1
|
Criado M, Silva M, Arteche-Villasol N, Zapico D, Elguezabal N, Molina E, Espinosa J, Ferreras MDC, Benavides J, Pérez V, Gutiérrez-Expósito D. Evaluation of alternative vaccination routes against paratuberculosis in goats. Front Vet Sci 2024; 11:1457849. [PMID: 39664904 PMCID: PMC11631874 DOI: 10.3389/fvets.2024.1457849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Paratuberculosis is a chronic granulomatous enteritis, caused by Mycobacterium avium subspecies paratuberculosis (Map), that affects ruminants worldwide. Vaccination has been considered the most cost-effective method for the control of this disease in infected dairy herds. However, currently available vaccines do not provide complete protection and interfere with the diagnosis of both paratuberculosis and bovine tuberculosis, limiting its use. Because of that, efforts are being made for the development of new vaccines. The primary objective of this study was to evaluate the efficacy of two whole-cell inactivated experimental vaccines against paratuberculosis in goats, administered through the oral (OV) and intradermal (IDV) routes, and compare them with that of the commercial subcutaneous vaccine Gudair® (SCV). Over an 11-month period, the effect of vaccination and a subsequent Map challenge on the specific peripheral immune responses and Map-DNA fecal shedding were recorded. At the end of the experiment, tissue bacterial load and lesion severity were assessed. The experimental vaccines did not induce specific humoral immune responses and only elicited mild and delayed cellular immune responses. Although the OV reduced lesion severity, neither this vaccine nor the IDV prototype was able to reduce fecal shedding or tissue bacterial load. Moreover, although the SCV did not confer sterile immunity, it outperformed both experimental vaccines in all these parameters.
Collapse
Affiliation(s)
- Miguel Criado
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Marta Silva
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Noive Arteche-Villasol
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - David Zapico
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - Elena Molina
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - José Espinosa
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - María del Carmen Ferreras
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| |
Collapse
|
2
|
Weth AF, Dangerfield EM, Timmer MSM, Stocker BL. Recent Advances in the Development of Mincle-Targeting Vaccine Adjuvants. Vaccines (Basel) 2024; 12:1320. [PMID: 39771982 PMCID: PMC11680293 DOI: 10.3390/vaccines12121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
The Macrophage-inducible C-type lectin (Mincle) is a pattern-recognition receptor (PRR), which has shown much promise as a molecular target for the development of TH1/TH17-skewing vaccine adjuvants. In 2009, the first non-proteinaceous Mincle ligands, trehalose dimycolate (TDM) and trehalose dibehenate (TDB), were identified. This prompted a search for other Mincle agonists and the exploration of Mincle agonists as vaccine adjuvants for both preventative and therapeutic (anti-cancer) vaccines. In this review, we discuss those classes of Mincle agonists that have been explored for their adjuvant potential. These Mincle agonists have been used as stand-alone adjuvants or in combination with other pathogen-associated molecular patterns (PAMPs) or immunomodulatory agents. We will also highlight recently identified Mincle ligands with hitherto unknown adjuvanticity. Conjugate vaccines that contain covalently linked adjuvants and/or adjuvant-antigen combinations are also presented, as well as the different formulations (e.g., oil-in-water emulsions, liposomes, and particulate delivery systems) that have been used for the codelivery of antigens and adjuvants. Insofar the reader is presented with a thorough review of the potential of Mincle-mediated vaccine adjuvants, including historical context, present-day research and clinical trials, and outstanding research questions, such as the role of ligand presentation and Mincle clustering, which, if better understood, will aid in the development of the much-needed TH1/TH17-skewing vaccine adjuvants.
Collapse
Affiliation(s)
| | | | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
3
|
Woodworth JS, Contreras V, Christensen D, Naninck T, Kahlaoui N, Gallouët AS, Langlois S, Burban E, Joly C, Gros W, Dereuddre-Bosquet N, Morin J, Liu Olsen M, Rosenkrands I, Stein AK, Krøyer Wood G, Follmann F, Lindenstrøm T, Hu T, Le Grand R, Pedersen GK, Mortensen R. MINCLE and TLR9 agonists synergize to induce Th1/Th17 vaccine memory and mucosal recall in mice and non-human primates. Nat Commun 2024; 15:8959. [PMID: 39420177 PMCID: PMC11487054 DOI: 10.1038/s41467-024-52863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Development of new vaccines tailored for difficult-to-target diseases is hampered by a lack of diverse adjuvants for human use, and none of the currently available adjuvants induce Th17 cells. Here, we develop a liposomal adjuvant, CAF®10b, that incorporates Mincle and Toll-like receptor 9 agonists. In parallel mouse and non-human primate studies comparing to CAF® adjuvants already in clinical trials, we report species-specific effects of adjuvant composition on the quality and magnitude of the responses. When combined with antigen, CAF®10b induces Th1 and Th17 responses and protection against a pulmonary infection with Mycobacterium tuberculosis in mice. In non-human primates, CAF®10b induces higher Th1 responses and robust Th17 responses detectable after six months, and systemic and pulmonary Th1 and Th17 recall responses, in a sterile model of local recall. Overall, CAF®10b drives robust memory antibody, Th1 and Th17 vaccine-responses via a non-mucosal immunization route across both rodent and primate species.
