1
|
Mamun TI, Sultana S, Aovi FI, Kumar N, Vijay D, Fulco UL, Al-Dies AAM, Hassan HM, Al-Emam A, Oliveira JIN. Identification of novel influenza virus H3N2 nucleoprotein inhibitors using most promising epicatechin derivatives. Comput Biol Chem 2025; 115:108293. [PMID: 39642540 DOI: 10.1016/j.compbiolchem.2024.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Influenza A virus is a leading cause of acute respiratory tract infections, posing a significant global health threat. Current treatment options are limited and increasingly ineffective due to viral mutations. This study aimed to identify potential drug candidates targeting the nucleoprotein of the H3N2 subtype of Influenza A virus. We focused on epicatechin derivatives and employed a series of computational approaches, including ADMET profiling, drug-likeness evaluation, PASS predictions, molecular docking, molecular dynamics simulations, Principal Component Analysis (PCA), dynamic cross-correlation matrix (DCCM) analyses, and free energy landscape assessments. Molecular docking and dynamics simulations revealed strong and stable binding interactions between the derivatives and the target protein, with complexes 01 and 81 exhibiting the highest binding affinities. Additionally, ADMET profiling indicated favorable pharmacokinetic properties for these compounds, supporting their potential as effective antiviral agents. Compound 81 demonstrated exceptional quantum chemical descriptors, including a small HOMO-LUMO energy gap, high electronegativity, and significant softness, suggesting high chemical reactivity and strong electron-accepting capabilities. These properties enhance Compound 81's potential to interact effectively with the H3N2 nucleoprotein. Experimental validation is strongly recommended to advance these compounds toward the development of novel antiviral therapies to address the global threat of influenza.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Sharifa Sultana
- Computational Biology research laboratory, Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Farjana Islam Aovi
- Computational Biology research laboratory, Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy Udaipur, Rajasthan 313001, India
| | - Dharmarpu Vijay
- Molecular Spectroscopy Laboratory, Department of Physics, D.N.R. College (A), Bhimavaram 534202, India
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Al-Anood M Al-Dies
- Chemistry Department, Umm Al-Qura University, Al-Qunfudah University College, Saudi Arabia
| | - Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
2
|
Langeder J, Koch M, Schmietendorf H, Tahir A, Grienke U, Rollinger JM, Schmidtke M. Correlation of bioactive marker compounds of an orally applied Morus alba root bark extract with toxicity and efficacy in BALB/c mice. Front Pharmacol 2023; 14:1193118. [PMID: 38143489 PMCID: PMC10739329 DOI: 10.3389/fphar.2023.1193118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction: In traditional Chinese medicine, the root bark of Morus alba L. is used to treat respiratory infections. Recently, anti-inflammatory and multiple anti-infective activities (against influenza viruses, corona virus 2, S. aureus, and S. pneumoniae) were shown in vitro for a standardized root bark extract from M. alba (MA60). Sanggenons C and D were identified as major active constituents of MA60. The aim of the present preclinical study was to evaluate, whether these findings are transferable to an in vivo setting. Methods: MA60 was orally administered to female BALB/c mice to determine 1) the maximum tolerated dose (MTD) in an acute toxicity study and 2) its anti-influenza virus and anti-inflammatory effects in an efficacy study. A further aim was to evaluate whether there is a correlation between the obtained results and the amount of sanggenons C and D in serum and tissues. For the quantitation of the marker compounds sanggenons C and D in serum and tissue samples an UPLC-ESI-MS method was developed and validated. Results: In our study setting, the MTD was reached at 100 mg/kg. In the efficacy study, the treatment effects were moderate. Dose-dependent quantities of sanggenon C in serum and sanggenon D in liver samples were detected. Only very low concentrations of sanggenons C and D were determined in lung samples and none of these compounds was found in spleen samples. There was no compound accumulation when MA60 was administered repeatedly. Discussion: The herein determined low serum concentration after oral application once daily encourages the use of an alternative application route like intravenous, inhalation or intranasal administration and/or multiple dosing in further trials. The established method for the quantitation of the marker sanggenon compounds in tissue samples serves as a basis to determine pharmacokinetic parameters such as their bioavailability in future studies.
