conditions, including rheumatoid arthritis and inflammatory bowel disease. This comprehensive review delineates the mechanisms underlying VNS, emphasizing the cholinergic anti-inflammatory pathway, and explores interactions within the neuro-immune and vagus-gut axes based on both clinical outcomes and pre-clinical models. Clinical applications have confirmed the efficacy of VNS in managing specific autoimmune diseases, such as rheumatoid arthritis, and chronic inflammatory conditions like inflammatory bowel disease, showcasing the variability in stimulation parameters and patient responses. Concurrently, pre-clinical studies have provided insights into the potential of VNS in modulating cardiovascular and broader inflammatory responses, paving the way for its translational application in clinical settings. Innovations in non-invasive VNS technology and precision neuromodulation are enhancing its therapeutic potential, making it a viable option for patients who are unresponsive to conventional treatments. Nonetheless, the widespread adoption of this promising therapy is impeded by regulatory challenges, patient compliance issues, and the need for extensive studies on long-term efficacy and safety. Future research directions will focus on refining VNS technology, optimizing treatment parameters, and exploring synergistic effects with other therapeutic modalities, which could revolutionize the management of chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Fu-Jun Liu
- Neurology Medical Center II, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Jing Wu
- Department of Medical Imaging, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Li-Jun Gong
- Center of Surgical Anesthesia, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Shuai Yang
- Central Operating Room, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Awad MM, El-Gohary RM, Ibrahim S, Abdel Ghafar MT, Farghal EE, Aboalsoud A, El-Shaer RAA. Potential mitigating impact of a dipeptidyl peptidase-IV inhibitor, vildagliptin, on oxazolone-induced ulcerative colitis: Targeting the role of PI3K/AKT/mTOR and AMPK/Nrf2 signaling pathways. Int Immunopharmacol 2024; 133:112110. [PMID: 38652960 DOI: 10.1016/j.intimp.2024.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Growing evidence suggests that phosphoinositide 3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) signaling cascades are critical in ulcerative colitis (UC) pathophysiology by influencing gut mucosal inflammation. Recently, the coloprotective properties of dipeptidyl peptidase-IV (DPP-IV) inhibitors have emerged. Thus, this study assessed for the first time the potential mitigating impact of a DPP-IV inhibitor, vildagliptin (Vilda), on oxazolone (OXZ)-induced colitis in rats, targeting the role of PI3K/AKT/mTOR and AMPK/Nrf2 pathways. Thirty-two adult Albino rats were divided into four groups: control, Vilda (10 mg/kg/day orally), OXZ (300 µL of 5 % OXZ in 50 % aqueous ethanol solution introduced once into the colon via catheter), and Vilda+OXZ. Inflammatory cytokines (interleukin 13, tumor necrosis factor-α, interleukin 10), oxidative/endoplasmic reticulum stress markers (myeloperoxidase, reduced glutathione, catalase, CHOP), mitochondrial reactive oxygen species, adenosine triphosphate levels, and mitochondrial transmembrane potential were estimated. p-AMPK, p-AKT, beclin-1, and SQSTM1 levels were immunoassayed. Nrf2, PI3K, and mTOR expression levels were quantified using the real-time polymerase chain reaction. Furthermore, p-NF-ĸBp65 and LC3II immunoreactivity were evaluated. Vilda administration effectively ameliorated OXZ-induced colitis, as evidenced by the reduced Disease Activity Index, macroscopic colon damage score, colon weight/length ratio, ulcer index, and histopathological and electron microscopic changes in the colon tissues. Vilda treatment also counteracted OXZ-triggered inflammation, oxidative/endoplasmic reticulum stress, mitochondrial dysfunction, and enhanced autophagy in the colon. Vilda substantially suppressed PI3K/AKT/mTOR and activated the AMPK/Nrf2 pathway. Vilda has potent coloprotective and anti-ulcerogenic properties, primarily attributed to its antiinflammatory, antioxidant, and modulatory impact on mitochondrial dysfunction and autophagy activity. These effects were mostly mediated by suppressing PI3K/AKT/mTOR and activating AMPK/Nrf2 signaling cascades, suggesting a potential role of Vilda in UC therapy.
Collapse
Affiliation(s)
- Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine,Tanta University,Tanta, Egypt.
| | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | | - Eman E Farghal
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Alshimaa Aboalsoud
- Pharmacology Depatrtment, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | |
Collapse
|
7
|
Ferreira B, Barros AS, Leite-Pereira C, Viegas J, das Neves J, Nunes R, Sarmento B. Trends in 3D models of inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167042. [PMID: 38296115 DOI: 10.1016/j.bbadis.2024.167042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses a set of chronic inflammatory conditions, namely Crohn's disease and ulcerative colitis. Despite all advances in the management of IBD, a definitive cure is not available, largely due to a lack of a holistic understanding of its etiology and pathophysiology. Several in vitro, in vivo, and ex vivo models have been developed over the past few decades in order to abbreviate remaining gaps. The establishment of reliable and predictable in vitro intestinal inflammation models may indeed provide valuable tools to expedite and validate the development of therapies for IBD. Three-dimensional (3D) models provide a more accurate representation of the different layers of the intestine, contributing to a stronger impact on drug screening and research on intestinal inflammation, and bridging the gap between in vitro and in vivo research. This work provides a critical overview on the state-of-the-art on existing 3D models of intestinal inflammation and discusses the remaining challenges, providing insights on possible pathways towards achieving IBD mimetic models. We also address some of the main challenges faced by implementing cell culture models in IBD research while bearing in mind clinical translational aspects.
Collapse
Affiliation(s)
- Bárbara Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Andreia S Barros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Catarina Leite-Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Juliana Viegas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
8
|
Belei O, Basaca DG, Olariu L, Pantea M, Bozgan D, Nanu A, Sîrbu I, Mărginean O, Enătescu I. The Interaction between Stress and Inflammatory Bowel Disease in Pediatric and Adult Patients. J Clin Med 2024; 13:1361. [PMID: 38592680 PMCID: PMC10932475 DOI: 10.3390/jcm13051361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Inflammatory bowel diseases (IBDs) have seen an exponential increase in incidence, particularly among pediatric patients. Psychological stress is a significant risk factor influencing the disease course. This review assesses the interaction between stress and disease progression, focusing on articles that quantified inflammatory markers in IBD patients exposed to varying degrees of psychological stress. Methods: A systematic narrative literature review was conducted, focusing on the interaction between IBD and stress among adult and pediatric patients, as well as animal subjects. The research involved searching PubMed, Scopus, Medline, and Cochrane Library databases from 2000 to December 2023. Results: The interplay between the intestinal immunity response, the nervous system, and psychological disorders, known as the gut-brain axis, plays a major role in IBD pathophysiology. Various types of stressors alter gut mucosal integrity through different pathways, increasing gut mucosa permeability and promoting bacterial translocation. A denser microbial load in the gut wall emphasizes cytokine production, worsening the disease course. The risk of developing depression and anxiety is higher in IBD patients compared with the general population, and stress is a significant trigger for inducing acute flares of the disease. Conclusions: Further large studies should be conducted to assess the relationship between stressors, psychological disorders, and their impact on the course of IBD. Clinicians involved in the medical care of IBD patients should aim to implement stress reduction practices in addition to pharmacological therapies.
Collapse
Affiliation(s)
- Oana Belei
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Diana-Georgiana Basaca
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Laura Olariu
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Manuela Pantea
- Twelfth Department, Neonatology Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.P.); (I.E.)
| | - Daiana Bozgan
- Clinic of Neonatology, “Pius Brânzeu” County Emergency Clinical Hospital, 300723 Timișoara, Romania;
| | - Anda Nanu
- Third Pediatric Clinic, “Louis Țurcanu” Emergency Children Hospital, 300011 Timișoara, Romania; (A.N.); (I.S.)
| | - Iuliana Sîrbu
- Third Pediatric Clinic, “Louis Țurcanu” Emergency Children Hospital, 300011 Timișoara, Romania; (A.N.); (I.S.)
| | - Otilia Mărginean
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ileana Enătescu
- Twelfth Department, Neonatology Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.P.); (I.E.)
| |
Collapse
|
9
|
Komaru Y, Bai YZ, Kreisel D, Herrlich A. Interorgan communication networks in the kidney-lung axis. Nat Rev Nephrol 2024; 20:120-136. [PMID: 37667081 DOI: 10.1038/s41581-023-00760-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
The homeostasis and health of an organism depend on the coordinated interaction of specialized organs, which is regulated by interorgan communication networks of circulating soluble molecules and neuronal connections. Many diseases that seemingly affect one primary organ are really multiorgan diseases, with substantial secondary remote organ complications that underlie a large part of their morbidity and mortality. Acute kidney injury (AKI) frequently occurs in critically ill patients with multiorgan failure and is associated with high mortality, particularly when it occurs together with respiratory failure. Inflammatory lung lesions in patients with kidney failure that could be distinguished from pulmonary oedema due to volume overload were first reported in the 1930s, but have been largely overlooked in clinical settings. A series of studies over the past two decades have elucidated acute and chronic kidney-lung and lung-kidney interorgan communication networks involving various circulating inflammatory cytokines and chemokines, metabolites, uraemic toxins, immune cells and neuro-immune pathways. Further investigations are warranted to understand these clinical entities of high morbidity and mortality, and to develop effective treatments.