Collapse
Affiliation(s)
- Joshua S Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Emma Burban
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Candie Joly
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Ming Liu Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Ann-Kathrin Stein
- Department of Vaccine Development, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Grith Krøyer Wood
- Department of Vaccine Development, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Tu Hu
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| |
Collapse
|
4
|
Dangerfield EM, Ishizuka S, Kodar K, Yamasaki S, Timmer MSM, Stocker BL. Chimeric NOD2 Mincle Agonists as Vaccine Adjuvants. J Med Chem 2024; 67:5373-5390. [PMID: 38507580 DOI: 10.1021/acs.jmedchem.3c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
There is a need for improved vaccine adjuvants to augment vaccine efficacy. One way to address this is by targeting multiple immune cell pathogen recognition receptors (PRRs) using chimeric pathogen-associated molecular patterns (PAMPs). Conjugation of the PAMPs will ensure codelivery of the immunostimulatory molecules to the same cell, enhancing adjuvant activity. The macrophage inducible C-type lectin (Mincle) is a promising PRR for adjuvant development; however, no effective chimeric Mincle adjuvants have been prepared. We addressed this by synthesizing Mincle adjuvant conjugates, MDP-C18Brar and MDP-C18Brar-dilipid, which contain PAMPs recognized by Mincle and the nucleotide-binding oligomerization domain 2 (NOD2). The two PAMPs are joined by a pH-sensitive oxyamine linker which, upon acidification at lysosomal pH, hydrolyzed to release the NOD2 ligands. The conjugates elicited the production of Th1 and Th17 promoting cytokines in vitro, and when using OVA as a model antigen, exhibited enhanced T-cell-mediated immune responses and reduced toxicity in vivo, compared to the coadministration of the adjuvants.
Collapse
Affiliation(s)
- Emma M Dangerfield
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Shigenari Ishizuka
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kristel Kodar
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
5
|
Thakur A, Wadhwa A, Lokras A, Müllertz OAO, Christensen D, Franzyk H, Foged C. Method of manufacturing CAF®09 liposomes affects immune responses induced by adjuvanted subunit proteins. Eur J Pharm Biopharm 2023; 189:84-97. [PMID: 37059402 DOI: 10.1016/j.ejpb.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
The ability to induce antigen-specific CD4+ and CD8+T-cell responses is one of the fundamental requirements when developing new efficacious vaccines against challenging infectious diseases and cancer. However, no adjuvants are currently approved for human subunit vaccines that induce T-cell immunity. Here, we incorporated a Toll-like receptor 4 agonist, i.e., the ionizable lipidoid L5N12, in the liposomal cationic adjuvant formulation 09 (CAF®09), and found that modified CAF®09 liposomes possess preserved adjuvant function as compared to unmodified CAF®09. CAF®09 consists of the cationic lipid dimethyldioctadecylammonium (DDA), monomycoloyl glycerol analogue 1 (MMG-1), and polyinosinic:polycytidylic acid [poly(I:C)]. By using the microfluidic mixing technology for liposome preparation, we gradually replaced DDA with L5N12, while keeping the molar ratios of MMG-1 and poly(I:C) constant. We found that this type of modification resulted in colloidally stable liposomes, which were significantly smaller and displayed reduced surface charge as compared to unmodified CAF®09, prepared by using the conventional thin film method. We showed that incorporation of L5N12 decreases the membrane rigidity of CAF®09 liposomes. Furthermore, vaccination with antigen adjuvanted with L5N12-modified CAF®09 or antigen adjuvanted with unmodified CAF®09, respectively, induced comparable antigen-specific serum antibody titers. We found that antigen adjuvanted with L5N12-modified CAF®09 induced antigen-specific effector and memory CD4+ and CD8+T-cell responses in the spleen comparable to those induced when unmodified CAF®09 was used as adjuvant. However, incorporating L5N12 did not have a synergistic immunopotentiating effect on the antibody and T-cell responses induced by CAF®09. Moreover, vaccination with antigen adjuvanted with unmodified CAF®09, which was manufactured by using microfluidic mixing, induced significantly lower antigen-specific CD4+ and CD8+T-cell responses than vaccination with antigen adjuvanted with unmodified CAF®09, which was prepared by using the thin film method. These results show that the method of manufacturing affects CAF®09 liposome adjuvanted antigen-specific immune responses, which should be taken into consideration when evaluating immunogenicity of subunit protein vaccines.