Collapse
Affiliation(s)
- Julia Langeder
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Mirijam Koch
- Department of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Hannes Schmietendorf
- Section of Experimental Virology, Department of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Ammar Tahir
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Judith M. Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Michaela Schmidtke
- Section of Experimental Virology, Department of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Honce R, Jones J, Meliopoulos VA, Livingston B, Sharp B, Estrada LD, Wang L, Caulfield W, Freeman B, Govorkova E, Schultz-Cherry S. Efficacy of oseltamivir treatment in influenza virus-infected obese mice. mBio 2023; 14:e0088723. [PMID: 37341495 PMCID: PMC10470499 DOI: 10.1128/mbio.00887-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/03/2023] [Indexed: 06/22/2023] Open
Abstract
Obesity has been epidemiologically and empirically linked with more severe diseases upon influenza infection. To ameliorate severe disease, treatment with antivirals, such as the neuraminidase inhibitor oseltamivir, is suggested to begin within days of infection especially in high-risk hosts. However, this treatment can be poorly effective and may generate resistance variants within the treated host. Here, we hypothesized that obesity would reduce oseltamivir treatment effectiveness in the genetically obese mouse model. We demonstrated that oseltamivir treatment does not improve viral clearance in obese mice. While no traditional variants associated with oseltamivir resistance emerged, we did note that drug treatment failed to quench the viral population and did lead to phenotypic drug resistance in vitro. Together, these studies suggest that the unique pathogenesis and immune responses in obese mice could have implications for pharmaceutical interventions and the within-host dynamics of the influenza virus population. IMPORTANCE Influenza virus infections, while typically resolving within days to weeks, can turn critical, especially in high-risk populations. Prompt antiviral administration is crucial to mitigating these severe sequalae, yet concerns remain if antiviral treatment is effective in hosts with obesity. Here, we show that oseltamivir does not improve viral clearance in genetically obese or type I interferon receptor-deficient mice. This suggests a blunted immune response may impair oseltamivir efficacy and render a host more susceptible to severe disease. This study furthers our understanding of oseltamivir treatment dynamics both systemically and in the lungs of obese mice, as well as the consequences of oseltamivir treatment for the within-host emergence of drug-resistant variants.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jeremy Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Victoria A. Meliopoulos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Leonardo D. Estrada
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Lindsey Wang
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - William Caulfield
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Burgess Freeman
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Elena Govorkova
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Zhan Y, Chen X, Guan W, Guan W, Yang C, Pan S, Wong SS, Chen R, Ye F. Clinical impact of nosocomial infection with pandemic influenza A (H1N1) 2009 in a respiratory ward in Guangzhou. J Thorac Dis 2021; 13:5851-5862. [PMID: 34795934 PMCID: PMC8575854 DOI: 10.21037/jtd-21-897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022]
Abstract
Background Nosocomial outbreaks of pandemic influenza A (H1N1) 2009 virus [A(H1N1)pdm09] easily develop due to its high transmissibility. This study aimed to investigate the clinical impacts of a nosocomial outbreak of A(H1N1)pdm09 between 21 January and 17 February 2016. Methods Patients who developed influenza-like illness (ILI) more than 48 hours after hospitalization in the index ward were enrolled as suspected patients, defined as group A and quarantined. Patients in other wards were defined as group B. A phylogenetic tree was constructed to determine the origins of the hemagglutinin and neuraminidase genes. Results After the implementation of an infection control measure bundle, the outbreak was limited to eight patients with ILIs in group A. Nasal swabs from seven patients were positive for A(H1N1)pdm09. All the patients recovered after treatment. Prolonged viral shedding was observed in a patient with bronchiectasis and Penicillium marneffei infection. Compared to the expected duration of hospitalization in patients without fever, those with fever had a median 7-day delay in discharge and a mean excess cost of 3,358 RMB. The four influenza strains identified were genetically identical to the A/California/115/2015 strain. Six of the 54 patients in group B who underwent bronchoscopy developed transient fever. These patients were hospitalized in various wards of the hospital and recovered after a short-term course of empirical antibiotics. Conclusions After the implementation of infection control measures, the nosocomial A(H1N1)pdm09 outbreak was rapidly contained; infected patients had a delay in discharge and excess costs, but no deaths occurred.