Collapse
Affiliation(s)
- Yohei Komaru
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Yun Zhu Bai
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Andreas Herrlich
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, USA.
| |
Collapse
|
10
|
Chen Y, Cui M, Cui Y. Vagus nerve stimulation attenuates septic shock-induced cardiac injury in rats. Physiol Res 2023; 72:731-739. [PMID: 38215060 PMCID: PMC10805250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 01/14/2024] Open
Abstract
This research aimed to evaluate whether vagus nerve stimulation (VNS) could effectively prevent septic shock-induced cardiac injury in rats and investigate the potential mechanisms. Female Sprague-Dawley rats were divided into the Sham group (sham cecal ligation and puncture [CLP] plus vagal nerve trunk separation), the Vehicle group (CLP plus vagal nerve trunk separation), and the VNS groups (CLP plus vagal nerve trunk separation plus VNS). The left ventricular function was analyzed by echocardiography. Histologic examinations of the cardiac tissues were performed through hematoxylin and eosin staining and TUNEL staining. The Vehicle group had worse cardiac function, higher levels of cardiac injury markers, and enhanced myocardial apoptosis than the Sham group. The rats in the VNS groups had enhanced cardiac function, lower levels of cardiac injury markers, and inhibited myocardial apoptosis than those in the Vehicle group. Elevated interleukin-1beta and tumor necrosis factor-alpha-levels and activated nuclear factor kappa B (NF-kappa-B) signal in septic shock rats were inhibited by the performance of VNS. This study suggests that VNS contributes to the reduction of myocardial apoptosis and improvement of left ventricular function to attenuate septic shock-induced cardiac injury in rats. The performance of VNS inhibits the inflammatory responses in heart tissues via the regulation of NF-kappa-B signal.
Collapse
Affiliation(s)
- Y Chen
- Department of Emergency Brain Academy District, Cangzhou Central Hospital, Cangzhou, Hebei, China.
| | | | | |
Collapse
|
11
|
D’Haens G, Eberhardson M, Cabrijan Z, Danese S, van den Berg R, Löwenberg M, Fiorino G, Schuurman PR, Lind G, Almqvist P, Olofsson PS, Tracey KJ, Hanauer SB, Zitnik R, Chernoff D, Levine YA. Neuroimmune Modulation Through Vagus Nerve Stimulation Reduces Inflammatory Activity in Crohn's Disease Patients: A Prospective Open-label Study. J Crohns Colitis 2023; 17:1897-1909. [PMID: 37738465 PMCID: PMC10798868 DOI: 10.1093/ecco-jcc/jjad151] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is a debilitating, inflammatory condition affecting the gastrointestinal tract. There is no cure and sustained clinical and endoscopic remission is achieved by fewer than half of patients with current therapies. The immunoregulatory function of the vagus nerve, the 'inflammatory reflex', has been established in patients with rheumatoid arthritis and biologic-naive CD. The aim of this study was to explore the safety and efficacy of vagus nerve stimulation in patients with treatment-refractory CD, in a 16-week, open-label, multicentre, clinical trial. METHODS A vagus nerve stimulator was implanted in 17 biologic drug-refractory patients with moderately to severely active CD. One patient exited the study pre-treatment, and 16 patients were treated with vagus nerve stimulation [4/16 receiving concomitant biologics] during 16 weeks of induction and 24 months of maintenance treatment. Endpoints included clinical improvement, patient-reported outcomes, objective measures of inflammation [endoscopic/molecular], and safety. RESULTS There was a statistically significant and clinically meaningful decrease in CD Activity Index at Week 16 [mean ± SD: -86.2 ± 92.8, p = 0.003], a significant decrease in faecal calprotectin [-2923 ± 4104, p = 0.015], a decrease in mucosal inflammation in 11/15 patients with paired endoscopies [-2.1 ± 1.7, p = 0.23], and a decrease in serum tumour necrosis factor and interferon-γ [46-52%]. Two quality-of-life indices improved in 7/11 patients treated without biologics. There was one study-related severe adverse event: a postoperative infection requiring device explantation. CONCLUSIONS Neuroimmune modulation via vagus nerve stimulation was generally safe and well tolerated, with a clinically meaningful reduction in clinical disease activity associated with endoscopic improvement, reduced levels of faecal calprotectin and serum cytokines, and improved quality of life.
Collapse
Affiliation(s)
- Geert D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Michael Eberhardson
- Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Zeljko Cabrijan
- Division of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb, Croatia
- Division of Gastroenterology, University of Applied Health Sciences, Zagreb, Croatia
- Josip Juraj Strossmayer University of Osijek School of Medicine, Osijek, Croatia
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Italy
- Department of Gastroenterology and Endoscopy, University Vita-Salute San Raffaele, Milano, Italy
| | - Remco van den Berg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, VIta-Salute San Raffaele Hospital, Milan, Italy
- IBD Unit, Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, Rome, Italy
| | | | - Göran Lind
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Per Almqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Neurosurgery Stockholm AB, Stockholm, Sweden
| | - Peder S Olofsson
- Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Feinstein Institutes for Medical Research, Manhasset, New York
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Stephen B Hanauer
- Division of Gastroenterology and Hepatology, Northwestern University–Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ralph Zitnik
- SetPoint Medical, Valencia, California, USA
- Valerio Consulting, Santa Barbara, California, USA
| | | | - Yaakov A Levine
- Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- SetPoint Medical, Valencia, California, USA
| |
Collapse
|
12
|
Pikov V. Vagus Nerve Stimulation and Sacral Nerve Stimulation for Inflammatory Bowel Disease: A Systematic Review. JOURNAL OF TRANSLATIONAL GASTROENTEROLOGY 2023; 1:94-100. [PMID: 38606364 PMCID: PMC11007757 DOI: 10.14218/jtg.2023.00098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2024]
Abstract
Background and objectives In this systematic review, we assessed the efficacy, potential mechanisms, and safety of two neuromodulation therapies in patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. The first therapy is vagus nerve stimulation (VNS) utilizing implantable or transcutaneous electrodes, and the second is sacral nerve stimulation (SNS) using implantable or percutaneous electrodes. Methods We conducted a systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The PubMed database was comprehensively searched, and studies were rigorously assessed for inclusion and exclusion criteria. Results Our analysis encompassed five clinical studies, three on VNS and two on SNS. Most investigated studies demonstrated significant beneficial effects on IBD symptoms, including disease activity, severity of intestinal lesions, and intestinal pain. When evaluating the impact on key IBD pathophysiologies, both VNS and SNS exhibited trends toward reducing biomarkers of intestinal mucosal inflammation and mitigating sympathetic dominance. Importantly, none of the evaluated neuromodulation methods resulted in long-term adverse effects. Conclusions Cumulative evidence from the evaluated studies indicates that VNS and SNS therapies effectively alleviate IBD symptoms and may hold promise in addressing the underlying pathophysiologies of IBD, including intestinal mucosal inflammation and sympathetic dominance. Consequently, they represent valuable options for individualized IBD treatment.