Collapse
Affiliation(s)
- Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Abishek Wadhwa
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Abhijeet Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Olivia Amanda Oest Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Woodworth JS, Contreras V, Christensen D, Naninck T, Kahlaoui N, Gallouët AS, Langlois S, Burban E, Joly C, Gros W, Dereuddre-Bosquet N, Morin J, Olsen ML, Rosenkrands I, Stein AK, Wood GK, Follmann F, Lindenstrøm T, LeGrand R, Pedersen GK, Mortensen R. A novel adjuvant formulation induces robust Th1/Th17 memory and mucosal recall responses in Non-Human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529651. [PMID: 36865310 PMCID: PMC9980079 DOI: 10.1101/2023.02.23.529651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
After clean drinking water, vaccination is the most impactful global health intervention. However, development of new vaccines against difficult-to-target diseases is hampered by the lack of diverse adjuvants for human use. Of particular interest, none of the currently available adjuvants induce Th17 cells. Here, we develop and test an improved liposomal adjuvant, termed CAF®10b, that incorporates a TLR-9 agonist. In a head-to-head study in non-human primates (NHPs), immunization with antigen adjuvanted with CAF®10b induced significantly increased antibody and cellular immune responses compared to previous CAF® adjuvants, already in clinical trials. This was not seen in the mouse model, demonstrating that adjuvant effects can be highly species specific. Importantly, intramuscular immunization of NHPs with CAF®10b induced robust Th17 responses that were observed in circulation half a year after vaccination. Furthermore, subsequent instillation of unadjuvanted antigen into the skin and lungs of these memory animals led to significant recall responses including transient local lung inflammation observed by Positron Emission Tomography-Computed Tomography (PET-CT), elevated antibody titers, and expanded systemic and local Th1 and Th17 responses, including >20% antigen-specific T cells in the bronchoalveolar lavage. Overall, CAF®10b demonstrated an adjuvant able to drive true memory antibody, Th1 and Th17 vaccine-responses across rodent and primate species, supporting its translational potential.
Collapse
Affiliation(s)
- Joshua S Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Emma Burban
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Candie Joly
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Ming Liu Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Ann-Kathrin Stein
- Department of Vaccine Development, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Grith Krøyer Wood
- Department of Vaccine Development, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Roger LeGrand
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| |
Collapse
|
7
|
Zhou S, Luo Y, Lovell JF. Vaccine approaches for antigen capture by liposomes. Expert Rev Vaccines 2023; 22:1022-1040. [PMID: 37878481 PMCID: PMC10872528 DOI: 10.1080/14760584.2023.2274479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Liposomes have been used as carriers for vaccine adjuvants and antigens due to their inherent biocompatibility and versatility as delivery vehicles. Two vial admixture of protein antigens with liposome-formulated immunostimulatory adjuvants has become a broadly used clinical vaccine preparation approach. Compared to freely soluble antigens, liposome-associated forms can enhance antigen delivery to antigen-presenting cells and co-deliver antigens with adjuvants, leading to improved vaccine efficacy. AREAS COVERED Several antigen-capture strategies for liposomal vaccines have been developed for proteins, peptides, and nucleic acids. Specific antigen delivery methodologies are discussed, including electrostatic adsorption, encapsulation inside the liposome aqueous core, and covalent and non-covalent antigen capture. EXPERT OPINION Several commercial vaccines include active lipid components, highlighting an increasingly prominent role of liposomes and lipid nanoparticles in vaccine development. Utilizing liposomes to associate antigens offers potential advantages, including antigen and adjuvant dose-sparing, co-delivery of antigen and adjuvant to immune cells, and enhanced immunogenicity. Antigen capture by liposomes has demonstrated feasibility in clinical testing. New antigen-capture techniques have been developed and appear to be of interest for vaccine development.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Yuan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
8
|
The trehalose glycolipid C18Brar promotes antibody and T-cell immune responses to Mannheimia haemolytica and Mycoplasma ovipneumoniae whole cell antigens in sheep. PLoS One 2023; 18:e0278853. [PMID: 36656850 PMCID: PMC9851559 DOI: 10.1371/journal.pone.0278853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/23/2022] [Indexed: 01/20/2023] Open