Collapse
Affiliation(s)
- Yangqing Zhan
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Xiaojuan Chen
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Weijie Guan
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Wenda Guan
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Chunguang Yang
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Sihua Pan
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Sook-San Wong
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Rongchang Chen
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China.,Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Feng Ye
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| |
Collapse
|
5
|
Ison MG, Hayden FG, Hay AJ, Gubareva LV, Govorkova EA, Takashita E, McKimm-Breschkin JL. Influenza polymerase inhibitor resistance: Assessment of the current state of the art - A report of the isirv Antiviral group. Antiviral Res 2021; 194:105158. [PMID: 34363859 PMCID: PMC9012257 DOI: 10.1016/j.antiviral.2021.105158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.
Collapse
Affiliation(s)
- Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emi Takashita
- National Institute of Infectious Diseases, Tokyo, Japan.
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Kaila V, Sirkeoja S, Blomqvist S, Rannikko J, Viskari H, Lyly-Yrjänäinen T, Syrjänen J. SARS-CoV-2 late shedding may be infectious between immunocompromised hosts. Infect Dis (Lond) 2021; 53:880-882. [PMID: 34137349 PMCID: PMC8220436 DOI: 10.1080/23744235.2021.1939891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Immunocompromised patients shed SARS-CoV-2 for extended periods, but to our knowledge person-to-person transmission from late shedding has not been reported. The case We present a case in which a COVID-19 patient infected another over 28 days after the patient’s initial symptoms, past current guideline recommendations of 20 days for length of isolation in immunocompromised patients. Whole genome sequencing of their viruses was performed to ascertain the transmission. Discussion Severely immunocompromised patients, whose clearance of the virus is impaired, may remain infectious for extended periods. Caution should be taken particularly in hospital settings where lapses in isolation procedures might pose increased risk, especially to other immunocompromised patients.
Collapse
Affiliation(s)
- Ville Kaila
- Department of Infectious Disease, Tampere University Hospital, Tampere, Finland
| | - Simo Sirkeoja
- Department of Infectious Disease, Tampere University Hospital, Tampere, Finland
| | - Soile Blomqvist
- Expert Microbiology, National Institute for Health and Welfare, Helsinki, Finland
| | - Juha Rannikko
- Department of Infectious Disease, Tampere University Hospital, Tampere, Finland
| | - Hanna Viskari
- Department of Infectious Disease, Tampere University Hospital, Tampere, Finland
| | | | - Jaana Syrjänen
- Department of Infectious Disease, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
7
|
Roosenhoff R, Reed V, Kenwright A, Schutten M, Boucher CA, Monto A, Clinch B, Kumar D, Whitley R, Nguyen-Van-Tam JS, Osterhaus ADME, Fouchier RAM, Fraaij PLA. Viral Kinetics and Resistance Development in Children Treated with Neuraminidase Inhibitors: The Influenza Resistance Information Study (IRIS). Clin Infect Dis 2021; 71:1186-1194. [PMID: 31560055 PMCID: PMC7442852 DOI: 10.1093/cid/ciz939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/19/2019] [Indexed: 01/17/2023] Open
Abstract
Background We studied the effect of age, baseline viral load, vaccination status, antiviral therapy, and emergence of drug resistance on viral shedding in children infected with influenza A or B virus. Methods Samples from children (aged ≤13 years) enrolled during the 7 years of the prospective Influenza Resistance Information Study were analyzed using polymerase chain reaction to determine the influenza virus (sub-)type, viral load, and resistance mutations. Disease severity was assessed; clinical symptoms were recorded. The association of age with viral load and viral clearance was examined by determining the area under the curve for viral RNA shedding using logistic regression and Kaplan-Meier analyses. Results A total of 2131 children infected with influenza (683, A/H1N1pdm09; 825, A/H3N2; 623, influenza B) were investigated. Age did not affect the mean baseline viral load. Children aged 1−5 years had prolonged viral RNA shedding (±1–2 days) compared with older children and up to 1.2-fold higher total viral burden. Besides, in older age (odds ratio [OR], 1.08; confidence interval [CI], 1.05–1.12), prior vaccination status (OR, 1.72; CI, 1.22–2.43) and antiviral treatment (OR, 1.74; CI, 1.43–2.12) increased the rate of viral clearance. Resistance mutations were detected in 49 children infected with influenza A virus (34, A/H1N1pdm09; 15, A/H3N2) treated with oseltamivir, most of whom were aged <5 years (n = 39). Conclusions Children aged 1−5 years had a higher total viral burden with prolonged virus shedding and had an increased risk of acquiring resistance mutations following antiviral treatment. Clinical Trials Registration NCT00884117.