Collapse
|
13
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate-like T lymphocytes, strikingly enriched at mucosal surfaces and characterized by a semi-invariant αβ T cell receptor (TCR) recognizing microbial derived intermediates of riboflavin synthesis presented by the MHC-Ib molecule MR1. At barrier sites MAIT cells occupy a prime position for interaction with commensal microorganisms, comprising the microbiota. The microbiota is a rich source of riboflavin derived antigens required in early life to promote intra-thymic MAIT cell development and sustain a life-long population of tissue resident cells. A symbiotic relationship is thought to be maintained in health whereby microbes promote maturation and homeostasis, and in turn MAIT cells can engage a TCR-dependent "tissue repair" program in the presence of commensal organisms conducive to sustaining barrier function and integrity of the microbial community. MAIT cell activation can be induced in a MR1-TCR dependent manner or through MR1-TCR independent mechanisms via pro-inflammatory cytokines interleukin (IL)-12/-15/-18 and type I interferon. MAIT cells provide immunity against bacterial, fungal and viral pathogens. However, MAIT cells may have deleterious effects through insufficient or exacerbated effector activity and have been implicated in autoimmune, inflammatory and allergic conditions in which microbial dysbiosis is a shared feature. In this review we summarize the current knowledge on the role of the microbiota in the development and maintenance of circulating and tissue resident MAIT cells. We also explore how microbial dysbiosis, alongside changes in intestinal permeability and imbalance between pro- and anti-inflammatory components of the immune response are together involved in the potential pathogenicity of MAIT cells. Whilst there have been significant improvements in our understanding of how the microbiota shapes MAIT cell function, human data are relatively lacking, and it remains unknown if MAIT cells can conversely influence the composition of the microbiota. We speculate whether, in a human population, differences in microbiomes might account for the heterogeneity observed in MAIT cell frequency across mucosal sites or between individuals, and response to therapies targeting T cells. Moreover, we speculate whether manipulation of the microbiota, or harnessing MAIT cell ligands within the gut or disease-specific sites could offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
14
|
Ge L, Liu S, Li S, Yang J, Hu G, Xu C, Song W. Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications. Front Immunol 2022; 13:1016578. [PMID: 36275694 PMCID: PMC9583867 DOI: 10.3389/fimmu.2022.1016578] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly including ulcerative colitis (UC) and Crohn’s disease (CD), is an autoimmune gastrointestinal disease characterized by chronic inflammation and frequent recurrence. Accumulating evidence has confirmed that chronic psychological stress is considered to trigger IBD deterioration and relapse. Moreover, studies have demonstrated that patients with IBD have a higher risk of developing symptoms of anxiety and depression than healthy individuals. However, the underlying mechanism of the link between psychological stress and IBD remains poorly understood. This review used a psychoneuroimmunology perspective to assess possible neuro-visceral integration, immune modulation, and crucial intestinal microbiome changes in IBD. Furthermore, the bidirectionality of the brain–gut axis was emphasized in the context, indicating that IBD pathophysiology increases the inflammatory response in the central nervous system and further contributes to anxiety- and depression-like behavioral comorbidities. This information will help accurately characterize the link between psychological stress and IBD disease activity. Additionally, the clinical application of functional brain imaging, microbiota-targeted treatment, psychotherapy and antidepressants should be considered during the treatment and diagnosis of IBD with behavioral comorbidities. This review elucidates the significance of more high-quality research combined with large clinical sample sizes and multiple diagnostic methods and psychotherapy, which may help to achieve personalized therapeutic strategies for IBD patients based on stress relief.
Collapse
Affiliation(s)
- Li Ge
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuman Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Sha Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangran Hu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Changqing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wengang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wengang Song,
| |
Collapse
|
15
|
Inaba K, Higashiyama M, Watanabe C, Tomioka A, Ito S, Tanemoto R, Mizoguchi A, Nishii S, Wada A, Sugihara N, Hanawa Y, Horiuchi K, Akita Y, Okada Y, Kurihara C, Narimatsu K, Komoto S, Tomita K, Karasuyama H, Satoh T, Hokari R. Proinflammatory role of basophils in oxazolone-induced chronic intestinal inflammation. J Gastroenterol Hepatol 2022; 37:1768-1775. [PMID: 35877196 DOI: 10.1111/jgh.15964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND AIM The functions of basophils have not been elucidated until recently because of their rarity. However, with recent developments in basophil-specific antibodies and basophil-deficient animals, the roles of basophils in various diseases related to chronic inflammation have been clarified. In this study, we aimed to investigate the roles of basophils in human ulcerative colitis (UC) and oxazolone (OXA) colitis using genetically engineered Mcpt8DTR mice. METHODS Immunohistochemical staining of human colon specimens was performed to examine the involvement of basophils in the pathogenesis of UC. We examined the correlation between the number of infiltrating basophils and the UC endoscopic index of severity (UCEIS), Mayo score, and Matts score. We also examined the correlation between eosinophil count and basophil infiltration. In murine experiments, we examined whether basophil infiltration was involved in OXA-induced colitis and whether basophil depletion improved inflammation in Mcpt8DTR mice. RESULTS Colonic basophil infiltration was significantly increased in patients with UC. There were significant correlations between UCEIS, Mayo score, Matts score, and the number of infiltrating basophils. In murine OXA-induced colitis, a significant increase in basophil infiltration was observed. When basophils were depleted by diphtheria toxin in Mcpt8DTR mice, inflammation improved significantly and mRNA expression of some proinflammatory cytokines, including Tnf-α and Ifn-γ decreased significantly. CONCLUSION Basophil infiltration correlated with endoscopic, clinical, and pathological scores in human UC independently of eosinophil infiltration, and depletion of basophils ameliorated mucosal inflammation in murine OXA-induced colitis, collectively suggesting that basophils exert a proinflammatory role in chronic intestinal inflammation such as UC.
Collapse
Affiliation(s)
- Kenichi Inaba
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Chikako Watanabe
- International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Suguru Ito
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Rina Tanemoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Akinori Mizoguchi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shin Nishii
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Akinori Wada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Nao Sugihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshinori Hanawa
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuki Horiuchi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshihiro Akita
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuyuki Narimatsu
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shunsuke Komoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Satoh
- Department of Dermatology, National Defense Medical College, Saitama, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
16
|
Brinkman DJ, Simon T, Ten Hove AS, Zafeiropoulou K, Welting O, van Hamersveld PHP, Willemze RA, Yim AYFL, Verseijden C, Hakvoort TBM, Luyer MD, Vervoordeldonk MJ, Blancou P, de Jonge WJ. Electrical stimulation of the splenic nerve bundle ameliorates dextran sulfate sodium-induced colitis in mice. J Neuroinflammation 2022; 19:155. [PMID: 35715845 PMCID: PMC9204975 DOI: 10.1186/s12974-022-02504-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/01/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation has been suggested to affect immune responses, partly through a neuronal circuit requiring sympathetic innervation of the splenic nerve bundle and norepinephrine (NE) release. Molecular and cellular mechanisms of action remain elusive. Here, we investigated the therapeutic value of this neuromodulation in inflammatory bowel disease (IBD) by applying electrical splenic nerve bundle stimulation (SpNS) in mice with dextran sulfate sodium (DSS)-induced colitis. METHODS Cuff electrodes were implanted around the splenic nerve bundle in mice, whereupon mice received SpNS or sham stimulation. Stimulation was applied 6 times daily for 12 days during DSS-induced colitis. Colonic and splenic tissues were collected for transcriptional analyses by qPCR and RNA-sequencing (RNA-seq). In addition, murine and human splenocytes were stimulated with lipopolysaccharide (LPS) in the absence or presence of NE. Single-cell RNA-seq data from publicly available data sets were analyzed for expression of β-adrenergic receptors (β-ARs). RESULTS Colitic mice undergoing SpNS displayed reduced colon weight/length ratios and showed improved Disease Activity Index scores with reduced Tumor Necrosis Factor α mRNA expression in the colon compared with sham stimulated mice. Analyses of splenocytes from SpNS mice using RNA-seq demonstrated specific immune metabolism transcriptome profile changes in myeloid cells. Splenocytes showed expression of β-ARs in myeloid and T cells. Cytokine production was reduced by NE in mouse and human LPS-stimulated splenocytes. CONCLUSIONS Together, our results demonstrate that SpNS reduces clinical features of colonic inflammation in mice with DSS-induced colitis possibly by inhibiting splenic myeloid cell activation. Our data further support exploration of the clinical use of SpNS for patients with IBD.
Collapse
Affiliation(s)
- David J Brinkman
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands.
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands.
| | - Thomas Simon
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS, Nice, France
| | - Anne S Ten Hove
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Konstantina Zafeiropoulou
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
- Department of Pediatric Surgery, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Patricia H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Rose A Willemze
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Andrew Y F Li Yim
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline Verseijden
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Misha D Luyer
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Margriet J Vervoordeldonk
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
- Galvani Bioelectronics, Stevenage, UK
| | - Philippe Blancou
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS, Nice, France
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
- Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Characteristics of an In Vitro Mesenteric Lymph Node Cell Suspension Model and Its Possible Association with In Vivo Functional Evaluation. Int J Mol Sci 2022; 23:ijms23021003. [PMID: 35055188 PMCID: PMC8781627 DOI: 10.3390/ijms23021003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
In a previous study, we uncovered three immune-responsive patterns of gut microbes using an in vitro mesenteric lymph node cell suspension model, abbreviated as the MLN model hereafter. We used Akkermansia muciniphila and Clostridium butyricum as the first group directly inducing an immune response, Bifidobacterium sp. and Bacteroides sp. as the second group evoking an immune response with the help of stimuli (anti-CD3 and anti-CD28 antibodies), and Lactobacillus sp. as the third group blunting the immune response with or without stimuli. Our group previously clarified the immune-activation characteristics of A. muciniphila and linked its in vivo immune induction effect in GF and SPF mice under homeostasis. In the present study, we supplemented the characteristics of C. butyricum and B. bifidum in the in vitro MLN model and addressed the specific elements of the model. Finally, we used an in vivo TNBS-challenge model to show the functional differences between these species with different response patterns in vitro. The results showed that C. butyricum and B. bifidum evoked an immune response in vitro in a dose-dependent and strain-unique manner. Although TLR2, rather than TLR4, is indispensable for immune activation in the present in vitro model, it may not involve interaction between TLR2 and bacterial ligands. Like the PBMC model, the present in vitro MLN model is highly dependent on cell resources and should be given more attention when used to conduct a quantitative comparison. Finally, a mixture of two strong immunogenic strains, A. muciniphila and C. butyricum, significantly increased the mortality of TNBS-challenged (2,4,6-trinitrobenzene sulfonic acid, TNBS) mice, indicating a possible link between the in vitro MLN model and in vivo functional evaluation. However, more evidence is needed to clarify the associations and underlying mechanisms.