Abstract
Bronchopneumonia is a common respiratory disease in livestock. Mannheimia haemolytica is considered the main causative pathogen leading to lung damage in sheep, with Mycoplasma ovipneumoniae and ParaInfluenza virus type 3, combined with adverse physical and physiological stress, being predisposing factors. A balance of humoral and cellular immunity is thought to be important for protection against developing respiratory disease. In the current study, we compared the ability of the trehalose glycolipid adjuvant C18Brar (C18-alkylated brartemicin analogue) and three commercially available adjuvant systems i.e., Quil-A, Emulsigen-D, and a combination of Quil-A and aluminium hydroxide gel, to stimulate antibody and cellular immune responses to antigens from inactivated whole cells of M. haemolytica and M. ovipneumoniae in sheep. C18Brar and Emulsigen-D induced the strongest antigen-specific antibody responses to both M. haemolytica and M. ovipneumoniae, while C18Brar and Quil-A promoted the strongest antigen-specific IL-17A responses. The expression of genes with known immune functions was determined in antigen-stimulated blood cultures using Nanostring nCounter technology. The expression levels of CD40, IL22, TGFB1, and IL2RA were upregulated in antigen-stimulated blood cultures from animals vaccinated with C18Brar, which is consistent with T-cell activation. Collectively, the results demonstrate that C18Brar can promote both antibody and cellular responses, notably Th17 immune responses in a ruminant species.
Collapse
|
9
|
Hasankhani A, Bahrami A, Mackie S, Maghsoodi S, Alawamleh HSK, Sheybani N, Safarpoor Dehkordi F, Rajabi F, Javanmard G, Khadem H, Barkema HW, De Donato M. In-depth systems biological evaluation of bovine alveolar macrophages suggests novel insights into molecular mechanisms underlying Mycobacterium bovis infection. Front Microbiol 2022; 13:1041314. [PMID: 36532492 PMCID: PMC9748370 DOI: 10.3389/fmicb.2022.1041314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Objective Bovine tuberculosis (bTB) is a chronic respiratory infectious disease of domestic livestock caused by intracellular Mycobacterium bovis infection, which causes ~$3 billion in annual losses to global agriculture. Providing novel tools for bTB managements requires a comprehensive understanding of the molecular regulatory mechanisms underlying the M. bovis infection. Nevertheless, a combination of different bioinformatics and systems biology methods was used in this study in order to clearly understand the molecular regulatory mechanisms of bTB, especially the immunomodulatory mechanisms of M. bovis infection. Methods RNA-seq data were retrieved and processed from 78 (39 non-infected control vs. 39 M. bovis-infected samples) bovine alveolar macrophages (bAMs). Next, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules in non-infected control bAMs as reference set. The WGCNA module preservation approach was then used to identify non-preserved modules between non-infected controls and M. bovis-infected samples (test set). Additionally, functional enrichment analysis was used to investigate the biological behavior of the non-preserved modules and to identify bTB-specific non-preserved modules. Co-expressed hub genes were identified based on module membership (MM) criteria of WGCNA in the non-preserved modules and then integrated with protein-protein interaction (PPI) networks to identify co-expressed hub genes/transcription factors (TFs) with the highest maximal clique centrality (MCC) score (hub-central genes). Results As result, WGCNA analysis led to the identification of 21 modules in the non-infected control bAMs (reference set), among which the topological properties of 14 modules were altered in the M. bovis-infected bAMs (test set). Interestingly, 7 of the 14 non-preserved modules were directly related to the molecular mechanisms underlying the host immune response, immunosuppressive mechanisms of M. bovis, and bTB development. Moreover, among the co-expressed hub genes and TFs of the bTB-specific non-preserved modules, 260 genes/TFs had double centrality in both co-expression and PPI networks and played a crucial role in bAMs-M. bovis interactions. Some of these hub-central genes/TFs, including PSMC4, SRC, BCL2L1, VPS11, MDM2, IRF1, CDKN1A, NLRP3, TLR2, MMP9, ZAP70, LCK, TNF, CCL4, MMP1, CTLA4, ITK, IL6, IL1A, IL1B, CCL20, CD3E, NFKB1, EDN1, STAT1, TIMP1, PTGS2, TNFAIP3, BIRC3, MAPK8, VEGFA, VPS18, ICAM1, TBK1, CTSS, IL10, ACAA1, VPS33B, and HIF1A, had potential targets for inducing immunomodulatory mechanisms by M. bovis to evade the host defense response. Conclusion The present study provides an in-depth insight into the molecular regulatory mechanisms behind M. bovis infection through biological investigation of the candidate non-preserved modules directly related to bTB development. Furthermore, several hub-central genes/TFs were identified that were significant in determining the fate of M. bovis infection and could be promising targets for developing novel anti-bTB therapies and diagnosis strategies.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Shayan Mackie