Collapse
Affiliation(s)
| | | | | | | | - Charles A Boucher
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arnold Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Barry Clinch
- Roche Products Ltd, Welwyn Garden City, United Kingdom
| | - Deepali Kumar
- Transplant Infectious Diseases and Multi Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Richard Whitley
- Department of Pediatrics, Microbiology, Medicine, and Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jonathan S Nguyen-Van-Tam
- School of Medicine, Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Albert D M E Osterhaus
- Research Institute for Infectious Diseases and Zoonosis, University of Veterinary Medicine, Hannover, Germany.,Artemis One Health Research Institute, Utrecht, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pieter L A Fraaij
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Subdivision Infectious Diseases and Immunology, Erasmus Medical Center-Sophia, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Roosenhoff R, Schutten M, Reed V, Clinch B, van der Linden A, Fouchier RAM, Fraaij PLA. Secondary substitutions in the hemagglutinin and neuraminidase genes associated with neuraminidase inhibitor resistance are rare in the Influenza Resistance Information Study (IRIS). Antiviral Res 2021; 189:105060. [PMID: 33713731 DOI: 10.1016/j.antiviral.2021.105060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/16/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Amino acid substitutions in influenza virus neuraminidase (NA) that cause resistance to neuraminidase inhibitors (NAI) generally result in virus attenuation. However, influenza viruses may acquire secondary substitutions in the NA and hemagglutinin (HA) proteins that can restore viral fitness. To assess to which extent this happens, the emergence of NAI resistance substitutions and secondary - potentially compensatory - substitutions was quantified in influenza viruses of immunocompetent individuals included in the Influenza Resistance Information Study (IRIS; NCT00884117). Known resistance substitutions were detected by mutation specific RT-PCR in viruses of 57 of 1803 (3.2%) oseltamivir-treated individuals, including 39 individuals infected with A/H1N1pdm09 [H275Y] virus and 18 with A/H3N2 [R292K] virus. A total of fifteen and ten other amino acid substitutions were acquired in HA and NA respectively, of A/H1N1pdm09, A/H3N2 and influenza B viruses upon treatment with oseltamivir but none of these was associated with resistance to oseltamivir. All cultured viruses with the known resistance substitutions H275Y or R292K showed reduced susceptibility to oseltamivir in the NA-star assay. Upon next-generation sequencing, the vast majority of NAI resistant A/H1N1pdm09 and A/H3N2 viruses had no resistance-associated secondary substitutions at high frequency. Only in two A/H1N1pdm09 [H275Y] viruses, the potentially compensatory secondary substitutions HA-D52N and NA-R152K were detected. We conclude that the emergence of secondary substitutions that may restore viral fitness upon the emergence of known influenza virus NAI resistance substitutions was a rare event in this immunocompetent population.
