1
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Danthanarayana AN, Nandy S, Kourentzi K, Vu B, Shelite TR, Travi BL, Brgoch J, Willson RC. Smartphone-readable RPA-LFA for the high-sensitivity detection of Leishmania kDNA using nanophosphor reporters. PLoS Negl Trop Dis 2023; 17:e0011436. [PMID: 37399214 PMCID: PMC10353800 DOI: 10.1371/journal.pntd.0011436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023] Open
Abstract
Early diagnosis of infectious diseases improves outcomes by enabling earlier delivery of effective treatment, and helps prevent further transmission by undiagnosed persons. We demonstrated a proof-of-concept assay combining isothermal amplification and lateral flow assay (LFA) for early diagnosis of cutaneous leishmaniasis, a vector-borne infectious disease that affects ca. 700,000 to 1.2 million people annually. Conventional molecular diagnostic techniques based on polymerase chain reaction (PCR) require complex apparatus for temperature cycling. Recombinase polymerase amplification (RPA) is an isothermal DNA amplification method that has shown promise for use in low-resource settings. Combined with lateral flow assay as the readout, RPA-LFA can be used as a point-of-care diagnostic tool with high sensitivity and specificity, but reagent costs can be problematic. In this work, we developed a highly-sensitive smartphone-based RPA-LFA for the detection of Leishmania panamensis DNA using blue-emitting [(Sr0.625Ba0.375)1.96Eu0.01Dy0.03]MgSi2O7 (SBMSO) persistent luminescent nanophosphors as LFA reporters. The greater detectability of nanophosphors allows the use of a reduced volume of RPA reagents, potentially reducing the cost of RPA-LFA. The limit of detection (LOD) of RPA with gold nanoparticle-based LFA readout is estimated at 1 parasite per reaction, but LOD can be 100-fold better, 0.01 parasites per reaction, for LFA based on SBMSO. This approach may be useful for sensitive and cost-effective point-of-care diagnosis and contribute to improved clinical and economic outcomes, especially in resource-limited settings.
Collapse
Affiliation(s)
| | - Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Binh Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Thomas R Shelite
- Department of Biosafety, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L Travi
- Department of Biosafety, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jakoah Brgoch
- Department of Chemistry, University of Houston, Houston, Texas, United States of America
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
3
|
Dangerfield TL, Paik I, Bhadra S, Johnson KA, Ellington A. Kinetics of elementary steps in loop-mediated isothermal amplification (LAMP) show that strand invasion during initiation is rate-limiting. Nucleic Acids Res 2023; 51:488-499. [PMID: 36583345 PMCID: PMC9841402 DOI: 10.1093/nar/gkac1221] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Loop-mediated isothermal amplification (LAMP) has proven to be easier to implement than PCR for point-of-care diagnostic tests. However, the underlying mechanism of LAMP is complicated and the kinetics of the major steps in LAMP have not been fully elucidated, which prevents rational improvements in assay development. Here we present our work to characterize the kinetics of the elementary steps in LAMP and show that: (i) strand invasion / initiation is the rate-limiting step in the LAMP reaction; (ii) the loop primer plays an important role in accelerating the rate of initiation and does not function solely during the exponential amplification phase and (iii) strand displacement synthesis by Bst-LF polymerase is relatively fast (125 nt/s) and processive on both linear and hairpin templates, although with some interruptions on high GC content templates. Building on these data, we were able to develop a kinetic model that relates the individual kinetic experiments to the bulk LAMP reaction. The assays developed here provide important insights into the mechanism of LAMP, and the overall model should be crucial in engineering more sensitive and faster LAMP reactions. The kinetic methods we employ should likely prove useful with other isothermal DNA amplification methods.