- Faculty of Science, Earth Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Sairan Maghsoodi
- Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, AL-Balqa Applied University, AL-Huson University College, AL-Huson, Jordan
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhad Safarpoor Dehkordi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcos De Donato
- Regional Department of Bioengineering, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
10
|
Progress towards the Elusive Mastitis Vaccines. Vaccines (Basel) 2022; 10:vaccines10020296. [PMID: 35214754 PMCID: PMC8876843 DOI: 10.3390/vaccines10020296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory. In this review, we examine the possible reasons for the current shortcomings of mastitis vaccines. Some reasons stem from the peculiarities of the mammary gland immunobiology, others from the pathogens adapted to the mammary gland niche. Infection does not induce sterilizing protection, and recurrence is common. Efficacious vaccines will have to elicit immune mechanisms different from and more effective than those induced by infection. We propose focusing our research on a few points pertaining to either the current immune knowledge or vaccinology approaches to get out of the current deadlock. A possible solution is to focus on the contribution of cell-mediated immunity to udder protection based on the interactions of T cells with the mammary epithelium. On the vaccinology side, studies on the orientation of the immune response by adjuvants, the route of vaccine administration and the delivery systems are among the keys to success.
Collapse
|
11
|
Anderluh M, Berti F, Bzducha‐Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic‐Cincovic M, Marradi M, Ozil M, Polito L, Reina‐Martin JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Emerging glyco-based strategies to steer immune responses. FEBS J 2021; 288:4746-4772. [PMID: 33752265 PMCID: PMC8453523 DOI: 10.1111/febs.15830] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.
Collapse
Affiliation(s)
- Marko Anderluh
- Chair of Pharmaceutical ChemistryFaculty of PharmacyUniversity of LjubljanaSlovenia
| | | | - Anna Bzducha‐Wróbel
- Department of Biotechnology and Food MicrobiologyWarsaw University of Life Sciences‐SGGWPoland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Federica Compostella
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Katarzyna Durlik
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Xhenti Ferhati
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Wieslaw Kaca
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Milena Marinovic‐Cincovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Marco Marradi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Musa Ozil
- Department of ChemistryFaculty of Arts and SciencesRecep Tayyip Erdogan University RizeTurkey
| | | | | | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyInstituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortugal
| | - Robert Sackstein
- Department of Translational Medicinethe Translational Glycobiology InstituteHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico IIComplesso Universitario Monte Sant’AngeloNapoliItaly
| | - Urban Švajger
- Blood Transfusion Center of SloveniaLjubljanaSlovenia
| | - Ondřej Vaněk
- Department of BiochemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology LaboratoryJosep Carreras Leukaemia Research InstituteBadalonaSpain
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| |
Collapse
|
12
|
Blanco FC, García EA, Aagaard C, Bigi F. The subunit vaccine H65 + CAF01 increased the BCG- protection against Mycobacterium bovis infection in a mouse model of bovine tuberculosis. Res Vet Sci 2021; 136:595-597. [PMID: 33894619 DOI: 10.1016/j.rvsc.2021.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
H65, a fusion protein of three pairs of ESX-secreted antigens of Mycobacterium tuberculosis and Mycobacterium bovis, formulated with the liposomal adjuvant CAF01 has been shown to confer protection against M. tuberculosis infection in mice. In this study, we evaluated the impact of combining BCG with H65 + CAF01 immunization in a M. bovis mouse model of infection. We found that a BCG-H65 + CAF01/ H65 + CAF01 prime-boost scheme induced higher protection than BCG and H65 + CAF01 alone. Altogether, H65 antigen formulated in liposomal adjuvant improved the BCG-induced immune protection, thus making this vaccine strategy a promising tool to control bovine tuberculosis.