Collapse
Affiliation(s)
- Rueshandra Roosenhoff
- Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GE, the Netherlands
| | - Martin Schutten
- Clinical Virology and Diagnostics, 1817HL, Alkmaar, the Netherlands
| | | | - Barry Clinch
- Roche Products Ltd, Welwyn Garden City, AL7 1TW, United Kingdom
| | - Anne van der Linden
- Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GE, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GE, the Netherlands
| | - Pieter L A Fraaij
- Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GE, the Netherlands; Department of Pediatrics, Subdivision Infectious Diseases and Immunology, Erasmus Medical Center - Sophia, Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Abstract
Human parainfluenza virus type 3 (HPIV-3) is a significant cause of lower respiratory tract infections, with the most severe disease in young infants, immunocompromised individuals, and the elderly. HPIV-3 infections are currently untreatable with licensed therapeutics, and prophylactic and therapeutic options are needed for patients at risk. To complement existing human airway models of HPIV-3 infection and develop an animal model to assess novel intervention strategies, we evaluated infection and transmission of HPIV-3 in ferrets. A well-characterized human clinical isolate (CI) of HPIV-3 engineered to express enhanced green fluorescent protein (rHPIV-3 CI-1-EGFP) was passaged on primary human airway epithelial cells (HAE) or airway organoids (AO) to avoid tissue culture adaptations. rHPIV3 CI-1-EGFP infection was assessed in vitro in ferret AO and in ferrets in vivo. Undifferentiated and differentiated ferret AO cultures supported rHPIV-3 CI-1-EGFP replication, but the ferret primary airway cells from AO were less susceptible and permissive than HAE. In vivo rHPIV-3 CI-1-EGFP replicated in the upper and lower airways of ferrets and targeted respiratory epithelial cells, olfactory epithelial cells, type I pneumocytes, and type II pneumocytes. The infection efficiently induced specific antibody responses. Taken together, ferrets are naturally susceptible to HPIV-3 infection; however, limited replication was observed that led to neither overt clinical signs nor ferret-to-ferret transmission. However, in combination with ferret AO, the ferret model of HPIV-3 infection, tissue tropism, and neutralizing antibodies complements human ex vivo lung models and can be used as a platform for prevention and treatment studies for this important respiratory pathogen. IMPORTANCE HPIV-3 is an important cause of pediatric disease and significantly impacts the elderly. Increasing numbers of immunocompromised patients suffer from HPIV-3 infections, often related to problems with viral clearance. There is a need to model HPIV-3 infections in vitro and in vivo to evaluate novel prophylaxis and treatment options. Currently existing animal models lack the potential for studying animal-to-animal transmission or the effect of immunosuppressive therapy. Here, we describe the use of the ferret model in combination with authentic clinical viruses to further complement human ex vivo models, providing a platform to study approaches to prevent and treat HPIV-3 infection. Although we did not detect ferret-to-ferret transmission in our studies, these studies lay the groundwork for further refinement of the ferret model to immunocompromised ferrets, allowing for studies of severe HPIV-3-associated disease. Such models for preclinical evaluation of prophylaxis and antivirals can contribute to reducing the global health burden of HPIV-3.
Collapse
|
10
|
Zaraket H, Hurt AC, Clinch B, Barr I, Lee N. Burden of influenza B virus infection and considerations for clinical management. Antiviral Res 2020; 185:104970. [PMID: 33159999 DOI: 10.1016/j.antiviral.2020.104970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/27/2022]
Abstract
Influenza B viruses cause significant morbidity and mortality, particularly in children, but the awareness of their impact is often less than influenza A viruses partly due to their lack of pandemic potential. Here, we summarise the biology, epidemiology and disease burden of influenza B, and review existing data on available antivirals for its management. There has long been uncertainty surrounding the clinical efficacy of neuraminidase inhibitors (NAIs) for influenza B treatment. In this article, we bring together the existing data on NAIs and discuss these alongside recent large randomised controlled trial data for the new polymerase inhibitor baloxavir in high-risk influenza B patients. Finally, we offer considerations for the clinical management of influenza B, with a focus on children and high-risk patients where disease burden is highest.