Collapse
Affiliation(s)
- Tyler L Dangerfield
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Kenneth A Johnson
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Kellner MJ, Ross JJ, Schnabl J, Dekens MPS, Matl M, Heinen R, Grishkovskaya I, Bauer B, Stadlmann J, Menéndez-Arias L, Straw AD, Fritsche-Polanz R, Traugott M, Seitz T, Zoufaly A, Födinger M, Wenisch C, Zuber J, Pauli A, Brennecke J. A Rapid, Highly Sensitive and Open-Access SARS-CoV-2 Detection Assay for Laboratory and Home Testing. Front Mol Biosci 2022; 9:801309. [PMID: 35433827 PMCID: PMC9011764 DOI: 10.3389/fmolb.2022.801309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
RT-qPCR-based diagnostic tests play important roles in combating virus-caused pandemics such as Covid-19. However, their dependence on sophisticated equipment and the associated costs often limits their widespread use. Loop-mediated isothermal amplification after reverse transcription (RT-LAMP) is an alternative nucleic acid detection method that overcomes these limitations. Here, we present a rapid, robust, and sensitive RT-LAMP-based SARS-CoV-2 detection assay. Our 40-min procedure bypasses the RNA isolation step, is insensitive to carryover contamination, and uses a colorimetric readout that enables robust SARS-CoV-2 detection from various sample types. Based on this assay, we have increased sensitivity and scalability by adding a nucleic acid enrichment step (Bead-LAMP), developed a version for home testing (HomeDip-LAMP), and identified open-source RT-LAMP enzymes that can be produced in any molecular biology laboratory. On a dedicated website, rtlamp.org (DOI: 10.5281/zenodo.6033689), we provide detailed protocols and videos. Our optimized, general-purpose RT-LAMP assay is an important step toward population-scale SARS-CoV-2 testing.
Collapse
Affiliation(s)
- Max J. Kellner
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- *Correspondence: Max J. Kellner, ; Andrea Pauli, ; Julius Brennecke,
| | - James J. Ross
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Jakob Schnabl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Marcus P. S. Dekens
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Matl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Robert Heinen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Benedikt Bauer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Johannes Stadlmann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Andrew D. Straw
- Institute of Biology I and Bernstein Center Freiburg, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | - Marianna Traugott
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Vienna, Austria
| | - Tamara Seitz
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Vienna, Austria
| | - Alexander Zoufaly
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Vienna, Austria
| | - Manuela Födinger
- Institute of Laboratory Diagnostics, Vienna, Austria
- Sigmund Freud Private University, Vienna, Austria
| | - Christoph Wenisch
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- *Correspondence: Max J. Kellner, ; Andrea Pauli, ; Julius Brennecke,
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- *Correspondence: Max J. Kellner, ; Andrea Pauli, ; Julius Brennecke,
| |
Collapse
|
5
|
Bhadra S, Paik I, Torres JA, Fadanka S, Gandini C, Akligoh H, Molloy J, Ellington AD. Preparation and Use of Cellular Reagents: A Low-resource Molecular Biology Reagent Platform. Curr Protoc 2022; 2:e387. [PMID: 35263038 PMCID: PMC9094432 DOI: 10.1002/cpz1.387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein reagents are indispensable for most molecular and synthetic biology procedures. Most conventional protocols rely on highly purified protein reagents that require considerable expertise, time, and infrastructure to produce. In consequence, most proteins are acquired from commercial sources, reagent expense is often high, and accessibility may be hampered by shipping delays, customs barriers, geopolitical constraints, and the need for a constant cold chain. Such limitations to the widespread availability of protein reagents, in turn, limit the expansion and adoption of molecular biology methods in research, education, and technology development and application. Here, we describe protocols for producing a low-resource and locally sustainable reagent delivery system, termed "cellular reagents," in which bacteria engineered to overexpress proteins of interest are dried and can then be used directly as reagent packets in numerous molecular biology reactions, without the need for protein purification or a constant cold chain. As an example of their application, we describe the execution of polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) using cellular reagents, detailing how to replace pure protein reagents with optimal amounts of rehydrated cellular reagents. We additionally describe a do-it-yourself fluorescence visualization device for using these cellular reagents in common molecular biology applications. The methods presented in this article can be used for low-cost, on-site production of commonly used molecular biology reagents (including DNA and RNA polymerases, reverse transcriptases, and ligases) with minimal instrumentation and expertise, and without the need for protein purification. Consequently, these methods should generally make molecular biology reagents more affordable and accessible. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cellular reagents Alternate Protocol 1: Preparation of lyophilized cellular reagents Alternate Protocol 2: Evaluation of bacterial culture growth via comparison to McFarland turbidity standards Support Protocol 1: SDS-PAGE for protein expression analysis of cellular reagents Basic Protocol 2: Using Taq DNA polymerase cellular reagents for PCR Basic Protocol 3: Using Br512 DNA polymerase cellular reagents for loop-mediated isothermal amplification (LAMP) Support Protocol 2: Building a fluorescence visualization device.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America,Corresponding authors: ,
| | - Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jose-Angel Torres
- Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at Austin, Austin, Texas, United States of America
| | | | - Chiara Gandini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Harry Akligoh
- Hive Biolab, Hse 49, SE 29056 Drive, 2nd Turn Behind Mizpah School, Kentinkrono, Kumasi, Ghana
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America,Corresponding authors: ,
| |
Collapse
|
6
|
Alcántara R, Peñaranda K, Mendoza-Rojas G, Nakamoto JA, Martins-Luna J, del Valle-Mendoza J, Adaui V, Milón P. Unlocking SARS-CoV-2 detection in low- and middle-income countries. CELL REPORTS METHODS 2021; 1:100093. [PMID: 34697612 PMCID: PMC8529268 DOI: 10.1016/j.crmeth.2021.100093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Low- and middle-income countries (LMICs) are significantly affected by SARS-CoV-2, partially due to their limited capacity for local production and implementation of molecular testing. Here, we provide detailed methods and validation of a molecular toolkit that can be readily produced and deployed using laboratory equipment available in LMICs. Our results show that lab-scale production of enzymes and nucleic acids can supply over 50,000 tests per production batch. The optimized one-step RT-PCR coupled to CRISPR-Cas12a-mediated detection showed a limit of detection of 102 ge/μL in a turnaround time of 2 h. The clinical validation indicated an overall sensitivity of 80%-88%, while for middle and high viral load samples (Cq ≤ 31) the sensitivity was 92%-100%. The specificity was 96%-100% regardless of viral load. Furthermore, we show that the toolkit can be used with the mobile laboratory Bento Lab, potentially enabling LMICs to implement detection services in unattended remote regions.
Collapse
Affiliation(s)
- Roberto Alcántara
- Centre for Research and Innovation, Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima 15023, Peru
| | - Katherin Peñaranda
- Centre for Research and Innovation, Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima 15023, Peru
| | - Gabriel Mendoza-Rojas
- Centre for Research and Innovation, Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima 15023, Peru
| | - Jose A. Nakamoto
- Centre for Research and Innovation, Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima 15023, Peru
| | - Johanna Martins-Luna
- Centre for Research and Innovation, Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima 15023, Peru
- Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Juana del Valle-Mendoza
- Centre for Research and Innovation, Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima 15023, Peru
- Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Vanessa Adaui
- Centre for Research and Innovation, Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima 15023, Peru
| | - Pohl Milón
- Centre for Research and Innovation, Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima 15023, Peru
| |
Collapse
|
7
|
News Feature: Biology research, no cells required: By borrowing the machinery of life from broken cells, researchers are producing novel proteins, cheap lab reagents, and just-add-water vaccines. Proc Natl Acad Sci U S A 2021; 118:2117944118. [PMID: 34764228 DOI: 10.1073/pnas.2117944118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
|
8
|
Hammerling MJ, Warfel KF, Jewett MC. Lyophilization of premixed COVID-19 diagnostic RT-qPCR reactions enables stable long-term storage at elevated temperature. Biotechnol J 2021; 16:e2000572. [PMID: 33964860 PMCID: PMC8237061 DOI: 10.1002/biot.202000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Reverse transcriptase‐quantitative polymerase chain reaction (RT‐qPCR) diagnostic tests for SARS‐CoV‐2 are the cornerstone of the global testing infrastructure. However, these tests require cold‐chain shipping to distribute, and the labor of skilled technicians to assemble reactions and interpret the results. Strategies to reduce shipping and labor costs at the point‐of‐care could aid in diagnostic testing scale‐up and response to the COVID‐19 outbreak, as well as in future outbreaks.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA.,Simpson Querrey Institute, Northwestern University, Evanston, Illinois, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
9
|
Bhadra S, Nguyen V, Torres JA, Kar S, Fadanka S, Gandini C, Akligoh H, Paik I, Maranhao AC, Molloy J, Ellington AD. Producing molecular biology reagents without purification. PLoS One 2021; 16:e0252507. [PMID: 34061896 PMCID: PMC8168896 DOI: 10.1371/journal.pone.0252507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