Collapse
Affiliation(s)
- Federico C Blanco
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Institute of Biotechnology, National Institute of Agricultural Technology, Argentina
| | - Elizabeth A García
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Institute of Biotechnology, National Institute of Agricultural Technology, Argentina
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Institute of Biotechnology, National Institute of Agricultural Technology, Argentina.
| |
Collapse
|
13
|
Lindenwald DL, Lepenies B. C-Type Lectins in Veterinary Species: Recent Advancements and Applications. Int J Mol Sci 2020; 21:ijms21145122. [PMID: 32698416 PMCID: PMC7403975 DOI: 10.3390/ijms21145122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
C-type lectins (CTLs), a superfamily of glycan-binding receptors, play a pivotal role in the host defense against pathogens and the maintenance of immune homeostasis of higher animals and humans. CTLs in innate immunity serve as pattern recognition receptors and often bind to glycan structures in damage- and pathogen-associated molecular patterns. While CTLs are found throughout the whole animal kingdom, their ligand specificities and downstream signaling have mainly been studied in humans and in model organisms such as mice. In this review, recent advancements in CTL research in veterinary species as well as potential applications of CTL targeting in veterinary medicine are outlined.
Collapse
|
14
|
Thakur A, Pinto FE, Hansen HS, Andersen P, Christensen D, Janfelt C, Foged C. Intrapulmonary (i.pulmon.) Pull Immunization With the Tuberculosis Subunit Vaccine Candidate H56/CAF01 After Intramuscular (i.m.) Priming Elicits a Distinct Innate Myeloid Response and Activation of Antigen-Presenting Cells Than i.m. or i.pulmon. Prime Immunization Alone. Front Immunol 2020; 11:803. [PMID: 32457748 PMCID: PMC7221191 DOI: 10.3389/fimmu.2020.00803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/08/2020] [Indexed: 12/22/2022] Open
Abstract
Understanding the in vivo fate of vaccine antigens and adjuvants and their safety is crucial for the rational design of mucosal subunit vaccines. Prime and pull vaccination using the T helper 17-inducing adjuvant CAF01 administered parenterally and mucosally, respectively, has previously been suggested as a promising strategy to redirect immunity to mucosal tissues. Recently, we reported a promising tuberculosis (TB) vaccination strategy comprising of parenteral priming followed by intrapulmonary (i.pulmon.) mucosal pull immunization with the TB subunit vaccine candidate H56/CAF01, which resulted in the induction of lung-localized, H56-specific T cells and systemic as well as lung mucosal IgA responses. Here, we investigate the uptake of H56/CAF01 by mucosal and systemic innate myeloid cells, antigen-presenting cells (APCs), lung epithelial cells and endothelial cells in mice after parenteral prime combined with i.pulmon. pull immunization, and after parenteral or i.pulmon. prime immunization alone. We find that i.pulmon. pull immunization of mice with H56/CAF01, which are parenterally primed with H56/CAF01, substantially enhances vaccine uptake and presentation by pulmonary and splenic APCs, pulmonary endothelial cells and type I epithelial cells and induces stronger activation of dendritic cells in the lung-draining lymph nodes, compared with parenteral immunization alone, which suggests activation of both innate and memory responses. Using mass spectrometry imaging of lipid biomarkers, we further show that (i) airway mucosal immunization with H56/CAF01 neither induces apparent local tissue damage nor inflammation in the lungs, and (ii) the presence of CAF01 is accompanied by evidence of an altered phagocytic activity in alveolar macrophages, evident from co-localization of CAF01 with the biomarker bis(monoacylglycero)phosphate, which is expressed in the late endosomes and lysosomes of phagocytosing macrophages. Hence, our data demonstrate that innate myeloid responses differ after one and two immunizations, respectively, and the priming route and boosting route individually affect this outcome. These findings may have important implications for the design of mucosal vaccines intended for safe administration in the airways.
Collapse
Affiliation(s)
- Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Harald Severin Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Lindenwald DL, Monteiro JT, Rautenschlein S, Meens J, Jung K, Becker SC, Lepenies B. Ovine C-type lectin receptor hFc-fusion protein library - A novel platform to screen for host-pathogen interactions. Vet Immunol Immunopathol 2020; 224:110047. [PMID: 32325253 DOI: 10.1016/j.vetimm.2020.110047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/13/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022]
Abstract
C-type lectin receptors (CTLRs) are pattern recognition receptors which are important constituents of the innate immunity. However, their role has mostly been studied in humans and in mouse models. To bridge the knowledge gap concerning CTLRs of veterinary relevant species, a novel ovine CTLR hFc-fusion protein library which allows in vitro ligand identification and pathogen binding studies has been established. Its utility was tested with known ligands of corresponding murine CTLRs in ELISA- and flow cytometry based binding studies. The ovine CTLR-hFc library was subsequently used in a proof-of-principle pathogen binding study with the ruminant pathogen Mycoplasma mycoides subsp. capri. Some ovine CTLRs, such as Dendritic Cell Immunoreceptor (DCIR, Clec4a), Macrophage C-Type Lectin (MCL, Clec4d) and Myeloid Inhibitory C-Type Lectin-Like Receptor (MICL, Clec12a) were identified as possible candidate receptors whose role in Mycoplasma recognition can now be unraveled in further studies. This study thus shows the utility of this novel ovine CTLR-hFc fusion protein library to screen for CTLR/pathogen interactions.