Collapse
Affiliation(s)
- Hassan Zaraket
- Center for Infectious Disease Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute, Melbourne, Australia
| | - Nelson Lee
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada.
| |
Collapse
|
11
|
They are what you eat: Shaping of viral populations through nutrition and consequences for virulence. PLoS Pathog 2020; 16:e1008711. [PMID: 32790755 PMCID: PMC7425860 DOI: 10.1371/journal.ppat.1008711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
12
|
Belser JA, Pulit-Penaloza JA, Maines TR. Ferreting Out Influenza Virus Pathogenicity and Transmissibility: Past and Future Risk Assessments in the Ferret Model. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038323. [PMID: 31871233 DOI: 10.1101/cshperspect.a038323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As influenza A viruses continue to jump species barriers, data generated in the ferret model to assess influenza virus pathogenicity, transmissibility, and tropism of these novel strains continues to inform an increasing scope of public health-based applications. This review presents the suitability of ferrets as a small mammalian model for influenza viruses and describes the breadth of pathogenicity and transmissibility profiles possible in this species following inoculation with a diverse range of viruses. Adaptation of aerobiology-based techniques and analyses have furthered our understanding of data obtained from this model and provide insight into the capacity of novel and emerging influenza viruses to cause human infection and disease.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| |
Collapse
|
13
|
Kitano M, Matsuzaki T, Oka R, Baba K, Noda T, Yoshida Y, Sato K, Kiyota K, Mizutare T, Yoshida R, Sato A, Kamimori H, Shishido T, Naito A. The antiviral effects of baloxavir marboxil against influenza A virus infection in ferrets. Influenza Other Respir Viruses 2020; 14:710-719. [PMID: 32533654 PMCID: PMC7578299 DOI: 10.1111/irv.12760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Baloxavir marboxil (BXM), the oral prodrug of baloxavir acid (BXA), greatly reduces virus titers as well as influenza symptoms of uncomplicated influenza in patients. Objectives To investigate the pharmacokinetic profiles of BXA and its efficacy against influenza A virus infection in ferrets. Methods Ferrets were dosed orally with BXM (10 and 30 mg/kg twice daily for 1 day), oseltamivir phosphate (OSP) (5 mg/kg twice daily for 2 days) or vehicle to measure the antiviral effects of BXM and OSP. The pharmacokinetic parameters of BXA was determined after single oral dosing of BXM. Results The maximum plasma concentrations of BXA were observed at 1.50 and 2.00 hours with the two BXM doses, which then declined with an elimination half‐life of 6.91 and 4.44 hours, respectively. BXM at both doses remained detectable in the plasma in ferrets, which may be due to higher stability in liver microsomes. BXM (10 and 30 mg/kg twice daily) treatment at Day 1 post‐infection (p.i.) reduced virus titers by ≥3 log10 of the 50% tissue culture infective doses by Day 2, which was significantly different compared with vehicle or OSP. Body temperature drops over time were significantly greater with BXM than with vehicle or OSP. Significant reduction in virus titers was also demonstrated when BXM was administrated after symptom onset at Day 2 p.i. compared with vehicle and OSP, although body temperature changes largely overlapped between Day 2 and Day 4. Conclusions The results highlight the rapid antiviral action of BXM with post‐exposure prophylaxis or therapeutic dosing in ferrets and offer support for further research on prevention of influenza virus infection and transmission.