We recently developed 'cellular' reagents-lyophilized bacteria overexpressing proteins of interest-that can replace commercial pure enzymes in typical diagnostic and molecular biology reactions. To make cellular reagent technology widely accessible and amenable to local production with minimal instrumentation, we now report a significantly simplified method for preparing cellular reagents that requires only a common bacterial incubator to grow and subsequently dry enzyme-expressing bacteria at 37°C with the aid of inexpensive chemical desiccants. We demonstrate application of such dried cellular reagents in common molecular and synthetic biology processes, such as PCR, qPCR, reverse transcription, isothermal amplification, and Golden Gate DNA assembly, in building easy-to-use testing kits, and in rapid reagent production for meeting extraordinary diagnostic demands such as those being faced in the ongoing SARS-CoV-2 pandemic. Furthermore, we demonstrate feasibility of local production by successfully implementing this minimized procedure and preparing cellular reagents in several countries, including the United Kingdom, Cameroon, and Ghana. Our results demonstrate possibilities for readily scalable local and distributed reagent production, and further instantiate the opportunities available via synthetic biology in general.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Vylan Nguyen
- Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jose-Angel Torres
- Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at Austin, Austin, Texas, United States of America
| | - Shaunak Kar
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | | | - Chiara Gandini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | | | - Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Andre C. Maranhao
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
10
|
Kaymaz SV, Elitas M. Optimization of Loop-Mediated Isothermal Amplification (LAMP) reaction mixture for biosensor applications. MethodsX 2021; 8:101282. [PMID: 34434802 PMCID: PMC8374247 DOI: 10.1016/j.mex.2021.101282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
Genetically Modified (GM) foods are becoming the future of agriculture on surviving global natural disasters and climate change by their enhanced production efficiency and improved functional properties. On the other hand, their adverse health and environmental effects, ample evidence on transgene leakage of Genetically Modified Organisms (GMOs) to crops have raised questions on their benefits and risks. Consequently, low-cost, reliable, rapid, and practical detection of GMOs have been important. GMO-detection platforms should be capable of stably storing detection reagents for long-delivery distances with varying ambient temperatures. In this study, we developed an event-specific, closed tube colorimetric GMO detection method based on Loop-Mediated Isothermal Amplification (LAMP) technique which can be integrated into GMO-detection platforms. The entire detection process optimized to 30 min and isothermally at 65 °C. The durability of the LAMP mixture in the test tubes showed that the LAMP reaction mixture, in which Bst polymerase and DNA sample was later included, yielded DNA amplicons for 3 days at room temperature, and for 6 days at 4 °C.•Simple, stable, and cheap storage method of LAMP reaction mixture for GMO-detection technologies.•GMO-detection platforms can stably store detection reagents for long-delivery distances with varying ambient temperatures.•Any DNA sample can be used in the field or resource-limited setting by untrained personnel.
Collapse
Affiliation(s)
- Sümeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Meltem Elitas
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
11
|
Ali Z, Aman R, Mahas A, Rao GS, Tehseen M, Marsic T, Salunke R, Subudhi AK, Hala SM, Hamdan SM, Pain A, Alofi FS, Alsomali A, Hashem AM, Khogeer A, Almontashiri NAM, Abedalthagafi M, Hassan N, Mahfouz MM. iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res 2020; 288:198129. [PMID: 32822689 PMCID: PMC7434412 DOI: 10.1016/j.virusres.2020.198129] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 affects all aspects of human life. Detection platforms that are efficient, rapid, accurate, specific, sensitive, and user friendly are urgently needed to manage and control the spread of SARS-CoV-2. RT-qPCR based methods are the gold standard for SARS-CoV-2 detection. However, these methods require trained personnel, sophisticated infrastructure, and a long turnaround time, thereby limiting their usefulness. Reverse transcription-loop-mediated isothermal amplification (RT-LAMP), a one-step nucleic acid amplification method conducted at a single temperature, has been used for colorimetric virus detection. CRISPR-Cas12 and CRISPR-Cas13 systems, which possess collateral activity against ssDNA and RNA, respectively, have also been harnessed for virus detection. Here, we built an efficient, rapid, specific, sensitive, user-friendly SARS-CoV-2 detection module that combines the robust virus amplification of RT-LAMP with the specific detection ability of SARS-CoV-2 by CRISPR-Cas12. Furthermore, we combined the RT-LAMP-CRISPR-Cas12 module with lateral flow cells to enable highly efficient point-of-care SARS-CoV-2 detection. Our iSCAN SARS-CoV-2 detection module, which exhibits the critical features of a robust molecular diagnostic device, should facilitate the effective management and control of COVID-19.
