4
|
Manta CP, Leibing T, Friedrich M, Nolte H, Adrian M, Schledzewski K, Krzistetzko J, Kirkamm C, David Schmid C, Xi Y, Stojanovic A, Tonack S, de la Torre C, Hammad S, Offermanns S, Krüger M, Cerwenka A, Platten M, Goerdt S, Géraud C. Targeting of Scavenger Receptors Stabilin-1 and Stabilin-2 Ameliorates Atherosclerosis by a Plasma Proteome Switch Mediating Monocyte/Macrophage Suppression. Circulation 2022; 146:1783-1799. [PMID: 36325910 DOI: 10.1161/circulationaha.121.058615] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are preferentially expressed by liver sinusoidal endothelial cells. They mediate the clearance of circulating plasma molecules controlling distant organ homeostasis. Studies suggest that Stab1 and Stab2 may affect atherosclerosis. Although subsets of tissue macrophages also express Stab1, hematopoietic Stab1 deficiency does not modulate atherogenesis. Here, we comprehensively studied how targeting Stab1 and Stab2 affects atherosclerosis. METHODS ApoE-KO mice were interbred with Stab1-KO and Stab2-KO mice and fed a Western diet. For antibody targeting, Ldlr-KO mice were also used. Unbiased plasma proteomics were performed and independently confirmed. Ligand binding studies comprised glutathione-S-transferase-pulldown and endocytosis assays. Plasma proteome effects on monocytes were studied by single-cell RNA sequencing in vivo, and by gene expression analyses of Stabilin ligand-stimulated and plasma-stimulated bone marrow-derived monocytes/macrophages in vitro. RESULTS Spontaneous and Western diet-associated atherogenesis was significantly reduced in ApoE-Stab1-KO and ApoE-Stab2-KO mice. Similarly, inhibition of Stab1 or Stab2 by monoclonal antibodies significantly reduced Western diet-associated atherosclerosis in ApoE-KO and Ldlr-KO mice. Although neither plasma lipid levels nor circulating immune cell numbers were decisively altered, plasma proteomics revealed a switch in the plasma proteome, consisting of 231 dysregulated proteins comparing wildtype with Stab1/2-single and Stab1/2-double KO, and of 41 proteins comparing ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO. Among this broad spectrum of common, but also disparate scavenger receptor ligand candidates, periostin, reelin, and TGFBi (transforming growth factor, β-induced), known to modulate atherosclerosis, were independently confirmed as novel circulating ligands of Stab1/2. Single-cell RNA sequencing of circulating myeloid cells of ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO mice showed transcriptomic alterations in patrolling (Ccr2-/Cx3cr1++/Ly6Clo) and inflammatory (Ccr2+/Cx3cr1+/Ly6Chi) monocytes, including downregulation of proatherogenic transcription factor Egr1. In wildtype bone marrow-derived monocytes/macrophages, ligand exposure alone did not alter Egr1 expression in vitro. However, exposure to plasma from ApoE-Stab1-KO and ApoE-Stab2-KO mice showed a reverted proatherogenic macrophage activation compared with ApoE-KO plasma, including downregulation of Egr1 in vitro. CONCLUSIONS Inhibition of Stab1/Stab2 mediates an anti-inflammatory switch in the plasma proteome, including direct Stabilin ligands. The altered plasma proteome suppresses both patrolling and inflammatory monocytes and, thus, systemically protects against atherogenesis. Altogether, anti-Stab1- and anti-Stab2-targeted therapies provide a novel approach for the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Calin-Petru Manta
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Mirco Friedrich
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Neurology, MCTN (M.F., M.P.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany (M.F., M.P.)
| | - Hendrik Nolte
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Institute for Genetics and CECAD, University of Cologne, Germany (H.N., M.K.).,Max Planck Institute for Biology of Ageing, Cologne, Germany (H.N.)
| | - Monica Adrian
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Jessica Krzistetzko
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christof Kirkamm
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christian David Schmid
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Yannick Xi
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Ana Stojanovic
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience, MI3 (A.S., A.C.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Sarah Tonack
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Carolina de la Torre
- Centre for Medical Research (ZMF) (C.d.l.T.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Seddik Hammad
- Department of Medicine II (S.H.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Marcus Krüger
- Institute for Genetics and CECAD, University of Cologne, Germany (H.N., M.K.).,Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Adelheid Cerwenka
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience, MI3 (A.S., A.C.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael Platten
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Neurology, MCTN (M.F., M.P.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany (M.F., M.P.)
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
10
|
Deng M, Tan J, Hu C, Hou T, Peng W, Liu J, Yu B, Dai Q, Zhou J, Yang Y, Dong R, Ruan C, Dong S, Xu J. Modification of PLGA Scaffold by MSC-Derived Extracellular Matrix Combats Macrophage Inflammation to Initiate Bone Regeneration via TGF-β-Induced Protein. Adv Healthc Mater 2020; 9:e2000353. [PMID: 32424991 DOI: 10.1002/adhm.202000353] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Indexed: 12/20/2022]
Abstract
The immunologic response toward chronic inflammation or bone regeneration via the accumulation of M1 or M2 macrophages after injury could determine the fate of biomaterial. Human umbilical cord mesenchymal stem cells (hUCMSCs) have a pivotal immunomodulatory property on directing macrophage behaviors. Herein, for the first time, 3D-printed poly(lactide-co-glycolide) (PLGA) scaffolds modified with hUCMSC-derived extracellular matrix (PLGA-ECM) are prepared by a facile tissue engineering technique with physical decellularization and 2.44 ± 0.29 mg cm-3 proteins immobilized on the PLGA-ECM contain multiple soluble cytokines with a sustainable release profile. The PLGA-ECM not only attenuates the foreign body response, but also improves bone regeneration by increasing the accumulation of M2 macrophages in an improved heterotopic transplantation model of SCID mice. Furthermore, the PLGA-ECM scaffolds with the knockdown of transforming growth factor-β-induced protein (TGFβI/βig-H3) demonstrate that M2 macrophage accumulation improved by the PLGA-ECM could be attributed to increasing the migration of M2 macrophages and the repolarization of M1 macrophages to M2 phenotype, which are mediated by multiple integrin signaling pathways involving in integrin β7, integrin α9, and integrin β1 in a TGFβI-dependent manner. This study presents an effective surface modification strategy of polymeric scaffolds to initiate tissue regeneration and combat inflammatory response by increasing M2 macrophage accumulation.
Collapse
Affiliation(s)
- Moyuan Deng
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Jiulin Tan
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Chengshen Hu
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianyong Hou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Wei Peng
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Juan Liu
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bo Yu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Qijie Dai
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Jiangling Zhou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Yusheng Yang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Rui Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Jianzhong Xu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|