Collapse
|
18
|
Kanauchi Y, Yamamoto T, Yoshida M, Zhang Y, Lee J, Hayashi S, Kadowaki M. Cholinergic anti-inflammatory pathway ameliorates murine experimental Th2-type colitis by suppressing the migration of plasmacytoid dendritic cells. Sci Rep 2022; 12:54. [PMID: 34997096 PMCID: PMC8742068 DOI: 10.1038/s41598-021-04154-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease. Several studies have demonstrated that α7 nicotinic acetylcholine receptors (α7nAChRs) exert anti-inflammatory effects on immune cells and nicotine suppress UC onset and relapse. Plasmacytoid dendritic cells (pDCs) reportedly accumulate in the colon of UC patients. Therefore, we investigated the pathophysiological roles of α7nAChRs on pDCs in the pathology of UC using oxazolone (OXZ)-induced Th2-type colitis with BALB/c mice. 2-deoxy-D-glucose, a central vagal stimulant suppressed OXZ colitis, and nicotine also ameliorated OXZ colitis with suppressing Th2 cytokines, which was reversed by α7nAChR antagonist methyllycaconitine. Additionally, α7nAChRs were expressed on pDCs, which were located very close to cholinergic nerve fibers in the colon of OXZ mice. Furthermore, nicotine suppressed CCL21-induced bone marrow-derived pDC migration due to Rac 1 inactivation, which was reversed by methyllycaconitine, a JAK2 inhibitor AG490 or caspase-3 inhibitor AZ-10417808. CCL21 was mainly expressed in the isolated lymphoid follicles (ILFs) of the colon during OXZ colitis. The therapeutic effect of cholinergic pathway on OXZ colitis probably through α7nAChRs on pDCs were attributed to the suppression of pDC migration toward the ILFs. Therefore, the activation of α7nAChRs has innovative therapeutic potential for the treatment of UC.
Collapse
Affiliation(s)
- Yuya Kanauchi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Minako Yoshida
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yue Zhang
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jaemin Lee
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
19
|
Herrlich A. Interorgan crosstalk mechanisms in disease: the case of acute kidney injury-induced remote lung injury. FEBS Lett 2021; 596:620-637. [PMID: 34932216 DOI: 10.1002/1873-3468.14262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
Abstract
Homeostasis and health of multicellular organisms with multiple organs depends on interorgan communication. Tissue injury in one organ disturbs this homeostasis and can lead to disease in multiple organs, or multiorgan failure. Many routes of interorgan crosstalk during homeostasis are relatively well known, but interorgan crosstalk in disease still lacks understanding. In particular, how tissue injury in one organ can drive injury at remote sites and trigger multiorgan failure with high mortality is poorly understood. As examples, acute kidney injury can trigger acute lung injury and cardiovascular dysfunction; pneumonia, sepsis or liver failure conversely can cause kidney failure; lung transplantation very frequently triggers acute kidney injury. Mechanistically, interorgan crosstalk after tissue injury could involve soluble mediators and their target receptors, cellular mediators, in particular immune cells, as well as newly identified neuro-immune connections. In this review, I will focus the discussion of deleterious interorgan crosstalk and its mechanistic concepts on one example, acute kidney injury-induced remote lung injury.
Collapse
Affiliation(s)
- Andreas Herrlich
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, MO, USA
| |
Collapse
|
20
|
Adriana Estrella GR, María Eva GT, Alberto HL, María Guadalupe VD, Azucena CV, Sandra OS, Noé AV, Francisco Javier LM. Limonene from Agastache mexicana essential oil produces antinociceptive effects, gastrointestinal protection and improves experimental ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114462. [PMID: 34324951 DOI: 10.1016/j.jep.2021.114462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Agastache mexicana is a popular plant of great demand in folk medicine, essentially due to its calming properties and for alleviating arthritic, muscular and abdominal pain. Despite its spectrum for pain relief, pharmacological studies of its bioactive constituents have been barely investigated. AIM OF THE STUDY To evaluate protective properties of the A. mexicana and bioactive compounds improving pathological gastrointestinal conditions in rodents. MATERIAL AND METHODS Different doses of the essential oil of A. mexicana ssp. mexicana and ssp. xolocotziana (30-562.2 mg/kg, i.p.) and individual monoterpenes (3-300 mg/kg, i.p.) were evaluated in an abdominal pain model. The most active monoterpene limonene and sulfasalazine (reference drug, 100 mg/kg, p.o.) were also evaluated in the oxazolone-induced colitis model using an oral gavage, where some inflammatory cytokines were analyzed by enzyme-linked immunosorbent assays. Finally, colonic histological assessment and gastroprotection in the absolute ethanol-induced ulcer model were explored. RESULTS Our results demonstrated that the essential oil of both subspecies produced a significant reduction in the abdominal writhes, where monoterpenes limonene and pulegone were partially responsible bioactive metabolites. Limonene showed the major antinociceptive efficacy in the writhing test. It also significantly decreased hyperalgesia, pathological biomarkers, and colonic inflammatory cytokines in the oxazolone-induced colitis model, as well as prevention in gastric damage. CONCLUSIONS Present results provide scientific evidence to reinforce the use of A. mexicana in the traditional medicine for gastrointestinal conditions, mainly related to pain and inflammation, demonstrating the potential of monoterpenes as natural products in the therapeutics of gastrointestinal affections such as ulcer, colitis, and abdominal pain.
Collapse
Affiliation(s)
- González-Ramírez Adriana Estrella
- Laboratorio de Neurofarmacología de Productos Naturales de la Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, CDMX, Mexico; Departamento de Farmacobiología, CINVESTAV-IPN, Calzada de los Tenorios 235, Col. Granjas Coapa, C.P. 14330, CDMX, Mexico.
| | - González-Trujano María Eva
- Laboratorio de Neurofarmacología de Productos Naturales de la Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, CDMX, Mexico.
| | - Hernandez-Leon Alberto
- Laboratorio de Neurofarmacología de Productos Naturales de la Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, CDMX, Mexico.
| | - Valle-Dorado María Guadalupe
- Laboratorio de Neurofarmacología de Productos Naturales de la Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, CDMX, Mexico.
| | - Carballo-Villalobos Azucena
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Investigación Científica 70, C.U., Coyoacán, 04510, CDMX, Mexico.
| | - Orozco-Suárez Sandra
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, 06720, CDMX, Mexico.
| | - Alvarado-Vásquez Noé
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz. de Tlalpan 04502, Col. Sección XVI, 14080, CDMX, Mexico.
| | - López-Muñoz Francisco Javier
- Departamento de Farmacobiología, CINVESTAV-IPN, Calzada de los Tenorios 235, Col. Granjas Coapa, C.P. 14330, CDMX, Mexico.
| |
Collapse
|
21
|
Abstract
Current practice in IBD is to classify patients based on clinical signs and symptoms and provide treatments accordingly. However, the response of IBD patients to available treatments is highly variable, highlighting clinically significant heterogeneity among patients. Thus, more accurate patient stratification is urgently needed to more effectively target therapeutic interventions to specific patients. Here we review the degree of heterogeneity in IBD, discussing how the microbiota, genetics, and immune system may contribute to the variation among patients. We highlight how molecular heterogeneity may relate to clinical phenotype, but in other situations may be independent of clinical phenotype, encouraging future studies to fill the gaps. Finally, we discuss novel stratification methodologies as a foundation for precision medicine, in particular a novel stratification strategy based on conserved genes across species. All of these dimensions of heterogeneity have potential to provide strategies for patient stratification and move IBD practice towards personalised medicine.