Collapse
Affiliation(s)
- Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Ahmed Mahas
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Gundra Sivakrishna Rao
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tin Marsic
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Rahul Salunke
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Amit K Subudhi
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sharif M Hala
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; King Abdullah International Medical Research Centre - Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fadwa S Alofi
- Infectious Diseases Department, King Fahad Hospital, Madinah, Saudi Arabia
| | - Afrah Alsomali
- King Abdullah Medical Complex (KAMC), Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asim Khogeer
- Plan and Research Department, General Directorate of Health Affairs Makkah Region, MOH, Saudi Arabia
| | - Naif A M Almontashiri
- College of Applied Medical Sciences and Center for Genetics and Inherited Diseases, Taibah University, Madinah, Saudi Arabia
| | - Malak Abedalthagafi
- King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Norhan Hassan
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
12
|
Loan TD, Easton CJ, Alissandratos A. DNA amplification with in situ nucleoside to dNTP synthesis, using a single recombinant cell lysate of E. coli. Sci Rep 2019; 9:15621. [PMID: 31666578 PMCID: PMC6821818 DOI: 10.1038/s41598-019-51917-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid amplification (NAA) is a cornerstone of modern molecular and synthetic biology. Routine application by non-specialists, however, is hampered by difficulties with storing and handling the requisite labile and expensive reagents, such as deoxynucleoside triphosphates (dNTPs) and polymerases, and the complexity of protocols for their use. Here, a recombinant E. coli extract is reported that provides all the enzymes to support high-fidelity DNA amplification, and with labile dNTPs generated in situ from cheap and stable deoxynucleosides. Importantly, this is obtained from a single, engineered cell strain, through minimal processing, as a lysate capable of replacing the cold-stored commercial reagents in a typical PCR. This inexpensive preparation is highly active, as 1 L of bacterial culture is enough to supply ~106 NAA reactions. Lyophilized lysate can be used after a single-step reconstitution, resulting overall in a greatly simplified workflow and a promising synthetic biology tool, in particular for applications such as diagnostics.
Collapse
Affiliation(s)
- Thomas D Loan
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Apostolos Alissandratos
- Research School of Chemistry, Australian National University, Canberra, Australia. .,CSIRO Synthetic Biology Future Science Platform, Australian National University, Canberra, Australia.
| |
Collapse
|
13
|
Aptamers in Education: Undergraduates Make Aptamers and Acquire 21st Century Skills Along the Way. SENSORS 2019; 19:s19153270. [PMID: 31349595 PMCID: PMC6696043 DOI: 10.3390/s19153270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
Aptamers have a well-earned place in therapeutic, diagnostic, and sensor applications, and we now show that they provide an excellent foundation for education, as well. Within the context of the Freshman Research Initiative (FRI) at The University of Texas at Austin, students have used aptamer selection and development technologies in a teaching laboratory to build technical and 21st century skills appropriate for research scientists. One of the unique aspects of this course-based undergraduate research experience is that students develop and execute their own projects, taking ownership of their experience in what would otherwise be a traditional teaching lab setting. Of the many successes, this work includes the isolation and characterization of novel calf intestinal alkaline phosphatase (anti-CIAP) RNA aptamers by an undergraduate researcher. Further, preliminary survey data suggest that students who participate in the aptamer research experience express significant gains in their self-efficacy to conduct research, and their perceived ability to communicate scientific results, as well as organize and interpret data. This work describes, for the first time, the use of aptamers in an educational setting, highlights the positive student outcomes of the aptamer research experience, and presents the research findings relative to the novel anti-CIAP aptamer.