Collapse
Affiliation(s)
- Dimitri L Lindenwald
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - João T Monteiro
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University for Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - Jochen Meens
- Institute for Microbiology, University for Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - Stefanie C Becker
- Institute for Parasitology & Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Foundation. Hannover, Germany
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Foundation. Hannover, Germany.
| |
Collapse
|
16
|
Duong HTT, Yin Y, Thambi T, Kim BS, Jeong JH, Lee DS. Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy. J Mater Chem B 2020; 8:1171-1181. [PMID: 31957761 DOI: 10.1039/c9tb02175b] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite recent advances in cancer therapy using vaccines, the efficacy of vaccine regimens remains to be improved. Cutaneous transportation of biomolecules, particularly DNA vaccines, has potentially improved the therapeutic efficacy and has been found to be an appealing approach in cancer immunotherapy. Nevertheless, the effectiveness of transdermal vaccination is limited by the lack of efficacious immune stimulation. Here, to elicit strong immunogenicity in target cells, we propose an array of dissolving microneedle cocktails for pain-free implantation and triggered release of vaccines and adjuvants at cutaneous tissues. The microneedle cocktails comprising a bioresorbable polypeptide matrix with a nanopolyplex, which include cationic amphiphilic conjugates with ovalbumin-expressing plasmid OVA (pOVA) and immunostimulant-polyinosinic:polycytidylic acid (poly(I:C)), were prepared using a one-pot synthesis. The cationic nanopolyplex effectively transported pOVA and poly(I:C) into the intracellular compartments of dendritic cells and macrophages. Cutaneous implantation of microneedle cocktails on mice elicits a stronger antigen-specific antibody response than subcutaneous administration of the microneedle-free nanopolyplex. Compared with traditional vaccination, the dissolving microneedle cocktails enhanced the antibody recall memory after challenge; remarkably, the cocktail-based therapeutic vaccination also resulted in enhanced lung clearance of cancer cells. The dissolving microneedle cocktail therapy based on the triggered release of immunomodulators and adjuvants synergistically augmented the therapeutic effect in B16/OVA melanoma tumors.
Collapse
Affiliation(s)
- Huu Thuy Trang Duong
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Yue Yin
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea. and CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Bong Sup Kim
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Ji Hoon Jeong
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
17
|
Arrazuria R, Ladero I, Molina E, Fuertes M, Juste R, Fernández M, Pérez V, Garrido J, Elguezabal N. Alternative Vaccination Routes against Paratuberculosis Modulate Local Immune Response and Interference with Tuberculosis Diagnosis in Laboratory Animal Models. Vet Sci 2020; 7:vetsci7010007. [PMID: 31936741 PMCID: PMC7157726 DOI: 10.3390/vetsci7010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 01/21/2023] Open
Abstract
Paratuberculosis (PTB) is an enteric granulomatous disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) that mainly affects ruminants. Current vaccines have shown to be cost–effective control reagents, although they are restricted due to cross-interference with bovine tuberculosis (bTB). Therefore, novel vaccination strategies are needed and this study is focused on evaluating alternative vaccination routes and their effect on the local immune response. The MAP oral challenge rabbit model was used to evaluate and compare an experimental inactivated MAP vaccine through oral (VOR) and intradermal (VID) routes. The VID group presented the highest proportion of animals with no visible lesions and the lowest proportion of animals with MAP positive tissues. Immunohistochemistry analysis revealed that the VID group presented a dominantly M1 polarized response indicating an ability to control MAP infection. In general, all vaccinated groups showed lower calprotectin levels compared to the non-vaccinated challenged group suggesting less active granulomatous lesions. The VID group showed some degree of skin test reactivity, whereas the same vaccine through oral administration was completely negative. These data show that PTB vaccination has an effect on macrophage polarization and that the route influences infection outcome and can also have an impact on bTB diagnosis. Future evaluation of new immunological products against mycobacterial diseases should consider assaying different vaccination routes.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Iraia Ladero
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Elena Molina
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Miguel Fuertes
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Ramón Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Miguel Fernández
- Department of Animal Health, Instituto de Ganadería de Montaña (CSIC-ULE), Facultad de Veterinaria, Universidad de León, E-24071 Leon, Spain; (M.F.); (V.P.)