Collapse
Affiliation(s)
- Katja A Selin
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Charlotte R H Hedin
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
22
|
Muñoz AI, Vallejo-Castillo L, Fragozo A, Vázquez-Leyva S, Pavón L, Pérez-Sánchez G, Soria-Castro R, Mellado-Sánchez G, Cobos-Marin L, Pérez-Tapia SM. Increased survival in puppies affected by Canine Parvovirus type II using an immunomodulator as a therapeutic aid. Sci Rep 2021; 11:19864. [PMID: 34615970 PMCID: PMC8494837 DOI: 10.1038/s41598-021-99357-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 01/14/2023] Open
Abstract
Canine parvovirus type II (CPV-2) infection induces canine parvoviral enteritis (CPE), which in turn promotes sepsis and systemic inflammatory response syndrome (SIRS). Mortality in this disease is usually registered within 48-72 h post-hospitalization, the critical period of the illness. It has been recently described that the use of an immunomodulator, whose major component is monomeric ubiquitin (mUb) without the last two glycine residues (Ub∆GG), in pediatric human patients with sepsis augments survival. It is known that CXCR4 is the cell receptor of extracellular ubiquitin in humans. This work aimed to explore the effect of one immunomodulator (human Dialyzable Leukocyte Extract-hDLE) as a therapeutic auxiliary in puppies with sepsis and SIRS induced by CPE. We studied two groups of puppies with CPV-2 infection confirmed by polymerase chain reaction. The first group received conventional treatment (CT) and vehicle (V), while the second group received CT plus the immunomodulator (I). We assessed both groups' survival, clinical condition, number of erythrocytes, neutrophils, and lymphocytes during the hospitalization period. In addition, hematocrit, hemoglobin, plasma proteins and cortisol values, as well as norepinephrine/epinephrine and serotonin concentration were determined. Puppies treated with CT + I showed 81% survival, mild clinical signs, and a significant decrease in circulating neutrophils and lymphocytes in the critical period of the treatment. In contrast, the CT + V group presented a survival of 42%, severe clinical status, and no improvement of the parameters evaluated in the critical period of the disease. We determined in silico that human Ub∆GG can bind to dog CXCR4. In conclusion, the administration of a human immunomodulator (0.5 mg/day × 5 days) to puppies with CPE under six months of age reduces the severity of clinical signs, increases survival, and modulates inflammatory cell parameters. Further studies are necessary to take full advantage of these clinical findings, which might be mediated by the human Ub∆GG to canine CXCR4 interaction.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Biomarkers
- Dog Diseases/drug therapy
- Dog Diseases/mortality
- Dog Diseases/virology
- Dogs
- Drug Synergism
- Host-Pathogen Interactions
- Humans
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Parvoviridae Infections/veterinary
- Parvovirus, Canine/physiology
- Prognosis
- Protein Binding
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/metabolism
- Structure-Activity Relationship
- Treatment Outcome
Collapse
Affiliation(s)
- Adriana I Muñoz
- Departamento de Inmunología. Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Said Vázquez-Leyva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Alcaldía Tlalpan, 14370, CDMX, México.
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Alcaldía Tlalpan, 14370, CDMX, México
| | - Rodolfo Soria-Castro
- Departamento de Inmunología. Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Laura Cobos-Marin
- Laboratorio de Virología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México, 04510, CDMX, México
| | - Sonia Mayra Pérez-Tapia
- Departamento de Inmunología. Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, 11340, CDMX, México.
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México.
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México.
| |
Collapse
|
23
|
Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc Natl Acad Sci U S A 2021; 118:2021758118. [PMID: 33737395 DOI: 10.1073/pnas.2021758118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury is highly prevalent and associated with high morbidity and mortality, and there are no approved drugs for its prevention and treatment. Vagus nerve stimulation (VNS) alleviates inflammatory diseases including kidney disease; however, neural circuits involved in VNS-induced tissue protection remain poorly understood. The vagus nerve, a heterogeneous group of neural fibers, innervates numerous organs. VNS broadly stimulates these fibers without specificity. We used optogenetics to selectively stimulate vagus efferent or afferent fibers. Anterograde efferent fiber stimulation or anterograde (centripetal) sensory afferent fiber stimulation both conferred kidney protection from ischemia-reperfusion injury. We identified the C1 neurons-sympathetic nervous system-splenic nerve-spleen-kidney axis as the downstream pathway of vagus afferent fiber stimulation. Our study provides a map of the neural circuits important for kidney protection induced by VNS, which is critical for the safe and effective clinical application of VNS for protection from acute kidney injury.
Collapse
|
24
|
Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021; 10:cells10092204. [PMID: 34571853 PMCID: PMC8468560 DOI: 10.3390/cells10092204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn's disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD.
Collapse
|
25
|
Azabou E, Bao G, Costantino F, Jacota M, Lazizi C, Nkam L, Rottman M, Roux AL, Chevallier S, Grimaldi L, Breban M. Randomized Cross Over Study Assessing the Efficacy of Non-invasive Stimulation of the Vagus Nerve in Patients With Axial Spondyloarthritis Resistant to Biotherapies: The ESNV-SPA Study Protocol. Front Hum Neurosci 2021; 15:679775. [PMID: 34276328 PMCID: PMC8278783 DOI: 10.3389/fnhum.2021.679775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
Axial spondyloarthritis (SpA), is a major cause of chronic pain and disability that profoundly alters the quality of life of patients. Nearly half of patients with SpA usually develop drug resistance. Non-pharmacological treatments targeting inflammation are an attractive alternative to drug administration. Vagus nerve stimulation (VNS), by promoting a cholinergic anti-inflammatory reflex holds promise for treating inflammatory disease. Inflammatory reflex signaling, which is enhanced by electrically stimulating the vagus nerve, significantly reduces cytokine production and attenuates disease severity in animal models of endotoxemia, sepsis, colitis, and other preclinical models of inflammatory diseases. It has been proposed that vagal efferent fibers release acetylcholine (Ach), which can interact with α7-subunit-containing nicotinic receptors expressed by tissue macrophages and other immune cells to rapidly inhibit the synthesis/release of pro-inflammatory cytokines such as TNFα, IL-1β, IL-6, and IL-18. External vagal nerve stimulation devices are now available that do not require surgery nor implantation to non-invasively stimulate the vagal nerve. This double-blind randomized cross-over clinical trial aims to study the change in SpA disease activity, according to Assessment in Ankylosing Spondylitis 20 (ASAS20) definition, after 12 weeks of non-invasive VNS treatment vs. non-specific dummy stimulation (control group). One hundred and twenty adult patients with drug resistant SpA, meeting the ASAS classification criteria, will be included in the study. Patients will be randomized into two parallel groups according to a cross over design: either active VNS for 12 weeks, then dummy stimulation for 12 weeks, or dummy stimulation for 12 weeks, then active VNS for 12 weeks. The two stimulation periods will be separated by a 4 weeks wash-out period. A transcutaneous auricular vagus nerve stimulator Tens Eco Plus SCHWA MEDICOTM France will be used in this study. The active VNS stimulation will be applied in the cymba conchae of the left ear upon the auricular branch of the vagus nerve, using low intensity (2–5 mA), once à week, during 1 h. Dummy stimulation will be performed under the same conditions and parameters as active VNS stimulation, but at an irrelevant anatomical site: the left ear lobule. This multicenter study was registered on ClinicalTrials.gov: NCT04286373.
Collapse
Affiliation(s)
- Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Guillaume Bao
- Clinical Neurophysiology and Neuromodulation Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Félicie Costantino
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Rheumatology Department, AP-HP, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France.,Laboratory of Excellence Inflamex, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Madalina Jacota
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Chanez Lazizi
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Lionelle Nkam
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Martin Rottman
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Microbiology Laboratory, Raymond Poincaré Hospital, AP-HP Paris Saclay University, Paris, France
| | - Anne-Laure Roux
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Microbiology Laboratory, Raymond Poincaré Hospital, AP-HP Paris Saclay University, Paris, France
| | - Sylvain Chevallier
- Versailles Engineering Systems Laboratory (LISV), University of Versailles Saint Quentin en Yvelines (UVSQ), Vélizy, France
| | - Lamiae Grimaldi
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Maxime Breban
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Rheumatology Department, AP-HP, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France.,Laboratory of Excellence Inflamex, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
26
|
Stakenborg N, Boeckxstaens GE. Bioelectronics in the brain-gut axis: focus on inflammatory bowel disease (IBD). Int Immunol 2021; 33:337-348. [PMID: 33788920 PMCID: PMC8183669 DOI: 10.1093/intimm/dxab014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence shows that intestinal homeostasis is mediated by cross-talk between the nervous system, enteric neurons and immune cells, together forming specialized neuroimmune units at distinct anatomical locations within the gut. In this review, we will particularly discuss how the intrinsic and extrinsic neuronal circuitry regulates macrophage function and phenotype in the gut during homeostasis and aberrant inflammation, such as observed in inflammatory bowel disease (IBD). Furthermore, we will provide an overview of basic and translational IBD research using these neuronal circuits as a novel therapeutic tool. Finally, we will highlight the different challenges ahead to make bioelectronic neuromodulation a standard treatment for intestinal immune-mediated diseases.