Collapse
|
14
|
Bhadra S, Riedel TE, Saldaña MA, Hegde S, Pederson N, Hughes GL, Ellington AD. Direct nucleic acid analysis of mosquitoes for high fidelity species identification and detection of Wolbachia using a cellphone. PLoS Negl Trop Dis 2018; 12:e0006671. [PMID: 30161131 PMCID: PMC6116922 DOI: 10.1371/journal.pntd.0006671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/06/2018] [Indexed: 01/03/2023] Open
Abstract
Manipulation of natural mosquito populations using the endosymbiotic bacteria Wolbachia is being investigated as a novel strategy to reduce the burden of mosquito-borne viruses. To evaluate the efficacy of these interventions, it will be critical to determine Wolbachia infection frequencies in Aedes aegypti mosquito populations. However, current diagnostic tools are not well-suited to fit this need. Morphological methods cannot identify Wolbachia, immunoassays often suffer from low sensitivity and poor throughput, while PCR and spectroscopy require complex instruments and technical expertise, which restrict their use to centralized laboratories. To address this unmet need, we have used loop-mediated isothermal amplification (LAMP) and oligonucleotide strand displacement (OSD) probes to create a one-pot sample-to-answer nucleic acid diagnostic platform for vector and symbiont surveillance. LAMP-OSD assays can directly amplify target nucleic acids from macerated mosquitoes without requiring nucleic acid purification and yield specific single endpoint yes/no fluorescence signals that are observable to eye or by cellphone camera. We demonstrate cellphone-imaged LAMP-OSD tests for two targets, the Aedes aegypti cytochrome oxidase I (coi) gene and the Wolbachia surface protein (wsp) gene, and show a limit of detection of 4 and 40 target DNA copies, respectively. In a blinded test of 90 field-caught mosquitoes, the coi LAMP-OSD assay demonstrated 98% specificity and 97% sensitivity in identifying Ae. aegypti mosquitoes even after 3 weeks of storage without desiccant at 37°C. Similarly, the wsp LAMP-OSD assay readily identified the wAlbB Wolbachia strain in field-collected Aedes albopictus mosquitoes without generating any false positive signals. Modest technology requirements, minimal execution steps, simple binary readout, and robust accuracy make the LAMP-OSD-to-cellphone assay platform well suited for field vector surveillance in austere or resource-limited conditions. Mosquitoes spread many human pathogens and novel approaches are required to reduce the burden of mosquito-borne disease. One promising approach is transferring Wolbachia into Aedes aegypti mosquitoes where it blocks transmission of arboviruses like dengue, Zika and Yellow fever viruses and spreads through mosquito populations. For effective evaluation of this approach, regular surveillance of Wolbachia infections in Ae. aegypti is required. However, current diagnostic tools, such as real time polymerase chain reaction, are not well suited to support these critical surveillance needs in resource poor settings due to their dependence on expensive instruments and technical expertise. To fill this need we developed a simple, robust and inexpensive assay to identify Ae. aegypti mosquitoes and Wolbachia using our unique one-pot assay platform, LAMP-OSD, which uses loop-mediated isothermal amplification to amplify nucleic acid targets at a single temperature. Unlike other LAMP-based tests, our assays assure accuracy by coupling amplification with novel nucleic acid strand displacement (OSD) probes that hybridize to specific sequences in LAMP amplification products and thereby generate simple yes/no readout of fluorescence readable by human eye and by off-the-shelf cellphones. To facilitate field use, we developed our assays so they are compatible with crushed mosquito homogenate as the template, meaning no nucleic acid extraction is required. In blinded tests using field collected mosquitoes, LAMP-OSD-cellphone tests performed robustly to identify 29 of 30 Ae. aegypti even after 3 weeks of storage at 37°C while producing only one false positive out of 60 non-specific mosquitoes. Similarly, our assay could identify Wolbachia in field-caught Aedes albopictus without producing any false positives. Our easy to use and easy to interpret assays should facilitate widespread field mosquito surveillance with minimal instrumentation and high accuracy.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, United States of America
- * E-mail:
| | - Timothy E. Riedel
- Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, United States of America
| | - Miguel A. Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, United States of America
| | - Shivanand Hegde
- Department of Pathology, University of Texas Medical Branch, Galveston, United States of America
| | - Nicole Pederson
- Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, United States of America
| | - Grant L. Hughes
- Department of Pathology, Institute for Human Infections and Immunity, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, United States of America
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, United States of America
| |
Collapse
|