Collapse
Affiliation(s)
| | | | - Ryoko Oka
- Shionogi & Co., Ltd., Toyonaka, Japan
| | - Kaoru Baba
- Shionogi TechnoAdvance Research, Co., Ltd., Toyonaka, Japan
| | - Takahiro Noda
- Shionogi TechnoAdvance Research, Co., Ltd., Toyonaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Langeder J, Grienke U, Chen Y, Kirchmair J, Schmidtke M, Rollinger JM. Natural products against acute respiratory infections: Strategies and lessons learned. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112298. [PMID: 31610260 DOI: 10.1016/j.jep.2019.112298] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A wide variety of traditional herbal remedies have been used throughout history for the treatment of symptoms related to acute respiratory infections (ARIs). AIM OF THE REVIEW The present work provides a timely overview of natural products affecting the most common pathogens involved in ARIs, in particular influenza viruses and rhinoviruses as well as bacteria involved in co-infections, their molecular targets, their role in drug discovery, and the current portfolio of available naturally derived anti-ARI drugs. MATERIALS AND METHODS Literature of the last ten years was evaluated for natural products active against influenza viruses and rhinoviruses. The collected bioactive agents were further investigated for reported activities against ARI-relevant bacteria, and analysed for the chemical space they cover in relation to currently known natural products and approved drugs. RESULTS An overview of (i) natural compounds active in target-based and/or phenotypic assays relevant to ARIs, (ii) extracts, and (iii) in vivo data are provided, offering not only a starting point for further in-depth phytochemical and antimicrobial studies, but also revealing insights into the most relevant anti-ARI scaffolds and compound classes. Investigations of the chemical space of bioactive natural products based on principal component analysis show that many of these compounds are drug-like. However, some bioactive natural products are substantially larger and have more polar groups than most approved drugs. A workflow with various strategies for the discovery of novel antiviral agents is suggested, thereby evaluating the merit of in silico techniques, the use of complementary assays, and the relevance of ethnopharmacological knowledge on the exploration of the therapeutic potential of natural products. CONCLUSIONS The longstanding ethnopharmacological tradition of natural remedies against ARIs highlights their therapeutic impact and remains a highly valuable selection criterion for natural materials to be investigated in the search for novel anti-ARI acting concepts. We observe a tendency towards assaying for broad-spectrum antivirals and antibacterials mainly discovered in interdisciplinary academic settings, and ascertain a clear demand for more translational studies to strengthen efforts for the development of effective and safe therapeutic agents for patients suffering from ARIs.
Collapse
Affiliation(s)
- Julia Langeder
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Ulrike Grienke
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| | - Ya Chen
- University of Hamburg, Center for Bioinformatics (ZBH), Bundesstraße 43, 22763, Hamburg, Germany
| | - Johannes Kirchmair
- Department of Chemistry, University of Bergen, N-5020, Bergen, Norway; Computational Biology Unit (CBU), University of Bergen, N-5020, Bergen, Norway
| | - Michaela Schmidtke
- Section of Experimental Virology, Department of Medical Microbiology, Jena University Hospital, Hans-Knöll-Straße 2, Jena, 07745, Germany
| | - Judith M Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
15
|
Belser JA, Eckert AM, Huynh T, Gary JM, Ritter JM, Tumpey TM, Maines TR. A Guide for the Use of the Ferret Model for Influenza Virus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:11-24. [PMID: 31654637 DOI: 10.1016/j.ajpath.2019.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/09/2022]
Abstract
As influenza viruses continue to jump species barriers to cause human infection, assessments of disease severity and viral replication kinetics in vivo provide crucial information for public health professionals. The ferret model is a valuable resource for evaluating influenza virus pathogenicity; thus, understanding the most effective techniques for sample collection and usage, as well as the full spectrum of attainable data after experimental inoculation in this species, is paramount. This is especially true for scheduled necropsy of virus-infected ferrets, a standard component in evaluation of influenza virus pathogenicity, as necropsy findings can provide important information regarding disease severity and pathogenicity that is not otherwise available from the live animal. In this review, we describe the range of influenza viruses assessed in ferrets, the measures of experimental disease severity in this model, and optimal sample collection during necropsy of virus-infected ferrets. Collectively, this information is critical for assessing systemic involvement after influenza virus infection in mammals.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia.
| | - Alissa M Eckert
- Division of Communication Services, Office of the Associate Director for Communication, Atlanta, Georgia
| | - Thanhthao Huynh
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joy M Gary
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jana M Ritter
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| |
Collapse
|