Collapse
Affiliation(s)
- Nathalie Stakenborg
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Herestraat 49, O&N1 bus 701, Leuven 3000, Belgium
| | - Guy E Boeckxstaens
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Herestraat 49, O&N1 bus 701, Leuven 3000, Belgium
| |
Collapse
|
27
|
Bonaz B, Sinniger V, Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Front Neurosci 2021; 15:650971. [PMID: 33828455 PMCID: PMC8019822 DOI: 10.3389/fnins.2021.650971] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The vagus nerve is a mixed nerve, comprising 80% afferent fibers and 20% efferent fibers. It allows a bidirectional communication between the central nervous system and the digestive tract. It has a dual anti-inflammatory properties via activation of the hypothalamic pituitary adrenal axis, by its afferents, but also through a vago-vagal inflammatory reflex involving an afferent (vagal) and an efferent (vagal) arm, called the cholinergic anti-inflammatory pathway. Indeed, the release of acetylcholine at the end of its efferent fibers is able to inhibit the release of tumor necrosis factor (TNF) alpha by macrophages via an interneuron of the enteric nervous system synapsing between the efferent vagal endings and the macrophages and releasing acetylcholine. The vagus nerve also synapses with the splenic sympathetic nerve to inhibit the release of TNF-alpha by splenic macrophages. It can also activate the spinal sympathetic system after central integration of its afferents. This anti-TNF-alpha effect of the vagus nerve can be used in the treatment of chronic inflammatory bowel diseases, represented by Crohn’s disease and ulcerative colitis where this cytokine plays a key role. Bioelectronic medicine, via vagus nerve stimulation, may have an interest in this non-drug therapeutic approach as an alternative to conventional anti-TNF-alpha drugs, which are not devoid of side effects feared by patients.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Valérie Sinniger
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Sonia Pellissier
- Laboratoire Inter-Universitaire de Psychologie Personnalité, Cognition, Changement Social, University Grenoble Alpes, University Savoie Mont Blanc, Grenoble, France
| |
Collapse
|
28
|
Araruna ME, Serafim C, Alves Júnior E, Hiruma-Lima C, Diniz M, Batista L. Intestinal Anti-Inflammatory Activity of Terpenes in Experimental Models (2010-2020): A Review. Molecules 2020; 25:molecules25225430. [PMID: 33233487 PMCID: PMC7699610 DOI: 10.3390/molecules25225430] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) refer to a group of disorders characterized by inflammation in the mucosa of the gastrointestinal tract, which mainly comprises Crohn’s disease (CD) and ulcerative colitis (UC). IBDs are characterized by inflammation of the intestinal mucosa, are highly debilitating, and are without a definitive cure. Their pathogenesis has not yet been fully elucidated; however, it is assumed that genetic, immunological, and environmental factors are involved. People affected by IBDs have relapses, and therapeutic regimens are not always able to keep symptoms in remission over the long term. Natural products emerge as an alternative for the development of new drugs; bioactive compounds are promising in the treatment of several disorders, among them those that affect the gastrointestinal tract, due to their wide structural diversity and biological activities. This review compiles 12 terpenes with intestinal anti-inflammatory activity evaluated in animal models and in vitro studies. The therapeutic approach to IBDs using terpenes acts basically to prevent oxidative stress, combat dysbiosis, restore intestinal permeability, and improve the inflammation process in different signaling pathways.
Collapse
Affiliation(s)
- Maria Elaine Araruna
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (M.E.A.); (C.S.); (E.A.J.); (M.D.)
| | - Catarina Serafim
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (M.E.A.); (C.S.); (E.A.J.); (M.D.)
| | - Edvaldo Alves Júnior
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (M.E.A.); (C.S.); (E.A.J.); (M.D.)
| | - Clelia Hiruma-Lima
- Department of Structural and Functional Biology (Physiology), Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil;
| | - Margareth Diniz
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (M.E.A.); (C.S.); (E.A.J.); (M.D.)
- Department of Pharmacy, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Leônia Batista
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (M.E.A.); (C.S.); (E.A.J.); (M.D.)
- Department of Pharmacy, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
- Correspondence: ; Tel.: +55-83-32167003; Fax: +55-83-32167502
| |
Collapse
|
29
|
Sinniger V, Pellissier S, Fauvelle F, Trocmé C, Hoffmann D, Vercueil L, Cracowski JL, David O, Bonaz B. A 12-month pilot study outcomes of vagus nerve stimulation in Crohn's disease. Neurogastroenterol Motil 2020; 32:e13911. [PMID: 32515156 DOI: 10.1111/nmo.13911] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The vagus nerve has anti-inflammatory properties. We aimed to investigate vagus nerve stimulation (VNS) as a new therapeutic strategy targeting an intrinsic anti-inflammatory pathway in a pilot study in Crohn's disease patients. The main objectives addressed the questions of long-term safety, tolerability, and anti-inflammatory effects of this therapy. This study is the continuation of previous reported findings at 6 months. METHODS Nine patients with moderate active disease underwent VNS. An electrode wrapped around the left cervical vagus nerve was continuously stimulated over 1 year. Clinical, biological, endoscopic parameters, cytokines (plasma, gut), and mucosal metabolites were followed-up. KEY RESULTS After 1 year of VNS, five patients were in clinical remission and six in endoscopic remission. C-reactive protein (CRP) and fecal calprotectin decreased in six and five patients, respectively. Seven patients restored their vagal tone and decreased their digestive pain score. The patients' cytokinergic profile evolved toward a more "healthy profile": Interleukins 6, 23, 12, tumor necrosis factor α, and transforming growth factorβ1 were the most impacted cytokines. Correlations were observed between CRP and tumor necrosis factor α, and some gut mucosa metabolites as taurine, lactate, alanine, and beta-hydroxybutyrate. VNS was well tolerated. CONCLUSION & INFERENCES Vagus nerve stimulation appears as an innovative and well-tolerated treatment in moderate Crohn's disease. After 12 months, VNS has restored a homeostatic vagal tone and reduced the inflammatory state of the patients. VNS has probably a global modulatory effect on the immune system along with gut metabolic regulations. This pilot study needs replication in a larger randomized double-blinded control study.
Collapse
Affiliation(s)
- Valérie Sinniger
- Inserm, U1216, Grenoble Institute Neurosciences, University of Grenoble Alpes, Grenoble, France.,Division of Hepato-Gastroenterology, CHU Grenoble Alpes, Grenoble, France
| | - Sonia Pellissier
- University of Grenoble Alpes, University of Savoie Mont Blanc and LIP/PC2S, Grenoble, France
| | - Florence Fauvelle
- Inserm, U1216, Grenoble Institute Neurosciences, University of Grenoble Alpes, Grenoble, France.,INSERM, US17, MRI facility IRMaGe, University of Grenoble Alpes, Grenoble, France
| | - Candice Trocmé
- BEP Laboratory Building, University of Grenoble Alpes Hospital, Grenoble, France
| | - Dominique Hoffmann
- Neurosurgery Department, Grenoble Alpes Hospital, University of Grenoble Alpes Hospital, Grenoble, France
| | - Laurent Vercueil
- Inserm, U1216, Grenoble Institute Neurosciences, University of Grenoble Alpes, Grenoble, France
| | | | - Olivier David
- Inserm, U1216, Grenoble Institute Neurosciences, University of Grenoble Alpes, Grenoble, France
| | - Bruno Bonaz
- Inserm, U1216, Grenoble Institute Neurosciences, University of Grenoble Alpes, Grenoble, France.,Division of Hepato-Gastroenterology, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
30
|
Stakenborg N, Gomez‐Pinilla PJ, Verlinden TJM, Wolthuis AM, D’Hoore A, Farré R, Herijgers P, Matteoli G, Boeckxstaens GE. Comparison between the cervical and abdominal vagus nerves in mice, pigs, and humans. Neurogastroenterol Motil 2020; 32:e13889. [PMID: 32476229 PMCID: PMC7507132 DOI: 10.1111/nmo.13889] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/25/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vagus nerve (VN) stimulation is currently evaluated as a novel approach to treat immune-mediated disorders. The optimal stimulation parameters, however, largely depend on the VN composition potentially impacting on its clinical translation. Hence, we evaluated whether morphological differences exist between the cervical and abdominal VNs across different species. MATERIALS AND METHODS The cervical and abdominal VNs of mouse, pig, and humans were stained for major basic protein and neurofilament F to identify the percentage and size of myelinated and non-myelinated fibers. RESULTS The percentage of myelinated fibers was comparable between species, but was higher in the cervical VN compared with the abdominal VN. The cervical VN contained 54 ± 4%, 47 ± 7%, and 54 ± 7% myelinated fibers in mouse, pig, and humans, respectively. The myelinated fibers consisted of small-diameter (mouse: 71%, pig: 80%, and humans: 63%), medium-diameter (mouse: 21%, pig: 18%, and humans: 33%), and large-diameter fibers (mouse: 7%, pig: 2%, and humans: 4%). The abdominal VN predominantly contained unmyelinated fibers (mouse: 93%, pig: 90%, and humans: 94%). The myelinated fibers mainly consisted of small-diameter fibers (mouse: 99%, pig: 85%, and humans: 74%) and fewer medium-diameter (mouse: 1%, pig: 13%, and humans: 23%) and large-diameter fibers (mouse: 0%, pig: 2%, and humans: 3%). CONCLUSION The VN composition was largely similar with respect to myelinated and unmyelinated fibers in the species studied. Human and porcine VNs had a comparable diameter and similar amounts of fibrous tissue and contained multiple fascicles, implying that the porcine VN may be suitable to optimize stimulation parameters for clinical trials.