| | - Valentín Pérez
- Department of Animal Health, Instituto de Ganadería de Montaña (CSIC-ULE), Facultad de Veterinaria, Universidad de León, E-24071 Leon, Spain; (M.F.); (V.P.)
| | - Joseba Garrido
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Natalia Elguezabal
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
- Correspondence: ; Tel.: +34-94-403-4300
| |
Collapse
|
18
|
Ryter KT, Ettenger G, Rasheed OK, Buhl C, Child R, Miller SM, Holley D, Smith AJ, Evans JT. Aryl Trehalose Derivatives as Vaccine Adjuvants for Mycobacterium tuberculosis. J Med Chem 2019; 63:309-320. [PMID: 31809053 DOI: 10.1021/acs.jmedchem.9b01598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mycobacterium tuberculosis (Mtb) continues to be a major health threat worldwide, and the development of Mtb vaccines could play a pivotal role in the prevention and control of this devastating epidemic. Th17-mediated immunity has been implicated in disease protection correlates of immune protection against Mtb. Currently, there are no approved adjuvants capable of driving a Th17 response in a vaccine setting. Recent clinical trial results using trehalose dibehenate have demonstrated a formulation-dependant proof of concept adjuvant system CAF01 capable of inducing long-lived protection. We have discovered a new class of Th17-inducing vaccine adjuvants based on the natural product Brartemicin. We synthesized and evaluated the capacity of a library of aryl trehalose derivatives to drive immunostimulatory reresponses and evaluated the structure-activity relationships in terms of the ability to engage the Mincle receptor and induce production of innate cytokines from human and murine cells. We elaborated on the structure-activity relationship of the new scaffold and demonstrated the ability of the lead entity to induce a pro-Th17 cytokine profile from primary human peripheral blood mononuclear cells and demonstrated efficacy in generating antibodies in combination with tuberculosis antigen M72 in a mouse model.
Collapse
|
19
|
HCV p7 as a novel vaccine-target inducing multifunctional CD4 + and CD8 + T-cells targeting liver cells expressing the viral antigen. Sci Rep 2019; 9:14085. [PMID: 31575882 PMCID: PMC6773770 DOI: 10.1038/s41598-019-50365-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent treatment advances for chronic hepatitis C virus (HCV) infection, a vaccine is urgently needed for global control of this important liver pathogen. The lack of robust immunocompetent HCV infection models makes it challenging to identify correlates of protection and test vaccine efficacy. However, vigorous CD4+ and CD8+ T-cell responses are detected in patients that spontaneously resolve acute infection, whereas dysfunctional T-cell responses are a hallmark of chronic infection. The HCV p7 protein, forming ion-channels essential for viral assembly and release, has not previously been pursued as a vaccine antigen. Herein, we demonstrated that HCV p7 derived from genotype 1a and 1b sequences are highly immunogenic in mice when employed as overlapping peptides formulated as nanoparticles with the cross-priming adjuvant, CAF09. This approach induced multifunctional cytokine producing CD4+ and CD8+ T-cells targeting regions of p7 that are subject to immune pressure during HCV infection in chimpanzees and humans. Employing a surrogate in vivo challenge model of liver cells co-expressing HCV-p7 and GFP, we found that vaccinated mice cleared transgene expressing cells. This study affirms the potential of a T-cell inducing nanoparticle vaccine platform to target the liver and introduces HCV p7 as a potential target for HCV vaccine explorations.
Collapse
|
20
|
Applications of Immunomodulatory Immune Synergies to Adjuvant Discovery and Vaccine Development. Trends Biotechnol 2018; 37:373-388. [PMID: 30470547 DOI: 10.1016/j.tibtech.2018.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Pathogens comprise a diverse set of immunostimulatory molecules that activate the innate immune system during infection. The immune system recognizes distinct combinations of pathogenic molecules leading to multiple immune activation events that cooperate to produce enhanced immune responses, known as 'immune synergies'. Effective immune synergies are essential for the clearance of pathogens, thus inspiring novel adjuvant design to improve vaccines. We highlight current vaccine adjuvants and the importance of immune synergies to adjuvant and vaccine design. The focus is on new technologies used to study and apply immune synergies to adjuvant and vaccine development. Finally, we discuss how recent findings can be applied to the future design and characterization of synergistic adjuvants and vaccines.
Collapse
|
21
|
|