Collapse
Affiliation(s)
- Nathalie Stakenborg
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)Translational Research Center for Gastrointestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| | - Pedro J. Gomez‐Pinilla
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)Translational Research Center for Gastrointestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| | - Thomas J. M. Verlinden
- Department of Anatomy & EmbryologyFaculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Albert M. Wolthuis
- Department of Abdominal SurgeryUniversity Hospital of LeuvenLeuvenBelgium
| | - Andre D’Hoore
- Department of Abdominal SurgeryUniversity Hospital of LeuvenLeuvenBelgium
| | - Ricard Farré
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)Translational Research Center for Gastrointestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| | - Paul Herijgers
- Department of Cardiovascular ScienceKU LeuvenLeuvenBelgium
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)Translational Research Center for Gastrointestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| | - Guy E. Boeckxstaens
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)Translational Research Center for Gastrointestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| |
Collapse
|
31
|
Nascimento RDPD, Machado APDF, Galvez J, Cazarin CBB, Maróstica Junior MR. Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sci 2020; 258:118129. [PMID: 32717271 DOI: 10.1016/j.lfs.2020.118129] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with increasing incidence in the world, especially in developing countries. Although knowledge of its pathogenesis has progressed over the last years, some details require clarification. Studies have highlighted the role of microbial dysbiosis and immune dysfunction as essential factors that may initiate the typical high-grade inflammatory outcome. In order to better understand the immunopathophysiological aspects of UC, experimental murine models are valuable tools. Some of the most commonly used chemicals to induce colitis are trinitrobenzene sulfonic acid, oxazolone and dextran sodium sulfate. These may also be used to investigate new ways of preventing or treating UC and therefore improving targeting in human studies. The use of functional foods or bioactive compounds from plants may constitute an innovative direction towards the future of alternative medicine. Considering the above, this review focused on updated information regarding the 1. gut microbiota and immunopathogenesis of UC; 2. the most utilized animal models of the disease and their relevance; and 3. experimental application of natural products, not yet tested in clinical trials.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Ana Paula da Fonseca Machado
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Julio Galvez
- Universidad de Granada (UGR), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Centro de Investigación Biomédica, Departamento de Farmacología, 18071 Andaluzia, Granada, Spain.
| | - Cinthia Baú Betim Cazarin
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| | - Mario Roberto Maróstica Junior
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
32
|
Cheng J, Shen H, Chowdhury R, Abdi T, Selaru F, Chen JDZ. Potential of Electrical Neuromodulation for Inflammatory Bowel Disease. Inflamm Bowel Dis 2020; 26:1119-1130. [PMID: 31782957 DOI: 10.1093/ibd/izz289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a common chronic inflammatory disease of the digestive tract that is often debilitating. It affects patients' quality of life and imposes a financial burden. Despite advances in treatment with medications such as biologics, a large proportion of patients do not respond to medical therapy or develop adverse events. Therefore, alternative treatment options such as electrical neuromodulation are currently being investigated. Electrical neuromodulation, also called bioelectronic medicine, is emerging as a potential new treatment for IBD. Over the past decade, advancements have been made in electrical neuromodulation. A number of electrical neuromodulation methods, such as vagus nerve stimulation, sacral nerve stimulation, and tibial nerve stimulation, have been tested to treat IBD. A series of animal and clinical trials have been performed to evaluate efficacy with promising results. Although the exact underlying mechanisms of action for electrical neuromodulation remain to be explored, this modality is promising. Further randomized controlled trials and basic experiments are needed to investigate efficacy and clarify intrinsic mechanisms.
Collapse
Affiliation(s)
- Jiafei Cheng
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Division of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Division of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Reezwana Chowdhury
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tsion Abdi
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Florin Selaru
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Vagus nerve stimulation as a promising adjunctive treatment for ischemic stroke. Neurochem Int 2019; 131:104539. [DOI: 10.1016/j.neuint.2019.104539] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
|
34
|
Takemura A, Egawa T, Tanaka T, Kuramoto T, Hayashi T, Ishihara A. Effects of Exposure to Mild Hyperbaric Oxygen on DSS-Induced Colonic Inflammation and Diarrhea in Rats. J Inflamm Res 2019; 12:293-299. [PMID: 31754309 PMCID: PMC6824205 DOI: 10.2147/jir.s220586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose In rodents, dextran sulfate sodium (DSS)-induced diarrhea and colonic inflammation have similar symptoms to those of ulcerative colitis in humans. We examined the effects of exposure to mild hyperbaric oxygen (MHO) at an atmospheric pressure of 1317 hPa with 40% oxygen on DSS-induced diarrhea and colonic inflammation in rats. Methods Five-week-old male Kyoto Apc Delta (KAD) rats (n = 12) were administered 2% DSS through drinking water for 1 week. Subsequently, DSS-treated male rats were not subjected to any further treatment (n = 6) or exposed to MHO (n = 6) for 2 weeks. Age-matched KAD rats not subjected to DSS treatment or exposed to MHO were used as the control group (n = 6). Results Control rats did not exhibit diarrhea and colonic inflammation. However, DSS-treated rats exhibited diarrhea and colonic inflammation, regardless of exposure to MHO. Exposure to MHO for 2 weeks led to decreased incidence of diarrhea in DSS-treated rats (p < 0.05). Exposure to MHO had no effect on colonic inflammation in DSS-treated rats (p = 0.12). Conclusion Exposure to MHO for 2 weeks can improve diarrhea but cannot attenuate colonic inflammation, possibly due to the short exposure duration (2 weeks) used in this study.
Collapse
Affiliation(s)
- Ai Takemura
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology, Gifu Municipal Hospital, Gifu 500-8513, Japan
| | - Takashi Kuramoto
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi 243-0034, Japan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
35
|
Tanaka S, Okusa MD. Crosstalk between the nervous system and the kidney. Kidney Int 2019; 97:466-476. [PMID: 32001065 DOI: 10.1016/j.kint.2019.10.032] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
Under physiological states, the nervous system and the kidneys communicate with each other to maintain normal body homeostasis. However, pathological states disrupt this interaction as seen in hypertension, and kidney damage can cause impaired renorenal reflex and sodium handling. In acute kidney injury (AKI) and chronic kidney disease (CKD), damaged kidneys can have a detrimental effect on the central nervous system. CKD is an independent risk factor for cerebrovascular disease and cognitive impairment, and many factors, including retention of uremic toxins and phosphate, have been proposed as CKD-specific factors responsible for structural and functional cerebral changes in patients with CKD. However, more studies are needed to determine the precise pathogenesis. Epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. However, recent animal studies have shown that the renal nerve contributes to kidney inflammation and fibrosis, whereas activation of the cholinergic anti-inflammatory pathway, which involves the vagus nerve, the splenic nerve, and immune cells in the spleen, has a significant renoprotective effect. Therefore, elucidating mechanisms of communication between the nervous system and the kidney enables us not only to develop new strategies to ameliorate neurological conditions associated with kidney disease but also to design safe and effective clinical interventions for kidney disease, using the neural and neuroimmune control of kidney injury and disease.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
36
|
Murray K, Barboza M, Rude KM, Brust-Mascher I, Reardon C. Functional circuitry of neuro-immune communication in the mesenteric lymph node and spleen. Brain Behav Immun 2019; 82:214-223. [PMID: 31445965 PMCID: PMC6800652 DOI: 10.1016/j.bbi.2019.08.188] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022] Open
Abstract
The peripheral nervous system is an active participant in immune responses capable of blocking aberrant activation of a variety of immune cells. As one of these neuro-immune circuits, the cholinergic anti-inflammatory pathway has been well established to reduce the severity of several immunopathologies. While the activation of this pathway by vagal nerve stimulation requires sympathetic innervation of the spleen, the neuro-immune circuitry remains highly controversial. Neuro-immune pathways in other lymphoid tissues such as mesenteric lymph nodes (MLN) that are critical to the surveillance of the small intestine and proximal colon have not been assessed. Using conditionally expressed Channelrhodopsin, selective stimulation of sympathetic post-ganglionic neurons in the superior mesenteric ganglion (SMG) prevented macrophage activation and LPS-induced TNFα production in the spleen and MLN, but not in the inguinal LN. Site selective stimulation of the SMG induced the release of norepinephrine, resulting in β2AR dependent acetylcholine release in the MLN and spleen. VNS-evoked release of norepinephrine and acetylcholine in the MLN and spleen was significantly reduced using selective optogenetic blockade applied at the SMG. Additionally, this optogenetic blockade restored LPS-induced TNFα production, despite VNS. These studies identify the superior mesenteric ganglion as a critical node in a neuro-immune circuit that can inhibit immune function in the MLN and the spleen.
Collapse
Affiliation(s)
- Kaitlin Murray
- Department. of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Mariana Barboza
- Department. of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Kavi M. Rude
- Department. of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Ingrid Brust-Mascher
- Department. of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
37
|
Bosmans G, Appeltans I, Stakenborg N, Gomez‐Pinilla PJ, Florens MV, Aguilera‐Lizarraga J, Matteoli G, Boeckxstaens GE. Vagus nerve stimulation dampens intestinal inflammation in a murine model of experimental food allergy. Allergy 2019; 74:1748-1759. [PMID: 30897213 PMCID: PMC6790670 DOI: 10.1111/all.13790] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022]
Abstract
Background The vagus nerve has emerged as an important modulator of the intestinal immune system. Its anti‐inflammatory properties have been previously shown in innate and Th1/Th17 predominant inflammatory models. To what extent the vagus nerve is of importance in Th2 inflammatory responses like food allergy is still unclear. In this study, we therefore aimed to investigate the effect of vagotomy (VGX) and vagus nerve stimulation (VNS), on the development and severity of experimental food allergy. Methods Balb/C mice were first sensitized with ovalbumin (OVA) in the presence of alum. Prior to oral challenges with OVA, mice were subjected to VGX or VNS. Disease severity was determined by assessing severity and onset of diarrhoea, OVA‐specific antibody production, mast cell number and activity, inflammatory gene expression in duodenal tissue and lamina propria immune cells by flow cytometry analysis. Results When compared to control mice, VGX did not significantly affect the development and severity of the disease in our model of food allergy. VNS, on the other hand, resulted in a significant amelioration of the different inflammatory parameters assessed. This effect was independent of α7nAChR and is possibly mediated through the dampening of mast cells and increased phagocytosis of OVA by CX3CR1hi macrophages. Conclusions These results underscore the anti‐inflammatory properties of the vagus nerve and the potential of neuro‐immune interactions in the intestine. Further insight into the underlying mechanisms could ultimately lead to novel therapeutic approaches in the treatment of not only food allergy but also other immune‐mediated diseases.
Collapse
Affiliation(s)
- Goele Bosmans
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Iris Appeltans
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Pedro J. Gomez‐Pinilla
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Morgane V. Florens
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Javier Aguilera‐Lizarraga
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Guy E. Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| |
Collapse
|
38
|
Tanaka S, Hammond B, Rosin DL, Okusa MD. Neuroimmunomodulation of tissue injury and disease: an expanding view of the inflammatory reflex pathway. Bioelectron Med 2019; 5:13. [PMID: 32232102 PMCID: PMC7098254 DOI: 10.1186/s42234-019-0029-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroimmunomodulation through peripheral nerve activation is an important therapeutic approach to various disorders. Central to this approach is the inflammatory reflex pathway in which the cholinergic anti-inflammatory pathway represents the efferent limb. Recent studies provide a framework for understanding this control pathway, however our understanding remains incomplete. Genetically modified mice, using optogenetics and pharmacogenomics, have been invaluable resources that will allow investigators to disentangle neural pathways that provide a unifying mechanism by which vagal nerve stimulation (and other means of stimulating the pathway) leads to an anti-inflammatory and tissue protective effect. In this review we describe disease models that contribute to our understanding of how vagal nerve stimulation attenuates inflammation and organ injury: acute kidney injury, rheumatoid arthritis, and inflammatory gastrointestinal disease. The gut microbiota contributes to health and disease and the potential role of the vagus nerve in affecting the relationship between gut microbiota and the immune system and modifying diseases remains an intriguing opportunity to attenuate local and systemic inflammation that undergird disease processes.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| | | | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia USA
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| |
Collapse
|
39
|
Basso L, Serhan N, Tauber M, Gaudenzio N. Peripheral neurons: Master regulators of skin and mucosal immune response. Eur J Immunol 2019; 49:1984-1997. [DOI: 10.1002/eji.201848027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Lilian Basso
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM Université de Toulouse Toulouse France
| | - Nadine Serhan
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM Université de Toulouse Toulouse France
| | - Marie Tauber
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM Université de Toulouse Toulouse France
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM Université de Toulouse Toulouse France
| |
Collapse
|
40
|
Brinkman DJ, Ten Hove AS, Vervoordeldonk MJ, Luyer MD, de Jonge WJ. Neuroimmune Interactions in the Gut and Their Significance for Intestinal Immunity. Cells 2019; 8:670. [PMID: 31269754 PMCID: PMC6679154 DOI: 10.3390/cells8070670] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) have a complex, multifactorial pathophysiology with an unmet need for effective treatment. This calls for novel strategies to improve disease outcome and quality of life for patients. Increasing evidence suggests that autonomic nerves and neurotransmitters, as well as neuropeptides, modulate the intestinal immune system, and thereby regulate the intestinal inflammatory processes. Although the autonomic nervous system is classically divided in a sympathetic and parasympathetic branch, both play a pivotal role in the crosstalk with the immune system, with the enteric nervous system acting as a potential interface. Pilot clinical trials that employ vagus nerve stimulation to reduce inflammation are met with promising results. In this paper, we review current knowledge on the innervation of the gut, the potential of cholinergic and adrenergic systems to modulate intestinal immunity, and comment on ongoing developments in clinical trials.
Collapse
Affiliation(s)
- David J Brinkman
- Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 BK, The Netherlands
- Department of Surgery, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - Anne S Ten Hove
- Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 BK, The Netherlands
| | - Margriet J Vervoordeldonk
- Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 BK, The Netherlands
- Galvani Bioelectronics, Stevenage SG1 2NY, UK
| | - Misha D Luyer
- Department of Surgery, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 BK, The Netherlands.
- Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
41
|
Meroni E, Stakenborg N, Viola MF, Boeckxstaens GE. Intestinal macrophages and their interaction with the enteric nervous system in health and inflammatory bowel disease. Acta Physiol (Oxf) 2019; 225:e13163. [PMID: 29998613 PMCID: PMC6519157 DOI: 10.1111/apha.13163] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
Over the past decades, there has been an increasing understanding of cellular and molecular mechanisms that mediate modulation of the immune system by the autonomic nervous system. The discovery that vagal nerve stimulation (VNS) attenuates endotoxin-induced experimental sepsis paved the way for further studies investigating neuro-immune interaction. In particular, great attention is now given to intestinal macrophages: several studies report the existence of both intrinsic and extrinsic neural mechanisms by which intestinal immune homoeostasis can be regulated in different layers of the intestine, mainly by affecting macrophage activation through neurotransmitter release. Given the important role of inflammation in numerous disease processes, such as inflammatory bowel disease (IBD), cholinergic anti-inflammatory mechanisms are under intense investigation both from a basic and clinical science perspective in immune-mediated diseases such as IBD. This review discusses recent insights on the cross-talk between enteric neurons and the immune system, especially focusing on macrophages, and provides an overview of basic and translational aspects of the cholinergic anti-inflammatory response as therapeutic alternative to reinstall immune homoeostasis in intestinal chronic inflammation.
Collapse
Affiliation(s)
- Elisa Meroni
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research Center for Gastrointestinal Disorders (TARGID)KU Leuven—University of LeuvenLeuvenBelgium
| | - Nathalie Stakenborg
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research Center for Gastrointestinal Disorders (TARGID)KU Leuven—University of LeuvenLeuvenBelgium
| | - Maria Francesca Viola
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research Center for Gastrointestinal Disorders (TARGID)KU Leuven—University of LeuvenLeuvenBelgium
| | - Guy E. Boeckxstaens
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research Center for Gastrointestinal Disorders (TARGID)KU Leuven—University of LeuvenLeuvenBelgium
| |
Collapse
|
42
|
Metz CN, Pavlov VA. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. Am J Physiol Gastrointest Liver Physiol 2018; 315:G651-G658. [PMID: 30001146 PMCID: PMC6293249 DOI: 10.1152/ajpgi.00195.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Improved understanding of neuroimmune communication and the neural regulation of immunity and inflammation has recently led to proposing the concept of the "neuroimmune communicatome." This advance is based on experimental evidence for an organized and brain-integrated reflex-like relationship and dialogue between the nervous and the immune systems. A key circuitry in this communicatome is provided by efferent vagus nerve fibers and cholinergic signaling. Inflammation and metabolic alterations coexist in many disorders affecting the liver and the gastrointestinal (GI) tract, including obesity, metabolic syndrome, fatty liver disease, liver injury, and liver failure, as well as inflammatory bowel disease. Here, we outline mechanistic insights regarding the role of the vagus nerve and cholinergic signaling in the regulation of inflammation linked to metabolic derangements and the pathogenesis of these disorders in preclinical settings. Recent clinical advances using this knowledge in novel therapeutic neuromodulatory approaches within the field of bioelectronic medicine are also briefly summarized.
Collapse
Affiliation(s)
- Christine N. Metz
- 1Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,2Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Valentin A. Pavlov
- 1Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,2Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| |
Collapse
|